Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

IEEE P1603/D9

A Draft Standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

Copyright © 2003 by the Institute of Electrical and Electronics Engineers, Inc.
Three Park Avenue

New York, NY 10016-5997, USA

All rights reserved.

This document is an unapproved draft of a proposed | EEE Standard. As such, this document is subject to change.
USE AT YOUR OWN RISK! Because thisis an unapproved draft, this document must not be utilized for any
conformance/compliance purposes. Permission is hereby granted for IEEE Standards Committee participants to
reproduce this document for purposes of |EEE standardization activities only. Prior to submitting this document
to another standards development organization for standardization activities, permission must first be obtained
from the Manager, Standards Licensing and Contracts, IEEE Standards Activities Department. Other entities
seeking permission to reproduce this document, in whole or in part, must obtain permission from the Manager,
Standards Licensing and Contracts, |EEE Standard Activities Department.

|EEE Standards Activities Department
Standards Licensing and Contracts
445 Hoes Lane, PO. Box 1331
Piscataway, NJ 08855-1331, USA

Abstract: The Advanced Library Format (ALF) is a modeling language for library elements used in in-
tegrated circuit (IC) technology. ALF enables description of electrical, functional, and physical models
in a formal language suitable for Electronic Design Automation (EDA) application tools targeted for de-
sign and analysis of an IC. This document provides rules that describe ALF and how tool developers,
integrators, library creators, and library users should use it.

List of keywords: Integrated circuit, modeling, library, cell, block, technology, language, format, elec-
trical, functional, physical, behavioral, RTL, gate-level, layout, EDA, timing, derate, power, signal integ-
rity.

Copyright © 2003 IEEE. All rights reserved. 1
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Introduction

(Thisintroduction is not part of |EEE P1603, Advanced Library Format (ALF) Reference Manual.)

The purpose of the Advanced Library Format (ALF) is to provide a modeling language and semantics for the
functional, physical, and electrical performance description of technology-specific libraries for cell-based and
block-based design. Without a standard, EDA tools would be left to use tool-specific and fragmented library
descriptions. The semantics would be defined by tool implementations only, which are subject to change and
prone to misinterpretation. Therefore, ALF is proposed to create a consistent library view suitable as areference
for library creators and users, as well as for electronic design automation (EDA) tool developers and integrators.

The |EEE P1603 standard for ALF is based on the work of Open Verilog International (OV1) and its successor
organization Accellera.

The ALF standard began as the OVI Power & Synthesis Technical Steering Committee (PS-TSC) early in 1996,
with the charter to define a standard library data format for synthesis, power analysis, and optimization. As the
committee grew in membership, with the addition of experts in other fields, such as design for test, it became
clear that such aformat could be easily extended to cover other design tools. Furthermore, the benefit to both sil-
icon and EDA vendors of having asingle, flexible format that would fully describe the functional, electrical, and
physical performance of atechnology library in an accurate and unambiguous fashion was widely recognized.

ALF was announced at the occasion of the OV 1/V1-sponsored HDL conference in March 1997, where atrial ver-
sion of the standard was released. Amongst the pioneers of proving the feasibility of ALF was the European
CAD Standardization Initiative, sister organization of VSIA, who demonstrated an ALF-based ASIC implemen-
tation flow in 1997. In November 1997, OV approved and released ALF version 1.0.

In 1998, the ASIC Council, under the auspices of the Silicon Integration Initiative (SI2), selected ALF as a com-
plementary description of library elements within the Open Library Architecture (OLA), which builds upon the
|EEE 1481-1999 standard for adelay calculation system. This endorsement triggered theinitial adoption of ALF
libraries by major ASIC vendors and the development of ALF version 1.1, which was approved and released by
OVl in April 1999.

In June 1999, the ASIC council encouraged the ALF workgroup to include layout modeling. Consequently, deep
submicron (DSM) issues, such as on-chip interconnect modeling, signal integrity, and reliability became a major
focus for ALF. The work culminated in the release of ALF version 2.0 in December 2000, under the auspices of
the OVI/VI successor organization Accellera.

ALF version 2.0 became the foundation for this IEEE standard. An |EEE study group was formed in February
2001. The study group became the IEEE P1603 workgroup in June 2001. The name ALF has been retained due
to already existing name recognition. By that time, the ALF had already set a standard for the industry, which can
be measured by direct adoption and the influence on existing vendor-proprietary library formats. Major EDA
vendors also made the specification of their existing proprietary library formats available to the industry and
alowed the user community to extend those formats and strive for compatibility with ALF.

Although IEEE is now the legal owner of ALF, Accelleracontinuesto foster and promote ALF. Asaresult, ALF
has gained attention of other national and international standardization bodies, such as JEITA in May 2002 and
the IEC in October 2003.

From its inception, the goal for ALF has been to provide a solid foundation for library modeling within a contin-
uously evolving application space. ALF has been designed to be more general in scope and purpose than a partic-
ular tool-oriented format. At the same time, care has been taken to make ALF easily adoptable and to make the
migration path from legacy formats as smooth as possible. Therefore, an ALF library can be very similar in
appearance to alibrary in a conventional format, but ALF has also the expression power of a modeling language.

2 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The construction principles for ALF can be summarized as follows:

Simplicit
P yALF has relatively few basic syntax construction principles. Once they are understood, reading and writ-
ing an ALF library or trandating other library formatsinto ALF is very easy. Also, attention has been
paid to the fact all ALF keywords are taken from natural language, i.e., spoken and written English, and
their semantic meaning is as close to the natural language as possible. The use of artificial words or acro-
nymsis limited to constructs, which have already become part of technical language in the industry.

Completeness
Conventional library formats would support data without self-evident meaning such as coefficients, scal-

ing factors, etc. The interpretation of the data would be eft to the application tool. On the other hand, an
ALF library specifies a complete and self-contained description by providing the complete model, i.e., a
calculation rule using an arithmetic expression. Furthermore, ALF contains information for characteriza-
tion of particular measurement data, for example delay, power, or noise. ALF introduces the original con-
cept of avector expression to describe the event pattern associated with the measurement. This concept
has afar-reaching potential for creating abstract, yet accurate, modeling views for cellsand larger blocks.
Any timing, power, or signal integrity measurement on a digital circuit or a mixed-signal circuit can be
associated with a vector expression.

Orthogonality
Orthogonality alows for modeling features to be combined most efficiently with each other to yield a

maximum expression capability. In ALF, orthogonality is closely related to context-sensitivity. A partic-
ular semantic meaning is created by describing a particular model in a particular context. For example, a
model for capacitance can be described in the context of awire, pin, or rule. A model for delay can be
described in the context of a cell or wire. In a non-orthogonal approach, different keywords might be
used for cell delay, wire delay, etc., and the fundamental semantics of delay would not be inherited by
each construct.

Re-usability and self-extensibility
ALF supports the language constructs template and group, which allow for efficient representation of
replicated statements with parameterized values. As these constructs follow the principle of orthogonal-
ity, atemplate can be used for parameterizing any ALF statement and not just a particular type of state-
ments, such as alookup table. ALF also supports |anguage constructs for the definition of new keywords,
their usage for construction of statements, and the context where they can be used.

In summary, ALF is awell-structured language that supports a true superset of virtually all existing library for-
mats. Its conciseness and unique description features make it well-suited for innovative EDA applications.

Copyright © 2003 IEEE. All rights reserved. 3
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Participants

Advanced Library Format (ALF) Reference Manual

At the time this standard was completed, the Advanced Library Format Working Group had the following mem-

bership:

Jay Abraham
Tim Baldwin
Dennis Brophy
Peter Christensen
Joe Daniels
Gregory DuFour
Timothy Ehrler

Uma Ekabaram

Wolfgang Roethig, Chair
Joe Daniels, Technical Editor

Vassilios Gerousis Wolfgang Roethig
Kevin Grotjohn Sergei Sokolov
Jake Karrfalt Vinay Srinivas
Srinivas Madaboosi Balchandra Thatte
Nancy Nettleton Tak Young

Kim Nguyen Alex Zamfirescu
Cynthia Parrish

Steffen Rochel

The following members of the balloting group voted on this standard. Balloters may have voted for approval,

disapproval, or abstention.

(to be supplied by |EEE)

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Table of Contents

O @ = 4T OO 13
1.1 Scopeand purpose Of thiS StANAAIU........cccevveeirirce e s enes 13

1.2 Application of thiSStaNaArd............coiiiiiir e s 14

121 Creation and characterization of library elements...........ccooveeieinencinceneee e 14

122 Basic implementation and performance analysiSof an IC........cccvevveineinenecnecncen 16

1.2.3 Hierarchical implementation and virtual prototyping of an IC.........cccccveivininecncne, 17

1.3 Conventions used iN thiS StaNdardccceveeeririeierice e enes 21

1.4 Contents Of thiS SEANAIM.........cccoiiiiiiee e ettt s b e nes 21

2. REFEIENCES. ...t h e b bbb e AR £ A e e AR e et Rt Rt ehe et ehe bt e aeebesreetenbe s 22
T B 1< 1oL o] o USSR 23
N (001 1 TSP PR UPTUR PP RRRPPURTN 24
5. ALF language CONStruCtion PriNCIPIES.coiiuirieiiieeirieie ettt st st s se e e e ebesbesbesae 25
5.1 ALF MELBIANGUATE.ceuerteieiteie sttt ettt sttt b et b e s ae s bt sbe b e s besn e e e e e e e e 25

5.2 Categories Of ALF SLAIEMENTS........ccoiiiiiiiieee ettt sttt b e sb e s be bbb et ne e e 26

5.3 Generic abjects and library-specifiC ODJECES..........ooiiiiiiiieee e 28

5.4 Singular statements and plural SEBEEMENLS..........coueeiriierieerere et e 30

5.5 Instantiation statement and assignment SEAEEMENLc.coveiirirere e e 32

5.6 Annotation, arithmetic model, and related StAEEMENES.........c.coireririeriereeere e 33

5.7 StatementS for Parser CONLIOoo it s eb e s sbesne 35

5.8 Name space and visibility Of SEEEEMENTS.........ccooiiiiiiieeeeee e e 35

B. LEXICEI FUIES... e ettt bbbt bbb e et e st e e e he e R e e R e e Rt eh e ehe bt eheebe s bene et e e e e 37
L R O =T £ = PP USSP 37

6.2 COMIMENT.iieieiiieteiee ettt ettt h et e bt eh e e s b e e ae e she s e e b e e eeshe e seesheeaReeaeeabeebe e beene e s e saeenesneeneas 39

LSRG B = [011 = GO UPT ST S 39

(O @ o= = (o] SRR ORR 40
6.4.1 ATITNMELIC OPEIALONecveiee et et ese e s ae e ae e aesreeneesrennaens 40

(S N = To 0 == T e 0 = o S PS 41

(S C B = (= = o = 0] 1= (o) SO 41

L RS 11100 0= = o SRS 42

(O I V= |] < = o PSSR 42

(O I (Y 1= 7= 0] o = (o TSP SR 42

B.5 INUMDET ... b e bbbt e b et h e bt e b e ae bt e be s bt sbe b e s bese e e e b e ne e 43

6.6 INAEX VAIUE BN TNAEXcueiiietiieiie ettt st bbb e ne et see e seebesaeebesae 43

6.7 Multiplier prefix symbol and multiplier prefiX Value..........occeoveceececee e 44

5.8 B IITEIAIeiieiee ittt bbb h et h bRt bR bbb e e e e 45

6.9 BASEO HITEIAI ..ot ettt h e be e b reene 46

6.10 BOOIBAN VAIUEceieiiitee ettt b et b e e bbbt et b et e e s e s besn e e e e e e e 46

6.11 ATITRMELIC VAIUE ...ttt e ettt b e s b b bbb sn e e 46

6.12 Edgeliteral and €0gE VAIUE.cceiii ittt se e sae s e e et ra e beene e ere e an e e ennens 47

Lo [1= o) 1= OSSO UR PR URURURURN 47
Copyright © 2003 IEEE. All rights reserved. 5

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

(S0 C T R VT =S o= o o L= = SRS 48
6.13.2 Placeholder I0ENTITIErot b e eae e beeaes 48
6.13.3 INAEXEA IAENEITIErveeeee ettt sttt e st sbeear e eree b e saeenbeens 48
6.13.4 Full hierarchiCal IdENtIfIErcvvveiicieieccecece ettt eaeereeas 48
6.13.5 Partial hierarchical IAENTITIENcovieeiiiee e 49
SR ST = 'or= 0= 0 o U= U= S 49
6.13.7 KeYWOrd ideNntifier......coieeeeeecece s e e ene e ene s 50
L2 @ W o] (=0 =1 o 50
B.15 SEING VBIUE ... vttt ettt b et b et b ettt bbbt sttt et 51
B.16 GENENIC VAIUE ...ttt et s e et e et s et e e st e sabe s s beeesseesbesseeeabessabesssessresssaessnsesatessbesensesssessns 51
6.17 VECLOr EXPIESSION MBCTO. .. .c.eveueeererteneeteseeteseeseeeseseeseseeseseesessesesbesesseesbeebeesbensebesbebensenestenessenessens 52
6.18 RUIES fOr WHItESPACE USBGE......eeeeeereeeirietiieieie ettt ettt bbbt bbb 52
6.19 Rules agaiNst Parser @MDIGUILYeeveuiieeieceeeree sttt 52
Generic objects and related SLALEMENTS ..ot 53
A R 7= 0T T ol o] o 1= ot OSSR 53
A2 N L o101 oot SN 1 = o OSSR 53
7.3 ANNOLALION.tieiieciee ettt e et e s te e bt eebeeeabeeeeesabeesaseeaseesbesaseeaseesabeaseesaseesaeesnsesasessbeeenseesanesns 53
T4 ANNOLALION COMAINETccieeiiiitieceeeete e ste et e eteeebeeeeesbeesteeeseesbesaaseeaseesabeasseessesesaeesssesnbessbeeeaseesseeans 54
7.5 ATTRIBUTE SAEMENEc.eiiiiciietieciectiecte ettt sttt st sre e st et estestaestesraesbesbeesbessesssssnsssseensesresrenss 54
7.6 PROPERTY SEAEEIMENTciviiieeiieieiecite it eteetee st e et etseeesteeresstesaeestessaesbessbebessessbesssssssensssaeessessesrenss 55
T.7 ALIASAECIAIGONccuvectiitiecie ettt ettt ettt s e e re e s e s s b e saa e st e sabe st e sbeesbessessrssnsebeenaesbesrenns 55
7.8 CONSTANT AECIAIGLION.ccviieeiiiiecteitee ettt ete e et e e e st st e s aebessbebesbeesbessessresnsssaeensesbesrenas 56
7.9 KEYWORD GECIArAtiON ...c.veeveiiiiiie et ittt eteesessteesessteessesteestesbeesaesbasssessaessssseensesseesssssesssessesssessenss 56
7.10 SEMANTICS AECIAraIiONccveieeeiecec ittt ette st cttete et teeaeesaesaesbesaaesbessbebesbeesbessessrssnsssseensestesrenss 57
7.11 Annotations and rulesrelated to a KEYWORD or a SEMANTICS declaration..........ccccceeeeeenennne 58
7.11.1 VALUETYPE GNNOAHION......cueiitiitieieieiete ettt ste st st sreessesresaresteestesaeesaesaesneesaesnsesbesnsenns 58
T7.011.2 VALUES GNNOLAHON......ccciiiitieiieciieiee et e e ste st ereesbeessteeesaesabesssseeaseesanessessssssasesssesssenn 60
7.11.3 DEFAULT @NNOALIONvicvviee ettt sttt e et e et sressre s steseestesbaesbesbaesaesneenns 60
7.11.4 CONTEXT QNNOALION.....cciiiiiiiiiiirieitestee st sreesresreere e esbesbeesbesaessrssasesseeeesbesseesaesseesbesnsenns 61
7.11.5 REFERENCETY PE QNNOLALIONccviivieiiciieiecreectectee et sttt sbeesbesraesrsssaenbesneesnesns 62
7.11.6 S| _MODEL @NNOALION.......cccitiiteieiieeeieeieieeteeteetes e stestestesaestessessesesseseesssseesessessessessessessens 63
7.11.7 Rulesfor lega usage of KEYWORD and SEMANTICS declaration...........ccccccevvveveennnne 64
T.02 CLASS AECIArALIONcveeieee ettt ctee et et ee st te e st e e ete e be e s beesaeesaeseabeesaeesabeesseesabeesbaesasesnbessnneensenses 65
7.13 Annotationsrelated t0 a CLASS AECIarationcoveceeiiiiiiee ettt sreeere e 65
7.13.1 General CLASS referenCe annOtationNccccceeiueeeieeiieeccee et esree et sae e steeeereesnee s 65
7.13.2 USAGE GNNOLALIONuviiiieecee ettt et st s steeeae e sbe e s saeebeesabeesseesaeeesbeesasesabessseesnseesanean 66
7.14 GROUP ECIAratiONeecveeeiee et etee ettt ettt e et e e s be e st e e ete e sbeeesbeessaesabeesseesaseesaeesnsesnbessbseenseesanesns 67
7.15 TEMPLATE AECIArAHIONcccviiieeie ettt eteesteettete et e et eaeeste s e sbeeaesbeebesbesssesbesasesreenbesaeesaestessenns 68
7.16 TEMPLATE INSLANEIALONc.ecitierieitectieitecieite et e st eeesteeeesteestesteesaessasssesssestessessbessesssssnsssseansessessenss 69
717 INCLUDE SEAEIMENT........c.eiiviiieeitiitie e ctesteeteete et e steesessteeaesbeestesbeessestasssessaensessesbessesssssasssesnsessessenss 72
7.18 ASSOCIATE statement and FORMAT anNOtatioNceeoeiiieeieecie et sveesreesne e 72
7.19 REVISION SEAEEIMENT......c.eiitiieeeitiitie it cie et eteeteeseesteeessteetesteestesbeessesbasssesssessesseebessesssssasesesnsessessenss 73
Library-specific objects and related StatemMENtS.........ccccveeeie e i 75
8.1 Library-speCifiC ODJECLccuiiie ettt re et n e e nreeraen 75
8.2 LIBRARY and SUBLIBRARY OECIArafiONccccveivrieiiieireeireiteesresteesrestaereereesresseesrssnesssesaessessenss 75
8.3 Annotationsrelated to aLIBRARY or aSUBLIBRARY declaration............coceevvevcveeveeneecveesnennns 76
8.3.1 LIBRARY referenCe annOtatiON........cccciviecieiie et stee et esteesree e steesaesre e snreesreesnne s 76
8.3.2 INFORMATION annotation CONMTAINETcccecieireeireeiieeeiteesteesreesseesseessteesaaesseesseesnsessseess 76
I Ot =l I 0 = == 1 o PO RS SI 78
8.5 Annotationsrelated to a CELL AeClaralion............cociiiieiiieiee ettt 78

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9,

8.5.1 CELL referenCe annOtationcoeeveiieeireirieeee ettt b e e beebe b sne e
8.5.2 CELLTYPE @NNOALIONcceitieiieiiieiecteeeete ettt ste bt sae b ennesbeenveereennesneennas
8.5.3 RESTRICT_CLASS ANNOtatiON......ccviveieireeiereeeeieeresteseseeseseesseeesesseesessessessessessessens
8.5.4 SWAP _CLASS GNNOAION.....ccueiieiteeeieeeieseeeesiesesteste e seeteseesessessessessessessessessensesaens
855 SCAN_TYPE @NNOLELIONcoueeeirereiiectisiesieseeseeeseee e sreste s sreseseeseeeesee e eaeseenesneenens
8.5.6 SCAN_USAGE @NMNOAiONcceeeeeeeieeeeieste e sees e seestsseesesseesessesessesressesaessessenseseensenees
8.5.7 BUFFERTYPE @nNNOtAtiON........ccoiiiiietieieeitectteere ettt sreetee st st st be e nbesreesbesnnennas
8.5.8 DRIVERTYPE @QNNOAtiONc.coiviiiieiicreecteceeere ettt sre e st st besbeesee v ennesneeneenes
85.9 PARALLEL DRIVE @MNOAtiONccceivirierieriireeieseeeeeeeeseeseseeseseeseeeeseesesssesessessessens
8.5.10 PLACEMENT _TYPE a@nNOtAtioNcccecviereireeieseeeeeeeeeeseete e stesie e seeseneenesneneas
8.5.11 SITE reference annotation fOr @ CELLccovevuiiiir it
8.5.12 ATTRIBUTE VAUESTOr @CELL .cveeeeeeeeeee ettt et
I ST 1\ 0 (= == 1 o o
8.7 PINGROUP ECIAratIiON.....veeeveeeieeeiieceieetes e eee st e steessee e steesessabeesbessseesstessbessesssessnbesssessntes
8.8 Annotationsrelated to aPIN or aPINGROUP declaration............coveeeeeviecieecieccreeceeeceee e,
8.8.1 PIN reference annOtation........cccccviecieeeieiicie ettt e ebae e ere e
8.8.2 MEMBERS GNNOALION.ccoiiiitiiitieeeee ettt ste et esteeeaee e s e e ae e b s sabeeereesanas
8.8.3 VIEW GNNOAION.....ccuiiiiiiciieciectee ettt ettt ettt re e e ete e eaeesabeenbeeeneeebe s
8.8.4 PINTYPE @QNNOALION........ccoiieeiieitiicitee ettt ettt et e sare et et e e sreeeaeesnbeesreeeaneesras
8.85 DIRECTION @NNOALION.......ccveeieieitieeteeitieiteecieeeeeeeseeeteesbeeereesteeeeteesseesabeesseesneesaeas
8.8.6 SIGNALTYPE GNNOLBLIONecovveieicriiticieetieeee ettt ettt st st e b ere e b snee e
8.8.7 ACTION GNNOLALIONccueiiiieitieeie e ctee ettt e eee et e ere e sbe e s ebeeeaeesabeebeeenneeereas
8.8.8 POLARITY ANNOALION ...c.veiueevirieiticrie sttt ettt st sttt sbaesbesre b e sbeebesaeennas
8.8.9 CONTROL_POLARITY annotation CONtaINET.........ccvecveieeiereeieesesiesieeieseenvesseenns
8.8.10 DATATYPE @NNOLELIONocccuiiriicieecie st cteeeee et eereeeteestaesreesre e e sbeesaaesabeereesneesbes
8.8.11 INITIAL_VALUE @nNOtatiON.......cccciiieieiieciisieieseeecte et te e ere e ssesreae st eesaesesesneeneas
8.8.12 SCAN_POSITION @NNOLAiONcooveueeririetecieetesieseestereeseeeeeete e sresrestesaessestessessenneneas
8.8.13 STUCK @NNOLALION.....cccivieitieerieteeeieeeee e eteeeee e steeeeeebeesareereesbeeesaeessaesabeesseesnseesaeas
8.8.14 SUPPLY T TYPE @NNOAIiONcveivieieeiticeie ittt e v eree s sneestesstebessesbesbessbesneesnas
8.8.15 SIGNAL_CLASS ANNOLatiON.......cccectiieitiireiesieseeieeseereeeetestesresesaesreeesaeseeessessessessens
8.8.16 SUPPLY CLASS GNNOAiON.......cceiviiieiiieeiesieeeieeteete st ere e sresresaesaeseeassessessesressesaens
8.8.17 DRIVETYPE @NNOLALION.......ccceitiiiiiiriciecteete et et e ers e srssaesteeseestessaesbeenbesbeenbessesnns
8.8.18 SCOPE ANNOLALION......ccciviiiiieitieciteeeteeciee et e st eire e sree e steesaesbeesaseeabeesaeesaeesbassnreessessanes
8.8.19 CONNECT_CLASS QNNOLALiON.......ccvviiirieriieiiesieseeeeteeeeteseerestetesresessessesassessessesnens
8.8.20 SIDE @QNNOLALIONeecueiiiic ettt et sttt et e e s eeebeesbaeenreesbessebeenseesabeenbeesneesarens
8.8.21 ROW and COLUMN @nnNOtaLiON........cccevivieieeeeieitieeieeeeree e esreeetee e sreesaeeeressareesreesanas
8.8.22 ROUTING _TYPE anNOtatioNcccceiveiierieieiie ettt s sasseeseeseeesresesnesresnesnens
8.8.23 PULL GNNOLALIONccuviiitieiieciiectie ettt et ettt e e et sabeere e sre e e saeesaaesabeesreesnneesaeas
8.8.24 ATTRIBUTE valuesfor aPIN or aPINGROUP.............ccccooiieieiieiteceeereeveeereeee e
8.9 PRIMITIVE AECIArationc.cceeiveiieiriitieetictieete ettt steesee st steestesaaesreestesbeenesbesnessresnnssresnnens
B.10 WIRE AECIAIALIONcccvviiireeteecee e ettt ettt et sate s eteeete e e steesaeesabeesbeeeaseesbeesbeensaesabeanseesaneesaeas
8.11 Annotationsrelated to aWIRE deClarationcocueeveeiieeceecirie et
8.11.1 WIRE reference annOtation............cceeeeeiiiieiieeeie st ecee ettt et sbeesraeene e saeas
8.11.2 WIRETYPE GNNOALION.......ceiiuiirieiieeeiee st eeteeeiee e sreeeeeeteesteesareesteeseteesneesnseenbeesaeesnrens
8.11.3 SELECT CLASS ANNOAliON....c.cciveuieierieeeteeteste e stestesresr e e saesrssaesaeseeeesesessessessesnens
8.12 NODE ECIAIAtiON......cccutiiiteeciee ettt ettt et ettt e sbe e e aeeebae st e ebeesbeeesaeesaaesabessseesnneesaeas
8.13 Annotationsrelated to aNODE deClaralioncccceeieeiieeiee et
8.13.1 NODE reference annotatioNcceeeeeiiiiecieeeee ettt ettt s e b e reesee e sre s
8.13.2 NODETYPE @NNOtaLiONcccoieiiiecitie e et st st esteeetaesbeesaeessne e saeesaeesbessaseesseesanes
8.13.3 NODE_CLASS @NNOALION.......cccveiieieeieesieeeesieeeesteeseesreeesseesesteessesseeseessesnsesssesseenes
8.14 VECTOR AECIAIaliON.......cveeireeiieeeiieceeetee et e seesbeesteestee e sbeeseesbeesaseenseesbesssseesseesareesseesneesaeas
8.15 Annotationsrelated to a VECTOR deClarationc.ccceeeveeieeiie et
8.15.1 VECTOR reference annOtationccceeiveiiieeiieeeiieesieeeiteestre e e sree e sreesaesareesraesneesaeas
8.15.2 PURPOSE ANNOLALION........cviiiiiereiiree e steestee et ste e e sreeeseesabeesssesaneesaeesnesssassnseessessnnes

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

July 2003

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

8.15.3 OPERATION @NNOAiON......coveiviiieitiereetieite ettt eree e e st st e stesreesbessaenbeeseesbesseesbesanesresnnes 117
8.15.4 LABEL GNNOLBLIONcveeieeiieeieiiiete ettt ettt et et se e st st saestaesbessbebeennesbesneeeresnnesreennes 118
8.15.5 EXISTENCE _CONDITION @nNOtatioNcceeveeeereeereeseseseesseseesseeesesseesessessessessessenes 118
8.15.6 EXISTENCE CLASS @NNOLatiONc.ccoviueeieieriesiiseesieseesesseeseesesressessessessesseseesseenseessssenses 119
8.15.7 CHARACTERIZATION_CONDITION annotation.........ccccoeeeeeriesereesieneeseeseesenseesenennes 119
8.15.8 CHARACTERIZATION_VECTOR @nnotation........ccccceueeereeeeenesereeseseeseeseeseeseeseeeens 119
8.15.9 CHARACTERIZATION_CLASS aNNOtAtiON ...c.cevveueereeeeeeeeeeeseseseseesieesseeeeeseeensenns 120
8.15.10 MONITOR @NNOLALION......cccviitieireitieteieeite et esteeeeeteereereesbesteesaesaeessessesbeeseesaesnsesbeensenseenns 120
Il I = o (< = o) 121
8.17 Annotationsrelated t0 ALAY ER AeCIarafioncccveiceeieeeeeeictee ettt sree s 121
8.17.1 LAYER reference annOtalioncccceeieeeeieiieecseeeereectesereeste s sseeeseessesessesssesssresssesssenesee 121
8.17.2 LAYERTYPE GNNOLALIONciiiiiceeiiieitee et seeeteeetes et estes st s sreeesseesbesssaesssessnbesssesssenesee 121
I G T = O T 0o = 1 o) 122
8.17.4 PREFERENCE QNNOALIONccveiiteeieiieitee ettt cteeiesseteessessabeesvessssessresssesssessnbesssessnnessnes 122
B.LB VIA TECIAIALION.cuviiitee ettt ettt e et e e st e e be e be e e et e e ereesabeesbseeaseesbeesnsesnbeesabeeseesaneesrs 123
8.19 Annotationsrelated to aVIA AeCIaralioncceeiiiiiiecie ettt 123
8.19.1 VIA referenCe anNOAiONcccveeiiieeiieciee et ete ettt eteeebe e steeereebeeesreeeaeesnbeessneeanee e 123
8.19.2 VIATYPE QNNOLALIONc.eeiveeieieieiecteeteetee ettt et et sts et e stesaeesaesbaesbesssenbeeseesbesseesbesaeesresneas 124
B.20 RULE GECIAIAION ...ttt ettt ettt ettt e be e e e st e e sbaeeateesbesebeesaaesabeenbeesnneesanas 124
8.21 ANTENNA AECIArAION.....cveeiveieieteceeetecteeete ettt see st ese e s e b e st e et e ebeesbesasssseentesaeeressaesseesreentenns 125
8.22 BLOCKAGE dECIAIAtiONocveeiveiveeiee ettt sttt sttt ettt et sreenes e saesbeesbesbeesbesnnenns 125
8.23 PORT AECIAIALION......ccvieeeeecuiiiteecie et e cte et e steeeteeete e s be e eteeeaseesbeseseeabeesabeeseesbesesaeesssesnbeeseesnseesaeas 126
8.24 Annotationsrelated to0 aPORT deClarationcceceeiieeeciieiieciee ettt eree s 126
8.24.1 Referenceto a PORT using PIN reference annotation...........c.ccoeveieneenieenencecenescseeen 126
8.24.2 PORTTYPE GNNOLALIONcccviiiiiieitictiete ettt ettt stesree st s sbe st e eseesbeebessbesnessreennes 126
8.25 SITE AECIArALIONoeeiviecieecieccteeeee et sttt et ete e ste e s be e s beesabe e sbeeeseebaesabeebeesbeeesaeesaeesabeeseesnneesanas 127
8.26 Annotationsrelated t0 aSITE deClarationceeeceiiiecieeiec ettt s r s 127
8.26.1 SITE referenCe annOtatioN...........cccceeiveiiieccee ettt et e s ere e eaae b e sbeeeane e enas 127
8.26.2 ORIENTATION_CLASS anNOtaliON........ccceeeieirinieieseeeeteeieereerestesesrestesseseesesaessssseseenes 128
8.26.3 SYMMETRY _CLASS @NNOALONc.ecveieiciietectecteceete et et s ae e e sre e snesresre e 128
8.27 ARRAY TECIAIALION......cccuiecieiiteecie ettt et e sae e e s b e e e e e ebeesabeebeesbeeesbeesaaesabeenseesnneesaeas 129
8.28 Annotationsrelated to an ARRAY deClaration..........ccoveeicueeieiciee ettt 129
8.28.1 ARRAYTYPE GNNOALIONc.eccviitiiitiitiericiecreete ettt st st bt e e sbeene s b snresreeneas 129
8.28.2 LAYER reference annotation for ARRAYuviiiecei ettt 130
8.28.3 SITE reference annotation for ARRAYoo ittt st 130
8.29 PATTERN AECIAIGtiONccueiiveeieiticeee ettt ettt sttt st ete sttt et et e e beentebeenbesaeeneesaeensesreennenns 131
8.30 Annotationsrelated to aPATTERN deClaralion...........cccceeceiiiieeee ettt 131
8.30.1 PATTERN reference annotalionccecoeeiiiieieecie sttt st ere e 131
8.30.2 SHAPE GNNOALION......ccueiiieeitie it ccee st eetee ettt e eteebe e etbeeere e sabe e ebeessseeabessseebeesaresnseesresenns 131
8.30.3 VERTEX @NNOLAIION......cceeiviirieitiitieite ettt cite et et e ereeesseestesteesaesbaesaesssenbesseesesseessesanessesnens 132
8.30.4 ROUTE GNNOLALIONvvicieecie et e stee ettt st eetee e ete e saeesbeesbeeereesbessebeessaesnbeebeesnnessaes 133
8.30.5 LAYER reference annotation for PATTERNccocooiiiiiiiiee et 134
8.31 REGION AECIAIGLION......cveivieiieitiiiie ettt ettt et ete st ste et e st e e aa e st e eabesbeebesaeeasesaeensesreesbesbeesaeenrenns 134
8.32 Annotations related to a REGION deClaralioncoceeeceeieeeiiecee ettt eree s 135
8.32.1 REGION reference annotalionc.ecccieeeeeiiieecee ettt sre e st et esreesne e sas 135
8.32.2 BOOLEAN GNNOLBHIONcvecvieitiieieiteeteereeete et et et ste e e stesaeesaesaaesbesnbesbeessesbeesseeseenresreennes 135
Description of functional and physical implementationcccecvieece e 137
9.1 FUNCTION SLAEMENL ...c.veiveeiveiietecieeeteeteeeteereeereeeesteeseesteeseesbesssesteesbesseesessesssssasessestesssessesssesssenss 137
0.2 TEST SLAEMENE....ceeitiitiecieciee ettt e st etee e st be e besb e eas e beebessbesaessbesasesbeensesbeebaesbesbeesresnbenbesabenbenses 137
9.3 Definition and usage of apin Variable...........ccveeeiiieiie e s 137
9.3.1 Pinvariable and PiNVAIUEcceciiiecieieceeeee ettt sre e 137
Lo T 1 = (o= T 1107 | S 138

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

10.

9.3.3 Usageof apin variablein the context of aFUNCTION or a TEST statement.................. 138

9.4 BEHAVIOR SEBIEMENLcveierereiireresreree s s er e en e s nne e 139
9.5 STRUCTURE statement and CELL iNStantiationcoevveereinnneeienssrceesesrseesesse e 141
9.6 STATETABLE SIEBEMENL........coiiererereiesieere et enas 141
9.7 NON_SCAN_CELL SEAEMENT......coeirirereererereiesreeesesrere s srs s essesnssesssesessssesssennns 142
9.8 RANGE SAEMENT ..ottt 143
9.9 BO0IEAN EXPIESSION......vvueivisieieseeeeteseeseeseeessessestesteseeseesteseesessessessessessessessessessessnssensnsesensessesssssenses 144
9.10 BOOIEAN VAIUE SYSLEM ...ttt ettt sttt ene s ese e saesa e s e saen s e s te e e tene e e eneenennes 145
9.10.1 Scalar BOOIEAN VAIUE.........ccereeeiciieece ettt et s e e ene e e 145
9.10.2 Vectorized BOOIEAN VAIUE........ccccueeiie et 146
9.10.3 Non-assignable Bo0IEaN VAIUE............ccoiiiirieee s 147
9.11 Boolean Operations and OPEIELOIS..........curruerieririeierienesiesesees st ese e se et be et bene s 148
.11 1 LOQiCal OPEIHON.ccuiiertereeteseete sttt sttt ettt es et st st se et st se et e e s e eneseeneeas 148
0.11.2 BitWiSE OPEIEHON. ...c.cctiiitereete ettt sttt st sttt sttt et e bt b e en e 149
9.11.3 CoNditioNal OPEIELION.......ccerueiiitieerie ettt et b et b e sb et s se et e e e e e 151
9.11.4 Integer arithmEtiC OPEraLiONcc.eiiiiirieierie et s et 151
O0.11.5 ShiIft OPEIATON ...t et b et b e s bbbt b se et e et ne e 152
9.11.6 COMPAIiSON OPEFELION ...c.veveveie ittt ebesae st s ae b sbe e sbe b e s be e e be e e e e e et ene e e 152
9.12 Vector expression and CONtIol EXPIrESSIONcouerereareeeerereeeeresie e stesreseesbeseeseeeessseesessesaesaessesees 154
9.13 Specification Of @ pPattern Of EVENES........c..eooiiiiiiie e e 155
9.13.1 Specification Of @SINGIE BVENL........ccoiiiiiie e e 155
9.13.2 Specification of aCcomMPOUNd BVENTcoiiiiiiiie e e 156
9.13.3 Specification of acompound event with alternatives............cceeee e 157
9.13.4 Evaluation of a specified pattern of events against arealized pattern of events................ 158
9.13.5 Specification of aconditional pattern of eVENtS..........ccoceiiirinine e 161
9.14 Predefined PRIMITIVE ...ttt sttt 162
9.14.1 Predefined PRIMITIVE ALF_BUF ..ot 162
9.14.2 Predefined PRIMITIVE ALF_NOT ..ot st ere e 162
9.14.3 Predefined PRIMITIVE ALF_ANDc.coooiiiiecerre ettt 162
9.14.4 Predefined PRIMITIVE ALF_NAND ...ocoiiiireeereree e 162
9.14.5 Predefined PRIMITIVE ALF_ORccoioiiiiinninieeenisis ettt 163
9.14.6 Predefined PRIMITIVE ALF_NOR ..ottt 163
9.14.7 Predefined PRIMITIVE ALF_XORccoiiiiiireeeese ettt 163
9.14.8 Predefined PRIMITIVE ALF_XNOR.......ccoiiiiieieinesiieene et 163
9.14.9 Predefined PRIMITIVE ALF_BUFIFL.......ccooiiiieee et 164
9.14.10 Predefined PRIMITIVE ALF_BUFIFO.......ccoooiieiieee et 164
9.14.11 Predefined PRIMITIVE ALF_NOTIFL....ccoiiiieeerreereeee et 164
9.14.12 Predefined PRIMITIVE ALF_NOTHFIFO......c.cciiirieereseie e 164
9.14.13 Predefined PRIMITIVE ALF_MUX ... 165
9.14.14 Predefined PRIMITIVE ALF_LATCH. ...t 165
9.14.15 Predefined PRIMITIVE ALF_FLIPFLOP........cocooiiiieee et 165
9.15 WIRE INSEBNTIALTON ..ottt sttt ettt 167
9.16 GEOMELITC MOELcoieeeie ittt e r et 167
9.17 Predefined geometric models using TEMPLATE ..ot 170
9.17.1 Predefined TEMPLATE RECTANGLEcooiiiie e 170
9.17.2 Predefined TEMPLATE LINE......cco it 171
9.18 GEOMELITC LraNSFOMMBEIONc.viueeieeeieer et e r e e 171
9.19 ARTWORK SEBLEIMIENEecuiueteeeiiiisiete sttt st eb et b b b e bbbt beb et nne 173
9.20 VIA INSLBNTIALTON.veeeveierieiesiceesi e n e ettt 174
Description of electrical and physiCal MEASUrEMENES..........cceeiierieiieiere e s 175
O I N 11 0 o = o == Lo o 175
10.2 Arithmetic Operations and OPEILOLS.cccueierieeieeierees et ee e re e sre e e saesaestessaenbese e tesneenseenns 176
Copyright © 2003 IEEE. All rights reserved. 9

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

10

0 200 S T T = £ o 176
10.2.2 Floating point arithmetiC OPErationccocvvvverieiesereeee e 176
10.2.3 MaCro arithmetic OPEIGLOLccvveieeierere s s e e sre e sneseenen 177
10.3 ArithMELIC MOEoveeiieieeete e e ettt b e be e s e 177
10.4 HEADER, TABLE, and EQUATION StALEMENESccovveirieerieirieeriecsiesesieesee s sessesssseseenas 179
10.5 MIN, MAX, @nd TY P SEBEEMENEScoveeiieiiiieicriiecriesesie sttt st 181
10.6 Auxiliary arithmetic MOCELcooviieiieseec et seeneeneas 183
10.7 Arithmetic SUDMOTEL.........ciiiiiiciee ettt 183
10.8 Arithmetic MOEl CONTAINEYccviiieee ettt sttt b e beeaeeereeareeaeenas 184
10.8.1 General arithmetic MOdel CONLAINEYc.everereererereere e ene s 184
10.8.2 Arithmetic model contaiNer LIMIToovoiiiiiie ettt s erens 184
10.8.3 Arithmetic model container EARLY @nd LATE......cooo e 185
10.9 Generally applicable annotations for arithmetic MOdelS...........ccoeirreirirnen e 185
10.9.1 UNIT @NNOALION.viitietectieeieteeeeee ettt e ete st estesteetesaeebesbe e besseesbesssssesasesseereesaesseesaesseens 185
10.9.2 CALCULATION @NNOLELION.......cciiieriereeereseetesesiesisteseetesessesessesessessssessssessssesessessesessesessens 186
10.9.3 INTERPOLATION @NOLAtiON....cuviveurireieeiereeieseeiesisieseetesestesessesessesesesessesessssessessesessesessens 187
10.9.4 DEFAULT @NMNOALHONeviieieieeesieie st stee e e tesestesesteseste et ses e e ste e sse e ssenessanessns 188
10.9.5 MODEL reference annotationcccceeiiiieieiecie sttt sreesaesrae e sneens 189
10.10VIOLATION statement, MESSAGE TY PE and MESSAGE annotationcoceeeverevierereeennns 190
10.11Arithmetic models for timing, power and signal INtEgtYccoevererereiereeree e 192
05 0 I PSS 192
10.11.2 FREQUENCY ...ttt sttt sttt sttt et te e ne e e e stese et se s stesestesennens 193
FO.LL.3 DELAY oottt sttt sttt st sttt st et st et e st e st e et ettt et e st et s bene et e nennns 194
05 o A 1 P S 195
10.11.5 SLEWRATE ...ttt sttt sttt sttt sttt ettt et ettt st ettt e s tebentens 196
10.11.6 SETUP @A HOLDc.cctiieiiieeiesiee sttt ettt st st sttt 197
10.11.7 RECOVERY anNd REMOV ALccoiiiiieiesieit ettt s st st 198
10.11.8 NOCHANGE @NG ILLEGALooiiviiiieirieieieeete ettt st sttt et e e nennenens 199
10.11.9 PULSEWIDTH.....citiiiieiiieie st sieie sttt sttt sttt e s se s se s sbesessasessnns 200
LO.11.1OPERIODccetiieiesietiieteesteseesesastesaesessesesaeessesessesessesessesessesessesessasessanessessasesessessnsessesessens 202
00 0 N ST TSTSRSR 203
00 0 S YOS 204
O I s T N I TS 205
10.11.14NOISE and NOISE_MARGINcccciieirieitrieit ettt see s st stesessns 206
10.11.15POWER aNd ENERGYccceiiiisieintiisie st sesie sttt sessestesestesessesessesassesaesesaesesassensenens 208
10.12FROM 8Nd TO SEALEMENEScveveveeeieseeiirieieseeteseeiestese st seeseste st stesesbesessesesteseeseseeseseeseseesessssesenseseas 210
10.13Annotations related to timing, power and signal INEGIItYccveceereeeeiiiee e 210
10.13.1 EDGE_NUMBER @NMNOALION.ccectieeiirieiereeieseeesee sttt sttt st se e sanessns 210
10.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TOccccceevevveveenen. 211
10.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATEccccooeovevevie v 212
10.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTHccccoovvivieene, 212
10.13.5 PIN reference and EDGE_NUMBER annotation for SKEWcccoccveeeveeveevivcie e, 213
10.13.6 PIN reference annotation for NOISE and NOISE_ MARGIN........cccoeviicieveieesecee s 213
10.13.7 MEASUREMENT @NNOALION........cceieiieeiereeteseeiesieiesietesesiesae e sae e seesesae e sse e seenestesessasessns 213
10.14Arithmetic models for environmental CONAItiONScoeveeiiirierienere e 215
L0O.14.1 PROCESS........cocotcetetiieteeste st et ststesasteseetesae e sae e ssesesse st stesessesesbesesbesesbesesteseabesesbesentensesensens 215
10.14.2 DERATE _CASE ...ttt sttt sttt ettt sttt sttt aebeaes 215
10.14.3 TEMPERATURE ..ottt sttt st st sttt e bt ne st 216
10.15Arithmetic modelS for €leCtriCal CITCUITS..........ooiieriiiie e 217
JO.15.1 VOLTAGE ..ottt sttt st st st sttt st sttt ettt st sttt s s benennns 217
10.15.2 CURRENT L..coutitititeirie sttt sttt sttt st sttt st se et see s sa e ne e ne e s see s see s sbenestenennns 218
10.15.3 CAPACITANCE ...ttt sttt sttt sttt st et tene st 219
10.15.4 RESISTANCE ..ottt sttt st st sttt sttt sttt ne st st et st bbb saebentens 221
10.15.5 INDUCTANCE ..ottt sttt sttt sttt sttt et st sttt sttt nnebe e 222

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9,

10.16ANN0tatiONS FOr ElECLIICAl CIFCUITS.....vecvicvieeeectieee ettt et sae e ereesreeaeesreenaenns
10.16.1 NODE reference annotation for electrical CIrCUItS........c.covvevevieceececeece e
10.16.2 COMPONENT reference annotationccoeveeieeiieeiiecieeciesreecre e ere e e sreeveesneas
10.16.3 PIN reference annotation for electrical CirCUItS.........ooeviiieviieeve e,
10.16.4 FLOW @NNOLALION.cciiiieiieietietecte et eteeere et ereestesteestesaseabesseebesbeeebesaessresnnessesnnes
10.17Miscellaneous arithmetic MOEIS........cc.ooveeiiiiie ettt be e r e
10.17.1 DRIVE STRENGTHoooiiiiciete ettt sttt st sae s sbe b sre et sreesnesanennesanen
10.17.2 SWITCHING_BITSwith PIN reference annotation............cccceeeieveresensvenneeninseeenns
10.18Arithmetic models related to structural implementation ...
10.18.1 CONNECTIVITY ittt tee ettt eetae e et e e e eae e e eese s s easeeesasesennseeesnneeesnneeeen
10.18.2 DRIVER aNd RECEIVER........couee ittt ettt s e ste s sv e s seaeessassnreens
10.18.3 FANOUT, FANIN and CONNECTIONS..........oooiiiieeeeeetee et ste e sreens
10.19Arithmetic models related to layout implementation ...
TS R S 4
JO.19.2 AREA ...ttt ettt ettt ettt et et aa e be et e abe et e be et e ebe et e saeereareetens
10.19.3 PERIMETER......ccutiiiicticte ettt ettt sttt st s et sbesaaestesntesbeensesaesneesaeennesreennens
10.19.4 EXTENSION......ciiiitiiiiiticitecrietee et eee e etesteesaesteestesbeesaesbesssestesnbessessessessessaesnsesresnnens
T0.19.5 THICKNESS.......ooeiitecteti ettt et st sae st e st s s eaaesaeenbesbeenbesbesssssbssnessaeensesreeseens
J0.19.6 HEIGHT ..ottt ettt st ettt et st ba e sbeeatesbeenbesbeennesbesnessaeensesreennens
JO.19.7 WIDTHo....ee ettt ettt ettt ettt sttt et et ebaesbesaeestesnbesbesneesbesseesaesnnesresnnens
JO.19.8 LENGTH ..ottt ettt ettt sttt st s besat e sbesnbesbeenssaesnessaeeneesreennens
T0.19.9 DISTANCE ...ttt ettt ettt sae st e st e st esaesbesatesbesnbesbeensesbesnessaeensesreensens
T10.19.100VERHANGcoe ottt ettt sttt sae b sae s et e s bt e beebe e besbessresnnesneenees
JO.19.TIDENSITY oottt ettt ettt ettt st st st et ebaesbesasestsenbebesnsesbesaeesaesnnestesnnens
10.20Annotations related to arithmetic models for layout implementationc.ccoceveveiceeneee
10.20.1 CONNECT _RULE aNNOatiON........cceeiuiuieieriiesieeesieseesreseeseseeaesesseesessessessessessesseseens
10.20.2 BETWEEN @NNOLALION........ccciiiieiiieecteereecteeecee et sreesreestaeesaeesatesnbeesasessneesaneeseensensns
10.20.3 BETWEEN annotation for CONNECTIVITY ..uecviieiiieeciecreeeeereeste e
10.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG.............ccevveuenen.
10.20.5 MEASURE @NNOAIONiiivieieiiei ettt et re et e sreesaee s beesaaeeaneesbeseneenaesn
10.20.6 REFERENCE annotation CONLAINEYccccveeiieeiieeeieeeeesreesreeeereesteesneesaeeereesneesnes
10.20.7 ANTENNA reference annotation...........cceecveeeieeeeeciiie et st reesreeene e st e ssreennae s
10.20.8 TARGET @NNOLELIONeciuviirieiieieiteecie ettt se e steeeaeesabeesreesseesaaesseenbesssreenseesarens
10.20.9 PATTERN reference annOtationccceiiieeeeeiiieesieecee e eieeeete e sareereesnesssaeessaesnnens
10.21Arithmetic submodels for timing and electrical data............cccovveceeiecvinecie e
10.22Arithmetic submodels for physical data...........ccceveiieeiieiieiicecse e

Annex A (informative)Syntax rul€ SUMMEIYc..ccieiiieeiieiire e s eseeseeee s ae e te e seesae s e sreennesreeneens
Annex B (informative) SemantiCS rul€ SUMIMAIYccvieeiieiiieere st s et te et sn e e e sreeneesaeas
Annex C (informativVe)ALF library EXample........ccvcieiiiieie et re e s st ne

Annex D (informative) BibliOgraphyccecciiieieceei et se e s sresre e e

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

July 2003

11

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

12

Advanced Library Format (ALF) Reference Manual

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A Draft Standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Overview

This clause explains the scope and purpose of this standard, gives an overview of applications of this standard,
explains the conventions used in this standard and summarizes the contents of this standard.

1.1 Scope and purpose of this standard

The scope of this standard is to serve as the data specification language of library elements for design applica-
tions used to implement an integrated circuit (IC). The range of abstraction shall include from the register-trans-
fer level (RTL) to the physical level. The language shall model behavior, timing, power, signal integrity, physical
abstraction and physical implementation rules of library elements.

Library elements for implementation of an IC include sets of predefined components, composed of transistors
and interconnect, and sets of predefined rules for the assembly of such components. The design of application-
specific ICs (ASICs) in particular relies on the availability of predefined components, caled cells. An IC that
uses large predefined compound library elements with a standardized functionality, for example, microproces-
sors as building blocks, is called a system on a chip (SOC).

The design of an ASIC or of an SOC involves electronic design automation (EDA) tools. These tools assist the
designer in the choice and assembly of library elements for creating and implementing the IC and verifying the
functionality and performance specification of the IC. In order to create an IC involving severa million instances
of library elements within a manageable time period counted in weeks or months, the usage of EDA toolsis man-
datory.

A suitable description of library elements for design applicationsinvolving EDA toolsisrequired. A key feature
isto represent alibrary element at alevel of abstraction that does not reveal the implementation of thelibrary ele-
ment itself. Thisisimportant for the following reasons:

Copyright © 2003 IEEE. All rights reserved. 13
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

— The complexity of the design dataitself mandates data reduction.

— The complexity of the verification process, i.e., the verification for functional, physical, and electrical
correctness, mandates a library elements is aready characterized and verified by itself. Only the data
necessary for creation and verification of the assembled IC isrepresented in the library.

— Alibrary element is considered an intellectual property (1P) of the library provider.

Therefore, the purpose of this standard is to provide a modeling language and semantics for the functional, phys-
ical, and electrical performance description of technology-specific libraries for cell-based and block-based
design. Without a standard, EDA tools would use multiple proprietary and tool-specific library descriptions. The
semantics would be defined by tool implementations only, which are subject to change and prone to misinterpre-
tation. Also there would be redundancy using multiple descriptions for similar library aspects. Therefore, this
standard is proposed to create a consistent library view suitable asareference for IC designersaswell asfor elec-
tronic design automation (EDA) tool developers and integrators.

1.2 Application of this standard

The ALF standard can be used in many different places throughout the design flow. The major use include cre-
ation and characterization of library elements, basic implementation and performance analysis of an IC, and hier-
archical implementation and virtual prototyping of an IC.

An application, as described in 1.2.1 through 1.2.3, shall be called compliant to ALF, if and only if it satisfies the
following criteria:

a) Anapplication tool that uses ALF asinput is capable of parsing any ALF file according to the rules spec-
ified in Clause 5 through Clause 10, even if not all datain that file is used by the application. In this way,
one ALF library can be used for multiple applications with different scope.

b) Atool, asreferred toin (a), uses awell-defined set of datafrom the ALF file within the scope of its appli-
cation and interprets this data according to the rules specified in Clause 5 through Clause 10. In this way,
any two applications using the same set of ALF datainterpret the ALF datain the same consistent way.

¢) An application tool that uses ALF as output is capable of generating an ALF file according to the rules
specified in Clause 5 through Clause 10, and the generated file contains a well-defined set of datafor an
application asreferred to in ().

The following conventions are used in the flow diagrams depicted in Figure 1 through Figure 4:
— Rectangle: datafile, format optionally indicated in parentheses
— Oval: application
— Solid arrow: existing, established function in the design flow
— Dotted arrow: possible design flow
1.2.1 Creation and characterization of library elements

ALF can be used to specify the desired functionality and characterization space of alibrary element, i.e., acell.

The application for creation of acell is shown in Figure 1.

14 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

library cell p/ Characterization library cell
specification __ tool model
(ALF) T~ ? (ALF)
T
\
model
generator

~
—~

—

- transistor

\ equivalence\ g | netlist
\ checker (SPICE)

library
compiler

. i extraction v
HDL simulation tool .
model compiled
(VHDL, Verilog) library
\ (binary)

‘ cell
layout ! layout
editor (GDSII)

Figure 1—Cell library creation flow

A specification of alibrary element, i.e., acell (see 8.2, 8.4), can be described in ALF. This specification includes
the name of the cell and its terminals, i.e., pins (see 8.6) and a formal description of the function (see 9.1) per-
formed by the cell. This formal description is sufficient for the purpose of generating hardware description lan-
guage (HDL) simulation models in various languages, for example, VHDL (see IEEE Std 1076-2002)% or
Verilog (see IEEE Std 1364-2001).

Multiple HDL models can be generated for different purposes, where the difference is defined by the user’s pref-
erence for modeling style rather than by the functionality of the cell. For example, one model can handle
unknown logic states in a crude way, resulting in fast simulation, while another model can handle unknown logic
states in a case-by-case way, resulting is slow but more accurate simulation. The ALF model can serve asacom-
mon reference for all those HDL models.

A physical layout of a cell can be represented in the GDSII format. A transistor-level netlist of a cell in SPICE
format [B4]? can be extracted from the physical layout. Such atransistor netlist includes parasitic electrical com-
ponents. Alternatively, a designer can create a transistor netlist by hand or by using an EDA tool that maps a
functional specification described in ALF into a transistor level netlist. Such a transistor netlist is less accurate
than one extracted from layout, but can still be useful for prototyping alibrary.

Both the transistor netlist and the various HDL models can be compared against the functional specification
described in ALF. More importantly, the transistor netlist can be used to characterize the performance of the cell,
i.e., measure timing, power, noise (see 10.11), and other electrical characteristics (see 10.15) by running a SPICE
simulation. The set of necessary SPICE simulations is determined and controlled by a characterization tool. The
characterization tool can infer pertinent information from the specification represented in ALF, as far as this
information relates to the functionality of the cell itself. For example, the timing arcs that need to be character-
ized can be represented in or inferred from ALF. The output of the characterization tool is alibrary cell model,
popul ated with characterization data, also represented in ALF.

1For information on references, see Clause 2.
2The numbers in brackets correspond to those in the bibliography in Annex D.

Copyright © 2003 IEEE. All rights reserved. 15
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Optionally, alibrary compiler can be used to combine al the library cell modelsinto abinary file, as adata prep-
aration step for an EDA application tool.

1.2.2 Basic implementation and performance analysis of an IC

The ALF library can be used in an IC implementation flow which uses cells as building blocks, in particular, an
ASIC implementation flow.

A basic flow for an IC implementation using cells as building blocksis shown in Figure 2.

library cell technology
models rules
(ALF) \4 (ALF)
RTL / \ cell interconnect
synthesis placement routing

RTL
design description

gate-level netlist

gate-level netlist
with placement

gate-level netlist
with placement

(VHDL, Verilog) and routing
) parasitic
equivalence\, performanca estimation
checking analysis —
parasitic file
PEF
\ analysi
library cell / yois
models \ erformanc

S analysis —
(ALF) . | > y parasitic
\mtercgnlnect / __ -\ _extraction
models —

(ALF) -

Figure 2—Basic IC implementation flow

Inthisflow, an RTL design description istransformed into anetlist by an RTL synthesistool. The netlist contains
instances of cells, also called gates, rather than transistors. This application can use the ALF library to find the
library elements needed to map the RTL description into a netlist containing instances of cells. The transistors
inside the cells are not described in the ALF cell models.

An equivalence checking tool can be used to decide whether the RTL-to-netlist transformation has been done
correctly, by comparing the RTL design description with the netlist. This application can use the same ALF
library as the RTL synthesis tool. Also, an HDL simulation tool (not shown in Figure 2) can be used to decide
whether both the RTL design description and the netlist behave as expected in response to a given stimulus. The
simulation tool can use an ALF model or an HDL model derived from the ALF model (see 9.4, 9.6).

The flow in Figure 2 is simplified. Special netlist transformations, such as the creation of data path structures,
creation structures related to design for test (DFT), and especially scan insertion, are not shown here. However,
the ALF cell models also contain information pertaining to these applications (see 8.5.3, 8.5.5, 8.5.6, 8.8.12, 9.2,
9.7).

16 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The process of cell placement and interconnect routing is summarily referred to as layout. Special layout opera-
tions, such as the layout of a power supply structure or layout of a clock network structure, are not explicitly
shown in Figure 2. The ALF cell models contain abstract physical information, such as the size and shape of the
cell, and the location, size, and shape of the cell pins and routing blockages, which are pertinent for layout (see
8.22, 8.23). Also, abstract information concerning the artwork within the cell can be represented in ALF, for
example, the area, perimeter, and connectivity of artwork on specific layers (see 10.18, 10.19). Thisinformation
is pertinent for manufacturability, such as antenna rule (see 8.21, 10.19.1, 10.19.2, 10.19.3) and metal density
checks (see 8.31, 10.19.11).

In addition to cell models, technology rules for routing can also be represented in ALF, such as constraints for the
width and length of routing segments, the distance between routing segments, the distance between vias, etc. (see
8.16, 8.18, 8.20, 10.19.7, 10.19.8, 10.19.9).

The implemented |C needs not only be correct in terms of functionality and layout, it also has to meet electrical
performance constraints, predominantly timing constraints. Other aspects of electrical performance, such as
power consumption, signal integrity, and reliability have become increasingly important. Signal integrity aspects
include the cleanliness of signal waveform shapes and the immunity against noise induced by crosstalk and volt-
age drop (see 10.11.1, 10.11.14, 10.15.1, 10.15.2). Reliability aspects include dependable long-term operation in
the presence of electromigration stress, hot electron effect, and thermal instability. The cell modelsin ALF sup-
port characterization data for timing, power, signal integrity, and reliability. For example, reliability data can be
described as a limit for voltage, current, or operation frequency (see 10.11.2). A particular feature in ALF isthe
representation of these data in the context of a stimulus, described by a vector expression (see 8.14, 9.12, 9.13).
With this feature, the data can be related to particular environmental operation conditions, and a more accurate
performance analysis can be performed.

Performance analysis happens within each step of the IC implementation process. RTL synthesis, cell placement
and interconnect routing applications have embedded static timing analysis (STA) and other performance analy-
sis capabilities. Also, after completion of each step, a standal one performance analysis can be applied to measure
the achieved performance more accurately.

Electrical performance depends not only on the interaction between instances of cells, but also on the parasitics
introduced by the interconnect wires. After netlist creation, parasitics can be statistically estimated using awire
load model (WLM). After placement, parasitics can be more accurately predicted by estimating the length of par-
ticular routing wires between pins of placed cells. After routing, actual parasitics can be extracted and repre-
sented in a file using the standard parasitic exchange format (SPEF) [B5]. An interconnect model in ALF can
describe a statistical WLM, arule for parasitic estimation based on estimated routes, or an interconnect analysis
model (see 8.10, 8.12). The interconnect analysis model specifies the desired level of granularity for the parasit-
ics (see 10.15.3, 10.15.4, 10.15.5, 10.16) and the calculation of timing, noise, voltage, or current based on
instances of parasitics and on an electrical model of adriver cell. The datafor the electrical model of a particular
driver cell can be represented in ALF as a part of the cell characterization data.

1.2.3 Hierarchical implementation and virtual prototyping of an IC

An |C implementation flow with cells as building blocks hasits limits imposed by the number of objects, i.e., the
instances of cells and nets that can be reasonably handled by designers and by application flows.

For | Cs exceeding the limits of objects that can be reasonably handled, the following approaches are used, possi-
bly in combination with each other:

— Bottom-up design: Create larger building blocks from cells first, then use these blocks for |C implementa-
tion.

— Top-down design: Divide a design into subdesigns first, implement each subdesign as a block, then
assembl e the blocks.

Copyright © 2003 IEEE. All rights reserved. 17
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

— \Mrtual prototyping: Do asimplified so-called virtual implementation of the entire design first, then parti-
tion the virtually implemented design into blocks, use the results of the virtual implementation as con-
straints for actual implementation of each block, and implement and assemble the blocks.

The common denominator for all these methods is creation of blocks, in order to reduce the number of objects
seen by the application.

The application for creation of ablock is shown in Figure 3.

library cell interconnect technology
models models rules
(ALF) (ALF) (ALF)

' # ¢

design (?;l_cription Basic IC implementation flow (see Figure 2)
(VHDL, Verilog)

gate-level netlist parasitic file
with placement (SPEF)
and routing
block model block characterization block
specification performance model
(ALF) < analysis > > abstraction) (ALF)

Figure 3—Block creation flow

A block can be created by using the basic 1C implementation flow (see Figure 2). A block with a functionality
that can be used and re-used is commonly referred to as intellectual property (IP) of the designer. In case of a
“hard” block, the primary output of the implementation flow, i.e., agate-level netlist with placement and routing,
is preserved and eventually transformed into a physical artwork. In case of a*“soft” block, only the primary input
of theimplementation flow, i.e., the RTL design description, is preserved. The output of the implementation flow
serves only for the purpose of block characterization, i.e., creation of an abstract model for the block. The block
characterization consists of arepeated application of performance analysis within the range of desired character-
ization followed by abstraction. Abstraction includes reduction of the physical implementation data and associa-
tion of the performance anaysis data with a specified model. Both the specification of the model and the model
itself can be represented in ALF.

Variants to this flow include partial 1C implementation, for example, only RTL synthesis and placement without
routing, especialy in the case of a soft block, where the implementation data is not preserved. The rationale for
not preserving the implementation data of a block is the possibility of achieving a better overall IC implementa
tion result by implementing the block later in context of other blocks, instead of implementing the block stand-
aone up front.

Depending on whether a block is used as a hard block or a soft block, the ALF model can represent a different
level of abstraction. An ALF model for a hard block can have similar features as an ALF model for a cell (see
1.2.1and 1.2.2). In addition, the netlist and the parasitics representing the output of the implementation flow can

18 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

be partially preserved in the ALF model, especially at the boundary of the block (see 9.5). This enables accurate
analysis of the electrical interaction of a block with adjacent blocks in the context of an IC implementation. On
the other hand, an ALF model for a soft block can represent a statistical range or upper and lower bounds (see
10.5) for characterization data rather than “hard” characterization data, since there is a degree of variability inthe
implementation of actual instances of the block. Also, a statistical WLM can be encapsul ated within the model of
the block.

ALF supports specific modeling features for parameterizeable blocks, i.e., blocks which can be implemented in
various physical shapes or sizes and with variable bitwidth and performance characteristics. The ALF constructs
group (see 7.14), template (see 7.15), static and dynamic template instantiation (see 7.16) can be used for this
purpose.

Independent of whether ablock is ahard block or a soft block, the application for creating the IC can now usethe
abstract model of the block as alibrary element rather than using a cell. In asimilar way, as an ALF model of a
cell does not reveal transistor-level implementation details, an ALF model of a block does not reveal gate-level
implementation details. However, the ALF model of ablock still provides enough information for an application
to implement or explore the implementation of an IC and analyze the performance and the compliance to logical
and physical design constraints.

An IC is designed in the context of a specific environment with specific constraints. Environmental constraints
include for the characteristics of the package, the printed board, the range of process, voltage, and temperature
(PVT) conditions (see 10.14). Other constraints are given by globally applicable physical design rules, for exam-
ple, the available routing layers, the amount of routing resources reserved for the power distribution, and the
available locations for 10 pins at the boundary and in the center of a chip. The virtual prototyping approach can
be used to evaluate whether a design can be implemented within these constraints. The electrical characterization
datain ALF, i.e, timing, power, noise, physical and electrical rules, estimation models for parasitics, etc., can be
represented as mathematical functions of environmental conditions and constraints (see 10.3, 10.4).

A conceptual flow for the virtual prototyping and hierarchical implementation of an IC involving ALF models at
different levels of abstraction is shown in Figure 4.

Copyright © 2003 IEEE. All rights reserved. 19
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

RTL
design description
(VHDL, Verilog)

global design
constraints

technology I
rules * * I
(ALF) design planning, library block |

prototyping, models I
mterconnect partitioning (ALF) |
models
(ALF) . — Tefinement, ™
=t ~— - — — o refinement,
repartition)
subdesign description N~ — —
and constraints 1
|

¢ desian hlock |
desian hlock |
library cell design block

Block creation flow (see Figure 3
(ALF) (seeFig D (ALF)

aate-level ;ptlicr |
nate-level netlist |

gate-level netlist
with placement >
and routing Block assembly

Figure 4—IC prototyping and hierarchical implementation flow

The design planning and prototyping application uses predefined models of blocks as library elements, referred
to as “library block models’. The design is partitioned into subdesigns. The block creation flow (see Figure 3),
i.e.,, acombination of block implementation and block characterization, is applied to each subdesign. The appli-
cable library elements for each block are cells. The outputs of the block creation flow are the characterized mod-
els of the subdesigns, referred to as “ design block models’. The design block models can be used to iterate on the
design planning application, resulting in a possible refinement and repartitioning of the design. Once the evalua-
tion of each block against the subdesign constraints and the evaluation of the virtually assembled blocks against
the global design constraints are satisfactory, the block implementation results, i.e., the netlist with placement
and routing for each block, can actually be assembled to form the IC.

The design of an IC can use a combination of cells, hard blocks and soft blocks, blocks with fixed specification,
and parameterizeable blocks as library elements. Some of the library elements are available independent of the
design, others are created during and only for the purpose of that particular design. An abstract model for a soft
block can be used in conjunction with a more detailed model for a hard block. The abstract model can be
replaced with a more detailed model during implementation of the block. Technology rules and interconnect
models are used throughout the flow.

In summary, the ALF standard provides a common modeling language for library elements, technology rules,
and interconnect models. ALF models at different levels of abstraction can be used concurrently by EDA appli-
cations for planning, prototyping, implementation, analysis, optimization and verification of complex ICs.

20 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

1.3 Conventions used in this standard

The syntax for description of lexical and syntax rules uses the following conventions.

S definition of a syntax rule
| alternative definition
[item an optional item
[iteml | item2 | ...]
optional itemwith alternatives
{iten} optional itemthat can be repeated

{itenl | item2 | ... }
optional itens with alternatives which can be repeated
Item bol df ace specifies verbati musage of a string of characters.

ITEM uppercase bol df ace specifies verbati musage of a keyword.
prefix_item

prefix initalic is for explanation purpose only
PREFI X _item

prefix in uppercase italic indicates that a keyword is used

NOTE: These conventions do not prescribe usage of uppercase or lowercase characters, as ALF is case-insensitive.

1.4 Contents of this standard

The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
this standard.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms) defines the acronyms used in this standard.

— Clause 5 (ALF language construction principles) defines the language construction principles used in this
standard.

— Clause 6 (Lexical rules) specifiesthelexical rules.

— Clause 7 (Generic objects and related statements) defines syntax and semantics of generic objects used in
this standard.

— Clause 8 (Library-specific objects and related statements) defines syntax and semantics of library-spe-
cific objects used in this standard.

— Clause 9 (Description of functional and physical implementation) defines syntax and semantics of state-
ments related to functional and physical implementation of library elements used in this standard

— Clause 10 (Description of electrical and physical measurements) defines syntax and semantics of state-
ments describing electrical and physical measurements related to library elements used in this standard.
— Annexes. Following Clause 10 are a series of informative annexes.

Copyright © 2003 IEEE. All rights reserved. 21
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

2. References

This standard shall be used in conjunction with the following publication. When the following standard is super-
seded by an approved revision, the revision shall apply.

|EEE Std 1076-2002, |EEE Standard VHDL Language Reference Manual.

|EEE Std 1364-2001, | EEE Standard for Verilog Hardware Description Language.

|EEE Std 1497-2001, |EEE Standard for Standard Delay Format (SDF) for the Electronic Design Process.
I SO/IEC 9899:1990, Programming Languages—C.

ANSI/ISO/IEC 14882, C++ Standard.

ISO/IEC 8859-1: 1987(E), ASCII character set.

“American National Standard for Use of the International System of Units (SI): The Modern Metric System”,
|IEEE/ASTM Sl 10-2002.

31S0 publications are available from the 1SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Switzerland/
Suisse (http://www.iso.ch/). IEC publications are available from the Sales Department of the International Electrotechnical Commission,
Case Postale 131, 3, rue de Varembé, CH-1211, Genéve 20, Switzerland/Suisse (http://www.iec.ch/). ISO/IEC publications are also available
in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.

22 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B1] should be consulted for terms not defined in this standard.

3.1 ALF: See: advanced library format.

3.2 ALF name: The name of an ALF object.

3.3 ALF object: An element described in ALF.

3.4 ALF type: Thetype of an ALF object.

3.5 ALF value: A value associated with an ALF abject.

3.6 advanced library format (ALF): The format of any file that can be parsed according to the syntax and
semantics defined within this standard.

3.7 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examplesinclude RTL (Register Transfer Level) synthesistools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.8 arc: See: timing arc.

3.9 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.10 arithmetic model: A description of a mathematical model for an electrical or physical measurement in
ALF

3.11 cell, library cell: An electronic circuit that is a component of alibrary described in ALF.
3.12 geometric model: A description of alayout geometry in ALF.

3.13register transfer level: A technology-independent description of adigital €lectronic design allowing infer-
ence of sequential and combinatorial logic components.

3.14 timing arc: An abstract representation of a measurement of an interval between two points in time during
operation of alibrary cell.

Copyright © 2003 IEEE. All rights reserved. 23
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

4. Acronyms

This clause lists the acronyms used in this standard.

ALF
ASIC
BIST
BNF
CAE
CAM
CPU
DFT
DSP
EDA
EDIF
GPU
HDL
IC

1P
LSB
LSSD
MPU
MSB
PLL
PVT
RAM
RC
ROM
RTL
SDF

SPEF
SPICE
STA
VHDL
VHSIC
VLS
WLM

24

advanced library format, title of the herein proposed standard
application specific integrated circuit

built-in self test

Backus-Naur form

computer-aided engineering [the term electronic design automation (EDA) is preferred]
content-addressable memory

central processing unit

design for test

digital signal processor

electronic design automation

electronic design interchange format

graphical processing unit

hardware description language

integrated circuit

intellectual property

least significant bit

level-sensitive scan design

micro processor unit

most significant bit

phase-locked loop

process/voltage/temperature (denoting a set of environmental conditions)
random access memory

resistance (times) capacitance

read-only memory

register transfer level

standard delay format (see |EEE Std 1497-2001)

system on achip

standard parasitic exchange format (see |EEE Std 1481-1999)
simulation program with integrated circuit emphasis [B4]
static timing analysis

VHSIC hardware description language (see |EEE Std 1076-2002)
very high-speed integrated circuit

very large-scale integration

wire load model

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

5. ALF language construction principles
This section presents the ALF language construction principles and gives an overview of the language features.
The ALF statements and the rules for relationships between ALF statements are presented summarily. Keywords

are involved in the declaration of ALF statements. The keywords in ALF shall be case-insensitive. However,
uppercase is used for keywords throughout this section for clarity.

5.1 ALF metalanguage

Syntax 1 establishes an ALF metalanguage.

ALF_statement ::=
ALF _type[[index] ALF_name[index]] [= ALF_vaue],
| ALF_type[[index] ALF_name[index]][= ALF_value] | { ALF value|: |; }
| ALF_type[[index] ALF_name[index]][= ALF_value] { { ALF_statement } l}
ALF_type::=
identifier
@
ALF name::=
identifier
| control_expression
ALF vaue::=
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge _value
| arithmetic_expression
| boolean_expression
| control_expression

Syntax 1—Syntax construction for ALF metalanguage

The ALF type is defined by an identifier (see 6.13) or by the operator “@” (see 6.4) or by the delimiter “:” (see
6.3). The usage of an identifier, an operator, or a delimiter as ALF type is defined by ALF language rules con-
cerning the particular ALF type. The identifier can be a predefined keyword (see 6.13.7).

The ALF name is defined by an identifier (see 6.13) or by a control expression (see 9.4). Depending on the ALF
type, the ALF nameis mandatory or optional or not applicable. The usage of an identifier or a control expression
as ALF nameis defined by ALF language rules concerning the particular ALF type. The ALF nameisoptionally
preceded by an index (see 6.6) to specify a vectorized object. Another index can optionally succeed the ALF
name to specify atwo-dimensional vectorized object. A two-dimensional vectorized object shall be called matrix
object. An object without index shall be called scalar object. The usage of an index in conjunction with an ALF
name is defined by ALF language rules concerning the particular ALF type.

The ALF value is defined by a number (see 6.5), a multiplier prefix symbol (see 6.7), an identifier (see 6.13), a
quoted string (see 6.14), a bit literal (see 6.8), a based literal (see 6.9), an edge value (see 6.12), an arithmetic
expression (see 10.1), a boolean expression (see 9.9), or a control expression (see 9.4). Depending on the type of
the ALF statement, the ALF value is mandatory or optional or not applicable. The usage of a particular kind of
ALF valueis defined by ALF language rules concerning the particular ALF type.

Copyright © 2003 IEEE. All rights reserved. 25
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with a child is called a compound ALF state-
ment. An ALF statement that is related to another ALF statement by ancestry in the parent/child relationship is
called an ancestor of the other ALF statement. Conversely, the latter is called a descendant of the former.

An ALF statement containing one or more ALF values, possibly interspersed with the delimiters “;” or “:”, is
called a semi compound ALF statement. The items between the delimiters “{“and “}" are called contents of the
ALF statement. The usage of the delimiters“;” or “:” within the contents of an ALF statement is defined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is caled an atomic ALF statement. An ALF statement which is either com-
pound or semi compound is called a non-atomic ALF statement.

Example

a) ALF statement describing an unnamed object without val ue:
ARBI TRARY_ALF_TYPE {
/1 put children here
}
b) ALF statement describing an unnamed object with value:
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue;
or
ARBI TRARY_ALF _TYPE = arbitrary_ALF val ue {
/1 put children here
}
c¢) ALF statement describing a named object without value:
ARBI TRARY_ALF_TYPE arbitrary_ALF_nane;
or
ARBI TRARY_ALF_TYPE arbitrary_ALF _nanme {
/1 put children here
}
d) ALF statement describing a named object with value:
ARBI TRARY_ALF TYPE arbitrary ALF nane = arbitrary_ALF val ue;
or
ARBI TRARY_ALF TYPE arbitrary ALF nanme = arbitrary_ALF val ue {
/1l put children here

}

End of example

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortnessin lieu of ALF statement, ALF name,
ALF value, respectively.

26 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-

iary statement, as shownin Table 1.

Table 1—Categories of ALF statements

Category

Purpose

Syntax particularity

Generic object

Provide adefinition for use within other
ALF statements.

Statement is atomic, semi compound or com-

pound.
Name is mandatory.

Value is either mandatory or not applicable.

Library-specific object

Describe the contents of alC technology
library.

Statement is atomic or compound.
Name is mandatory.
Value does not apply.

Category of parent islibrary-specific object.

specific measurement condition.

Arithmetic model Describe an abstract mathematical quan- | Statement is atomic or compound.
tity that can be calculated and possibly Name is optional.
measured within the design of an IC. Valueis mandatory, if atomic.
Arithmetic submodel Describe an arithmetic model under a Statement is atomic or compound.

Name does not apply.
Valueis mandatory, if atomic.
Category of parent isarithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
mode!.

Statement is compound.
Name and value do not apply.
Category of child isarithmetic model.

Geometric model

Describe an abstract geometry used in
physical design of anIC.

Statement is semi compound or compound.

Nameis optional.
Value does not apply.

Annotation

Provide aqualifier or a set of qualifiers
for an ALF statement.

Statement is atomic or semi compound.
Name does not apply.

Value is mandatory, if atomic. Value does not

apply, if semi compound.

Annotation container

Provide a context for an annotation.

Statement is compound.
Name and value do not apply.
Category of child isannotation.

Auxiliary statement

Provide an additional description within
the context of alibrary-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.

Figure 5 illustrates the parent/child relationship between categories of statements.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

27

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

legend:

~

parent —® child no restrictive rules

y 4
parent - — = child with resriciveres | |- specific ObJeCt

arithmetic model container

PR
arlthmetlc model 4—
Sl T V

/ o aUX|I|ary statement
| arithmetic submodel- — %) T o

|
|
| \
|
|
|

_ -geometric model

library-specificobject — = -~ ___» annotation container
arithmetic model — generic object
auxiliary statement ~ —%

—® annotation

library-specific object

- arithmetic model container

~ . .
R o arithmetic model

genericobject - — — - arithmetic submodel

T & — -m auxiliary statement

> . a@nnotation container

A annotation

Figure 5—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects
Statements with mandatory name are called objects, i.e., generic object and library-specific object. Table 2 lists

the keywords and items in the category generic object. The keywords used in this category are called generic
keywords.

Table 2—Generic objects

Keyword Item Section
ALI AS Alias declaration See7.7.
CONSTANT Constant declaration See 7.8.
28 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

Table 2—Generic objects (Continued)

IEEE P1603/D9, July 2003

Keyword Item Section
CLASS Class declaration See 7.12.
GROUP Group declaration See 7.14.
KEYWORD Keyword declaration See 7.9.
SEMANTI CS Semantics declaration See 7.10.
TEMPLATE Template declaration See 7.15.

Table 3 lists the keywords and items in the category library-specific object. The keywords used in this category

are called library-specific keywords.

Table 3—Library-specific objects

Keyword Item Section
ANTENNA Antenna declaration See 8.21.
ARRAY Array declaration See 8.27.
BLOCKAGE Blockage declaration See 8.22.
CELL Cell declaration See 8.4.
LAYER Layer declaration See 8.16.
LI BRARY Library declaration See8.2.
NODE Node declaration See8.12.
PATTERN Pattern declaration See 8.29.
PI'N Pin declaration See 8.6.
Pl NGROUP Pin group declaration See 8.7.
PORT Port declaration See 8.23.
PRI M Tl VE Primitive declaration See 8.9.
REG ON Region declaration See 8.31.
RULE Rule declaration See 8.20.
SITE Site declaration See 8.25.
SUBLI BRARY Sublibrary declaration See8.2.
VECTOR Vector declaration See 8.14.
VI A Viadeclaration See 8.18.
W RE Wire declaration See 8.10.

Figure 6 illustrates the parent/child relationship between statements within the category library-specific object.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

29

10

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

library — = sublibrary

v

node
-~ » layer d A
wire cell primitive
- » site \ / \ ¢
vector pin pih-group pin
. » array
region /blockage
_» rule /
antenna pattern port
/ legend:
» Via parent ——® child

Figure 6—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by
name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement
and plural statement.

Aucxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table4 liststhe singular statements.

Table 4—Singular statements

Keyword Item Value Complexity Section
FUNCTI ON Function statement N/A Compound See9.1.
TEST Test statement N/A Compound See9.2.
RANGE Range statement N/A Semi compound See 9.8.
FROM From statement N/A Compound See 10.12.
TO To statement N/A Compound See 10.12.

30 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

Table 4—Singular statements (Continued)

IEEE P1603/D9, July 2003

Keyword Item Value Complexity Section
VI OLATI ON Violation statement N/A Compound See 10.10.
HEADER Header statement N/A Compound See 10.4.
TABLE Table statement N/A Semi compound See 10.4.
EQUATI ON Equation statement N/A Semi compound See 10.4.
BEHAVI OR Behavior statement N/A Compound See 9.4.
STRUCTURE Structure statement N/A Compound See 9.5.
NON_SCAN_CELL Non-scan cell statement | Optional Compound or semi compound See9.7.
ARTWORK Artwork statement Mandatory Compound or atomic See 9.19.
Table5 lists the plural statements.
Table 5—Plural statements
Keyword Item Name Complexity Section
STATETABLE State table statement Optional Semi compound See 9.6.
@ Control statement Mandatory Compound See94.
Alternative control statement Mandatory Compound See9.4.
Figure 7 illustrates the parent/child relationship for singular statements and plural statements.
Copyright © 2003 IEEE. All rights reserved. 31

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

Advanced Library Form

at (ALF) Reference Manual

statetalﬁe be&avi or

legend:
parent —® child

primitive cell > pin
non-scan cell
artwork
function test range
violation<e— grjthmetic model
structure ¢

L arithmetic submodel

—arithmetic submo

_—|:: from
to

. » header
L table
- equation

I

—®>control statement
—®alternative control statement

Figure 7—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of aparticular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are

divided in the following subcategories. instantiation statement and assignment statement.

Compound or semi compound statements using the name of an object as keyword are called instantiation state-

ments. Their purpose is to specify an instance of the object.

Table 6 lists the instantiation statements.

Table 6—Instantiation statements

Item Section
Cell instantiation See 9.5.
Primitive instantiation See94.
Template instantiation See 7.16.
Viainstantiation See 9.20.
Wire instantiation See9.15
32 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
poseisto assign avaue to the identifier. Such an identifier is called avariable.

Table 7 lists the assignment statements.

Table 7—Assignment statements

Item Section
Pin assignment See 9.3.2, Syntax 68.
Arithmetic assignment See 7.16, Syntax 42.
Boolean assignment See 9.4, Syntax 69.

Figure 8 illustrates the parent/child relationship involving instantiation and assignment statements.

legend:

behavior parent ——® child no restrictive rules

parent = — —# child with restrictive rules

L primitiveinstantiation——)
- boolean assignment

—® control statement

—®alternative control statement ——
generic object

library-specific object ™
: TN A
sngular statement " A
non-scan cell structure T - templateinstantiation
I plural statement -
| . . - - » !
| y/ arithmetic model 4 |
~
artwork . cell instantiation ~ / arithmetic submodel” _ v \
\ v ¢ ’/ arithmetic model container arithmetic assignment

pin assignment e—Wwire instantiation

Figure 8—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements
Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic

submodel, annotation, annotation container, and geometric model. Their semantics are established within the

Copyright © 2003 IEEE. All rights reserved. 33
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories. Table 8 provides areference to sections where more
definitions about these categories can be found.

Table 8—Other categories of ALF statements

Item Section
Arithmetic model See 10.3, Syntax 82.
Arithmetic submodel See 10.7, Syntax 96.

Arithmetic model container See 10.8, Syntax 97.

Annotation See 7.3, Syntax 31.
Annotation container See 7.4, Syntax 32.
Geometric model See 9.16, Syntax 77.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, comparable to keywords for generic objects. Table 9 lists the generic key-
words in the category annotation and annotation container.

Table 9—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section
PROPERTY Annotation container. See 7.6.
ATTRI BUTE Multi-value annotation. See7.5.
| NFORVATI ON Annotation container. See 8.3.2.

Table 10 lists predefined keywords in categories related to arithmetic model.

Table 10—Keywords related to arithmetic model

Keyword Item / category Section

LIMT Arithmetic model container. See 10.8.2.

M N Arithmetic submodel, also operator within arithmetic expression. See 10.5,10.2.3.
MAX Arithmetic submodel, also operator within arithmetic expression. See 10.5,10.2.3.
TYP Arithmetic submodel. See 10.5.
DEFAULT Annotation. See 10.9.4.

ABS Operator within arithmetic expression. See 10.2.3.

EXP Operator within arithmetic expression. See 10.2.3.

LOG Operator within arithmetic expression. See 10.2.3.

34 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 7.9).

5.7 Statements for parser control

Table 11 provides areference to statements used for ALF parser control.

Table 11—Statements for ALF parser control

Keyword Satement Section
I NCLUDE Include statement See 7.17.
ASSCCI ATE Associate statement See7.18.
ALF_REVI SI ON Revision statement See 7.19.

| Thestatements for parser control do not necessarily follow the ALF metalanguage shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply.

a)
b)
<)

d)

e

A statement shall be visible within its parent statement, but not outside its parent statement.

A statement visible within another statement shall also be visible within achild of that other statement.
All objects (i.e., generic objects and library-specific objects) shall share a common name space within
their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of its visibility.

The following exception of rule ¢) is allowed for specific objects and with specific semantic implica-
tions. An object of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such a redeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

All statements with optional names (i.e., property, arithmetic model, geometric model) shall share acom-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

Copyright © 2003 IEEE. All rights reserved. 35
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

36

Advanced Library Format (ALF) Reference Manual

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

6. Lexical rules
This section discusses the lexical rules.

The ALF source text files shall be a stream of Iexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within alexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set
This standard shall use the ASCII character set (see |SO/IEC 8859-1 : 1987(E)).

The ASCII character set shall be divided into the following categories: whitespace, |etter, digit, and special, as
shown in Syntax 2.

character ::=
whitespace
| letter
| digit
| special
whitespace ::=
space | horizontal_tab | new_line | vertical_tab | form_feed | carriage_return
letter ::=
uppercase | lowercase
uppercase ::=
AIBICIDIEIFIGIH|I'1J|K|L
INJOIPIQIRIS|ITIUIV W X]
lowercase ::= L.
| ?|b|0|d|e|f|g|h|lu|k|l|m|n|
igit ;1=
011121314,516,718]9
ia =

special ::
&l =1+ 1-1*11% 210 Lt =N\1.1$| |#
|(||£I|<||>I+|[||l]|l{||}| s L 1 1@1= 1N 1S |

Syntax 2—ASCII character set divided into categories

M
Y|Z
olpIgIr|s|itiulviw|X|y|z

Table 12 shows the list of whitespace characters and their ASCII code.

Table 12—List of whitespace characters

Name ASCII code (octal)
Space 040
Horizontal tab 011
New line 012
Vertical tab 013
Copyright © 2003 IEEE. All rights reserved. 37

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Table 12—List of whitespace characters (Continued)

Name ASCII code (octal)

10

15

20

25

30

35

40

50

55

Table 13 shows the list of special characters and their names used in this standard.

38

Form feed

014

Carriage return

015

Table 13—List of special characters

Symbol

Name

Ampersand

Vertical bar

Caret

Tilde

Plus

Dash

Asterix

Slash

Percent

Question mark

Exclamation mark

Colon

Semicolon

Comma

Double quote

Single quote

At sign

Equal sign

Backslash

Dot

Dollar

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Underscore

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Table 13—List of special characters (Continued)

Symbol Name
Pound
() Parenthesis (open, close)
< > Angular bracket (open, close)
[] Square bracket (open, close)
{ } Curly bracket (open, close)

6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

comment ::=
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new_line
|/ [{character} carriage return
block_comment ::=
| *{character} * |

Syntax 3—Comment

The start of an in-line comment shall be determined by the occurrence of two subsequent slash characters with-
out whitespace in-between. The end of an in-line comment shall be determined by the occurrence of anew line or
of acarriage return character.

The start of ablock comment shall be determined by the occurrence of a dash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurrence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The specia characters shown in Syntax 4 shall be considered delimiters.

delimiter ;=

(DI,

Syntax 4—Delimiter

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

Copyright © 2003 IEEE. All rights reserved. 39
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational

operator, shift operator, event operator, and meta operator, as shown in Syntax 5.

operator ::=
arithmetic_operator

| boolean_operator

| relational _operator

| shift_operator

| event_operator

| meta_operator
arithmetic_operator ::=

L AR
boolean_operator ::=

E&II~& I~[I™ M~ 1 &]
relational _operator ::=

::|!_:|>:|<:|>|<
shift_operator ::=

<L |>>
event_operator ::=

S|~ <> <> | &> <& >
meta_op)erator =

=1?71@

Syntax 5—Operator

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede

the second operand.
6.4.1 Arithmetic operator

Table 14 shows the list of arithmetic operators and their names used in this standard.

Table 14—List arithmetic operators

Symboal Operator name Unary / binary Section
+ Plus Binary See9.11.4.
- Minus Both See9.11.4.
* Multiply Binary See9.11.4.
/ Divide Binary See 9.11.4.
% Modulus Binary See9.11.4.
*% Power Binary See 10.2.2.

Arithmetic operators shall be used to specify arithmetic operations.

40 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

6.4.2 Boolean operator

Table 15 shows the list of boolean operators and their names used in this standard.

Table 15—List of boolean operators

IEEE P1603/D9, July 2003

Symbol Operator name Unary / binary Section
| Logical inversion Unary See9.11.1.
& & Logical and Binary See9.11.1.
|| Logical or Binary See9.11.1.
~ bit-wiseinversion Unary See9.11.2.
& bit-wise and Both See9.11.2.
~& bit-wise nand Both See9.11.2.
| bit-wise or Both See9.11.2.
~| bit-wise nor Both See9.11.2.
N Exclusive or Both See9.11.2.
~N Exclusive nor Both See9.11.2.
Boolean operators shall be used to specify boolean operations.
6.4.3 Relational operator
Table 16 shows the list of relational operators and their names used in this standard.
Table 16—List of relational operators
Symbol Operator name Unary / binary Section
== Equal Binary See9.11.6.
1= Not equal Binary See 9.11.6.
> Greater Binary See9.11.6.
< Lesser Binary See9.11.6.
>= Grester or equal Binary See 9.11.6.
<= Lesser or equal Binary See9.11.6.

Relational operators shall be used to specify mathematical relationships between numbers.

Copyright © 2003 IEEE. All rights reserved.

41

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

IEEE P1603/D9, July 2003

6.4.4 Shift operator

Advanced Library Format (ALF) Reference Manual

Table 17 shows the list of shift operators and their names used in this standard.

Table 17—List of shift operators

Symbol Operator name Unary / binary Section
<< Shift left Binary See9.11.5.
>> Shift right Binary See9.11.5.
Shift operators shall be used to specify manipulations of discrete mathematical values.
6.4.5 Event operator
Table 18 shows the list of event operators and their names used in this standard.
Table 18—List of event operators
Symbol Operator name Unary / binary Section
> Immediately followed by Binary See9.13.2.
~> Eventually followed by Binary See9.13.2.
<-> Immediately following each other Binary See9.13.3.
<~> Eventually following each other Binary See9.13.3.
&> Simultaneous or immediately followed by Binary See9.13.3.
<& > Simultaneous or immediately following each other Binary See9.13.3.

Event operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

45

50

55

Table 19 shows the list of meta operators and their names used in this standard.

Table 19—List of meta operators

Symbol Operator name Unary / binary Section
= Assignment Binary See9.3.2,7.16, 9.4.
? Condition Binary See 9.135.
@ Control Unary See 9.4.

42

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Meta operators shall be used to specify transactions between variables.

6.5 Number

Numbers shall be divided into subcategories signed integer, signed real, unsigned integer, and unsigned real.
Furthermore, the categories signed number, unsigned number, integer and real shall be defined as shown in
Syntax 6.

number ::=
signed_integer | signed_real | unsigned_integer | unsigned_real
signed_number ::=
signed_integer | signed_real
unsigned_number ::=
unsigned_integer | unsigned_real
integer ::=
signed_integer | unsigned_integer
signed_integer ::=
sign unsigned_integer
unsigned_integer ::=
digit {[_]digit}
real ::=
signed_rea | unsigned rea
signed_real ::=
sign unsigned_real
unsigned_real ::=
mantissa [exponent]
| unsigned_integer exponent
sign::=
+ |-
mantissa ::=
. unsigned_integer
| unsigned_integer . [unsigned_integer]
exponent ::=
E [sign] unsigned_integer
| €[sign] unsigned_integer

Syntax 6—Number

A number shall be used to represent a numerical quantity.

6.6 Index value and Index

An index value shall be defined as shown in Syntax 7.

index_vaue::=
unsigned_integer | atomic_identifier

Syntax 7—Index value

The purpose of an index value is to represent a position within a range of discrete, countable values. A discrete,
countable value shall be represented by an unsigned integer (see 6.5). The usage of atomic identifier (see 6.13) as
index value shall only be allowed, if the semantic interpretation of the atomic identifier resolves to avalue of the
category unsigned integer.

An index value can represent a particular position within a pin of the category vector pin, a matrix pin (see 8.6)

or apingroup (see 8.7).

Copyright © 2003 IEEE. All rights reserved. 43
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

An index value can also be used in the context of a group declaration (see 7.14) and in the context of a range
statement (see 9.8).

An index shall be defined as shown in Syntax 8.

index ::=

single_index | multi_index
single_index ::=

T index_value |
multi_index ::=

[index_value : index_value |

Syntax 8—Index

An index shall be used in conjunction with the name of a pingroup, a vector pin or amatrix pin. A single index
shall represent a particular scalar within aone-dimensional vector or a particular one-dimensional vector within a
two-dimensional matrix. A multi index shall represent arange of scalars or arange of vectors, wherein the posi-
tion of the most significant bit (MSB) is specified by the |eft index value and the position of the least significant
bit (LSB) is specified by the right index value.

6.7 Multiplier prefix symbol and multiplier prefix value

A multiplier prefix symbol shall be defined as shown in Syntax 9.

multiplier_prefix_symbol ::=
unity { letter } | K { letter} [M EG{ letter} | G{ letter }
M { letter } |U { letter} [N { letter} | P{ letter} | F{ letter }

c
=

T o Zh i O M = X P
= Z

z =
§>\—

)

IS

T z c @ m
E

ﬂ
°

—

Syntax 9—Multiplier prefix symbol

The purpose of amultiplier prefix symbol is the specification of a multiplier for the base unit associated with an
arithmetic model (see 10.3). Only the leading characters of the multiplier prefix symbol shall be used for identi-
fication of the corresponding number. Optional subsequent letters can be used to indicate the base unit. For
example, “pF" can be used to denote “ picofarad”, “MegaHz" can be used to denote “ megahertz”, etc.

44 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

A multiplier prefix symbol shall relate to the International System of Units (see U.S. National Bureau of Stan-

dards, Spec. Pub. 330) as shown in Table 20.

Table 20—Multiplier prefix symbol and corresponding Sl-prefix

Lexical token Sl-prefix (symbol) | SI-prefix (word) Numerical value

F f femto le-15

P p pico le-12

N n nano le-9

U 1] micro le-6

M m milli le-3

unity 1 one 1e0

K k kilo le+3

MVEG M mega le+6

G G giga le+9

A multiplier prefix value shall be defined as shown in Syntax 10.

multiplier_prefix_value ::=
unsigned_number | multiplier_prefix_symbol

Syntax 10—Multiplier prefix value

The multiplier prefix value shall be represented either as an unsigned number (see 6.5) or amultiplier prefix sym-

bol (see 6.7). An application shall interpret a multiplier prefix value seman

6.8 Bit literal

Bit literals shall be divided into the subcategories alphanumeric bit literal
Syntax 11.

tically as unsigned number.

and symbolic bit literal, as shown in

bit_literal ::=
alphanumeric_bit_literal
| symbolic_bit_literal
aphanumeric_hit_literal
numeric_bit_literal
| alphabetic_bit_literal
numeric_bit_literal ::=

aphabetic _bit_literal ::=
X|ZIL1H|UW
IX1z|l1hjujw

symbolic_bit_literal ::=
?1*

Syntax 11—Bit literal

Copyright © 2003 IEEE. All rights reserved. 45

This is an unapproved IEEE Standards Draft, s

ubject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Bit literals shall be used to specify scalar values within a boolean val ue system (see 9.10).

6.9 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 12.

based literal ::=
binary_based_literal | octal_based literal | decimal_based literal | hexadecimal_based_literal
binary_based_literal ::=
binary_base bit_literal { [_] bit_literal }
binary base::=
1 I Ib
octal_based_literal ::=
octal_base octal_digit { [_] octal_digit }
octal_base ::=
IO | lo
octal_digit ::=
bit_literal | 2131415167
decimal_based litera ::=
decimal_base digit { [_] digit}
decima_base ::=
1 D |Td
hexadecimal _based_literal ::=
hexadecimal_base hexadecimal_digit { [__] hexadecimal_digit }
hexadecimal_base ::=
1 H | lh
hexadecimal_digit ::=
octal_digit|8]9
|A|B|%AD|E|F
lajbicidie|f

Syntax 12—Based literal

Based literals shall be used to specify vectorized values within a boolean value system.

6.10 Boolean value

A boolean value shall be defined as shown in Syntax 13.

boolean value::=
aphanumeric_hit_literal | based_literal | integer

Syntax 13—Boolean value

The semantics of aboolean value are explained in section 9.10.

6.11 Arithmetic value
An arithmetic value shall be defined as shown in Syntax 14.

An arithmetic value shall represent data for an arithmetic model (see 10.3) or for an arithmetic assignment (see
7.16). Semantic restrictions apply, depending on the particular type of arithmetic model.

46 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

arithmetic_value ::=
number | identifier | bit_literal | based literal

Syntax 14—Arithmetic value

6.12 Edge literal and edge value

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 15.

edge literal ::=

bit_edge literal

| based_edge literal

| symbolic_edge literal
bit_edge literal ::=

bit_literal bit_literal
based_edge literal ::=

based_literal based_| Iiteral
symbollc edg;e literal ::

Syntax 15—Edge literal

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify achange of ascalar or of a vectorized value.

An edge value shall be defined as shown in Syntax 16.

edge value::
(‘edge literal)

Syntax 16—Edge value

An edge value shall be used to represent a standalone edge literal that is not embedded in a vector expression.

6.13 Identifier

Identifiers shall be divided into the subcategories atomic identifier, indexed identifier, hierarchical identifier and
escaped identifier, as shown in Syntax 17. The subcategory atomic identifier shall be further divided into non-
escaped identifier and placeholder identifier. The subcategory hierarchical identifier shall be further divided into
full hierarchical identifier and partial hierarchical identifier.

identifier ::=

atomic_identifier | indexed_identifier | hierarchical_identifier | escaped_identifier
atomic_identifier ::=

non_escaped_identifier | placeholder_identifier
hierarchical_identifier ::=

full_hierarchical_identifier | partial_hierarchical_identifier

Syntax 17—Identifier

Copyright © 2003 IEEE. All rights reserved. 47
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Anidentifier shall be used to specify an ALF name or an ALF value. Anidentifier can also appear asavariablein
an arithmetic expression (see 10.1), in a boolean expression (see 9.9) or in avector expression (see 9.12).

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character, i.e., ALF shall be case-insensitive. However, whenever an identifier is used to
specify an ALF name, the usage of the exact uppercase or lowercase letters shall be preserved by the parser to
enable usage of the same name by a case-sensitive application.

6.13.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 18.

non_escaped_identifier ::=
letter { letter |digit| | $|#}

Syntax 18—Non-escaped identifier

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., theidentifier is not used elsewhere as a keyword.

6.13.2 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 19.

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 19—Placeholder identifier

A placeholder identifier shall be used to represent aformal parameter in atemplate statement (see 7.15), which is
to be replaced by an actual parameter in atemplate instantiation statement (see 7.16).

6.13.3 Indexed identifier

Anindexed identifier shall be defined as an atomic identifier followed by an index (see 6.6) without whitespace,
as shown in Syntax 20.

indexed_identifier ::=
atomic_identifier index

Syntax 20—Indexed identifier

The atomic identifier shall be interpreted as the ALF name of a one-or atwo-dimensional object, i.e., avector pin
or amatrix pin (see 8.6). The index shall be interpreted as the position of a scalar element within a one-dimen-
sional object or a one-dimensional slice within atwo-dimensional object.

6.13.4 Full hierarchical identifier

A full hierarchical identifier shall be defined as shown in Syntax 21.

48 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

full_hierarchical_identifier ::=
atomic_identifier [index] . atomic_identifier [index] { . atomic_identifier [index] }

Syntax 21—Hierarchical identifier

A full hierarchical identifier shall be used to specify ahierarchical name, i.e., the name of achild preceded by the
name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a child.

6.13.5 Partial hierarchical identifier

A partial hierarchical identifier shall be defined as shown in Syntax 22.

partial_hierarchical_identifier ::=
atomic_identifier [index] { . atomic_identifier [index]} ..
{ atomic_identifier [index] { . atomic_identifier [index]} ..}
[atomic_identifier [index] { . atomic_identifier [index] }]

Syntax 22—~Partial hierarchical identifier

A partial hierarchical identifier shall be used to specify an incomplete hierarchical name. The two dots shall
indicate that the preceding atomic identifier is an ancestor of the subsequent atomic identifier. A partial hierar-
chical identifier terminated by two dots shall be interpreted as a reference to any possible descendant of the pre-
ceding ancestor.

NOTE — A restriction as to which descendant is applicable, can be given by a particular syntax or semantic rule.

6.13.6 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 23.

escaped_identifier ::=

\ escapable_character { escapable_character }
escapable_character ::=

letter | digit | specia

Syntax 23—Escaped identifier

An escaped identifier shall be used to legalize the usage of a special character or the usage of an identifier other-
wise reserved as a keyword.

A dot within an escaped identifier shall be semanticaly interpreted in the same way as a dot within afull hierar-
chical identifier (see 6.13.4), unless the dot isimmediately preceded by a backslash.

A lexical sequence of characters according to Syntax 8 at the end of the escaped identifier or preceding a dot
within the escaped identifier shall be interpreted as an index (see 6.6) in the same way as within a full hierarchi-
cal identifier or within an indexed identifier (see 6.13.3), unlessthe lexical sequence of charactersisimmediately
preceded by a backslash.

A backslash within an escaped identifier shall semantically be considered part of an ALF name or of an ALF
value designated by the escaped identifier, with exception of the leading backslash and a backdash immediately
preceding adot or an index.

Copyright © 2003 IEEE. All rights reserved. 49
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Example
\id1[0].id2\[1] \id3\.id4 represents 3 levels of hierarchy.

The ancestor is the element at position 0 of the one-dimensional object "id1”. The child of "id1[0]” isthe scalar
object "id2[1]”. The child of "id2[1]” isthe scalar object "id3.id4".

NOTE — The scalar object "id2[1]" by itself has to be declared as "\id2\[1]”. The scalar object "id3.id4” by itself hasto be
declared as"\id3\.id4".

End of example
6.13.7 Keyword identifier

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 2 —
Table 5 and Table 9 — Table 11. Additional keywords are predefined in 7.9.

The predefined keywords in this standard shall follow a more restrictive lexical rule than general non-escaped
identifiers, as shown in Syntax 24.

keyword_identifier ::=
letter { [__] letter }

Syntax 24—Keyword identifier

The reason for the more restrictive lexical rule isto encourage the use of words taken from a natural language as
keywords. Words in a natural language are constructed from lexical characters only, not from numbers. The
underscore can be used to indicate that there would be a whitespace or a dash in the word from the natural lan-

guage.
NOTE—This document presents keywords in all-uppercase letters for clarity.
6.14 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 25.

quoted_string ::=
" { character} "

Syntax 25—Quoted string

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 21.

Table 21—Character symbols within a quoted string

Symbol Character ASCII code (octal)
\g Alert or bell. 007
\h Backspace. 010
50 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF)

Table 21—Character symbols within a quoted string (Continued)

Reference Manual

IEEE P1603/D9, July 2003

octal ASCII code.

\ t Horizontal tab. 011
\'n New line. 012
\v Vertical tab. 013
\ f Form feed. 014
\r Carriage return. 015
\ " Double quote. 042
\\ Backslash. 134
\ digit digit digit ASCI| character represented by three digit digit digit digit

The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-

ter than escape character.

6.15 String value

A string value shall be defined as shown in Syntax 26.

string_value ::=
quoted_string | identifier

A string value shall represent textual datain general and the name of areferenced object in particular.

6.16 Generic value

Syntax 26—String value

An generic value shall be defined as shown in Syntax 27.

generic_vaue::=
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value

Syntax 27—Generic value

A generic value shall be used as an ALF value for an annotation (see 7.3), for a group declaration (see 7.14) or
for a template instantiation (see 7.16). Restrictions for applicable values in a particular context shall be defined

by semantic rules.

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

51

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

6.17 Vector expression macro

A vector expression macro shall be defined as shown in Syntax 28.

vector_expression_macro ::=
. non_escaped_identifier

Syntax 28—Vector expression macro

A vector expression macro shall be used as a substitution for a predefined vector expression (see 9.12). The alias
declaration (see 7.7) shall be used to establish the substitution mechanism.

6.18 Rules for whitespace usage

Whitespace shall be used to separate lexical tokens from each other, according to the following rules.

a)
b)

<)
d)

€)
f)

9)

h)
i)

)

Whitespace before and after adelimiter shall be optional.

Whitespace before and after an operator shall be optional.

Whitespace before and after a quoted string shall be optional.

Whitespace before and after acomment shall be mandatory. This rule shall override a), b), and c).
Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,
and identifier shall be mandatory.

Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),
and c).

Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).

Either whitespace or delimiter before a signed number shall be mandatory. Thisrule shall override a), b),
and c).

Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override
a), b), and ¢).

Whitespace before thefirst lexical token or after the last lexical token in afile shall be optional. Hencein all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in afile, and “after” shall
not apply for the last lexical token in afile.

6.19 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of alexical token are possible, the resulting ambiguity shall
be resolved according to the following rules.

a)
b)
©)
d)

In a context where both bit literal and identifier are legal, anon-escaped identifier shall take priority over
asymbolic bit literal.

In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over abit edgeliteral.

In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If theinterpretation as bit literal isdesired in case a) or b), abased literal can be substituted for a bit literal. If the
interpretation as edge literal is desired in case ¢) or d), a based edge literal can be substituted for a bit edge lit-

eral.

52

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

7. Generic objects and related statements

7.1 Generic object

A generic object shall be defined as shown in Syntax 29.

generic_object ::=

aliias_declaration

| constant_declaration

| class_declaration

| keyword_declaration

| semantics_declaration

| group_declaration

| template_declaration

Syntax 29—Generic object

The purpose of a generic object is to specify a re-usable statement in ALF. A generic object shall be either a
declared alias (see 7.7), a declared constant (see 7.8), adeclared class (see 7.12), a declared keyword (see 7.9), a
declared semantics (see 7.10), adeclared group (see 7.14) or a declared template (see 7.15).

A generic object shall have an ALF name. Plural generic objects of the same ALF type can be declared within the
same context. They shall be distinguished by their ALF name.

7.2 All purpose item

An all-purpose item shall be defined as shown in Syntax 30.

al_purpose_item ::=
generic_object
| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

Syntax 30—All purpose item

The purpose of an all-purpose itemis to specify acategory of statements that are supported in the syntax rules of
alibrary-specific object (see 8.1), without semantic restrictions. The semantic restrictionsfor an all-purpose item
shall be defined by a keyword declaration (see 7.9) or by a semantics declaration (see 7.10).

An al-purpose item shall be either a generic object (see 7.1), an include statement (see 7.17), an associate state-

ment (see 7.18), an annotation (see 7.3), an annotation container (see 7.4), an arithmetic model (see 10.3), or an
arithmetic model container (see 10.8).

7.3 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 31.

Copyright © 2003 IEEE. All rights reserved. 53
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

annotation ::=
single_value_annotation
| multi_value_annotation
single_value_annotation ::=
annotation_identifier = annotation_value ;
multi_value_annotation ::=
annotation_identifier { annotation_value { annotation_value} }
annotation_value ::=
generic_value
| control_expression
| boolean_expression
| arithmetic_expression

Syntax 31—Annotation
The purpose of an annotation is to describe a particular semantic aspect of a statement in ALF.

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of asingle value annotation, only one value shall belegal. In case of amulti value annotation,
one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier shall be either a declared keyword (see 7.9) or the ALF type of an object, i.e., ageneric
object (see 7.1) or a library-specific object (see 8.1). In the latter case, the annotation shall be called reference

annotation. A semantics declaration (see 7.10) shall be used to legalize a reference annotation. The annotation
value of areference annotation shall be the ALF name of an object of the specified ALF type.

7.4 Annotation container

An annotation container shall be defined as shown in Syntax 32.

annotation_container ::=
annotation_container_identifier { annotation { annotation} }

Syntax 32—Annotation container
An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.
7.5 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 33.

attribute ::=
ATTRIBUTE { identifier { identifier} }

Syntax 33—ATTRIBUTE statement

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.3). While a multi-value annotation

54 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL myRAMBx128 {
ATTRI BUTE { rom asynchronous static }
}

7.6 PROPERTY statement

A property statement shall be defined as shown in Syntax 34.

proE)erty = o _ '
ROPERTY [identifier] { annotation { annotation} }

Syntax 34—PROPERTY statement

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.4). While the keyword of
an annotation container usually restricts the semantics and the set of applicable annotations, the keyword “prop-
erty” does not. Annotations shall have no predefined semantics, when they appear within the property statement,
even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY mnyProperties {
paranmeterl = val uel ;
paranmeter2 = val ue2 ;
paranmeter3 { val ue3 val ued4 val ue5 }

7.7 ALIAS declaration

An alias shall be declared as shown in Syntax 35.

dias_declaration ::=
AL ASalias identifier = original_identifier ;
| ALTAS vector_expression_macro = (vector_expression) ;

Syntax 35—ALIAS declaration

The alias declaration shall specify an aliasidentifier (see 6.13) or avector expression macro (see 6.17).

The dlias identifier can be used as a substitution of an original identifier, used to specify a name or avalue of an
ALF statement. The dias identifier shall be semantically interpreted in the same way asthe original identifier.

The vector expression macro can be used as a substitution of a vector expression.

Copyright © 2003 IEEE. All rights reserved. 55
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Example

ALI AS reset = clear;
ALI AS #.rising_edge = (01 clock);

7.8 CONSTANT declaration

A constant shall be declared as shown in Syntax 36.

congtant_declaration ::=

CONSTANT constant_identifier = constant_value ;
constant_value ::=

number | based_literal

Syntax 36—CONSTANT declaration

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or abased literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3. 3;
CONSTANT opcode = ‘ hOf 3a;

7.9 KEYWORD declaration

A keyword shall be declared as shown in Syntax 37.

keyword declaration ::=
EYWORD keyword_identifier = syntax_item_identifier
|[KEYWORD keyword_identifier = syntax_item i dentifier{ { CONTEXT_annotation} }

Syntax 37—KEYWORD declaration

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier.

A keyword item can be used to qualify the contents of the keyword declaration. One or more annotations (see
7.11) can be used as a keyword item.

A legd syntax itemidentifier shall be defined as shown in Table 22.

Table 22—Syntax item identifier

Syntax item identifier Semantic meaning
annot ati on The keyword shall specify an annotation (see 7.3).
si ngl e_val ue_annot ati on The keyword shall specify a single value annotation (see 7.3).
nul ti _val ue_annotation The keyword shall specify a multi-value annotation (see 7.3).
56 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Table 22—Syntax item identifier (Continued)

Syntax item identifier Semantic meaning
annot at i on_cont ai ner The keyword shall specify an annotation container (see 7.4).
arithnetic_nodel The keyword shall specify an arithmetic model (see 10.3).
arithmetic_subnodel The keyword shall specify an arithmetic submodel (see 10.7).
arithnetic_nmodel _contai ner The keyword shall specify an arithmetic model container (see 10.8).
geomnet ri c_nodel The keyword shall specify a geometric model (see 9.16).

A keyword declaration shall be equivaent to an extension of the ALF syntax. A keyword declaration shall not be

overwritten or duplicated.
Example
Declaration of a keyword:
KEYWORD My Si ngl eVal ueAnnot ati on = singl e_val ue_annotation ;
The equivalent syntax rule in BNF looks as follows:

MySingleValueAnnotation ::= .
MySingleValueAnnotation = annotation value ;

End of example

7.10 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 38.

semantics_declaration ::=
SEMANT | CS semantics_identifier = syntax_item identifier ;
| SEMANT I CS semantics_identifier [= syntax_item_identifier] { { semantics_item} }
semantics_item ::=
CONTEXT _annotation
| VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| REFERENCETYPE_annotation
| DEFAULT _single_value_annotation
| S_MODEL_single value annotation

Syntax 38—SEMANTICS declaration

A semantics declaration shall be used to define context-specific rules in a category or in a subcategory of ALF

statements. The semantics item identifier shall make reference to alegal ALF statement or to a category or sub-

category of legal ALF statements.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

57

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The semanticsidentifier shall be akeyword identifier (see 6.13.7) or asyntax itemidentifier (see 7.9, Table 22) or
afull hierarchical identifier (see 6.13.4), composed of one or more keyword identifiers and/or syntax item iden-
tifiers.
A syntax itemidentifier can be used as ALF value of a semantics declaration under the following restriction:

a) Thesyntax item identifier in arelated keyword declaration is “annotation”,

and

b) thesyntax item identifier of the actual semantics declaration is“single value annotation” or “multi-value
annotation”.

A semantic item can be used to qualify the contents of the semantics declaration. One or more annotations (see
7.11) can be used as a semantic item.

A semantics declaration can be used to complement a keyword declaration or another semantics declaration. A
semantics declaration shall not be contradictory to an existing keyword or semantics declaration.

7.11 Annotations and rules related to a KEYWORD or a SEMANTICS declaration
This subsection defines annotations and rules related to a keyword or a semantics declaration.
7.11.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the related keyword declaration, as shown in Table 23.

Table 23—VALUETYPE annotation

Default value

Set of legal valuesfor

or
mul ti _val ue_annot ati on

mul tiplier_prefix_val ue,
identifier,

string_val ue,

quot ed_stri ng,

bool ean_val ue,

edge_val ue,

control _expression,

bool ean_expr essi on,
arithneti c_expression.

Syntax item identifier for Comment
VALUETYPE VALUETYPE
annot ati on nunber, i denti fi er %es/ntax 31, def'
or si gned_i nt eger, inition of annota-
si ngl e_val ue_annot ati on unsi gned_i nt eger, tion value.

annot ati on_cont ai ner

58

This is an unapproved IEEE Standards Draft, subject to change.

N/A

N/A

Copyright © 2003 IEEE. All rights reserved.

An annotation con-
tainer (see

Syntax 32) has no
value.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

Table 23—VALUETYPE annotation (Continued)

. . - Set of legal valuesfor Default value
Syntax item identifier VALUETYPE for Comment
VALUETYPE
arithneti c_nodel nunber, nunber See Syntax 14, def-
si gned_i nt eger, inition of arith-
unsi gned_i nt eger, metic value.
identifier,
bit _literal,
based literal.
arithmeti c_subnodel N/A N/A An arithmetic sub-
model (see 10.7)
shall aways have
the same valuetype
asits parent arith-
metic model.
arithneti c_nodel _container | N/A N/A An arithmetic
model container
(see10.8) hasno
value.
geonetri c_nodel N/A N/A A geometric model

(see9.16) hasno
value.

The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose
ALF typeis given by the declared keyword.

The valuetype shall refer to the semantic interpretation of a value, not to the encountered lexical token. For
example, a non-escaped identifier (see 6.13.1) can be the name of a constant (see 7.8) holding anumerical value.

Therefore the identifier (see 6.13) would be semantically interpreted as a number (see 6.5).

The valuetype annotation can be partially self-described as shown in Semantics 1.

}

}
}

SEMANTI CS VALUETYPE {
VALUES {
nunber si gned_i nt eger unsi gned_i nt eger
mul tiplier_prefix_val ue
identifier quoted_string string_val ue
bit _literal based_literal bool ean_val ue edge_val ue
control _expressi onbool ean_expressi on
arithneti c_expression

KEYWORD VALUETYPE = singl e_val ue_annot ati on {
CONTEXT = SEMANTI CS;

Semantics 1—Partial self-description of VALUETYPE annotation

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.
KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL celll { Geeting = H There ; } // correct
CELL cell2 { Geeting = "H There" ; } // incorrect

The first usageis correct, since Hi Ther e isan identifier. The second usage isincorrect, since" Hi There" is
aquoted string and not an identifier.

7.11.2 VALUES annotation

The values annotation shall be a multi value annotation. It shall be applicable in the case where the valuetype
annotation is also applicable. The values annotation shall specify a discrete set of legal values applicable for an
ALF statement using the declared keyword. The values annotation within the semantics declaration and the val uetype annota-

tion within arelated keyword declaration shall be compatible.

The values annotation can be partially self-described as shown in Semantics 2.

KEYWORD VALUES = mul ti _val ue_annotation {
CONTEXT = SEMANTI CS;

}

Semantics 2—Partial self-description of VALUES annotation

Example:

This example shows a correct and an incorrect usage of a declared keyword and semantics with specified value-
type and values.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
SEMANTI CS Greeting { VALUES { Hi There Hell o HowbDoYouDo } }

}

CELL cell3 { Geeting = Hello ; } // semantically correct
CELL cell 4 { Geeting GoodBye ; } // semantically incorrect

The first usageis correct, since Hel | o is contained within the set of values. The second usage isincorrect, since
GoodBye is not contained within the set of values.

End of example

7.11.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying avalue.

A partial self-description of the default annotation is given in Semantics 3.

60 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD DEFAULT = singl e_val ue_annotation {
CONTEXT { SEMANTI CS arithmetic_nodel }

}

Semantics 3—Partial self-description of DEFAULT annotation
Example:
KEYWORD Greeting = annotation {
VALUETYPE = identifier ;

VALUES { Hi There Hell o HowboYouDo }
DEFAULT = Hell o ;

}

CELL cell5 { /* no Greeting */ }
In this example, the absence of aGr eet i ng statement is equivalent to the following:

CELL cell5 { Geeting = Hello ; }
7.11.4 CONTEXT annotation
The context annotation shall be a single value annotation or a multi value annotation. It shall specify the ALF
type of alegal parent of the statement using the declared keyword. The ALF type of alegal parent can be apre-
defined keyword or a declared keyword.

A hierarchical identifier can be used to specify the ALF type of alegal parent of the statement, constraint by the
ALF type of the ancestor of the statement.

A partial self-description of the context annotation is given in Semantics 4.

KEYWORD CONTEXT = annot ati on;
SEMANTI CS CONTEXT {
CONTEXT { KEYWORD SEMANTI CS }
VALUETYPE = identifier;

}

Semantics 4—~Partial self-description of CONTEXT annotation

A context annotation within a keyword declaration shall be equivalent to a syntax rule applicable to the syntax
item specified by the context annotation value. Only a keyword identifier (see 6.13.7) or a syntax item identifier
(see 7.9, Table 22) shall be alegal annotation value.

Example
Declaration of a keyword with context:
KEYWORD MyAnnot ati onCont ai ner = annot ati on_cont ai ner;

KEYWORD MyAnnot ati on = single_val ue_annotation {
CONTEXT = MyAnnot ati onCont ai ner;

}

The equivalent syntax rule in BNF looks as follows:

Copyright © 2003 IEEE. All rights reserved. 61
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

MyAnnotationContainer ::= . .
MyAnnotationContainer { [MyAnnotation = annotation_value;] }

End of example

A context annotation within a semantics declaration shall be used to specify alegal ancestor of a statement. Only
akeyword identifier (see 6.13.7) or a syntax itemidentifier (see 7.9, Table 22) or afull hierarchical identifier (see
6.13.4) or a partial hierarchical identifier (see 6.13.5) involving one or more keyword identifiers and/or one or
more syntax item identifiers shall be alegal annotation value.

Example:

KEYWORD Li braryQualifier = annotation { CONTEXT { LIBRARY SUBLI BRARY } }
KEYWORD Cel | Qualifier = annotation { CONTEXT = CELL ; }
KEYWORD Pi nQualifier = annotation { CONTEXT = PIN ; }
LI BRARY |ibraryl {

Li braryQualifier = foo ; // correct

CELL cell1 {

CellQualifier = bar ; // correct

PinQualifier = foobar ; // incorrect, illegal context
}

}

The following change would legalize the example above:
KEYWORD Pi nQualifier = annotation { CONTEXT { PIN CELL } }
The following example shows the use of an hierarchical identifier.

KEYWORD PrimtivePinQualifier = annotation { CONTEXT = PIN ; }
SEMANTICS PrimtivePinQualifier { CONTEXT = PRRMTIVE. PIN; }

End of example

7.11.5 REFERENCETYPE annotation

The referencetype annotation shall be a single value annotation or a multi value annotation. The referencetype
annotation shall be legal if the syntax item identifier in the related keyword declaration is annotation, single

value annotation or multi value annotation.

A partial self-description of the referencetype annotation is given in Semantics 5.

KEYWORD REFERENCETYPE = annotati on {

CONTEXT = SEMANTI CS;

}
SEMANTI CS REFERENCETYPE {

VALUES { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP
PRI M Tl VE W RE NODE VECTOR LAYER VI A RULE ANTENNA
BLOCKAGE PORT SI TE ARRAY PATTERN REGQ ON
arithmetic_nodel arithnetic_subnodel }

}

Semantics 5—Partial self-description of REFERENCETYPE annotation

62 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The purpose of the referencetype annotation isto specify the ALF type of areferenced object. An object shall be
referenced by its ALF name or possibly by afull hierarchical identifier (see 6.13.4) involving the ALF name of
the parent of the object and the ALF name of the object itself.

Example:

The following example shows the definition of an annotation “myReference”, which refers to an object of the
ALF type “CLASS’ with the ALF name “myClass’.

CLASS nyd ass;

KEYWORD nyRef erence = singl e_val ue_annotati on;
SEMANTI CS nyRef erence { REFERENCETYPE = CLASS; }
nyRef erence = nyd ass;

In this example, a full hierarchical identifier is used to refer to a CLASS with the ALF name “myOtherClass’,
declared as a child of a CELL with ALF name “myCell”.

CELL nyCell {
CLASS nyQt her d ass;

}

nmyRef erence = myCel | . nyQt her d ass;
End of example
7.11.6 SI_MODEL annotation
The SI-model annotation shall be a single value annotation. It shall be only applicable for akeyword declaring an
arithmetic model (see 10.3). It shall specify a relation of a declared keyword with the International System of
Units (see U.S. National Bureau of Standards, Spec. Pub. 330). In particular, it shall specify the base unit of an
arithmetic model.

A self-description of the SI-model annotation is given in Semantics 6.

KEYWORD SI _MODEL = single_val ue_annotation {
CONTEXT = SEMANTI CS;
}
SEMANTI CS SI _MODEL {
VALUES {
TI ME FREQUENCY CURRENT VOLTAGE POWNER ENERGY
RESI STANCE CAPACI TANCE | NDUCTANCE
DI STANCE AREA

Semantics 6—SI| model annotation

Copyright © 2003 IEEE. All rights reserved. 63
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

The set of legal annotation values is shown in Table 24.

7.11.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

Advanced Library Format (ALF) Reference Manual

Table 24—SI_MODEL annotation

Annotation value M at%r;%rgzili cal Base unit Rv(\?i ?rtxl g?ﬁe]rl P Refrﬁroznetl:%te%grrigzrgfic
quantity
TI ME t Second See10.11.1
FREQUENCY f Hertz 1/t See10.11.2
CURRENT | Ampere See 10.15.2
VOLTAGE \% Volt See 10.15.1
RESI STANCE R Ohm VIl See 10.154
CAPACI TANCE C Farad I/ (dV/ dt) See 10.15.3
| NDUCTANCE L Henry V/ (dl / dt) See 10.15.5
ENERGY E Joule See10.11.15
PONER P Watt 1V, dE/ dt See10.11.15
DI STANCE d Meter See 10.19.9
AREA A Square meter | d? See 10.19.2

The following rules shall apply for legal use of annotations within a keyword or a semantics declaration.

a) A keyword declaration can not overwrite, redefine, or otherwise invalidate a syntax rule.

b) A semantics declaration shall relate to a keyword declaration or a syntax rule. A semantics declaration

shall be compatible with arelated keyword declaration or arelated syntax rule.

Example:

64

KEYWORD nyAnnot ati on = annotation {
CONTEXT { CELL PIN}

}

SEMANTI CS nyAnnot ation {
VALUES { val uel val ue2 val ue3 val ue4 val ue5 }

}

SEMANTI CS CELL. nyAnnot ati on

VALUES { val uel value2 val ue3 }

}

mul ti _val ue_annotation {

SEMANTI CS PI N. nyAnnot ati on = single _val ue_annotation {

VALUES { val ue4 val ue5 }

DEFAULT = val ue4;

}
CELL nyCel |l {

nyAnnotation { val uel val ue2 }

PIN nyPin { nyAnnotation

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

= val ue5; }

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

7.12 CLASS declaration

A class shall be declared as shown in Syntax 39.

class_declaration ::=

CL ASSclass identifier :

| CLASS class identifier { { class item} }
class item::=

all_purpose_item

| geometric_model

| geometric_transformation

Syntax 39—CLASS declaration

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain arefer-
ence to the same class. Such areference is made by a class reference annotation (see 7.13).

The semantics specified by a class item within a class declaration shall be inherited by the statement containing

the reference. A class item can be an all purpose item (see 7.2), a geometric model (see 9.16) or a geometric
transformation (see 9.18).

7.13 Annotations related to a CLASS declaration

This subsection specifies how other objects can make areference to a class by using either a general class refer-
ence annotation or a specific class reference annotation.

7.13.1 General CLASS reference annotation

A genera class reference annotation shall be defined as shown in Semantics 7.

KEYWORD CLASS = annotation {

CONTEXT { library_specific_object arithnetic_nodel }
}
SEMANTI CS CLASS { REFERENCETYPE = CLASS; }

Semantics 7—CLASS reference annotation

Example

CLASS \l1stclass { ATTRIBUTE { everything } }
CLASS \ 2ndclass { ATTRIBUTE { nothing } }
CELL celll { CLASS = \1stclass; }

CELL cell2 { CLASS = \2ndcl ass; }

CELL cell 3 { CLASS { \1lstclass \2ndclass } }
/1l celll inherits "everything"

/1 cell2 inherits "nothing"

/1 cell3 inherits "everything" and "nothing"

NOTES

1— A classdeclaration itself can not contain a general class reference annotation. This avoids circular reference.

Copyright © 2003 IEEE. All rights reserved. 65
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

2 — Itispossible that areference to multiple classes can result in the inheritance of semantically incompatible attributes. It is
expected that an ALF compiler or an ALF interpreter detects such semantic incompatibility. However, the behavior of an
application as a consequence of this detection is not specified by this standard, since the desired behavior can depend on the
nature of the application.

7.13.2 USAGE annotation

The usage annotation shall be defined as shown in Semantics 8.

KEYWORD USAGE = annotation { CONTEXT = CLASS; }
SEMANTI CS USAGE {
VALUETYPE = identifier;
VALUES {
SWAP_CLASS RESTRI CT_CLASS
S| GNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXI STENCE_CLASS CHARACTERI ZATI ON_CLASS
ORI ENTATI ON_CLASS SYMVETRY_CLASS

Semantics 8—USAGE annotation

The usage annotation shall specify, which specific class reference annotation can be legally used to make arefer-
enceto theclass.

The set of legal annotation values is shown in Table 25.

Table 25—USAGE annotation

Definition of specific

Annotation value .
class reference annotation

SWAP_CLASS See8.5.4

RESTRI CT_CLASS See8.5.3

SI GNAL_CLASS See 8.8.15
SUPPLY_CLASS See 8.8.16
CONNECT_CLASS See 8.8.19
SELECT_CLASS See8.11.3
NODE_CLASS See 8.13.3
EXI STENCE_CLASS See 8.15.6

CHARACTERI ZATI ON_CLASS See 8.15.9

ORI ENTATI ON_CLASS See 8.26.2
SYMVETRY_CLASS See 8.26.3
66 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

NOTE — Knowing the ALF type of alegal parent of a specific class reference annotation, the ALF parser can evauate the
contents of the class declaration for semantic correctness. If the usage annotation is not present, the ALF parser can evauate
the contents of the class declaration for semantic correctness only when encountering a reference to the class.

7.14 GROUP declaration

A group shall be declared as shown in Syntax 40.

group_declaration ::=
OUP group_identifier { generic_value{ generic_value} }
| GROUP group_identifier { left_index_value: right_index_value

Syntax 40—GROUP declaration

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
gtitution resultsin alegal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as hame of another
statement. As a conseguence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the generic value. On the other hand, ho name of any visi-
ble statement shall be allowed to be re-used as group identifier.

Examples
The following example shows substitution involving group values.

/1 statenent using GROUP:
CELL nyCell {
GROUP data { datal data2 data3 }
PIN data { DI RECTION = input ; }
}
/1 semantically equival ent statenent:
CELL nyCell {

PIN datal { DI RECTION = input ; }
PIN data2 { DI RECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

/] statenment using GROUP:
CELL nyCell {
GROUP datalndex { 1 : 3}
PIN[1:3] data { DIRECTION = input ; }

Copyright © 2003 IEEE. All rights reserved. 67
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[datalndex]; } TO{ PIN = clock ; } }
}
/1 semantically equival ent statenent:
CELL nyCell {

PIN[1:3] data { DIRECTION = input ; }

PIN clock { DIRECTION = input ; }

SETUP = 0.5 { FROM{ PIN = data[1]; } TO{ PIN=clock ; } }
SETUP = 0.5 { FROM{ PIN = data[2]; } TO{ PIN=clock ; } }
SETUP = 0.5 { FROM{ PIN = data[3]; } TO{ PIN=clock ; } }

}

The following example shows multiple occurrences of the same group identifier within a statement.

/1 statenent using GROUP:
CELL nyCell {
GROUP datalndex { 1 : 31}
PIN[1:3] Din { DORECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PI N=Di n[dat al ndex];} TO {PI N=Dout [dat al ndex];} }
}
/1 semantically equival ent statenent:
CELL nyCell {
PIN[1:3] Din { DDRECTION = input ; }
PIN[1:3] Dout { DIRECTION = input ; }

DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

7.15 TEMPLATE declaration

A template shall be declared as shown in Syntax 41.

template declaration ::=
EMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 41—TEMPLATE declaration

A template declaration shall be used to specify one or more ALF statements with variable contents. A template
instantiation (see 7.16) shall specify the usage of such an ALF statement. Within the template declaration, the
variable contents shall be specified by a placeholder identifier (see 6.13.2).

An ALF statement within atemplate declaration shall be partially exempt from the semantics rule check defined
by valuetype, values, context, and referencetype, as follows:

a) A declared template shall be presumed alegal ancestor within an applicable context.

b) A placeholder identifier shall be presumed avalue within an applicable set of values.

c) A placeholder identifier shall be presumed a value of applicable valuetype.

d) A placeholder identifier shall be presumed alegal reference within an applicable referencetype.

The semantic rule check that can not be performed during parsing of the template declaration shall be deferred

until parsing of the template instantiation.

68 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

7.16 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 42.

template_instantiation ::=
static_template_instantiation
| dynamic_template_instantiation
static_template_instantiation ::=
template_identifier [= StatiC] ;
| template:_identifier [= Static]{ { generic_value} }
| template_identifier [= Static]{ { annotation} }
dynamic_template_instantiation ::=
template_identifier = dynamic{ { dynamic_template instantiation_item} }
dynamic_template_instantiation_item ::=
annotation
| arithmetic_model
| arithmetic_assignment
arithmetic_assignment ::=
identifier = arithmetic_expression ,

Syntax 42—TEMPLATE instantiation

A template instantiation shall be semantically equivaent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using an generic value, or aternatively, replacement by
reference, using an annotation (see 7.3). A dynamic template instantiation shall support replacement by reference
only, using an annotation and/or an arithmetic model (see 7.3 and 10.3) and/or an arithmetic assignment.

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier without the angular brackets. The matching shall be case-insensitive.

The following rules shall apply.

a)

b)

0)

d)

e

A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered legal.
Each occurrence of the placeholder identifier shall be replaced by the annotation value associated with
the annotation identifier.

A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered legal.

Muultiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

In the case replacement by order, subsequently occurring placeholder identifiersin the template declara-
tion shall be replaced by subsequently occurring generic values in the template instantiation. If a place-
holder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same generic value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
generic value.

A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

Copyright © 2003 IEEE. All rights reserved. 69
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

Examples

The following example illustrates rule a).

/1 statenent using TEMPLATE decl aration and instantiation:
TEMPLATE soneAnnot ati ons {
KEYWORD <oneAnnot ati on> = singl e _val ue_annotation ;
KEYWORD annot ati on2 = singl e _val ue_annotation ;
<oneAnnot ati on> = val uel ;
annot ati on2 = <anot her Val ue> ;
}
soneAnnot at i ons {
oneAnnot ati on = annotationl ;
anot her Val ue = val ue2 ;
}
/1 semantically equival ent statenent:
KEYWORD annot ati onl = single_val ue_annotation ;
KEYWORD annot ati on2 = singl e_val ue_annotation ;
annotationl = val uel ;
annotation2 = val ue2 ;

The following example illustrates rule b).

/1 statenent using TEMPLATE decl aration and instantiation:
TEMPLATE soneNunbers {
KEYWORD N1 = single_value_annotation { VALUETYPE=nunber ; }

KEYWORD N2 = singl e_value_annotation { VALUETYPE=nunber ; }
N1 = <number1> ;
N2 = <nunber2> ;

}
sonmeNumbers = DYNAM C {

nunber2 = nunberl + 1;
}
/1l semantically equival ent statenment, assum ng nunber1=3 at runti ne:
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).

70

TEMPLATE nor eAnnot ati ons {
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annotation3 { <soneVal ue> }
annot ati on4 = <yet Anot her Val ue> ;
}
nmor eAnnot ati ons {
someVal ue { val uel val ue2 }
yet Anot her Val ue = val ue3 ;
}
/1l semantically equival ent statenent:
KEYWORD annot ati on3 = annotation ;
KEYWORD annot ati on4 = annotation ;
annotation3 { valuel value2 }
annot ati on4 = val ue3 ;

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The following example illustrates rule d).

TEMPLATE evenMor eAnnot ati ons {
KEYWORD <t hi sAnnot ati on> = singl e val ue_annotation ;
KEYWORD <t hat Annot ati on> = singl e val ue_annotation ;
<t hat Annot ati on> = <t hi sVal ue> ;
<t hi sAnnot ati on> = <t hat Val ue> ;
}
/1 tenplate instantiation by reference:
evenMor eAnnot ati ons = STATI C {
t hat Annot ati on = day ;
t hi sAnnot ati on = nont h;
t hat Val ue = April;
t hi sVal ue = Monday;
}
/1 semantically equivalent tenplate instantiation by order:
evenMr eAnnot ati ons = STATIC { day nmonth Monday April }

/1 semantically equival ent statenent:
KEYWORD day = singl e _val ue_annotation ;
KEYWORD nont h = singl e_val ue_annot ati on ;
month = April;

day = Mbnday;

The following example illustrates rule €).

/1 statenent using TEMPLATE decl aration and instantiation:
TEMPLATE encor eAnnot ati on {
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annotati on_cont ai ner;
KEYWORD annot ati on5 = singl e_val ue_annotation {
CONTEXT { contextl context2 }
VALUES { <sonet hi ng> <not hi ng> }
}
contextl { annotation5 = <nothing>; }
context2 { annotation5 = <sonething>; }

}

encoreAnnot ati on {
somet hing = everything ;
}
/!l semantically equival ent statenent:
KEYWORD contextl = annotation_cont ai ner;
KEYWORD cont ext2 = annot ati on_cont ai ner;
KEYWORD annot ati on5 = single_val ue_annotation {
CONTEXT { contextl context2 }
VALUES { everything <nothing> }
}
contextl { annotation5 = <nothing>; }
context2 { annotation5 = everything ; }
/1 Both everything (w thout brackets) and <nothing> (wth brackets)
/1l are legal values for annotationb.

Copyright © 2003 IEEE. All rights reserved. 71
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

7.17 INCLUDE statement

An include statement shall be defined as shown in Syntax 43.

include ::=

INCLUDE quoted_string ;

Syntax 43—INCLUDE statement

The quoted string shall specify the name of afile. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LI BRARY nyLib {
| NCLUDE "tenpl ates. al f";
| NCLUDE "t echnol ogy. al f";
I NCLUDE "primtives.alf";
I NCLUDE "wires.al f";
| NCLUDE "cells.al f";

}

NOTE — The filename specified by the quoted string shall be interpreted according to the rules of the application and/or the
operating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.18 ASSOCIATE statement and FORMAT annotation

An associate statement shall be defined as shown in Syntax 44.

associate ::=
ASSOCIATE quoted string ;
|ASSOCI AT E quoted_string { FORMAT_single value annotation }

Syntax 44—ASSOCIATE statement

The associate statement shall specify a relationship of the parent of the associate statement with an object
described in afile referenced by the quoted string. The format annotation shall specify the format of the associ-
ated file. In contrast to the include statement (see 7.17), the ALF parser is not expected to read the associated file.
The formal specification of the semantic validity of the association is beyond the scope of this standard.

Using a keyword declaration (see 7.9) in conjunction with a context annotation (see 7.11.4), a val uetype annota-
tion (see 7.11.1), a values annotation (see 7.11.2), and a default annotation (see 7.11.3), the format annotation
shall be defined as shown in Semantics 9.

72 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD FORMAT = singl e val ue_annotation {
CONTEXT = ASSOCI ATE;

}

SEMANTI CS FORMAT {
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = al f;

}

Semantics 9—FORMAT annotation

The meaning of the annotation values is specified in Table 26.

Table 26—FORMAT annotation values

Annotation value Description
vhdl The associated fileisin aformat specified by the IEEE Std 1076-2002.
veril og The associated fileisin aformat specified by the |IEEE Std 1364-2001.
c The associated fileisin aformat specified by the | SO/IEC 9899:1990.
\ c++ The associated fileisin aformat specified by the ANSI/ISO/IEC 14882.
al f The associated fileisin aformat specified by this standard

NOTE — The format annotation value does not specify the format version of the associated file. An application that can read
the associated file can obtain the version either from the associated file itself or by other means of version control.

7.19 REVISION statement

A revision statement shall be defined as shown in Syntax 45

revision ::=

ALF _REVISION string_vaue

Syntax 45—Revision statement

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

A set of recognized string values within the revision statement shall be defined as shown in Table 27

Table 27—Recognized string values within the REVISION statement

Sring value Revision or version
"1 Advanced Library Format, Version 1.1 [B2]
"2.0" Advanced Library Format, Version 2.0 [B3]
Copyright © 2003 IEEE. All rights reserved. 73

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Table 27—Recognized string values within the REVISION statement (Continued)

Sring value Revision or version

" P1603. 2003- 07- 18" Advanced Library Format specified by this draft IEEE P1603/D9
** please delete this row after ballot approval **

"| EEE 1603-2003" Advanced Library Format specified by this standard

The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of the file to be parsed. If arevision statement is encountered while a
revision has already been specified to the parser (e.g. if an included fileis parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

NOTE — This document suggests that this standard is largely backward compatible with the previous versions of the
Advanced Library Format mentioned in Table 27.

74 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

8. Library-specific objects and related statements

8.1 Library-specific object

A library-specific object shall be defined as shown in Syntax 46.

library_specific_object ::=

library

| sublibrary

| cell

| primitive

| wire

| pin

| pingroup

| vector

| node

| layer

| via

| rule

| antenna

| site

| array

| blockage

| port

| pattern

| region

Syntax 46—Library-specific object

A library-specific object shall be defined as alibrary (see 8.2), asublibrary (see 8.2), acell (see 8.4), aprimitive
(see 8.9), awire (see 8.10), apin (see 8.6), apingroup (see 8.7), avector (see 8.14), anode (see 8.12), alayer (see
8.16), avia (see 8.18), arule (see 8.20), an antenna (see 8.21), a site (see 8.25), an array (see 8.27), ablockage
(see 8.22), aport (see 8.23), a pattern (see 8.29) or aregion (see 8.31).

The purpose of a library-specific object is to specify a model for a technology item, distinguished by an ALF
name.

8.2 LIBRARY and SUBLIBRARY declaration
A library and a sublibrary shall be declared as shown in Syntax 47.

A library shall serve as arepository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

Any two objects of the same ALF type and the same ALF name can not appear in onelibrary or in one sublibrary.
However, they can appear in two libraries, or in two sublibraries with the same library as parents. For example,
two cells (see 8.4) with the same name can appear in two different libraries. It shall be the responsibility of the
application tool to properly handle such cases, as the selection of alibrary or asublibrary is controlled by the user
of the application tool.

Copyright © 2003 IEEE. All rights reserved. 75
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

library ::=
LIBRARY library identifier ;
[LIBRARY Iibrary_identifier{ { library_item} }
| library_template_instantiation
library_item ::=
sublibrary
| sublibrary_item
sublibrary ::=
SUéLI BRARY sublibrary _identifier
| SUBLIBRARY sublibrary_identifier { { sublibrary_item} }
| sublibrary_template _instantiation
sublibrary_item ::=
all_purpose_item
| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 47—LIBRARY and SUBLIBRARY declaration

8.3 Annotations related to a LIBRARY or a SUBLIBRARY declaration
8.3.1 LIBRARY reference annotation

A library reference annotation shall be defined as shown in Semantics 10.

KEYWORD LI BRARY = annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS LI BRARY {
REFERENCETYPE { LI BRARY SUBLI BRARY }

}

Semantics 10—LIBRARY reference annotation

The purpose of alibrary reference annotation is to establish an association between alibrary or a sublibrary and
an arithmetic model (see 10.3).

A full hierarchical identifier (see 6.13.4) can be used to specify areference to a sublibrary as achild of alibrary.
8.3.2 INFORMATION annotation container
An information annotation container shall be defined as shown in Semantics 11.

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply.

a) Alibrary, asublibrary, or acell can be alegal parent of the information statement.
b) A wire, or aprimitive can be alegal parent of the information statement, provided the parent of the wire
or the primitiveisalibrary or asublibrary.

76 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

}

}

}

}

}

}

}

}

}

}

}

KEYWORD | NFORVATI ON = annot ati on_cont ai ner {
CONTEXT { LI BRARY SUBLI BRARY CELL WRE PRI M Tl VE }

KEYWORD PRODUCT = si ngl e_val ue_annotati on {
CONTEXT = | NFORVATI ON;

SEMANTI CS PRODUCT {
VALUETYPE = string_val ue; DEFAULT = "";

KEYWORD Tl TLE = si ngl e_val ue_annot ati on {
CONTEXT = | NFORNMATI ON;

SEMANTI CS TI TLE {
VALUETYPE = string_val ue; DEFAULT = "";

KEYWORD VERSI ON = si ngl e_val ue_annot ati on {
CONTEXT = | NFORVATI ON;

SEMANTI CS VERSI ON {
VALUETYPE = string_val ue; DEFAULT = "";

KEYWORD AUTHOR = singl e_val ue_annotation {
CONTEXT = | NFORVATI ON;

SEMANTI CS AUTHOR {
VALUETYPE = string_val ue; DEFAULT = "";

KEYWORD DATETI ME = singl e_val ue_annotati on {
CONTEXT = | NFORMATI ON;

SEMANTI CS DATETI ME {
VALUETYPE = string_val ue; DEFAULT = "";

Semantics 11—INFORMATION statement

The semantics of the information contents are specified in Table 28.

Table 28—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value
PRCDUCT A code name of aproduct described herein.
TI TLE A descriptive title of the product described herein.
VERSI ON A version number of the product description.
AUTHOR The name of a person or company generating this product description.
DATETI ME Date and time of day when this product description was created.

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The product devel oper shall be responsible for any rules concerning the format and detailed contents of the string

value itself.

Example

LI BRARY nyProduct {
| NFORVMATI ON {
PRODUCT = pl0sc;
TITLE = "0.10 standard cell";
VERSI ON "v2.1.0";
AUTHOR = "Major Asic Vendor, Inc.";
DATETI ME = "Mon Apr 8 18:33:12 PST 2002";

8.4 CELL declaration

A cell shall be declared as shown in Syntax 48.

cel =

CELL cel_identifier ;

| CELL cell identifier { { cell_item} }

| cell_template_instantiation
cel_item::=

all_purpose_item

| pin

| pingroup

| primitive

| function

| non_scan_cell

| test

| vector

| wire

| blockage

| artwork

| pattern

| region

Syntax 48—CELL declaration

A cell shall represent an electronic circuit which can be used as a building block for alarger electronic circuit.

8.5 Annotations related to a CELL declaration
This section defines annotations and attribute values rel ated to a cell declaration.
8.5.1 CELL reference annotation

A cell reference annotation shall be defined as shown in Semantics 12.

SEMANTI CS CELL { REFERENCETYPE = CELL; }

KEYWORD CELL = annotation { CONTEXT = arithnetic_nodel;

}

Semantics 12—CELL reference annotation

78 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The purpose of a cell reference annotation is to establish an association between a cell and an arithmetic model

(see 10.3).
A hierarchical identifier can be used to specify areference to acell asachild of alibrary or asublibrary.
8.5.2 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 13.

KEYWORD CELLTYPE = singl e _val ue_annotation {
CONTEXT = CELL;
}
SEMANTI CS CELLTYPE {
VALUETYPE = identifier;
VALUES {
buf f er conbi national multiplexor flipflop Iatch
menory bl ock core speci al
}
}

Semantics 13—CELLTYPE annotation

The meaning of the celltype annotation valuesis specified in Table 29.

Table 29—CELLTYPE annotation values

Annotation value Description

buf fer CELL isabuffer, i.e., an element for transmission of adigital signal without per-
forming alogic operation, except for possible logic inversion.

conbi nati onal CELL isacombinatorial logic element, i.e., an element performing alogic opera-
tion on two or more digital input signals.

mul ti pl exor CELL isamultiplexor, i.e., an element for selective transmission of digital signals.

flipflop CELL isaflip-flop, i.e., aone-bit storage element with edge-sensitive clock

| atch CELL isalatch, i.e., aone-bit storage element without edge-sensitive clock

menory CELL isamemory, i.e., amulti-bit storage element with selectable addresses.

bl ock CELL isahierarchical block, i.e., acomplex element which has an associated

netlist for implementation purpose. All instances of the netlist are library ele-
ments, i.e., thereisa CELL model for each of them in the library.

core CELL isacore, i.e.,, acomplex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.

speci al CELL isaspecial element, which does not fall into any other category of cells.

Examples: bus holder, protection diode, filler cell.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

79

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

1 Example

CELL nmyNandGate {

Advanced Library Format (ALF) Reference Manual

CELLTYPE = conbi nati onal ;
5 /1 put detail ed description here

}
CELL nyFlipflop {

CELLTYPE = fli pfl op;
10 /'l put detailed description here

}

8.5.3 RESTRICT_CLASS annotation

15 A restrict-class annotation shall be defined as shown in Semantics 14.

20 }

}

KEYWORD RESTRI CT_CLASS = annotation {
CONTEXT { CELL CLASS }

SEMANTI CS RESTRI CT_CLASS ({
REFERENCETYPE = CLASS;

CLASS synthesis { USAGE = RESTRI CT_CLASS ; }
CLASS scan { USAGE = RESTRI CT_CLASS ; }

2

. CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS clock { USAGE = RESTRICT_CLASS ; }
CLASS | ayout { USAGE = RESTRI CT_CLASS ; }

30 Semantics 14—RESTRICT_CLASS annotation

The annotation value shall be the name of a declared class (see 7.12).

The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-
35 forming a design transformation involving instantiations of cells. An application other than a design transforma-
tion (e.g. analysis, file format translation) can disregard the restrict-class annotation or use it for informational

purpose only.

The meaning of the predefined restrict-class values established by Semantics 14 is specified in Table 30.

40
Table 30—Predefined RESTRICT_CLASS annotation values
Annotation value Description
® synt hesi s Cell issuitable for creation or modification of a structural design
description (i.e., anetlist) while providing functional equivalence.

scan Cell issuitable for creation or modification of ascan chain within anetlist.
50 dat apat h Cell issuitable for structural implementation of a data flow graph.

cl ock Cell issuitable for distribution of aglobal synchronization signal.

| ayout Cell is suitable for usage within a physical artwork.
55

80

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Additional restrict-class values can be defined within the context of alibrary or a sublibrary (see 8.2), using a
class declaration (see 7.12) and a semantics declaration (see 7.10) in asimilar way as shown in Semantics 14.

From the application standpoint, the following usage model for restrict-class shall apply.

a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is a subset of the “known” restrict-class val ues.

b) Optionally, a boolean condition involving the set of “known™ restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of acell shall only be authorized, if the set of
restrict-class values associated with the cell satisfies the boolean condition.

Example:

Specification within the library:

CLASS A { USAGE = RESTRI CT_CLASS; }
CLASS B { USAGE = RESTRI CT_CLASS; }
CLASS C { USAGE = RESTRI CT_CLASS; }
CLASS D { USAGE = RESTRI CT_CLASS; }
CLASS E { USAGE = RESTRI CT_CLASS; }
CLASS F { USAGE = RESTRI CT_CLASS; }
CLASS G { USAGE = RESTRI CT_CLASS; }

CELL X { RESTRICT_CLASS { AB} }

CELL Y { RESTRICT_CLASS { C} }

CELL Z { RESTRICT_CLASS { ACF } }
Specification for the application:

Set of “known” restrict-classvalues= (A, B, C, D, E)
Boolean condition=(Aandnot B) or C

Result:
Usage of CELL X isnot authorized, because boolean condition is not true.
Usage of CELL Y isauthorized, because al values are “known”, and boolean condition is true.
Usage of CELL Z isnot authorized, because value F is not “known”.

8.5.4 SWAP_CLASS annotation

A swap-class annotation shall be defined as shown in Semantics 15.

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;

}

SEMANTI CS SWAP_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 15—SWAP_CLASS annotation

The annotation val ue shall be the name of a declared class (see 7.12). Single-value or multi-value annotation can
be used.

Copyright © 2003 IEEE. All rights reserved. 81
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Cdlls referring to the same class can be swapped for certain applications. Cell-swapping shall be only allowed
under the following conditions:

a) Therestrict-class annotation (see 8.5.3) authorizes usage of the cell.
b) The cellsare compatible from an application standpoint.

Example:

CLASS U { USAGE = SWAP_CLASS; }
CLASS V { USAGE = SWAP_CLASS; }
CELL X1 { SWAP CLASS { UV } }
CELL X2 { SWAP_CLASS {
CELL Y1 { SWAP_CLASS {
CELL Y2 { SWAP_CLASS {

ut}

uvyi} }

A

Cell X1 can be swapped with cell X2, provided the application authorizes the usage of both X1 and X2.
Cell X1 can be swapped with cell Y1, provided the application authorizes the usage of both X1 and Y 1.
Cell Y1 can be swapped with cell Y2, provided the application authorizes the usage of both Y1 and Y 2.
Cell X2 can not be swapped with cell Y2, even if the application authorizes the usage of both X2 and Y 2.
End of example

8.5.5 SCAN_TYPE annotation

A scan type annotation shall be defined as shown in Semantics 16.

KEYWORD SCAN TYPE = singl e_val ue_annotati on {
CONTEXT = CELL;
}
SEMANTI CS SCAN_TYPE {
VALUETYPE = identifier;
VALUES { rnuxscan cl ocked | ssd control 0 control _1 }

}

Semantics 16—SCAN_TYPE annotation

The meaning of the scan type annotation valuesis specified in Table 31.

Table 31—SCAN_TYPE annotation values

Annotation value Description
nmuxscan Cdll contains amultiplexor for selection between non-scan-mode and
scan-mode data.
cl ocked Cell supports a dedicated scan clock.
| ssd Cell issuitable for level sensitive scan design.
control _0 Combinatorial cell, controlling pin shall be 0 in scan mode.
control _1 Combinatorial cell, controlling pin shall be 1 in scan mode.
82 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

8.5.6 SCAN_USAGE annotation

A scan usage annotation shall be defined as shown in Semantics 17.

KEYWORD SCAN USAGE = singl e_val ue_annotation {
CONTEXT = CELL;
}

SEMANTI CS SCAN_USAGE {
VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 17—SCAN_USAGE annotation

The meaning of the scan usage annotation valuesis specified in Table 32.

Table 32—SCAN_USAGE annotation values

Annotation value Description
i nput Primary input cell in a scan chain.
out put Primary output cell in ascan chain.
hol d Intermediate cell in ascan chain.

The scan usage annotation is applicable for acell which is designed to be the primary input, output or intermedi-
ate stage of a scan chain.

8.5.7 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 18.

KEYWORD BUFFERTYPE = singl e_val ue_annotation {
CONTEXT = CELL,;

}

SEMANTI CS BUFFERTYPE {
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Semantics 18—BUFFERTYPE annotation

Copyright © 2003 IEEE. All rights reserved. 83
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The meaning of the buffertype annotation valuesis specified in Table 33.

Table 33—BUFFERTYPE annotation values

Annotation value Description
i nput CELL has an external (i.e., off-chip) input pin.
out put CELL has an external output pin.
i nout CELL has an external bidirectional pin or an external input pin and an
external output pin.
i nt ernal CELL has no externa pin.

8.5.8 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 19.

KEYWORD DRI VERTYPE = singl e_val ue_annotation {
CONTEXT = CELL;

}

SEMANTI CS DRI VERTYPE {
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Semantics 19—DRIVERTYPE annotation

The meaning of the drivertype annotation values is specified in Table 34.

Table 34—DRIVERTYPE annotation values

Annotation value Description
predriver CELL isapredriver, i.e., the core part of an I/O buffer.
slotdriver CELL isasdlotdriver, i.e., the pad of an 1/0 buffer with off-chip connection.
bot h CELL isboth apredriver and aslot driver, i.e., acomplete 1/O buffer.

The drivertype annotation applies only for a cell with buffertype value input or output or inout.
8.5.9 PARALLEL_DRIVE annotation
A parallel drive annotation shall be defined as shown in Semantics 20.

The annotation value shall specify the number of cells connected in paralel.

84 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD PARALLEL DRI VE = single val ue_annotation {
CONTEXT = CELL;

}

SEMANTI CS PARALLEL_DRI VE {
VALUETYPE = unsi gned_i nt eger;
DEFAULT = 1;

}

Semantics 20—PARALLEL_DRIVE annotation
8.5.10 PLACEMENT_TYPE annotation

A placement type annotation shall be defined as shown in Semantics 21.

KEYWORD PLACEMENT _TYPE = singl e_val ue_annotation {
CONTEXT = CELL;

}

SEMANTI CS PLACEMENT_TYPE {
VALUETYPE = identifier;
VALUES { pad core ring bl ock connector }
DEFAULT = core;

}

Semantics 21—PLACEMENT _TYPE annotation

The purpose of the placement type annotation is to establish categories of cellsin terms of placement and power
routing requirements.

The meaning of the placement type annotation values is specified in Table 35.

Table 35—PLACEMENT_TYPE annotation values

Annotation value Description
pad The cell is an element to be placed in the I/O area of adie.
core Thecell isaregular element to be placed in the core area of adie, using aregular
power structure.
ring The cell isamacro element with built-in power structure.
bl ock The cell isan abstraction of acollection of regular elements, each of which uses

aregular power structure.

connect or Thecell isto be placed at the border of the core areaof adiein order to establish
a connection between aregular power structure and a power ring in the I/O area.

8.5.11 SITE reference annotation for a CELL
A site reference annotation (see 8.26.1) in the context of a cell shall be defined as shown in Semantics 22.
The purpose of a site reference annotation in the context of a cell isto specify alega placement location for the

cell.

Copyright © 2003 IEEE. All rights reserved. 85
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Advanced Library Format (ALF) Reference Manual

SEMANTI CS CELL. SI TE = singl e_val ue_annot ati on;

Semantics 22—SITE reference annotation

8.5.12 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given

by the celltype annotation.

The attribute values shown in Table 36 can be used within cell with celltype annotation value memory.

Table 36—Attribute values for a CELL with CELLTYPE memory

Attributeitem Description
RAM Random Access Memory.
ROM Read Only Memory.
CAM Content Addressable Memory.
static Static memory, needs no refreshment.
dynami c Dynamic memory, needs refreshment.

asynchr onous

Operation self-timed.

synchr onous

Operation synchronized with a clock signal.

The attributes shown in Table 37 can be used within a cell with celltype annotation value block.

Table 37—Attribute values for a CELL with CELLTYPE block

Attributeitem

Description

count er

CELL isacounter, i.e., acomplex sequentia circuit going through a
predefined sequence of statesin its normal operation mode where
each state represents an encoded control value.

shift_register

CELL isashift register, i.e., acomplex sequential circuit going
through a predefined sequence of statesin its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.

adder

CELL isan adder, i.e., acombinatorial circuit performing an addition
of two operands.

subt ract or

CELL isasubtractor, i.e.,, acombinatorial circuit performing a sub-
traction of two operands.

mul tiplier

CELL isamultiplier, i.e.,, acombinatoria circuit performing amulti-
plication of two operands.

conpar at or

86

CELL isacomparator, i.e., acombinatoria circuit comparing the
magnitude of two operands.

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

Table 37—Attribute values for a CELL with CELLTYPE block (Continued)

IEEE P1603/D9,

July 2003

Attributeitem

Description

ALU

CELL isan arithmetic logic unit, i.e., acombinatoria circuit combin-
ing the functionality of adder, subtractor, and comparator.

The attributes shown in Table 38 can be used within a cell with celltype annotation value core.

Table 38—Attribute values for a CELL with CELLTYPE core

Attributeitem Description
PLL CELL isaphase-locked loop.
DSP CELL isadigital signal processor.
CPU CELL isacentral processing unit.
GPU CELL isagraphical processing unit.

The attributes shown in Table 39 can be used within a cell with celltype annotation value special.

Table 39—Attribute values for a CELL with CELLTYPE special

Attributeitem Description
bushol der CELL enables atristate bus to hold itslast value before al drivers
went into high-impedance state (see Table 74 in 9.10).
cl anp CELL connects a net to a constant logic value (see 9.10).
di ode CELL isadiode.
capacitor CELL isacapacitor.
resistor CELL isaresistor.
i nduct or CELL isan inductor.
fillcell CELL isused to fill unused spacein layout.

A cell with attribute value busholder shall have one or more pin declarations (see 8.6). The direction annotation
value shall be both (see 8.8.5). A cell with attribute value clamp shall have one or more pin declarations. The
direction annotation value shall be output. The logical value and drive strength shall be defined within afunction
statement (see 9.1). A cell with attribute value diode, capacitor, resistor, or inductor shall have two pin declara-
tions and no function statement. A cell with attribute value fillcell shall have no pin declaration and no function

statement.

8.6 PIN declaration

A pin shall be declared asascalar pin or asavector pin or amatrix pin, as shown in Syntax 49.

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

87

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

pin =
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
N pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template _instantiation
scalar_pin_item ::=
all_purpose_item
| pattern
| port
vector_pin ::=
PI'N multi_index pin_identifier ;
| PIN muilti_index pin_identifier { { vector_pin_item} }
| vector_pin_template _instantiation
vector_pin_item ::=
all_purpose_item
| range
matrix_pin ::=
PIN first multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item} }
| matrix_pin_template_instantiation
matrix_pin_item ::=
vector_pin_item

Syntax 49—PIN declaration

A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be caled state. A time-
dependent value of information shall be called signal.

The order of pin declarations within a cell declaration shall reflect the order in which pins are referenced, when
the cell isinstantiated in a netlist. The view annotation (see 8.8.3) shall further specify which pinisvisiblein a
netlist.

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with a digital signal. One element of a vector pin or of amatrix pin shall be associated with one bit of
information, i.e., abinary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve amulti index (see 6.6). A reference to a scalar within the vector-pin shall be established by the pin iden-
tifier followed by asingleindex (see 6.6). A reference to a subvector within the vector-pin shall be established by
the pin identifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second

multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

Example

PIN [5:8] myVectorPin ;
PIN [3:0] nyMatrixPin [1:1000] ;

88 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The pin variable nyVect or Pi n[5] refersto the scalar associated with the MSB of nyVect or Pi n.
The pin variable nyVect or Pi n[8] refersto the scalar associated with the LSB of nyVect or Pi n.
The pin variable nyVect or Pi n[6: 7] refersto a subvector within myVect or Pi n.

The pinvariablenyMat ri xPi n[500] refersto avector within nyMat ri xPi n.

The pinvariablenyMat ri xPi n[500: 502] refersto 3 subsequent vectors within nyMat ri xPi n.

Consider the following pin assignment:
nmyVect or Pi n=nryMat ri xPi n[500] ;

This establishes the following exchange of information:
nyVect or Pi n[5] receivesinformation from element [3] of myMat ri xPi n[500] .
nyVect or Pi n[6] receivesinformation from element [2] of myMat ri xPi n[500] .
nyVect or Pi n[7] receivesinformation from element [1] of myMat ri xPi n[500] .
nyVect or Pi n[8] receivesinformation from element [0] of myMat ri xPi n[500] .

8.7 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
Pﬁ)\l 8 R%U P pingroup_identifier
{ MEMBERS multi_value_annotation { al_purpose item} }
| simple_pingroup_template_instantiation

vector_pingroup ::=
| P]PN& ROUP multi_index pingroup_identifier
{ MEMBERS _multi_value_annotation { vector_pingroup_item } }
| vector_pingroup_template_instantiation
vector_pingroup_item ::=
al_purpose_item
| range

Syntax 50—PINGROUP declaration

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina
tion of pins shall be specified by the members annotation.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity asavector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

8.8 Annotations related to a PIN or a PINGROUP declaration
This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.
8.8.1 PIN reference annotation

A pin reference annotation shall be defined as shown in Semantics 23.

Copyright © 2003 IEEE. All rights reserved. 89
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD PI N = annotation {
CONTEXT { arithnetic_nodel FROM TO }
}

SEMANTI CS PI N {
REFERENCETYPE { PI N PI NGROUP PORT NCDE }
}

Semantics 23—PIN reference annotation
The purpose of a pin reference annotation is to establish an association between a pin, a pingroup, a port (see
8.23) or anode (see 8.12) and an arithmetic model (see 10.3) or a from-to statement (see 10.12). In this context,
the pin, pingroup, port or node is used as a reference point related to a timing measurement or an electrical mea-
surement.

A hierarchical identifier can be used to specify a reference to a pin, a pingroup, a port or a node as a child of a
cell, apin or awire.

8.8.2 MEMBERS annotation

A members annotation shall be defined as shown in Semantics 24.

KEYWORD MEMBERS = mul ti _val ue_annotation {
CONTEXT = Pl NGROUP;

}

SEMANTI CS MEMBERS {
REFERENCETYPE = PIN;

}

Semantics 24—MEMBERS annotation
The purpose of the members annotation is to specify the constituent pins of a pingroup.
8.8.3 VIEW annotation

A view annotation shall be defined as shown in Semantics 25.

KEYWORD VI EW = si ngl e_val ue_annot ati on {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS VI EW {
VALUES { functional physical both none }
DEFAULT = bot h;

}

Semantics 25—VIEW annotation

The purpose of the view annotation is to specify the visibility of apinin anetlist.

920 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

It can take the values shown in Table 40.

Table 40—VIEW annotation values

Annotation value Description
functi onal pi n appearsin functional netlist.
physi cal pi n appearsin physical netlist.
bot h pi n appearsin both functional and physical netlist.
none pi n doesnot appear in netlist.

8.8.4 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 26.

KEYWORD PI NTYPE = singl e_val ue_annot ati on {
CONTEXT = PI N,
}
SEMANTI CS PI NTYPE {
VALUETYPE = identifier;
VALUES { digital anal og supply }
DEFAULT = digital;

}

Semantics 26—PINTYPE annotation

The purpose of the pintype annotation is to establish broad categories of pins.

It can take the values shown in Table 41.

Table 41—PINTYPE annotation values

Annotation value Description
di gital Digital signal pin.
anal og Analog signal pin.
supply Power supply or ground pin.

8.8.5 DIRECTION annotation
A direction annotation shall be defined as shown in Semantics 27.
The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a

pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to
be mistaken as the flow of electrical current through a pin.

Copyright © 2003 IEEE. All rights reserved. 91
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD DI RECTI ON = si ngl e_val ue_annotati on {
CONTEXT = PIN;

}

SEMANTI CS DI RECTI ON {
VALUES { input output both none }

}

Semantics 27—DIRECTION annotation

The direction annotation can take the values shown in Table 42.

Table 42—DIRECTION annotation values

Annotation value Description

i nput Information/energy flows through the pininto the cell. Thepinisa
receiver or asink.

out put Information/energy flows through the pin out of the cell. Thepinisa
driver or asource.

bot h Information/energy flows through the pinin and out of the cell. The
pin is both areceiver/sink and driver/source, dependent on the mode
of operation.

none No information/energy flows through the pinin or out of the cell.

The pin can be an internal pin without connection to its environment
or afeedthrough where both ends are represented by the same pin.

The direction annotation shall be orthogonal to the pintype annotation (see 8.8.4), i.e., al combinations of anno-
tation values are possible.

Examples

— The power and ground pins of aregular cell have the direction value input.

— A level converter cell has a power supply pin with direction value input and ancther power supply pin
with direction value output.

— A level converter can have a common ground pin with direction value both or separate ground pins
related to its power supply pins, i.e., one ground pin with direction value input and another ground pin
with direction value output.

— The power and ground pins of afeed through cell have the direction value none.

8.8.6 SIGNALTYPE annotation
A signaltype annotation shall be defined as shown in Semantics 28.
The purpose of the signaltype annotation is to classify the functionality of a pin. The set of defined values apply

for pins with pintype value digital. Conceptualy, a pin with pintype value analog can also have a signaltype
annotation. However, no values are currently defined.

92 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

KEYWORD Sl GNALTYPE = singl e_val ue_annot ati on {
CONTEXT = PIN;
}
SEMANTI CS S| GNALTYPE {
VALUETYPE = identifier;
VALUES {
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock sl ave_cl ock
scan_nmaster_cl ock scan_sl ave_cl ock

}
DEFAULT = dat a;

}

Semantics 28—SIGNALTYPE annotation

The fundamental signaltype values are defined in Table 43

Table 43—Fundamental SIGNALTYPE annotation values

Annotation value Description

dat a

Genera data signal, i.e., asignal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

addr ess

Address signal of amemory, i.e., an encoded signal, usually abus or
part of abus, driving an address decoder within the CELL.

control

Genera control signd, i.e., an encoded signal that controls at least
two modes of operation of the CELL, possibly in conjunction with
other signals. The signal value is alowed to change during real-time
circuit operation.

sel ect

Select signal, i.e., asignal that selects the data path of a multiplexor
or de-multiplexor within the CELL. Each selected signa has the
same S| GNALTYPE.

enabl e

The signal enables storage of general input datain alatch or aflip-
flop or amemory

tie

The signal needs to be tied to afixed value statically in order to
define afixed or programmable mode of operation of the CELL, pos-
sibly in conjunction with other signals. The signal valueis not
allowed to change during real-time circuit operation.

cl ear

Clear or reset signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value O within the CELL.

set

Preset or set signal of aflip-flop or latch, i.e., asignal that controls
the storage of the value 1 within the CELL.

cl ock

Clock signal of aflip-flop or latch, i.e., atiming-critical signal that
triggers data storage within the CELL.

Figure 9 shows how to construct composite signaltype values.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

93

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

dat a scan_dat a

enabl e scan_enabl e

> out _enabl e scan_out _enabl e

cl ock scan_cl ock

_—
> mast er _cl ock > scan_nast er _cl ock
_ >

> sl ave_cl ock scan_sl ave_cl ock

Figure 9—Scheme for constructing composite signaltype values

The composite signaltype values are defined in Table 44

Table 44—Composite SIGNALTYPE annotation values

Annotation value Description

scan_dat a Scan datasignal, i.e., signal isrelevant in scan mode only.

out _enabl e Enables visibility of general data at an output pin of a cell.

scan_enabl e Enables storage of scan input datain alatch or aflipflop.

scan_out _enabl e Enables visibility of scan data at an output pin of acell.

mast er _cl ock Triggers storage of input datain the first stage of aflipflop in atwo-
phase clocking scheme.

sl ave_cl ock Triggers data transfer from first the stage to the second stage of a
flipflop in atwo-phase clocking scheme.

scan_cl ock Triggers storage of scan input datawithin acell.

scan_nast er_cl ock Triggers storage of input scan datain the first stage of aflipflopina

two-phase clocking scheme.

scan_sl ave_cl ock Triggers scan data transfer from the first stage to the second stage of
aflipflop in atwo-phase clocking scheme.

Within the definitions of Table 43 and Table 44, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltype value (see 8.5.2) isflipflop, latch, multi-
plexor, or memory, respectively. In the latter case, the celltype value can be block or core.

8.8.7 ACTION annotation

An action annotation shall be defined as shown in Semantics 29.

The purpose of the action annotation isto define, whether asignal is self-timed or synchronized with aclock sig-
nal.

94 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD ACTI ON = singl e _val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS ACTI ON {
VALUES { asynchronous synchronous }

}

Semantics 29—ACTION annotation

The action annotation can take the values shown in Table 45.

Table 45—ACTION annotation values

Annotation value Description

asynchr onous Signal actsin an asynchronous way, i.e., self-timed

synchr onous Signal actsin a synchronous way, i.e., triggered by a clock signal

The action annotation applies only in conjunction with specific signaltype values (see 8.8.6), as shown in
Table 46.

Table 46—ACTION in conjunction with SIGNALTYPE

fundamental composite .
SIGNALTYPE value SIGNALTYPE value ACTION applicable
data scan_data No
addr ess No
control Yes
sel ect No
enabl e scan_enabl e Yes
out _enabl e
scan_out _enabl e
tie No
cl ear Yes
set Yes
cl ock scan_cl ock No
mast er _cl ock
sl ave_cl ock
scan_mast er _cl ock
scan_sl ave_cl ock

8.8.8 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 30.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

95

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Advanced Library Format (ALF) Reference Manual

KEYWORD POLARI TY = singl e _val ue_annotation {

CONTEXT = PIN;

}

SEMANTI CS POLARI TY {
VALUETYPE = identifier;

VALUES { high low rising edge falling edge doubl e _edge }

}

Semantics 30—POLARITY annotation

The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

The polarity annotation can take the values shown in Table 47.

Table 47—POLARITY annotation values

Annotation value

Description

hi gh

Signal is active high or to be driven high.

| ow

Signal is active low or to be driven low.

ri si ng_edge

Signal is activated by rising edge.

falling_edge

Signal is activated by falling edge.

doubl e_edge

Signal is activated by both rising and falling edge.

The polarity annotation applies only in conjunction with specific signaltype values (see 8.8.6), as shown in

Table 48.

96

Table 48—POLARITY in conjunction with SIGNALTYPE

fundamental composite .
SIGNALTYPE value SIGNALTYPE value | /APPlicablePOLARITY value
data scan_dat a N/A
addr ess N/A
control N/A
sel ect N/A
enabl e scan_enabl e hi gh
out _enabl e | ow
scan_out _enabl e
tie hi gh
| ow
cl ear hi gh
| ow
set hi gh
| ow

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Table 48—POLARITY in conjunction with SIGNALTYPE (Continued)

fundamental
SIGNALTYPE value

composite

SIGNALTY PE value Applicable POLARITY value

cl ock scan_cl ock hi gh

nmast er _cl ock | ow

sl ave_cl ock ri si ng_edge
scan_nmaster_clock | falling_edge
scan_sl ave_cl ock doubl e_edge

8.8.9 CONTROL_POLARITY annotation container

A control polarity annotation container shall be defined as shown in Semantics 31.

KEYWORD CONTROL_PCOLARI TY = annotation_contai ner {
CONTEXT = PIN ;

}

SEMANTI CS

CONTROL_POLARI TY.identifier = single_value_annotation {
VALUES { high low rising_edge falling_edge doubl e_edge }

}

Semantics 31—Control polarity annotation container

The purpose of the control polarity annotation container is to specify the active state or the active edge of an
input signal in association with a particular mode of operation, wherein the name of the mode of operation is
given by the annotation identifier.

The control polarity annotation container can be used only in conjunction with specific signaltype values (see
8.8.6), as shown in Table 49.

Table 49—CONTROL_POLARITY in conjunction with SIGNALTYPE

fundamental
SIGNALTYPE value

composite
SIGNALTYPE value

Applicable annotation value
within CONTROL_POLARITY

contr ol hi gh
| ow
cl ock scan_cl ock hi gh
mast er _cl ock | ow
sl ave_cl ock ri si ng_edge
scan_naster_clock | falling_edge
scan_sl ave_cl ock doubl e_edge
other N/A

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

97

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Example:

PIN ModeSel 1 {
DI RECTI ON = input; SIGNALTYPE = control;
CONTROL_POLARI TY { nor nmal =hi gh; scan=l ow; hol d=I ow; }
}
PI'N MbdeSel 2 {
DI RECTI ON = input; SIGNALTYPE = control;
CONTROL_PCLARI TY { scan=hi gh; hol d=l ow; }
}

The control-polarity specification in this example is equivaent to the following truth table.

ModeSell| ModeSel2 | Mode of operation

0 0 hold
0 1 scan
1 don'tcare | norma

8.8.10 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 32.

KEYWORD DATATYPE = singl e_val ue_annotation {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS DATATYPE {
VALUES { signed unsigned }

}

Semantics 32—DATATYPE annotation

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

The datatype annotation can take the values shown in Table 50.

Table 50—DATATYPE annotation values

Annotation value Description
si gned Result of arithmetic operation is signed 2's complement.
unsi gned Result of arithmetic operation is unsigned.

The datatype annotation is only relevant for abus, i.e., avector pin (see Syntax 49 in 8.6).
8.8.11 INITIAL_VALUE annotation

Aninitial value annotation shall be defined as shown in Semantics 33.

98 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD | NI TI AL_VALUE = singl e_val ue_annotation {
CONTEXT { PIN Pl NGROUP }

}

SEMANTI CS | NI TI AL_VALUE {
VALUETYPE = bool ean_val ue;
DEFAULT = U,

}

Semantics 33—INITIAL_VALUE annotation
The purpose of the initial value annotation is to provide an initial value of a signal within a simulation model
derived from ALF. A signal shall have the initial value before a simulation event affects the signal. The default
value “U’ means “uninitialized” (see 9.10.1, Table 74).
8.8.12 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 34.

KEYWORD SCAN_POSI TI ON = singl e_val ue_annotati on {
CONTEXT = PIN;

}

SEMANTI CS SCAN_POCSI TI ON {
VALUETYPE = unsi gned_i nt eger;
DEFAULT = 0;

}

Semantics 34—SCAN_POSITION annotation

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for
the primary input. The value O (which is the default) indicates that the pinis not on the scan chain.

8.8.13 STUCK annotation

A stuck annotation shall be defined as shown in Semantics 35.

KEYWORD STUCK = singl e_val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS STUCK {
VALUES { stuck_at 0 stuck_at 1 both none }
DEFAULT = bot h;

}

Semantics 35—STUCK annotation

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

Copyright © 2003 IEEE. All rights reserved. 99
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The STUCK annotation can take the values shown in Table 51.

Table 51—STUCK annotation values

Annotation value Description
stuck_at O Pin can exhibit afaulty static low state.
stuck_at _1 Pin can exhibit afaulty static high state.
bot h Pin can exhibit afaulty static high or low state.
none Pin can not exhibit afaulty static state.

8.8.14 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 36.

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PI N CLASS }

}

SEMANTI CS SUPPLYTYPE {
VALUETYPE = identifier;
VALUES { power ground reference }

}

Semantics 36—SUPPLYTYPE annotation

The supplytype annotation can take the values shown in Table 52.

Table 52—SUPPLYTYPE annotation values

Annotation value Description

power Piniselectrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of acircuit.

ground Piniséelectrically connected to ground, i.e., azero voltage source providing
the return path for electrical current through a power supply.

reference Pin exhibits a constant voltage level without providing significant energy
for operation of acircuit.

The purpose of the supplytype annotation is to define a subcategory of pins with pintype value supply (see
Table 41).

8.8.15 SIGNAL_CLASS annotation

A signal-class annotation shall be defined as shown in Semantics 37.

100 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD SI GNAL_CLASS = annotation {
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS SI GNAL_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 37—SIGNAL_CLASS annotation
The value shall be the name of adeclared CLASS.

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with arbitrary signaltype value (see 8.8.6).

Example:

A multiport memory can have a data bus related to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see 8.23).

CELL my2Port Menory {
CLASS ReadPort { USAGE = SI GNAL_CLASS; }
CLASS WitePort { USACE = SI GNAL_CLASS; }

PIN [3:0] addr_A { SIGNALTYPE = address; SIGNAL_CLASS = ReadPort; }
PIN[7:0] data_A { SIGNALTYPE = dat a; SI GNAL_CLASS = ReadPort; }
PIN [3:0] addr_B { SIGNALTYPE = address; SIGNAL_CLASS = WitePort; }
PIN[7:0] data_B { SIGNALTYPE = dat a; SI GNAL_CLASS = WitePort; }

PINwite_enable { SIGNALTYPE = enabl e; SIGNAL_CLASS = WitePort; }
}

8.8.16 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 38.

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS PONER ENERGY }

}

SEMANTI CS SUPPLY_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 38—SUPPLY_CLASS annotation

The annotation value shall be the name of a declared class (see 7.12).

The purpose of the supply-class annotation isto specify arelation between a pin and a power supply system, rep-
resented by the referred class.

The supply-class annotation shall apply for a pin with any signaltype value (see 8.8.6) or any supplytype value
(see 8.8.14).

The supply-class annotation shall also apply for a class with usage value connect-class (see 8.8.19). The latter
class shall represent a global net related to a power supply system.

Copyright © 2003 IEEE. All rights reserved. 101
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Advanced Library Format (ALF) Reference Manual

The supply-class annotation shall also apply for the arithmetic models power and energy (see 10.11.15).

Example 1.

A cell supports two power supplies. Each pinisrelated to at least one power supply.

CLASS supplyl { USAGE
CLASS supply2 { USAGE
CELL nyLevel Shifter {

SUPPLY_CLASS; }
SUPPLY_CLASS; }

PIN Vddl { SUPPLYTYPE = power; SUPPLY_CLASS = suppl y1;
PIN Din { SIGNALTYPE = data; SUPPLY_CLASS = supply1;
PIN Vdd2 { SUPPLYTYPE = power; SUPPLY_CLASS = suppl y2;
PIN Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2;

PIN Ghd { SUPPLYTYPE = ground; SUPPLY_CLASS { supplyl

}

Example 2:

(S)

supply2 } }

A library provides two environmental power supplies. A supply pin of acell has to be connected to a global net
related to an environmental power supply.

CLASS core { USAGE = SUPPLY_CLASS; }
CLASS io { USACE = SUPPLY_CLASS; }

CLASS Vvddl { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_

CLASS=core; }

CLASS Vssl1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=core; }

CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_

CLASS=i 0; }

CLASS Vss2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=io; }

CELL mylnternal Cel |l {
PI'N vdd { CONNECT_CLASS=Vvdd1; }
PI N vss { CONNECT_CLASS=Vssl1; }
}
CELL nyPadCel | {
PI'N vdd { CONNECT_CLASS=Vdd2; }
PIN vss { CONNECT_CLASS=Vss2; }

}

8.8.17 DRIVETYPE annotation

A drivetype annotation shall be defined as shown in Semantics 39.

KEYWORD DRI VETYPE = singl e_val ue_annotati on {
CONTEXT { PIN CLASS }

}

SEMANTI CS DRI VETYPE {
VALUETYPE = identifier;
VALUES {

CNDS NNMDS PNDS CNDS_passS NNDS_pass pnos_pass

ttl open_drain open_source

}
DEFAULT = cnps;

}

102

Semantics 39—DRIVETYPE annotation

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which
relate to the system of logic values and drive strengths (see Table 74).

The drivetype annotation can take the values shown in Table 53.

Table 53—DRIVETYPE annotation values

Annotation value

Description

cnos

Standard cmos signal. Thelogic high level is equal to the power sup-
ply, thelogic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nnos

Nmos or pseudo nmos signal. The logic high level is equal to the
power supply and its drive strength is resistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flowsin logic low state.

pnos

Pmos or pseudo pmos signal. The logic low level isequal to ground
and its drive strength isresistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flowsin logic high state.

nnos_pass

Nmos passgate signa. Signal is not amplified by passgate stage.
Logic low voltage level is preserved, logic high voltage level islim-
ited by nmos threshold voltage.

pnos_pass

Pmos passgate signal. Signal is not amplified by passgate stage.
Logic high voltage level is preserved, logic low voltage level islim-
ited by pmos threshold voltage.

cnobs_pass

Cmos passgate signdl, i.e., afull transmission gate. Signal is not
amplified by passgate stage. VVoltage levels are preserved.

ttl

TTL signa. Both logic high and logic low voltage levels are load-
dependent, as static current can flow.

open_drain

Open drain signal. Logic low level is equal to ground. Logic high
level corresponds to high impedance state.

open_source

Open source signal. Logic high level is equal to the power supply.
Logic low level corresponds to high impedance state.

8.8.18 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 40.

KEYWORD SCOPE = singl e_val ue_annotation {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS SCOPE {
VALUES { behavi or neasure both none }
DEFAULT = bot h;

}

Semantics 40—SCOPE annotation

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation
specifies whether apin can be involved in a control expression (see 9.12) within a vector declaration (see 8.14) or
within abehavior statement (see 9.4).

The scope annotation can take the values shown in Table 54.

Table 54—SCOPE annotation values

Annotation value Description

behavi or The pinisused for modeling functional behavior. Pin can be
involved in acontrol expression within a BEHAVI OR statement.

neasure Measurements related to the pin can be described. Pin can be
involved in acontrol expression within a VECTOR declaration.

bot h Pin can be involved in a control expression within aBEHAVIOR
statement or within a VECTOR declaration.

none Pin can not be involved in a control expression.

8.8.19 CONNECT_CLASS annotation

A connect-class annotation shall be defined as shown in Semantics 41.

KEYWORD CONNECT_CLASS = singl e_val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS CONNECT_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 41—CONNECT_CLASS annotation

The annotation value shall be the name of a declared class (see 7.12).

The purpose of the connect-class annotation is to specify arelationship between a pin and an environmental rule
for connectivity (see 10.18.1). The connect-class annotation can be used in conjunction with supply-class (see
8.8.16) or in conjunction with connect-rule (see 10.20.1).

8.8.20 SIDE annotation

A side annotation shall be defined as shown in Semantics 42.

The purpose of the side annotation is to define an abstract location of a pin relative to a bounding box of acell.

104 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD S| DE = singl e_val ue_annotati on {
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS SI DE {
VALUETYPE = identifier;
VALUES { left right top bottominside }

}

Semantics 42—SIDE annotation

The side annotation can take the values shown in Table 55.

Table 55—SIDE annotation values

Annotation value Description
| eft pi n ison theleft side of the bounding box.
right pi n ison theright side of the bounding box.
top pi nisat thetop of the bounding box.
bott om pi n isat the bottom of the bounding box.
i nsi de pi n isinside the bounding box.

8.8.21 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 43.

KEYWORD ROW = annot ation {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS ROW {
VALUETYPE = unsi gned_i nt eger;

}

KEYWORD COLUWN = annotation {
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS COLUWN {
VALUETYPE = unsi gned_i nt eger;

}

Semantics 43—ROW and COLUMN annotations

The purpose of arow and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower left corner of the bounding box of the cell,
as shown in Figure 10.

Copyright © 2003 IEEE. All rights reserved. 105
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

row | bounding box of cell | this region has column=1, row=2
a_ | _ _ _ _ L _Xx_ 1 | | _ _ _ L _
| | | | | |
3_ 1 L _ 1 _L_
| | | |
2_ 1 _ _ _ L _ _ _ 1 _L_
| | | | | |
i_40____ - _ 41 __ L __ _ 1__ _ _L_
| | | | | |
o_ |\ __C___1____L___1_ _ _ _L _
| 0 1 |2 1 3 cqumn'
—

Figure 10—ROW and COLUMN relative to a bounding box of a CELL
The row annotation is applicable for a pin with side value left or right. The column annotation is applicable for a
pin with side value top or bottom. Both row and column annotation are applicable for a pin with side value
inside.
A single-value annotation is applicable for a scalar pin. A multi-value annotation is applicable for avector pin or
for a vector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.
8.8.22 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 44.

KEYWORD ROUTI NG TYPE = singl e_val ue_annotati on {
CONTEXT { PIN PORT }

}

SEMANTI CS ROUTI NG_TYPE {
VALUETYPE = identifier;
VALUES { regul ar abutrment ring feedthrough }
DEFAULT = regul ar;

}

Semantics 44—ROUTING_TYPE annotation

The purpose of the routing-type annotation isto specify the physical connection between a pin and arouted wire.

The routing-type annotation can take the values shown in Table 56.

Table 56—ROUTING-TYPE annotation values

Annotation value Description
regul ar Pin has avia, connection by regular routing to the via
abut nment Pin isthe end of awire segment, connection by abutment
106 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Table 56—ROUTING-TYPE annotation values (Continued)

Annotation value Description
ring Pin forms aring around the cell, connection by abutment to any point
of thering.
f eedt hr ough Pin has two aligned ends of awire segment, connection by abutment
on both ends

8.8.23 PULL annotation

A pull annotation shall be defined as shown in Semantics 45.

KEYWORD PULL = single_val ue_annotation {
CONTEXT = PIN;

}

SEMANTI CS PULL {
VALUES { up down both none }
DEFAULT = none;

Semantics 45—PULL annotation

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

The pull annotation can take the values shown in Table 57.

Table 57—PULL annotation values

Annotation value Description
up Pullup device connected to the pin.
down Pulldown device connected to the pin.
bot h Both pullup and pulldown device connected to pin.
none No pullup or pulldown device connected to the pin.

A pullup device ties the pin to alogic high level when no other signal is driving the pin. A pulldown device ties
the pinto alogic low level when no other signal is driving the pin. If both devices are connected, the pin istied to
an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

Copyright © 2003 IEEE. All rights reserved. 107
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Advanced Library Format (ALF) Reference Manual

8.8.24 ATTRIBUTE values for a PIN or a PINGROUP

The attribute values shown in Table 58 are applicable for a pin or a pingroup with the following characteristics.

Table 58—Attribute values for a PIN

Attributeitem Description

SCHM TT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

TRI STATE Tristate signal, i.e., the signal can bein high impedance mode. Appli-
cable for output pin.

XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.

PAD Pin has external,i.e., off-chip connection.

The attribute values shown in Table 59 are applicable for apin or a pingroup of a cell with celltype value memory

in conjunction with a specific signaltype value.

Table 59—Attribute values for a PIN of a CELL with CELLTYPE memory

Attributeitem

SIGNALTYPE Description

ROW ADDRESS_STROBE cl ock Samples the row address of the memory.
Applicable for scalar pin.

COLUMN_ADDRESS_STROBE cl ock Samples the column address of the memory.
Applicable for scalar pin.

ROW addr ess Selects an addressable row of the memory.
Applicable for pin and pingroup.

COLUWN addr ess Selects an addressable column of the memory.
Applicable for pin and pingroup.

BANK addr ess Selects an addressable bank of the memory.

Applicable for pin and pingroup.

The attribute values shown in Table 60 are applicable for a pair of signals.

Table 60—Attribute values for a PIN within a pair of signals

Attributeitem

Description

| N\VERTED

Represents the inverted value within a pair of signals car-
rying complementary values.

NON_| NVERTED

108

Representsthe non-inverted value within apair of signals
carrying complementary values.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

Table 60—Attribute values for a PIN within a pair of signals (Continued)

Attributeitem

Description

DI FFERENTI AL

Signal is part of adifferentid pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,
or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signals.

— ThePI NTYPE, SI GNALTYPE, and DI RECTI ON of both pins shall be the same.
— One Pl Nshall have the attribute | NVERTED, the other NON_I NVERTED.

— Either both pins or none of the pins shall have the attribute DI FFERENTI AL.

— POLARI TY, if applicable, shall be complementary as follows:

HI GHis paired with LOW

Rl SI NG_EDGE is paired with FALLI NG_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also applies to pins of a cell for which theimplementation of apair of signals
is optional, i.e., one of the signals can be missing. The output pin of aflipflop or alatch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute

inverted.

The attribute values shown in Table 61 shall be defined for memory BIST.

Table 61—ATTRIBUTE values for a PIN or a PINGROUP related to memory BIST

Attributeitem Description

ROW | NDEX Vector pin or pingroup with acontiguous range of values,
indicating a physical row of amemory.

COLUMN_| NDEX Vector pin or pingroup with acontiguous range of values,
indicating a physical column of a memory.

BANK_| NDEX Vector pin or pingroup with acontiguous range of values,
indicating a physical bank of a memory.

DATA | NDEX Vector pin or pingroup with acontiguous range of values,
indicating the bit position within a data bus of a memory.

DATA _VALUE Scalar pin, representing avalue stored in a physical mem-
ory location.

These attributes apply to the virtual pins associated with a Bl ST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as atest statement (see 9.2).

8.9 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

Copyright © 2003 IEEE. All rights reserved. 109

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

primitive ::=
PRIMITIVE primitive_identifier { { primitive_item} }
|PRIMITIVE primitive_identifier ;
| primitive_template_instantiation
primitive_item ::=
al_purpose_item
| pin
| pingroup
| function
| test

Syntax 51—PRIMITIVE statement
The purpose of a primitive is to describe a virtua circuit. The virtual circuit can be functionally equivalent to a

physical electronic circuit represented as a cell (see 8.4). A primitive can be instantiated within a behavior state-
ment (see 9.4).

8.10 WIRE declaration

A wire shall be declared as shown in Syntax 52.

wire ;=
W/ RE wire_identifier { { wire_item} }
| WIRE wire_identifier ;
| wire_template_instantiation
wire item ;=
all_purpose_item
| node

Syntax 52—WIRE declaration

The purpose of awire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, amodel for interconnect analysis,
or a specification of aload seen by adriver.

8.11 Annotations related to a WIRE declaration
8.11.1 WIRE reference annotation

A wire reference annotation shall be defined as shown in Semantics 46.

KEYWORD W RE = annot ati on {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS W RE {
REFERENCETYPE = W RE;

}

Semantics 46—WIRE reference annotation

The purpose of a wire reference annotation is to establish an association between a vector and an arithmetic
model (see 10.3).

110 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A hierarchical identifier can be used to specify areferenceto awire asachild of acell or asublibrary or alibrary.
8.11.2 WIRETYPE annotation

A wiretype annotation shall be defined as shown in Semantics 47.

KEYWORD W RETYPE = si ngl e_val ue_annotation {
CONTEXT = W RE;

}

SEMANTI CS W RETYPE {
VALUETYPE = identifier;
VALUES { estimated extracted interconnect |oad }

}

Semantics 47—WIRETYPE annotation

The purpose of the wiretype annotation is to define a purpose and a usage model for the wire statement.

The wiretype annotation can take the values shown in Table 62.

Table 62—WIRETYPE annotation values

Annotation value Description

esti mat ed The wire declaration contains a statistical wireload model, i.e., a
moded for estimation of R, L, C values for a net, without a structural
description of acircuit.

extract ed The wire declaration contains a structural description of acircuit, i.e.
anetlist, related to the parent object, i.e. acell. The R, L, C compo-
nents represent extracted parasitics from a physical implementation
of the cell.

i nt er connect The wire declaration contains a structural description of acircuit,
representing amodel for interconnect analysis. A general R, L, C
interconnect network is expected to be reduced to the specified cir-
cuit for analysis purpose.

| oad The wire declaration contains a structural description of acircuit,
which isto be connected as aload to adevice, i.e., acell, for charac-
terization or test. A wire instantiation (see 9.15) shall be used to
describe such a connection.

An R, L, C component within the context of the wire declaration shall be described as an arithmetic model (see
10.3). A related electrical measurement, e.g., voltage, current, noise, shall also be described as arithmetic model.

8.11.3 SELECT_CLASS annotation
A select-class annotation shall be defined as shown in Semantics 48.

The identifier shall refer to the name of a declared class.

Copyright © 2003 IEEE. All rights reserved. 111
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD SELECT CLASS = annotation {
CONTEXT = W RE;

}

SEMANTI CS SELECT_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 48—SELECT_CLASS annotation

The purpose of the select-class annotation is to provide a mechanism for selecting a set of wire objects by an
application. The user of the application can select a set of related wire objects by specifying the name of a class
rather than specifying the name of each wire object.

The semantics of the select class shall be under the responsibility of the library provider. Thelibrary provider can
define a select class based on criteria such as range of wire length, range of die size, accuracy requirements for
delay calculation etc.

The select class annotation is orthogonal to the wiretype annotation, asillustrated in the following example.
Example:

CLASS short_wire { USAGE = SELECT CLASS ; }

CLASS long_wire { USAGE = SELECT_CLASS ; }

W RE pre_layout _small {
W RETYPE = estimated; SELECT CLASS = short_wire;
/1 put statistical wreload nodel here

}

W RE post _|ayout_small {
W RETYPE = interconnect; SELECT CLASS = short_ wire;
/1 put interconnect analysis nodel here

}

W RE pre_l ayout | arge {
W RETYPE = estimated; SELECT_CLASS = | ong_wi re;
/1l put statistical wreload nodel here

}

W RE post _| ayout | arge {
W RETYPE = interconnect; SELECT CLASS = long wre;
/1l put interconnect analysis nodel here

8.12 NODE declaration

A node shall be declared as shown in Syntax 53.

node ::=
NODE node identifier ;
| NODE node identifier { { node item} }
| node_template_instantiation
node item ::=
al_purpose_item

Syntax 53—NODE statement

112 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The purpose of anode declaration is to specify an electrical node in the context of awire declaration (see 8.10) or
in the context of a cell declaration (see 8.4).

8.13 Annotations related to a NODE declaration
8.13.1 NODE reference annotation

A node reference annotation shall be defined as shown in Semantics 49.

KEYWORD NODE = mul ti_val ue_annotation {
CONTEXT = arithnetic_nodel;

}

SEMANTI CS NODE {
REFERENCETYPE { PI N PORT NODE }

}

Semantics 49—NODE reference annotation

The purpose of a node reference annotation is to establish an association between a pin, a pingroup, a port (see
8.23) or anode (see 8.12) and an arithmetic model (see 10.3). In this context, the pin, pingroup, port or node is
used to specify the connectivity of an electrical component within a structural circuit.

A hierarchical identifier can be used to specify areference to apin, aport or anode as achild of acell, apinor a
wire.

8.13.2 NODETYPE annotation

A nodetype annotation shall be defined as shown in Semantics 50.

KEYWORD NODETYPE = singl e _val ue_annotation {
CONTEXT = NODE;
}
SEMANTI CS NODETYPE {
VALUETYPE = identifier;
VALUES { power ground source sink
driver receiver interconnect }
DEFAULT = interconnect;

}

Semantics 50—NODETYPE annotation

The values shall have the semantic meaning shown in Table 63.

Table 63—NODETYPE annotation values

Annotation value Description

driver The node is the interface between an output pin of acell and an
interconnect wire.

Copyright © 2003 IEEE. All rights reserved. 113
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Table 63—NODETYPE annotation values (Continued)

Annotation value Description

recei ver The node is the interface between an interconnect wire and an
input pin of acell.

sour ce The node isavirtual start point of signal propagation.

In case of anideal driver, the source node is collapsed with a
driver node. The collapsed node shall have the nodetype value
driver.

si nk The node isavirtual end point of signal propagation.

In case of an ideal receiver, the sink node is collapsed with a
receiver node. The collapsed node shall have the nodetype value
receiver.

power The node supports electrical current for arising signal at a
source or adriver node and areference for alogic high signal
at asink or receiver node.

gr ound The node supports electrical current for afalling signal at a
source or adriver node and areference for logic alow signal
at asink or areceiver node

i nt er connect The node serves for connecting purpose only.

A circuit wherein all nodes are interconnected by either aresistance or an inductance or a voltage sourceiscalled
a DC-connected net.

The meaning of the nodetype annotation values in context of a DC-connected net isillustrated in Figure 11.

e ! DC-connected net

driver node ¢ eiveL node

DC-connected subnet DC-connected subnet

| DC—conneIcted subnet |

Figure 11—NODETYPE in context of a DC-connected net

The nodetype annotation specifies away of separating a DC-connected net into three DC-connected subnets. The
DC-connected subnet between a source node and adriver node is considered amodel of an internal interconnect
within a cell. The driver node shall be considered an output pin of the cell. The DC-connected subnet between a
receiver node and a sink node is considered a model of an internal interconnect within another cell. The receiver
node shall be considered an input pin of the cell. The DC-connected subnet between adriver node and areceiver
node is considered a model of the external interconnect between two cells. The association of an interconnect
node with either cell or with the interconnect between the cellsisinferred by the connectivity within the DC-con-
nected net. A power or a ground node which is not part of the DC-connected net is considered global.

114 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

8.13.3 NODE_CLASS annotation

A node-class annotation shall be defined as shown in Semantics 51.

KEYWORD NODE _CLASS = annotation {
CONTEXT = NODE;

}

SEMANTI CS NODE_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 51—NODE_CLASS annotation

Theidentifier shall refer to the name of a declared class.

The purpose of the node-class annotation is to associate a node with a cell in the case where an association can
not be inferred by the connectivity within a DC-connected net.

Example:

W RE Crosst al kAcr ossPower Dorai ns {
CLASS aggressor { USAGE = NODE CLASS; }
CLASS victim{ USAGE = NODE CLASS; }
NCDE vdd1l { NODETYPE power; NODE_CLASS
NODE driverl { NODETYPE = driver; NODE_CLASS
NCDE vdd2 { NODETYPE power; NODE_CLASS
NODE driver2 { NODETYPE = driver; NODE_CLASS

/1 put electrical conponents here

/1 put crosstal k nodel here

}

aggressor; }
aggressor; }
victim }
victim }

The node declarations in this example provide a context for a crosstalk model, where the noise magnitude at the
victim’s driver node can depend on the supply voltage at the aggressor’s power node, the supply voltage at the
victim’s power node, the signal characteristics at the aggressor’s driver node and other parameters. The crosstalk
model itself is not shown here.

8.14 VECTOR declaration

A vector shall be declared as shown in Syntax 54.

vector ::=
VECTOR control_expression ;
|[VECTOR control_expression { { vector_item} }
| vector_template_instantiation
vector_item ::=
all_purpose_item
| wire_instantiation

Syntax 54—VECTOR statement

Copyright © 2003 IEEE. All rights reserved. 115
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The purpose of avector isto provide a context for electrical characterization data or for functional test data. The
control expression (see 9.4) shall specify a stimulus related to characterization or test.

8.15 Annotations related to a VECTOR declaration
8.15.1 VECTOR reference annotation

A vector reference annotation shall be defined as shown in Semantics 52.

KEYWORD VECTOR = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel;

}

SEMANTI CS VECTOR {
VALUETYPE = control _expression;
REFERENCETYPE = VECTOR;

}

Semantics 52—VECTOR reference annotation

The purpose of a vector reference annotation is to establish an association between a vector and an arithmetic
model (see 10.3).

8.15.2 PURPOSE annotation

A purpose annotation shall be defined as shown in Semantics 53.

KEYWORD PURPCSE = annotati on {
CONTEXT { VECTOR CLASS }
}
SEMANTI CS PURPOSE {
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

Semantics 53—PURPOSE annotation

The purpose of the purpose annotation is to specify a category for the datafound in the context of the vector. The
purpose annotation can aso be inherited from a class referenced within the context of the vector.

The values shall have the semantic meaning shown in Table 65.

Table 64—PURPOSE annotation values

Annotation value Description
bi st The vector contains data related to built-in self test
t est The vector contains data related to test requiring external circuitry.
timng The vector contains an arithmetic model related to timing cal culation (see
from 10.11.1t0 10.11.11)
116 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

Table 64—PURPOSE annotation values (Continued)

IEEE P1603/D9, July 2003

Annotation value Description
power The vector contains an arithmetic model related to power calculation (see
10.11.15)
noi se The vector contains an arithmetic model related to noise calculation (see
10.11.14)
reliability The vector contains an arithmetic model related to reliability calculation

(see 10.11.1 and 10.11.2)

8.15.3 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 54.

KEYWORD OPERATI ON = singl e_val ue_annot ati on {
CONTEXT = VECTOR;
}
SEMANTI CS OPERATI ON {
VALUETYPE = identifier;
VALUES {
read wite read_modify wite refresh | oad
start end iddg

}
}

The purpose of the operation annotation is to associate amode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This association can be used by an application for test vector gener-

Semantics 54—OPERATION annotation

ation or test vector verification.

The values shall have the semantic meaning shown in Table 65.

Table 65—OPERATION annotation values

Annotation value Description

read Read operation at one address of a memory.

wite Write operation at one address of a memory

read nodify wite Read followed by write of different value at same address of a
memory

start First operation within a sequence of operations required in a
particular mode.

end Last operation within a sequence of operations required in a

particular mode.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Table 65—0OPERATION annotation values (Continued)

Annotation value Description
refresh Operation required to maintain the contents of the memory
without modifying it.
| oad Operation for supplying datato a control register.
i ddg Operation for supply current measurements in quiescent state.

8.15.4 LABEL annotation

A label annotation shall be defined as shown in Semantics 55.

KEYWORD LABEL = singl e_val ue_annotation {
CONTEXT = VECTOR;
}

SEMANTI CS LABEL ({
VALUETYPE = string val ue;

}

Semantics 55—LABEL annotation

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of avector (see 10.11.3) and an annotated delay within an SDF file (see |IEEE Std 1497-2001)
can be established, since the SDF standard also supports a LABEL statement.

8.15.5 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 56.

KEYWORD EXI STENCE_CONDI TI ON = si ngl e_val ue_annot ation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS EXI STENCE_CONDI Tl ON {
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1;

}

Semantics 56—EXISTENCE_CONDITION annotation

The purpose of the existence-condition isto define a necessary and sufficient condition for avector to be relevant
for an application. This condition can also be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition eval uates Fal se.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic evaluation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated asiif it were a co-factor of the control expression.

118 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

8.15.6 EXISTENCE_CLASS annotation

An existence-class annotation shall be defined as shown in Semantics 57.

KEYWORD EXI STENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS EXI STENCE_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 57—EXISTENCE_CLASS annotation

The identifier shall be the name of a declared class.

The purpose of the existence-class annotation is to provide a mechanism for selection of arelevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose isto share acommon existence-condition amongst multiple vectors.

8.15.7 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 58.

KEYWORD

CHARACTERI ZATI ON_CONDI TI ON = singl e_val ue_annotation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_CONDI TI ON {
VALUETYPE = bool ean_expr essi on;

}

Semantics 58—CHARACTERIZATION_CONDITION annotation

The purpose of the characterization-condition annotation is to specify a unique condition under which the datain
the context of the vector were characterized. The characterization condition is only applicable if the vector decla-
ration possibly in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and possibly with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

8.15.8 CHARACTERIZATION_VECTOR annotation
A characterization-vector annotation shall be defined as shown in Semantics 59.

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only apartial stimulus.

Copyright © 2003 IEEE. All rights reserved. 119
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD

CHARACTERI ZATI ON_VECTOR = si ngl e_val ue_annotati on {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_VECTOR {
VALUETYPE = control _expression;

}

Semantics 59—CHARACTERIZATION_VECTOR annotation

The characterization-vector annotation and the characterization-condition annotation shall be mutually exclusive
within the context of the same vector.

8.15.9 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 60.

KEYWORD CHARACTERI ZATI ON_CLASS = annotation {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 60—CHARACTERIZATION_CLASS annotation

Theidentifier shall be the name of a declared class.

The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-
tion data. Another purpose isto share acommon characterization-condition or a common characterizati on-vector
amongst multiple vectors.

8.15.10 MONITOR annotation

A monitor annotation shall be defined as shown in Semantics 61.

KEYWORD MONI TOR = annot ati on {
CONTEXT { VECTOR CLASS }

}

SEMANTI CS MONI TOR {
VALUETYPE = identifier;

}

Semantics 61—MONITOR annotation

The purpose of the monitor annotation isto specify aset of pin variables (see 9.3) involved in the evaluation of a
vector expression. Events on this set of pin variables need to be monitored for detection of a specified event
sequence (see 9.13.2).

120 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

8.16 LAYER declaration

A layer shall be declared as shown in Syntax 55.

layer ::=
LAYER layer_identifier ;
ILAYER layer identifier { { layer item} }
| layer_template instantiation
layer_item ::=
al_purpose_item

Syntax 55—LAYER declaration

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within alibrary or asublibrary shall reflect the order of physical creation of layers

by amanufacturing process. The layer which is created first shall be declared first. A virtual layer, i.e. alayer that
is not created by a manufacturing process, shall be declared last.

8.17 Annotations related to a LAYER declaration
8.17.1 LAYER reference annotation

A layer reference annotation shall be defined as shown in Semantics 62.

KEYWORD LAYER = annotation {

CONTEXT { arithnetic_nodel PATTERN ARRAY }
}
SEMANTI CS LAYER {

REFERENCETYPE = LAYER

}

Semantics 62—LAYER reference annotation

The purpose of a layer reference annotation is to establish an association between a layer and a pattern (see
8.29), an array (see 8.27) or an arithmetic model (see 10.3).

8.17.2 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 63.

KEYWORD LAYERTYPE = singl e_val ue_annot ation {
CONTEXT = LAYER,
}
SEMANTI CS LAYERTYPE
VALUES {
routing cut substrate dielectric reserved abstract
}
}

Semantics 63—LAYERTYPE annotation

Copyright © 2003 IEEE. All rights reserved. 121
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The values shall have the semantic meaning shown in Table 66.

Table 66—LAYERTYPE annotation values

Annotation value Description
routing Layer provides electrical connections within a plane.
cut Layer provides electrical connections between planes.
substrate Layer at the bottom.
dielectric Layer provides electrical isolation between planes.
reserved Layer isfor proprietary use only.
abstract Layer isvirtual, not manufacturable.

8.17.3 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 64.

KEYWORD PI TCH = singl e_val ue_annotation {
CONTEXT = LAYER;

}

SEMANTI CS PI TCH {
VALUETYPE = unsi gned_nunber;

}

Semantics 64—PITCH annotation

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within alayer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

8.17.4 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 65.

KEYWORD PREFERENCE = si ngl e_val ue_annotation {
CONTEXT = LAYER,

}

SEMANTI CS PREFERENCE {
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 65—PREFERENCE annotation

The purpose of the preference annotation is to specify the preferred routing direction for a routing segment on a
layer with layertype value routing (see 8.17.2).

122 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The values shall have the semantic meaning shown in Table 66.

Table 67—PREFERENCE annotation values

Annotation value Description
hori zont al Preferred routing direction is horizontal, i.e., O degrees.
verti cal Preferred routing direction isvertical, i.e., 90 degrees.
acute Preferred routing direction is 45 degrees.
obt use Preferred routing direction is 135 degrees.

8.18 VIA declaration

A via shall be declared as shown in Syntax 56.

via:=
V| A via_identifier
IVIA via_identifier { { via item} }
| via_template_instantiation
via item ;=
all_purpose_item
| pattern
| artwork

Syntax 56—VIA declaration

A viashall describe a stack of physical artwork for electrical connection between wire segments on different lay-
ers.

8.19 Annotations related to a VIA declaration
8.19.1 VIA reference annotation

A via reference annotation shall be defined as shown in Semantics 66.

KEYWORD VI A = annotation {
CONTEXT = arithnetic_nodel;

}

SEMANTI CS VI A {
REFERENCETYPE = VI A;

}

Semantics 66—VIA reference annotation

The purpose of a via reference annotation is to establish an association between a via and an arithmetic model
(see 10.3).

Copyright © 2003 IEEE. All rights reserved. 123
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

8.19.2 VIATYPE annotation

A viatype annotation shall be defined as shown in Semantics 67.

KEYWORD VI ATYPE = singl e_val ue_annotati on {
CONTEXT = VI A;
}

SEMANTI CS VI ATYPE {
VALUETYPE = identifier;
VALUES { default non_default partial _stack full_stack }
DEFAULT = defaul t;

}

Semantics 67—VIATYPE annotation

The values shall have the semantic meaning shown in Table 68.

Table 68—VIATYPE annotation values

Annotation value Description
def aul t vi a can be used per default.
non_def aul t vi a can only be used if authorized by a RULE.
partial _stack vi a contains three patterns: the lower and upper routing layer

and the cut layer in-between. This can only be used to build
stacked vias. The bottom of astack can beadef aul t or a
non_defaul t via.

full _stack vi a contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

8.20 RULE declaration

A rule shall be declared as shown in Syntax 57.

rule::=
RULE rule_identifier ;
|RULE rule identifier { { rule item} }
| rule_template_instantiation
rule_item ::=
all_purpose_item
| pattern
| region
| via_instantiation

Syntax 57—RULE statement

A rule declaration shall be used to define electrical or physical constraintsinvolving physical objects. A physical
object shall be described as a pattern (see 8.29), aregion (see 8.31), or avia instantiation (see 9.20). The electri-
cal or physical constraint shall be described as arithmetic model (see 10.3).

124 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

8.21 ANTENNA declaration

An antenna shall be declared as shown in Syntax 58.

antenna::=
ANTENNA antenna_identifier
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item :;=
all_purpose_item
| region

Syntax 58—ANTENNA declaration

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see 8.31), wherein the regions are created by physical objects. The physical objects shall be associated
with a layer (see 8.16). Within the context of an antenna declaration, arithmetic models for size (see 10.19.1),
area (see 10.19.2), perimeter (see 10.19.3) associated with a layer or with aregion can be described. The arith-
metic models can be combined, based on electrical connectivity (see 10.18.1) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be considered. An object on alayer shall only be considered electrically connected to
an object on another layer, if the connection already exists when the uppermost layer of both layers is manufac-
tured. Thisisillustrated in Figure 12.

Figure 12—Connection between layers during manufacturing

The dark objects on layer A and layer C on the left side of Figure 12 are considered connected, because the con-
nection is established through layer B which exists aready when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of Figure 12 are not considered connected,
because the connection involves layer D and E which do not yet exist when layer C is manufactured.

8.22 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 59.

Copyright © 2003 IEEE. All rights reserved. 125
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

blockage ::=
BL OCKAGE blockage identifier ;
| BLOCK AGE blockage identifier { { blockage_item} }
| blockage _template instantiation
blockage _item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 59—BLOCKAGE statement

A blockage declaration shall be used in context of acell (see 8.4) to describe apart of the physical artwork of the
cell. No short circuit shall be created between the physical artwork described by the blockage and a physical art-
work created by an application. Physical or electrical constraints involving a blockage can be described by arule
(see 8.20). A rule within the context of a blockage shall only be applicable for a physical object within the block-
agein relation to its environment. A physical object within the blockage can aso be subjected to a more general
rule, i.e. arule that is declared outside the context of the blockage.

8.23 PORT declaration

A port shall be declared as shown in Syntax 60.

port ::=
PORT port_identifier
|PORT port_identifier{ { port_item} }
| port_template_instantiation
port_item ::=
all_purpose_item
| pattern
| region
| rule
| via_instantiation

Syntax 60—PORT declaration

A port declaration shall be used in context of a scalar pin (see 8.6) to describe a part of the physical artwork of a
cell (see 8.4) provided to establish electrical connection between a pin and its environment. Physical or electrical
congtraints involving aport can be described by arule (see 8.20). A rule within the context of a port shall only be
applicable for a physical object within the port in relation to its environment. A physical object within the port
can also be subjected to amore general rule, i.e. arulethat is declared outside the context of the port.

8.24 Annotations related to a PORT declaration

8.24.1 Reference to a PORT using PIN reference annotation

The pin reference annotation (see 8.8.1) can be used to refer to the hierarchical name of a port.
8.24.2 PORTTYPE annotation

A porttype annotation shall be defined as shown in Semantics 68.

126 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD PORTTYPE = singl e _val ue_annotation {
CONTEXT = PORT;
}

SEMANTI CS PORTTYPE {
VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

Semantics 68—PORTTYPE annotation

The values shall have the semantic meaning shown in Table 69.

Table 69—PORTTYPE annotation values

Annotation value Description
ext er nal A physical port of ablock available for external connection
i nternal A physical port inside ablock

8.25 SITE declaration

A site shall be declared as shown in Syntax 61.

Site::=
SITE site identifier ;
| SI TE site identifier { { site item} }
| site_template instantiation
site_item ::=
all_purpose_item
| MIDTH_arithmetic_model
| HEIGHT _arithmetic_model

Syntax 61—SITE declaration

A site declaration shall be used to specify alegal placement location for a cell (see 8.4).

8.26 Annotations related to a SITE declaration
8.26.1 SITE reference annotation
A site reference annotation shall be defined as shown in Semantics 69.

The purpose of a site reference annotation is to establish an association between a site and a cell (see 8.4) or an
array (see 8.27). A cell or an array can inherit a site reference annotation from a class (see 7.12).

Copyright © 2003 IEEE. All rights reserved. 127
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD SI TE = annotati on {
CONTEXT { CELL ARRAY CLASS }
}
SEMANTI CS SI TE {
REFERENCETYPE = SI TE;

}

Semantics 69—SITE reference annotation
8.26.2 ORIENTATION_CLASS annotation

An orientation class annotation shall be defined as shown in Semantics 70.

KEYWORD ORI ENTATI ON_CLASS = annotation {
CONTEXT { SI TE CELL }

}

SEMANTI CS ORI ENTATI ON_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 70—ORIENTATION_CLASS annotation

The purpose of the orientation class annotation isto specify alega placement orientation for acell (see8.4) on a
site. The annotation value shall be the name of a declared class (see 7.12). The declared class can contain a geo-
metric transformation statement (see 9.18). The geometric transformation shall indicate a transformation of
coordinates from the cell as a standalone object to the cell placed on a site. The standalone cell is considered as
the original object, whereas the cell placed on a site is the transformed object.

A cell can only be placed on a site, if a matching orientation class annotation value is found within both the cell
declaration and the site declaration.

8.26.3 SYMMETRY_CLASS annotation

A symmetry class annotation shall be defined as shown in Semantics 71.

KEYWORD SYMVETRY_CLASS = nul ti _val ue_annotation {
CONTEXT = SI TE;

}

SEMANTI CS SYMVETRY_CLASS {
REFERENCETYPE = CLASS;

}

Semantics 71—SYMMETRY_CLASS annotation

The purpose of the symmetry class annotation isto specify asymmetry between legal placement orientations of a
cell (see 8.4) on asite.

A legal orientation is specified by the orientation class annotation (see 8.26.2). If there is a set of common legal
orientations for both cell and site with symmetry, the cell can be placed on the site using any orientation within
that set.

128 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Example
The site has legal orientations A and B. The cell has legal orientations A and B.
Case 1: Aand B are not symmetrical.

CLASS A { PURPOSE = ORI ENTATI ON_CLASS; }
CLASS B { PURPOSE = ORI ENTATI ON_CLASS; }
SITE nySite { ORI ENTATION CLASS { AB} }
CELL nyCell { ORIENTATION CLASS { AB} }

When the site appearsin orientation A, the cell shall be placed in orientation A. When the site appearsin orienta-
tion B, the cell shall be placed in orientation B.

Case 2: Aand B are symmetrical.
CLASS A { PURPOSE { ORI ENTATI ON_CLASS SYMVETRY_CLASS } }
CLASS B { PURPOSE { ORI ENTATI ON_CLASS SYMVETRY_CLASS } }
SITE nySite { ORI ENTATION CLASS { A B} SYMVETRY_CLASS { A B} }
CELL nyCell { ORI ENTATION CLASS { AB} }

When the site appearsin either orientation A or B, the cell can be placed in either orientation A or B.

8.27 ARRAY declaration

An array shall be declared as shown in Syntax 62.

array ;=
ARRAY array identifier
|ARRAY array identifier { { array_item} }
| array_template instantiation
array_item ::=
all_purpose_item
| geometric_transformation

Syntax 62—ARRAY declaration

An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
A geometric transformation (see 9.18) can be used to define a transformation of coordinates from a basic con-
structive element of the array to an element placed within the array. The basic constructive element is considered
the original object, whereas the element placed within the array is the transformed object.

8.28 Annotations related to an ARRAY declaration
8.28.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 72.

Copyright © 2003 IEEE. All rights reserved. 129
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD ARRAYTYPE = singl e_val ue_annot ation {
CONTEXT = ARRAY;
}
SEMANTI CS ARRAYTYPE {
VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detailed_routing }

Semantics 72—ARRAYTYPE annotation

The values shall have the semantic meaning shown in Table 70.

Table 70—ARRAYTYPE annotation values

Annotation value Description

f1 oorplan The array provides agrid for placing macrocells, i.e., cells with
celltype value can be block or core or memory.
The placement_type value shall be core.

pl acement Thearray providesagrid for placing regular cells, i.e., cellswith
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

gl obal _routing The array providesagrid for global routing.

det ai | ed_routing The array provides agrid for detailed routing.

8.28.2 LAYER reference annotation for ARRAY

A layer reference annotation in the context of an array shall be defined as shown in Semantics 73.

SEMANTI CS ARRAY. LAYER = mul ti _val ue_annot ati on;

Semantics 73—LAYER reference annotation for ARRAY

The layer reference annotation shall be applicable for an array with arraytype value detailed routing (see 8.28.1).
It shall specify alayer (see 8.16) with layertype value routing (see 8.17.2).

8.28.3 SITE reference annotation for ARRAY

A site reference annotation in the context of an array shall be defined as shown in Semantics 74.

SEMANTI CS ARRAY. SI TE = singl e_val ue_annot ati on;

Semantics 74—SITE reference annotation for ARRAY

The purpose of a site reference annotation in the context of an array is to specify the basic element from which
the array is constructed.

130 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The site reference annotation is applicable for an array with arraytype value floorplan or placement (see 8.28.1).

8.29 PATTERN declaration

A pattern shall be declared as shown in Syntax 63.

pattern ::=
PATTERN pattern_identifier
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation
pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation

Syntax 63—PATTERN declaration

The purpose of a pattern declaration is the description of a geometry formed by a physical object.

8.30 Annotations related to a PATTERN declaration
8.30.1 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in Semantics 75.

KEYWORD PATTERN = annot ation {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS PATTERN {
REFERENCETYPE = PATTERN ;

}

Semantics 75—PATTERN reference annotation

The purpose of a pattern reference annotation is to establish an association between a pattern and an arithmetic
model (see 10.3).

8.30.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 76.

KEYWORD SHAPE = singl e_val ue_annotation {
CONTEXT = PATTERN,

}

SEMANTI CS SHAPE {
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = li ne;

}

Semantics 76—SHAPE annotation

Copyright © 2003 IEEE. All rights reserved. 131
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The shape annotation applies for a pattern associated with a layer with layertype value routing (see 8.17.2).

The values shall have the semantic meaning shown in Table 71.

Table 71—SHAPE annotation values

Annotation value Description
line A routing segment in preferred routing direction.
Each end is connected with avia or with another routing segment.
jog A routing segment in non-preferred routing direction.
Each end is connected with a routing segment in preferred routing direc-
tion.
t ee An intersection point between two orthogonal routing segments.

One of the routing segments ends at the intersection.

Cross An intersection point between two orthogonal routing segments.
Both routing segments continue beyond the intersection.

cor ner An intersection point between two orthogonal routing segments.
Both routing segments end at the intersection.

end An unconnected point of an open routing segment.

The meaning of the shape annotation valuesis further illustrated in Figure 13.

E— ine 1109
—T
7

T e

Cross

corner

end

Figure 13—SHAPE annotation illustration
The shape annotation specifies whether a pattern is represented by a point or by a line. A pattern with shape
annotation value line or jog is represented by aline. A pattern with shape annotation value tee, cross, corner or
end is represented by a point.
8.30.3 VERTEX annotation
A vertex annotation shall be defined as shown in Semantics 77.

The vertex annotation applies for a pattern in conjunction with shape annotation value tee, cross, corner, or end
(see 8.30.2).

132 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD VERTEX = singl e val ue_annotation {
CONTEXT = PATTERN,
}
SEMANTI CS VERTEX {
VALUETYPE = identifier;
VALUES { round angul ar }
DEFAULT = angul ar;

}

Semantics 77—VERTEX annotation

The values shall have the semantic meaning shown in Table 72.

Table 72—VERTEX annotation values

Annotation value Description
angul ar The angle between intersecting routing segments shall be preserved.
round The angle between intersecting routing segments shall be rounded.

The meaning of the vertex annotation valuesis further illustrated in Figure 14.

VERTEX = angular VERTEX =round

Figure 14—VERTEX annotation illustration
8.30.4 ROUTE annotation

A route annotation shall be defined as shown in Semantics 78.

KEYWORD ROUTE = singl e_val ue_annotati on {
CONTEXT = PATTERN;

}

SEMANTI CS ROUTE {
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

Semantics 78—ROUTE annotation

Copyright © 2003 IEEE. All rights reserved. 133
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The route annotation applies for a pattern with shape annotation value line, jog, or tee (see 8.30.2).

The purpose of a route annotation is to specify the actual routing direction for the pattern. Thisisillustrated in
Figure 15.

pattern line tee jog
route

horizontal T
vertical 1

Figure 15—ROUTE annotation illustration
If the route annotation does not appear and a layer reference annotation (see 8.30.5) appears, the preferred rout-
ing direction specified by the preference annotation (see 8.17.4) within the layer declaration shall apply to infer
the actual routing direction. If both route annotation and layer reference annotation appear, the route annotation
shall take precedence.
8.30.5 LAYER reference annotation for PATTERN

A layer reference annotation in the context of a pattern shall be defined as shown in Semantics 79.

SEMANTI CS PATTERN. LAYER = si ngl e_val ue_annot ati on;

Semantics 79—LAYER reference annotation for PATTERN

The purpose of a layer reference annotation in the context of a pattern is to establish an association between a
pattern and a layer (see 8.16). The physical object represented by the pattern shall reside on a layer. A pattern
declaration without layer reference annotation shall be considered incompl ete.

8.31 REGION declaration
A region object shall be declared as shown in Syntax 64.

The purpose of aregion declaration is the description of a geometry. The geometry can be formed by intersection
or union of physical objects. The geometry can aso be described in abstract mathematical terms without being
associated with a particular physical object.

The specification of geometries by one or more geometric models (see 9.16) and/or by a boolean annotation (see
8.32.2) shall be additive, i.e., the region shall be considered the union of the specified geometries. If a geometric
transformation (see 9.18) is present, it shall apply to all specified geometries within the region.

134 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

region ::=
REGION region_name identifier ;
|REGION region_name_identifier{ { region_item} }
| region_template_instantiation
region_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
| BOOLEAN_single value_annotation

Syntax 64—REGION declaration

8.32 Annotations related to a REGION declaration
8.32.1 REGION reference annotation

A region reference annotation shall be defined as shown in Semantics 80.

KEYWORD REG ON = annot ati on {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS REG ON
REFERENCETYPE = REG ON ;

}

Semantics 80—PATTERN reference annotation

The purpose of a region reference annotation is to establish an association between a region and an arithmetic
model (see 10.3).

8.32.2 BOOLEAN annotation

A boolean annotation shall be defined as shown in Semantics 81.

KEYWORD BOOLEAN = si ngl e_val ue_annotati on {
CONTEXT = REG ON ;

}

SEMANTI CS BOOLEAN {
VALUETYPE = bool ean_expression ;

}

Semantics 81 —BOOLEAN annotation

The purpose of the boolean annotation is to specify a region by a boolean operation (see 9.11). The name of a
pattern (see 8.29) or the name of another region shall be considered alegal operand. The operators specified in
Table 76 and Table 81 shall be considered legal operators.

Copyright © 2003 IEEE. All rights reserved. 135
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

136

Advanced Library Format (ALF) Reference Manual

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

9. Description of functional and physical implementation

9.1 FUNCTION statement

A function statement shall be defined as shown in Syntax 65.

function ::=
FUNCTION { function_item { function_item} }
| function_template_instantiation
function_item ::=
all_purpose_item

| behavior

| structure

| statetable

Syntax 65—FUNCTION statement

The purpose of the function statement is to provide a compact specification of adigital electronic circuit imple-
mented by acell. A cell can contain at most one function statement.

The function statement can contain a behavior statement (see 9.4) or a set of one or more statetable statements
(see 9.6). The purpose of the behavior and statetable statementsis to formally specify the logic state space of the
circuit and the change in logic state as aresponse to a given stimulus.

The function statement can also contain a specification for implementation using the structure statement (see
9.5).

9.2 TEST statement

A test statement shall be defined as shown in Syntax 66.

test =
TEST { test_item { test_item} }
| test_template instantiation
test_item ::=
all_purpose_item
| behavior
| statetable

Syntax 66—TEST statement

The purpose of the test statement is to provide a compact specification of a test environment for a digital elec-
tronic circuit implemented by acell. A cell can contain at most one test statement.

The test statement can contain a behavior statement (see 9.4) or a set of one or more statetable statements (see

9.6). The purpose of the behavior and statetable statements is to formally specify the logic state space of the test
environment and the change in logic state as a response to a given stimulus.

9.3 Definition and usage of a pin variable
9.3.1 Pin variable and pin value

A pinvariable and a pin value shall be defined as shown in Syntax 67.

Copyright © 2003 IEEE. All rights reserved. 137
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

pin_variable ::=
pin_variable_identifier
pin_vaue::=
pin_variable | boolean_value

Syntax 67—~Pin variable and pin value
A pin variable shall represent one of the following:
the name of a declared pin (see 8.6) in conjunction with an optional index (see 6.6),
the name of a declared pingroup (see 8.7) in conjunction with an optional index,
the name of a declared node (see 8.12), or
the hierarchical name of a declared port (see 8.23) as a child of adeclared scalar pin.

A pin value shall be either an identifier referring to a pin variable or a boolean value (see 6.10).

A declared pin can be used as a pin variable involved in atest statement (see 9.2) or in afunction statement (see
9.1), according to its direction and view annotation value (see 9.3.3, Table 73).

9.3.2 Pin assignment

A pin assignment shall be defined as shown in Syntax 68.

pin_assignment ::=
pin_variable = pin_value ;

Syntax 68—Pin assignment

A pin assignment shall represent an association between a pin variable and a pin value. The following rules
define the compatibility between a pin variable and a pin value.

a) The bitwidth of the pin value shall be equal to the bitwidth of the pin variable.
b) A bitliteral or abased literal representing a single bit can be assigned to a scalar pin.
c) A based literal or an unsigned integer, representing a binary number can be assigned to a pingroup, to a
vector pin, or to aone-dimensional slice of amatrix pin.
9.3.3 Usage of a pin variable in the context of a FUNCTION or a TEST statement

A declared pin (see 8.6) with pintype annotation value digital (see 8.8.4) or adeclared pingroup (see 8.7) can be
used asapin variable.

A pin variable can be involved in a function statement (see 9.1) or in atest statement (see 9.2), depending on the
annotation values for direction (see 8.8.5) and view (see 8.8.3), according to Table 73.

Table 73—Annotation values for PINs involved in FUNCTION and TEST

Category DIRECTION VIEW
Input for function input functional or both
Output for function output functional or both
Bidirectional for function both functional or both
138 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

Table 73—Annotation values for PINs involved in FUNCTION and TEST (Continued)

IEEE P1603/D9, July 2003

Category DIRECTION VIEW
Internal for function none none
Input for test input none
Output for test output none
Bidirectiona for test both none
Internal for test none none

An attribute statement (see 7.5) can be used to specify arelationship between a pin variable and a particular test
method. See section 8.8.24, Table 61 for attribute values related to memory BIST.

The relationship between pin variablesinvolved in the test statement and in the function statement and the appli-
cable direction annotation values areillustrated in Figure 16.

pin variables subjected pin variables not controlled / observed
to the test algorithm by the test algorithm
input output bidirectional input output bidirectional
p| input
TEST / \ FUNCTION
tput
internal - \ / outpu intern
< > bidirectional
pin variables controlled / observed
by the test algorithm

Figure 16—Relationship between FUNCTION and TEST

The digital electronic circuit symbolized by the function box communicates with its environment. Part of its
environment is the test environment symbolized by the test box. A test algorithm, i.e., an algorithmically speci-
fied stimulus can be applied to the test environment. The test algorithm controls input variables and observes out-
put variables of the electronic circuit. In addition, the electronic circuit can have other input and output variables
which are not controlled or observed by the test algorithm. The electronic circuit and the test environment can
also have their internal variables which do not communicate with their environment.

NOTE—The direction and view annotations are defined from a circuit-centric perspective from which the test environment is
viewed as avirtual extension of the circuit.

9.4 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 69.

Copyright © 2003 IEEE. All rights reserved. 139
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

behavior ::=
BEHAVIOR { behavior_item { behavior_item} }
| behavior_template_instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template _instantiation
boolean_assignment ::=
pin_variable = boolean_expression ;
control_statement ::=
primary_control_statement { alternative_control_statement }
primary_control_statement ::=
control_expression { boolean_assignment { boolean_assignment } }
alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }
primitive_instantiation ::=
primitive_identifier [identifier] pin_value{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

Syntax 69—BEHAVIOR statement

A control statement consists of a primary control statement, optionally followed by one or more alter native con-
trol statements. A primary control statement is identified by the at character followed by a control expression.
An alternative control statement is identified by the colon character followed by a control expression. A control
expression can be either a boolean expression (see 9.9) or avector expression (see 9.12). The order of aternative
control statements shall specify the order of priority. If the main control statement does not evaluate true, the first
alternative control statement is evaluated. If an alternative control statement does not evaluate true, the next
alternative control statement is evaluated.

A boolean assignment assigns the evaluation result of a boolean expression to a pin variable (see 9.3.1). A bool-
ean assignment with a behavior statement as a parent shall be considered a continuous assignment, i.e. the bool-
ean expression is evaluated continuously.

A boolean assignment with a control statement as parent shall be considered a conditional assignment, i.e., the
boolean expression is only evaluated when the associated control expression evaluates true. When a boolean
expression is not evaluated, a pin variable shall hold its previoudly assigned value.

If the control expression is a boolean expression, the conditional assignment shall be called level-sensitive or
triggered by state. If the control expression is a vector expression, the conditional assignment shall be called
edge-sensitive or triggered by event.

A behavior itemis further subjected to the following rules.

a Aninformation flow graph involving one or more continuous assignments and/or |evel-sensitive condi-
tional assignments can not contain a loop. The usage of a pin with direction annotation value both as a
primary input and as a primary output in an information flow graph shall not be considered as a loop.

b) Aninformation flow graph involving one or more edge-sensitive conditional assignments can contain a
loop. The value of apin variable immediately before the triggering event shall be considered for evalua-
tion of aboolean expression. The evaluation result shall be assigned to a pin variable immediately after
the triggering event.

¢) Aninformation flow graph established by boolean assignments can involve an implicitly declared vari-
able, i.e, the LHS of a boolean assignment has not been declared as a pin variable. An implicitly
declared variable can only be used in the context of its parent statement. An implicitly declared variable
involved in a continuous assignment can not be used in the context of a conditional assignment and vice-
versa

140 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A primitive instantiation establishes a reference to a predefined function statement within a primitive declaration
(see 8.9). A continuous assignment of a boolean expression to a pin variable can be given by a boolean assign-
ment within the primitive instantiation, wherein the pin variable shall be a declared pin within the primitive dec-
laration. Alternatively, a continuous assignment of a pin value to a pin variable can be given by a set of pin
values, wherein the order of pin values shall correspond to the order of pin declarations within the primitive dec-
laration.

A set of predefined primitive declarationsis specified in 9.14.

9.5 STRUCTURE statement and CELL instantiation

A structure statement shall be defined as shown in Syntax 70.

structure ::=
STRUCTURE { cell_instantiation { cell_instantiation} }
| structure_template_instantiation
cell_instantiation ::=
cell_reference identifier cell_instance identifier
| cell_reference_identifier cell_instance_identifier 1 { cell_instance_pin vaue} }
| cell_reference identifier cell_instance_identifier 1 { cell_instance pin_assignment } }
| cell_instantiation_template_instantiation
cell_instance_pin_assignment ::=
cell_reference pin_variable = cell_instance pin_value;

Syntax 70—STRUCTURE statement

The purpose of astructure statement is to specify astructural implementation of acompound cell, i.e., anetlist. A
complete or a partial netlist can be specified. A component of anetlist can be acell or aprimitive.

NOTE—A structure statement is intended to be complementary to a behavior or a statetable statement. An application that
requires knowledge of the functional behavior of a cell, for example a synthesis application, is expected to comprehend the
behavior statement rather than to infer the functional behavior from the structure statement.

A cell instantiation shall specify the mapping between a cell reference and a cell instance within the structure
statement. The mapping shall be established either by order or by name.

Mapping by order shall be established using a pin value (see 9.3.1) associated with the cell instance. A corre-
sponding pin variable associated with the cell reference shall be inferred by the order of pin declarations within
the cell reference.

Mapping by name shall be established using a pin assignment (see 9.3.2). The left-hand side of the pin assign-
ment shall represent a pin variable associated with the cell reference. The right-hand side of the pin assignment
shall represent a pin value associated with the cell instance.

9.6 STATETABLE statement
A statetable statement shall be defined as shown in Syntax 71.

A statetable shall specify the state of a set of output pin variables dependent on the state of a set of input pin vari-
ables. Sequentia behavior, i.e., next state as afunction of previous state shall be modeled by a pin variable which
appears both as input and output pin variable within the statetable header. A pin variable with direction annota-
tion value both can also appear asinput and output pin variable within the statetable header. However, the state of
the output pin variable does not depend on the state of the corresponding input pin variable, unless there is
sequentia behavior.

Copyright © 2003 IEEE. All rights reserved. 141
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

statetable ::=
STATETABLE [identifier]
{ statetable_header statetable row { statetable row } }

| statetable template instantiation
statetable_header ::=

input_pin_variable{ input_pin_variable} . output_pin_variable{ output_pin variable} ,
statetable row ::=

statetable_control_values . statetable data values,
statetable_control_values ::=

statetable_control_value { statetable_control_value }
statetable_control_value ::=

boolean_value

| symbolic_bit_literal

| edge value
statetable_data values::=

statetable_data value { statetable data value}
statetable_data value::=

boolean_value

[([!]input_pin variable)
| ([~ input_pin_variable)

Syntax 71—STATETABLE statement

In each statetable row, a statetable control value shall be associated with a particular input pin variable, and a
statetable data value shall be associated with a particular output variable. The association is given by the position
at which the pin variables appear in the header. Each statetable row shall have the same number of items as the
statetable header. The delimiting colon in each statetable row shall be in the same position as in the statetable
header.

A statetable control value shal be compatible with the datatype of the corresponding input pin variable. A
statetable data value shall be compatible with the datatype of the corresponding output pin variable. Aninput pin
variable enclosed by parentheses shall specify that the value of the input pin variable be assigned to the output
pin variable. Such input pin variable need not appear in the statetable header. A preceding exclamation mark
shall indicate that the logically inverted value be assigned to the output variable. A preceding tilde shall indicate
that the bitwise inverted value be assigned to the output variable.

It shall be the responsibility of the ALF parser to check for a consistent format of the statetable. It shall be the
responsibility of the application to check for complete and consistent contents of the statetable.

9.7 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 72.

non_scan cell ::=
"NON_SCAN_ CELL = non_scan_cell_reference
INON_SCAN_CELL { non scan cell_reference { non_scan_cell_reference} }
| non_scan_cell_template_instantiation
non_scan_cell_reference ::=
non_scan_cell_identifier{ { scan_cell_pin_identifier } }
| non_scan_cell_identifier 1 { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }

Syntax 72—NON_SCAN_CELL statement

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
non-scan cell reference within the non-scan cell statement specifies a cell that is functionally equivalent to the

142 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

scan cell, if the extrapins are not used. The cell without extra pinsisreferred to as non-scan cell. The name of the
non-scan cell is given by the non-scan cdll identifier.

The pin mapping is given either by order or by name. In case of pin mapping by order, the pin values shall refer
to pin names of the scan cell. The order of the pin values corresponds to the pin declarations within the non-scan
cell. In case of pin mapping by name, the pin names of the non-scan cell shall appear at the left-hand side, and the
pin names of the scan cell shall appear at the right-hand side.

Example

/1 declaration of a non-scan cell
CELL myNonScanFl op {
PIN D { DI RECTI ON=i nput; SI GNALTYPE=data; }
PIN C { DI RECTI ON=i nput; SI GNALTYPE=cl ock; POLARI TY=ri si ng_edge; }
PIN Q { DI RECTI ON=out put; SI GNALTYPE=data; }
}
/1 declaration of a scan cell
CELL myScanFl op {
PI N CK { DI RECTI ON=i nput; SI GNALTYPE=cl ock; }
PIN DI { DI RECTI ON=i nput; SIGNALTYPE=dat a; }
PIN SI { DI RECTI ON=i nput; SI GNALTYPE=scan_data; }
PI N SE { DI RECTI ON=i nput; SI GNALTYPE=scan_enabl e; PCOLARI TY=hi gh; }
PI'N DO { DI RECTI ON=out put; SI GNALTYPE=dat a; }
/1 put NON_SCAN CELL statenent here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN CELL { nyNonScanFlop { DI CK DO} }
/1 correspondi ng pins by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN CELL { nmyNonScanFlop { @&DO D=Di; C=CK; } }

9.8 RANGE statement

A range statement shall be defined as shown in Syntax 73.

range ::=
%QANGE { index_value : index_value }

Syntax 73—RANGE statement

The range statement shall be used to specify a valid address space for elements of a vector pin or a matrix pin
(see 8.6) or a vector pingroup (see 8.7). In case of amatrix pin, the range shall pertain to the second multi-index
(see 8.6, Syntax 49).

If no range statement is specified, the valid address space A is given by the following mathematical relationship:

0<A<2°-1 B:[lﬂL—iR if(i>ir)
T+ig—i, if(i <ig)

Copyright © 2003 IEEE. All rights reserved. 143
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

where
Aisan unsigned integer representing the address space within a vector-pin or a matrix-pin,
B is the bitwidth of the vector-pin or the matrix-pin,
i istheleft index within the vector-pin or the matrix-pin,
iristheright index bit within the vector-pin or the matrix-pin,
in accordance with 6.6.

The index values within a range statement shall be bound by the address space A, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] nmyVectorPin { RANGE { 3 : 13} }

bitwidth: B=4
default address space: 0<A<15
address space defined by range statement: 3<A<13

End of example

9.9 Boolean expression

A boolean expression shall be defined as shown in Syntax 74.

boolean_expression ::=
(‘boolean_expression)

| boolean_value

| identifier

| boolean_unary_operator boolean_expression

| boolean_expression boolean_binary_operator boolean_expression

| boolean_expression ? boolean_expression : boolean_expression
boolean_unary_operator ::=

D~ & 1~& || |~ 1™ 1~
boolean_binary_operator ::=
& 1&& ~& | ||| 1~ 1" [

| relational_operator
| arithmetic_operator
| shift_operator

Syntax 74—Boolean expression

The purpose of aboolean expression isto specify aboolean operation (see 9.11). The evaluation result of abool-
ean expression shall be a boolean value (see 6.10, 9.10).

A legal operand in a boolean expression shall be a boolean value (see 6.10) or an identifier (see 6.13) represent-
ing a boolean value. In case of a comparison operation (see 9.11.6), alegal operand can also be a number (see
6.5) or astring value (see 6.15).

A legal operator in a boolean expression shall be a boolean unary operator, a boolean binary operator, an arith-
metic operator for integer arithmetic operation (see 6.4.1, 9.11.4), arelational operator for comparison opera-

144 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

tion (see 6.4.3, 9.11.6), a shift operator for shift operation (see 6.4.4, 9.11.5), or a combination of a question
mark and a colon defining a conditional operation (see 9.11.3).

The precedence of operators in a boolean expression shall be from the strongest to the weakest in the following
order:

a) boolean operation enclosed by parentheses, i.e., ()

b) bitwise operation using aboolean unary operator, i.e., ~, &, ~&, |, ~|, *, ~ (see9.11.2)
c) logical inversion,i.e,! (see9.11.1)

d) shift i.e, <<, >> (see9.11.5)

€) comparison,i.e, ==, 1= > < >= <= (see9.11.6)

f) bitwise xor, xnor using a boolean binary operator, i.e., ™, ~* (see9.11.2)
g) multiply, divide, modulus, i.e., *,/, % (see9.11.4)

h) bitwise and, nand using a boolean binary operator, i.e., &, ~& (see9.11.2)
i) logical and,i.e, & & (see9.11.1)

j) add, subtract, i.e, +, - (see9.11.4)

k) bitwiseor, nor using aboolean binary operator, i.e., |, ~| (see9.11.2)

l) logical or,i.e, || (see9.11.1)

m) delimiter for conditional operation, i.e., ?, . (see9.11.3)

When operators of the same precedence are subsequently encountered in a boolean expression, the evaluation
shall proceed from the left to the right.

9.10 Boolean value system

9.10.1 Scalar boolean value

A scalar boolean value shall be described by an alphanumerical bit literal (see 6.8). A scalar boolean value shall
represent a logical value and optionally a drive strength. The set of logical values shall be false, true and

unknown. The set of drive strengths shall be strong, weak, and zero. The symbols used for scalar boolean values
and their meaning shall be defined as shown in Table 74.

Table 74—Scalar boolean values

. . Symbol for value
Symbol Logical value Drive strength in 3-value system Comment

0 false strong 0 Use when logical valueis defined and
drive strength is strong or not defined.

1 true strong 1

Xorx unknown strong Xorx

Lorl false weak 0 Use for modeling a bus holder, apull up
or apull down device.

Horh true wesk 1

Wor w unknown wesk Xorx

Zorz not defined zero Xorx Use for high impedance.

Uoru not defined not defined Xorx Use for uninitialized signal in simulation.

A boolean expression (see 9.9) can evaluate to a scalar boolean value represented by an al phanumeric bit literal.
For evaluation of a boolean expression, a scalar boolean value shall be reduced to avalue 0, 1, or X withina 3-

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

145

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

value system, unless an alphabetic bit literal (L, H, W, Z, U) is explicitly specified as evaluation result in the
boolean expression.

9.10.2 Vectorized boolean value
A vectorized boolean value shall be described either by abased literal (see 6.9) or by an integer (see6.5). A vec-
torized boolean value can be mapped into a vector of alphanumeric bit literals (see 6.8). The number of bit liter-

asshall be called bitwidth.

An octal digit (see 6.9) can be mapped into a three bit vector of bit literals, by numerically converting a number
in octal base to anumber in binary base.

A hexadecimal digit (see 6.9) can be mapped into a four bit vector of bit literals, by numerically converting a
number in hexadecimal base to a number in binary base. The uppercase |etters A through F or the corresponding
lowercase |etters a through f shall be used to represent the decimal numbers 10 through 15.
An alphabetic bit literal (see 6.8) shall be mapped according to the following rules.
a) Anaphabetic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit
literal in binary base.

b) An alphabetic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the
same bit literal in binary base.

Example

' 02xwou isequivalent to' b010_xxx_ww_000_uuu
"hLux isequivalent to' bLLLL_uuuu_xxxx

End of example

An integer can be represented by a vector of bit literals, according to the following mathematical relationship:

B-1

unsigned integer N = Y s(p) P
p=0
B-2

signed integer N =3 s(p) 2P -s(B-1)2°*
p=0

where
N isthe integer.

B is the bitwidth of the vector of bit literals.

p isthe position of a bit within the vector, counted from O to B-1.
s(p) isthe scalar value (zero or one) of the bit at position p.
s(B-1) isthe scalar value (zero or one) of the bit at position B-1.

The bitwidth B of avectorized boolean variable restricts the range of a corresponding integer N as follows:

unsigned integer 0<N<2°_1
signed integer 2P taN<2®
146 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A vector pin (see 8.6) can be used as a pin variable holding a vectorized boolean value. The position of a bitis
related to an index within the pin declaration as follows:

. [i—ip (i, >ig)
ig—i if(i <ig)
where

i isthe index within a vector pin.
iR is the right-most index within avector pin. The corresponding positionis 0.
i_ istheleft-most index within avector pin. The corresponding position is B-1.

Example:

PIN [5:8] pinl;
PIN [7:4] pinz;

bit[index] bit[index] position
pi n1[5] pi n2[7] 3
pi n1[6] pi n2[6] 2
pi n1[7] pi n2[5] 1
pi n1[8] pi n2[4] 0

End of example
9.10.3 Non-assignable boolean value

A non-assignable boolean value shall be described by a symbalic bit literal (see 6.8), as shown in Table 75.

Table 75—Symbolic boolean values

Symbol Logical value Drive strength Comment
? arbitrary, yet constant arbitrary use for “don’'t care”
* subject to random change | arbitrary variable is not monitored

A symbolic bit literal or a based literal (see 6.9) containing a symbolic bit literal can not be assigned to a pin
variable as aboolean value. A symbolic bit literal can be used within a statetable (see 9.6) as a statetable control
value, but not as a statetable data value.

When being part of avectorized boolean value, a symbolic bit literal shall be mapped according to the following
rules.

a) A symboalic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit lit-
eral in binary base.

b) A symbolic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the same
bit literal in binary base.

Copyright © 2003 IEEE. All rights reserved. 147
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

9.11 Boolean operations and operators

9.11.1 Logical operation

The operators for alogical operation shall be defined as shown in Table 76.

Table 76—Logical operations

Advanced Library Format (ALF) Reference Manual

Operator Description
| logical inversion
& & logical and
|| logical or

A logical inversion shall be evaluated within the 3-value system according to Table 77.

A logical and or alogical or shall be evaluated within the 3-val ue system according to Table 78.

148

Table 77—Evaluation

of logical inversion

A TA
false true
true false
unknown unknown

Table 78—Evaluation of logical AND and logical OR

A B A&& B Al B
false false false false
true false false true
unknown false fase unknown
false true false true
true true true true
unknown true unknown true
false unknown fase unknown
true unknown unknown true
unknown unknown unknown unknown

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

If an alphabetic bit literal isused as operand, only the logical value, not the drive strength, shall be considered for
evaluation. An undefined logical value within an operand shall be considered unknown.

9.11.2 Bitwise operation

The operators for a bitwise operation shall be defined as shown in Table 79.

Table 79—Bitwise operations

Operator Description

~ bit-wise inversion

& bit-wise and

| bit-wise or

A bit-wise exclusive or (xor)

~& bit-wise and with inversion (nand)

~| bit-wise or with inversion (nor)

~N bit-wise exclusive or with inversion (xnor)

A bit-wise operation is defined as a repeated single-bit operation to al bits of the operand. The operators for bit-
wise operations, except bit-wise inversion, can be used as boolean unary or as boolean binary operators.

A bit-wise inversion operator shall apply alogical inversion (see Table 77) to each bit of a vectorized boolean
value. Theresult shall be avectorized boolean value containing the inverted hits.

A bit-wise boolean binary operator for one of the operations and, or, nand, nor, xor, xnor shall apply asingle-bit
operation to each corresponding bit of two vectorized boolean values. The operands shall be aligned to the right-
most hit. If the operands have different bitwidths, the missing bits of the operand with smaller bitwidth shall be
not defined, i.e., represented by the symbol ‘U’. If at least one operand is a vectorized boolean value, the result
shall be a vectorized boolean value. If both operands are scalar boolean values, the result shall be a scalar bool-
ean value.

The single-hit operation or and the single-bit operation and, respectively, shall be defined in the same way as the
logical operation or and the logical operation and, respectively (see Table 78).

isequivalentto A && B for single bit operands

A&
A | isequivalentto A || B for single bit operands

B
B
The single-bit operation nor and the single-bit operation nand, respectively, shall be defined by applying alogi-
cal inversion to the result of the logical operation or and the logical operation and, respectively.

A ~& B isequivaentto ! (A && B) for single bit operands
A ~| B isequivaentto ! (A || B) forsinglebit operands

Copyright © 2003 IEEE. All rights reserved. 149
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The single-bit operations xor and xnor shall be defined according to Table 80.

Table 80—Evaluation of single-bit XOR and XNOR

A B A"B A-"B
fase false false true
true false true false
unknown false unknown unknown
fase true true false
true true false true
unknown true unknown unknown
fase unknown unknown unknown
true unknown unknown unknown
unknown unknown unknown unknown

A boolean unary operator for the operation and, or, xor, respectively, shall reduce a vectorized boolean value to
ascalar boolean value by applying a single-bit operation and, or, xor, respectively, to all bits of the operand com-
bined.

& V[3:1] isequivdentto V[3] && V[2] && V[1]
| V[3:1] isequivdentto V[3] || V[2] || M 1]
A \V[3:1] isequivalentto V[3] A V[2] A V[1]

A boolean unary operator for the operation nand, nor, xnor, respectively, shall apply a logical inversion to the
result of the operation and, or, xor, respectively.

~& V isequivadentto ! (& V)
~| V isequivdentto ! (| V)
~N V isequivaentto ! (~ V)

A vectorized boolean value can be used as operand for alogical operation. For this purpose, the vectorized bool-
ean value shall be reduced to a scalar boolean value by applying the bit-wise boolean unary operation or.

I (V) isequivaentto (] V)
A && V isequivaentto A && (| V)
V || B isequivaentto (| V) || B

NOTE—A and B stand for scalar boolean values, V stands for a vectorized boolean value.

150 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

9.11.3 Conditional operation

The evaluation of a boolean expression (see 9.9), avector expression (see 9.12), or an arithmetic expression (see
10.1) involving the symbols shown in Table 81 shall be called a conditional operation.

Table 81—Conditional operation

Symbol Description

? delimiter between if-clause and then-clause

delimiter between then-clause and else-clause

The boolean expression to the left of the question mark shall be called if-clause. The expression, i.e., a boolean
expression or a vector expression or an arithmetic expression, to the right of the question mark shall be called
then-clause. The expression to the right of the colon shall be called else-clause.

If the if-clause evaluates true, the then-clause shall be evaluated. Otherwise, the else-clause shall be evaluated.

NOTE—The else-clause within a conditional operation can represent a conditional operation in itself. Thus nested condi-
tional operations can be described, wherein the evaluation of clauses proceeds from the left to the right.

9.11.4 Integer arithmetic operation

The operators for an integer arithmetic operation shall be defined as shown in Table 82.

Table 82—Integer arithmetic operation

Operator Description
+ add
- subtract
* multiply
/ divide
% modulus

All operations involving the operators in Table 82 shall be integer operations. A legal operand shall be either an
integer or aboolean value that is converted into an integer.

A scalar boolean value (see 9.10.1) represented as a bit literal (see 6.8) shall be converted into an unsigned inte-
ger.

A vectorized boolean value (see 9.10.2) represented as a based literal (see 6.9) shall be converted into an
unsigned integer or into a signed integer. The conversion shall depend on the datatype annotation value (see
8.8.10) of the pin variable associated with the operand.

Copyright © 2003 IEEE. All rights reserved. 151
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The application shall be responsible for handling exceptions. Exceptions include the following cases:
— integer conversion of a boolean value involving the logical value unknown,
— the operation division and modulus involving a second operand with value zero,
— any evaluation results that do not fit the bitwidth of the pin variable which the result is assigned to, i.e.,
overflow or underflow.
9.11.5 Shift operation

The operators for a shift operation shall be defined as shown in Table 83

Table 83—Shift operation

Operator Description

<< shift left

>> shift right

A shift operation shall involve two operands. The first operand shall be a vectorized boolean value (see 9.10.2),
represented by an integer (see 6.5), by abased literal (see 6.9), or, asatrivial case, by abit literal (see 6.8). The
second operand shall be an unsigned integer (see 6.5), specifying the number of positions N by which the bits of
the first operand are to be shifted.

For shift left, N bits of the first operand, starting from the right, shall be replaced with the logical value unknown.
For shift right, N bits of the first operand, starting from the left, shall be replaced with the logical value unknown.

9.11.6 Comparison operation

A comparison operation shall be defined as a humerical comparison, alogical comparison or a string compari-
son. The evaluation result shall be true, false or unknown.

The operators for anumerical comparison shall be defined as shown in Table 84.

Table 84—Numerical comparison

Operator Description
== equal
1= not equal
> greater
< lesser
>= greater or equal
<= lesser or equal
152 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

A legal operand for anumerical comparison shall be a number (see 6.5) or aboolean value that can be interpreted

as an integer according to 9.10.2.

The operators for alogical comparison shall be defined as shown in Table 85.

Table 85—Logical comparison

IEEE P1603/D9, July 2003

Operator Description comment
~N equa in logical value, also called xnor symbols from Table 76 are
overloaded
N not equal in logical value, also called xor
== equal in logical value and drive strength symbols from Table 84 are
overloaded
1= not equal in logical value and drive strength

A legal operand for alogical comparison shall be a scalar boolean value (see 9.10.1, Table 74).

The operations equal in logical value and not equal in logical value shall be evaluated as specified for the single-

bit operations xnor and xor in Table 80.

The operations equal in logical value and drive strength and not equal in logical value and drive strength shall

be evaluated according to Table 86.

Table 86—Evaluation of logical comparison involving drive strength

L ogical value of operands A and B Drive strength of operands A and B Result for Result for

(true, false, unknown, or not defined) (strong, weak, zero, or not defined) A== Al=B

Same for both operands. Same for both operands. true false

Same for both operands. Different for each operand. fase true

Different for each operand. Any. fase true
Example

‘b0 ~" ‘ bL evauatestrue

‘b0 == * bL evaluatesfalse

‘bl ~" ‘ bH evauatestrue

‘bl == * bH evaluatesfalse

“bX ~" * bW evaluates unknown

‘bX == * bW evaluatesfalse

‘bZ ~~ * bZ evauatesunknown

‘bZ == * bZ evauatestrue
End of example

Copyright © 2003 IEEE. All rights reserved. 153

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The operators for a string comparison shall be defined as shown in Table 87.

Table 87—String comparison

Operator Description comment
== string values are equal symbols from Table 84 are
overloaded

1= string values are different

A legal operand for a string comparison shall be a string value (see 6.15). If at least one operand is a quoted
string (see 6.14), the comparison shall be case-sensitive. Otherwise, the comparison shall be case-insensitive. If
an operand is an identifier (see 6.13) representing a constant or a variable holding a string value, the comparison
shall apply to the string value rather than to the identifier.

9.12 Vector expression and control expression

A vector expression and a control expression shall be defined as shown in Syntax 75.

vector_expression ::=
vector_expression)
| single_event
| vector_expression vector_operator vector_expression
| boolean_expression ? vector_expression © vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro
single_event ::=
edge_literal boolean_expression
vector_operator ::=
event_operator | event_and | event_or
event_and ::=
&1&&
event_or ;=

|

control_and ::=
& 1&&
control_expression ::=
vector_expression)
| (boolean_expression

Syntax 75—Vector expression and control expression

The purpose of a control expression is to specify the ALF name of a declared vector (see 8.14), a control state-
ment within a behavior statement (see 9.4), or an annotation with valuetype control expression (see 7.11.1).

The purpose of a vector expression is to specify a pattern of events. A vector expression shall be satisfied when
the pattern of events specified within the vector expression matches an actually realized pattern of events within
an application context.

A lega operand for a vector expression shall be a single event (see 9.13.1) or a vector expression macro (see
6.17).

154 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A legal operator for a vector expression shall be an event operator (see 6.4.5), i.e., an event-segquence operator
(see 9.13.2, 9.13.3) or an event-permutation operator (see 9.13.3), an event-and (see 9.13.2), an event-or (see
9.13.3), acontrol-and (see 9.13.5), or a combination of a question mark and a colon defining a conditional oper-
ation (see 9.11.3).

The precedence of operatorsinvolved in avector expression shall be from the strongest to the weakest in the fol-
lowing order:

@ boolean operation enclosed by parentheses, i.e., (,)

b) edgeliteral (see6.12, 9.13.1)

C) event permutation operators, i.e., <~>, <->, <& > (see 9.13.3)

d) event-and operator and control-and operator, i.e., & , & & (see 9.13.2, 9.13.5)
€) event sequence operators, i.e., ~>, ->, & > (see 9.13.2, 9.13.3)

f) event-or operator, i.e., |, || (see9.13.3)

g) delimiter for conditional operation, i.e., ?, . (see9.11.3, 9.13.5)

When operators of the same precedence are subsequently encountered in avector expression, the evaluation shall
proceed from the left to the right.

9.13 Specification of a pattern of events

9.13.1 Specification of a single event

In order to evaluate a vector expression (see 9.12) against an actually realized pattern of events, a set of variables
shall be observed for atemporal change of their value (see 9.13.4). A change of value within one observed vari-
able shall be called asingle event. An edge literal (see 6.12) shall be used as unary operator to specify the pattern
of asingle event. The operand, i.e., the variable subjected to the change of value, shall be a boolean expression
(see9.9).

A single event shall be interpreted according to Table 88.

Table 88—Specification of a single event

Row Edgeliteral Event on operand

1 first_bit_literal second bit_literal value changes from first_bit_literal to second_bit_literal

2 first_based literal second_based _literal | value changesfrom first_based literal to second based literal

”? vaue before and after the changeis arbitrary
4 * value is random after the change
5 *9 value is random before the change
6 ?! value changes from any value to a different value
7 ?~ every binary digit changes from any value to a different value
8 ?- value does not change

An edge literal consisting of two consecutive alphanumerical bit literals (row 1) can be used for a scalar operand.
An edge literal consisting of two consecutive based literals (row 2) can be used for a scalar operand or for avec-
torized operand, as long as the bitwidth of the operator is compatible with the bitwidth of the operand. An edge

Copyright © 2003 IEEE. All rights reserved. 155
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

literal consisting of two consecutive symbolic bit literals (row 3, 4, 5) can be used for either a scalar or a vector-
ized operand. A symbolic edge literal (row 6, 7, 8) can be used for either a scalar or a vectorized operand.

The edge literal in row 8 specifies the same value before and after the event. Such a specification shall be inter-
preted as event by exclusion, i.e., a change of value does not happen on the operand but on another observed
variable.

An arbitrary value in row 3, 6, and 7 shall be comprised within the set of applicable values for the operand, i.e.,
ascalar operand or abinary digit of avectorized operand can have a value specified by an aphanumerical bit lit-
eral, an operand with datatype unsigned can have an arbitrary unsigned integer value within the range of speci-
fied bitwidth, an operand with datatype signed can have an arbitrary signed integer value within the range of
specified bitwidth.

A randomvaluein row 4 and 5 shall beinterpreted as avalue subjected to random change. The random changeis
not monitored.

The usage of an edge literal for specification of asingle event isillustrated by the timing diagram in Figure 17.

edge literal corresponding timing diagram
|
01 |
|

‘d5'd9 value=5 >|< value=9

?7? >|<
2 >|<

event occurrence time

Figure 17—Timing diagram for single events

NOTE—The specification of asingle event does not imply any transition time. The transition time in Figure 17 isonly for the
purpose of illustrating the difference between ?? and ?!.

NOTE—The operator ?? can be called a neutral operator, since a specified single event involving ?? on an arbitrary operand
always matches a single event on any operand. A single event involving the neutral operator can be caled a neutral single
event.

9.13.2 Specification of a compound event

A pattern of events involving one or more single events shall be called a compound event. A pattern of events
involving more than one single event shall be called atruly compound event. A pattern of events involving only
one single event shall be called a degenerate compound event.

156 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The operatorsin Table 89 shall be used for specification of atruly compound event.

Table 89—Operators for specification of a compound event

Operator Description
~> The event to the left is eventually followed by the event to the right
-> The event to the left isimmediately followed by the event to the right
&& or & The event to the left and the event to the right occur at the same time

The purpose of said operators is to specify atemporal relation between two single events A and B within a truly
compound event C.

— (A~>B) meansthat A occurs before B.

— (A->B) means that (A~>B) is satisfied and there exists no single event O that could satisfy both (A~>0)
and (O~>B).

— (A&B) meansthat both A and B occur, but neither (A~>B) nor (B~>A) is satisfied.

In order to extend the applicability of said operators to compound events, the earliest and latest events are
defined as follows:

— A single event A within C shall be called earliest event within C, if there exists no single event O within
C that could satisfy (O~>A).

— A single event B within C shall be called latest event within C, if there exists no single event O within C
that could satisfy (B~>O).

— Within adegenerate compound event, the single event shall be called both earliest and latest event.

NOTE—A truly compound event can have more than one earliest or latest event, since events can occur at the same time.

Using these definitions, said operators shall specify atemporal relation between two compound events C and D
asfollows:

— (C~>D) meansthat the latest event within C occurs before the earliest event within D.
— (C->D) meansthat (C~>D) is satisfied and there exists no single event O that could satisfy both (C~>0)
and (O~>D).
— (C&D) meansthat both C and D are satisfied and the latest events within C and D occur at the same time.
9.13.3 Specification of a compound event with alternatives

A vector expression that satisfies more than one pattern of events shall be called a compound event with alterna-
tives.

The operators in Table 90 shall be used for specification of a compound event with alternatives.

Table 90—Operators for specification of a compound event with alternatives

Operator Description

|| or | The vector expression is satisfied if the compound event to the left or the compound event to the
right occurs.

Copyright © 2003 IEEE. All rights reserved. 157
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Table 90—Operators for specification of a compound event with alternatives

Operator Description

&> The vector expression (C& >D) is equivalent to (C& D | C->D), wherein C and D are compound
events.

A particular case of a compound event with alternatives is a permutation of compound events, i.e., a vector
expression that is satisfied when the compound events occur in permutable order.

An operator that specifies occurrence of compound eventsin permutable order shall be called event permutation
operator. In contrast, an operator that specifies occurrence of compound events in a particular order shall be
called event sequence operator.

The operatorsin Table 91 shall be used for specification of a permutation of compound events.

Table 91—Operators for specification of permutations of compound events

Evmggggt]g:ation Description Correspontzl)i;egr;/;nt sequence
<> (C<~>D) isequivaent to (C~>D | D~>C) ~> (see Table 89)
<> (C<->D) isequivaent to (C->D | D->C) -> (see Table 89)
<&> (C<&>D)isequivaentto (C&>D |D&>C) | &> (see Table 90)

Permutation of more than two compound events shall be defined as follows:
A vector expression wherein

a) al operands are related to each other by the same event permutation operator, and,
b) each operand is bound by higher precedence than said event permutation operator,

shall be satisfied, if any permutation of the operands, related to each other by the corresponding event sequence
operator, is satisfied.

Example:
(A<&>B<&>C) isequivalent to (A&>B&>C | A&>C&>B | C&>A&>B | B& >A&>C | B&>C&>A | C&>B&>A)

wherein A, B, C denote compound events, and A, B, C do not contain operators of the same or lower precedence
than &>, unless such operators are bound within parentheses.

End of example
9.13.4 Evaluation of a specified pattern of events against a realized pattern of events
A vector expression, i.e., a specified pattern of events, shall be evaluated against an actually realized pattern of

events in an application context. The realized pattern of events shall be established according to the following
rules a) and b):

158 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

a) A primary pattern of events on aset of pin variables (see 9.3) shall be observed. The set of pin variables
shall be specified by the monitor annotation (see 8.15.10) within avector declaration (see 8.14) or by the
scope annotation (see 8.8.18) within a pin or a pingroup declaration (see 8.6, 8.7). A monitor annotation
shall take precedence over a scope annotation.

b) The primary pattern of events shall be reduced by replacing the events on the pin variables involved in
the vector expression with events on boolean expressions involved in the vector expression. The events
on any pin variables not involved in the vector expression shall be not be replaced.

Example:

The set of pin variables applicable for two vector expressionsv,and v, isA, B, C, D.
The vector expression v, reads (01 (A& B) -> 10 (B|C)).
The vector expression v, reads (1? A -> 01 (C & ! D)).

Therefore, the single eventson A, B, C and D are observed.
For evaluation of v4, the events on (A& B), (B|C) and D are observed.
For evaluation of v,, theeventson A, B and (C & ! D) are observed.

Figure 18 shows a realized pattern of events. The grey circles and bold edges indicate where the realized pattern
of events satisfies the respective vector expression v; and V.

T T T T T T T T T T T T
primary pattern of events A | | T 1 [
- — —t— I I | |
I | | | | -
—t I I | | —
D 1| [| || |
| L1 | | | | | 1 | |
reduced pattern of events o] ! ! ' P '
for evaluation of vy A&B__| A I S [
(01(A&B)->10(BIC)) pBIc T "Il | | | A I
o L |1 | | | |
| L1 | | | | | |
reduced pattern of events Pl ' o | Ll
for evaluation of v, p— | | I
(1?A ->01(C & ! D)) B i T i
C&!D | | | Y L
1 | | | | 1

Figure 18—Realized pattern of events
End of example
The occurrence time of each single event within a realized pattern of events can be interpreted as a totally
ordered set of real numbers, using the mathematical relation “lesser or equal”. It can be shown that the properties
of atotally ordered set are satisfied. The following notations are used:

A, B denote single events within arealized event pattern
t(A), t(B) denote the occurrence time of respective single events A, B within arealized event pattern

Copyright © 2003 IEEE. All rights reserved. 159
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

For reference, the following properties are required for atotally ordered set:

1) Reflexivity: t(A) < t(A)

2) Weak anti symmetry: t(A) < t(B) and t(B) < t(A) impliest(A) = t(B)

3) Transitivity: t(A) < t(B) and t(B) < t(C) implies t(A) < t(C)

4) Comparability: For any element within the set, either t(A) < t(B) or t(B) < t(A)

A specified pattern of events shall be satisfied, if each relation between single events therein is satisfied by the
realized pattern of events, according to Table 92.

Table 92—Satisfaction of a specified relation within a realized pattern of events

Specified relation Condition for satisfaction by realized pattern of events

A&>B | (seeTable90) | t(A) <t(B)

A->B | (seeTable89) | t(A) <t(B), but not t(B) <t(A), i.e, t(A) <t(B)
A->B (seeTable 89) | t(A) <t(B), and no event O exists with t(A) < t(O) < t(B)
A&&B | (seeTable89) | t(A) < t(B) and t(B) < t(A), i.e., t(A) = t(B)

A redlized pattern of events can be completely described using the relations A& & B, i.e., the single events A and B
occur at the sametime, and A->B, i.e., the single event A isimmediately followed by the single event B. In the case
of single events occurring at the same time, a distinction shall be made between at the same time by implication
and at the same time by coincidence.

NOTE—In order to evaluate the vector expression against the realized pattern of events, it is not necessary to record the
actual occurrence time of the single events. It suffices to record the relations pertinent to the ordered set.

The following rules shall apply concerning the relations between single events within a realized pattern of
events:

a) A value change of a boolean expression and a single event on a pin variable causing this value change
shall be interpreted to occur at the same time by implication.

b) A value change of avectorized pin variable and a corresponding value change of any part of the vector-
ized pin variable shall be interpreted to occur at the same time by implication.

c¢) If avaue change of a pin variable occurs as a consequence of a value change of another pin variable
within the context of abehavior statement (see 9.4), the consequence shall be interpreted to occur imme-
diately followed by the cause.

d) If the elapsed time between single events on mutually independent pin variables is measured zero, said
events can be interpreted to occur at the same time by coincidence.

€) Inthe context of adeclared vector (see 8.14), al pin variables shall be considered mutually independent,
even though a causal dependency between some pin variables can exist in the context of abehavior state-
ment. Therefore events can not occur at the same time by implication within the context of a vector.

NOTE—It is possible that an application can not determine the temporal relation between events occurring at the same time
by coincidence. Instead, the events could be represented in random order with the temporal relation immediately followed by
each other. Therefore it is recommended to use the operator <& > to specify at the same time by coincidence and to use the
operator & & to specify at the same time by implication.

160 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Example:

A behavior statement contains the boolean assignment Z = A& B.

The single event (01 (A& B)) is caused by the single event (01 A).

The single events (01 (A& B)) and (01 A) are interpreted to occur at the same time by implication.

Within the context of the behavior statement, the single event (01 Z) isinterpreted to occur after the single event
(01 (A& B)).

Outside the context of the behavior statement, the variables A and Z are considered independent. The numerical
value of the measured propagation delay from A to Z can be greater than zero, lesser than zero, or zero. There-
fore, the single events (01 A) and (01 Z) can occur at the same time by coincidence.

End of example

9.13.5 Specification of a conditional pattern of events

A pattern of events specified within avector expression shall be called a conditional pattern of events, if the eval-
uation against the realized pattern of events is made dependent on a condition described as a boolean expression.
A conditional pattern of events shall be evaluated against the realized pattern of events only if the boolean

expression evaluates true in the realized pattern of events.

A conditional pattern of events shall be described using the control-and operator or the if-then-else construct, as
specified in Table 93.

Table 93—Specification a conditional pattern of events

Operator Description Comment
&& or& pattern of events shall be evaluated control-and uses overloaded symbol, which is also
while boolean expression is true used for logical and (see Table 76) and bitwise and
(see Table 79).
2and: if-then-else construct, see9.11.3 If-then-el se construct exists for boolean expression
(see Syntax 74), for vector expression (see Syntax 75)
and for arithmetic expression (see Syntax 81).

The order of operands within avector expression involving the control-and operator shall be free, i.e.:
(v & b) shall be equivalentto (b & v)
wherein v denotes a vector expression, and b denotes a boolean expression.

A vector expression involving the if-then-else construct can be transformed into a vector expression involving
the control-and operator, according to the following rule:

(b?vq:v,) shall beequivalentto (v; & b|v, & ! b)

wherein b denotes a boolean expression representing the if-clause, v, denotes a vector expression representing
the then-clause, and v, denotes a vector expression representing the el se-clause.

Copyright © 2003 IEEE. All rights reserved. 161
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

9.14 Predefined PRIMITIVE

This section defines the predefined primitive declarations, wherein the prefix “ALF_" isreserved for the name of

such primitives.
9.14.1 Predefined PRIMITIVE ALF_BUF

The primitive ALF_BUF shall be defined as shown in Semantics 82.

PRI M TI VE ALF_BUF {
PINin { DIRECTION = input; }

GROUP index { 1 : <bitw dth> }
FUNCTION { BEHAVIOR { out[index] = in

PIN [1: <bitwi dth>] out { DI RECTI ON = out put;

;1)

}

Semantics 82—Predefined PRIMITIVE ALF_BUF

9.14.2 Predefined PRIMITIVE ALF_NOT

The primitive ALF_NOT shall be defined as shown in Semantics 83.

PRI M TI VE ALF_NOT {
PINin { DIRECTION = input; }

GROUP index { 1 : <bitw dth> }
FUNCTI ON { BEHAVIOR { out[index] = ! i

PIN [1: <bitwi dth>] out { DI RECTI ON = out put;

n; }1}

}

Semantics 83—Predefined PRIMITIVE ALF_NOT

9.14.3 Predefined PRIMITIVE ALF_AND

The primitive ALF_AND shall be defined as shown in Semantics 84.

PRI M Tl VE ALF_AND ({
PIN out { DIRECTION = output; }

}

PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = & in ; } }

Semantics 84—Predefined PRIMITIVE ALF_AND

9.14.4 Predefined PRIMITIVE ALF_NAND

The primitive ALF_NAND shall be defined as shown in Semantics 85.

162 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

PRI M TI VE ALF_NAND {
PIN out { DI RECTION = out put;

}

}

PIN[1:<bitwidth>] in { D RECTION = input;
FUNCTION { BEHAVIOR { out = ~&in ; } }

}

Semantics 85—Predefined PRIMITIVE ALF_NAND

9.14.5 Predefined PRIMITIVE ALF_OR

The primitive ALF_OR shall be defined as shown in Semantics 86.

PRIM TI VE ALF_OR {
PIN out { DI RECTION = out put;

FUNCTI ON { BEHAVI OR { out = |
}

}

PIN[1:<bitwidth>] in { D RECTION = input;

in; }}

}

Semantics 86—Predefined PRIMITIVE ALF_OR

9.14.6 Predefined PRIMITIVE ALF_NOR

The primitive ALF_NOR shall be defined as shown in Semantics 87.

PRI M Tl VE ALF_NOR {
PIN out { DI RECTION = output;

FUNCTI ON { BEHAVIOR { out = ~|
}

}

PIN[1l:<bitwidth>] in { D RECTION = input;

in; }}

}

Semantics 87—Predefined PRIMITIVE ALF_NOR

9.14.7 Predefined PRIMITIVE ALF_XOR

The primitive ALF_XOR shall be defined as shown in Semantics 88.

PRI M Tl VE ALF_XOR {
PIN out { DI RECTION = output;

}

PI'N [1: <bi twi dt h>]

in { D RECTION = input;

FUNCTION { BEHAVIOR { out = " in

;)

}

}

Semantics 88—Predefined PRIMITIVE ALF_XOR

9.14.8 Predefined PRIMITIVE ALF_XNOR

The primitive ALF_XNOR shall be defined as shown in Semantics 89.

Copyright © 2003 IEEE. All rights reserved. 163
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Advanced Library Format (ALF) Reference Manual

PRI M TI VE ALF_XNOR {
PIN out { DI RECTION = output; }

PIN[1l:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~*in ; } }
}
Semantics 89—Predefined PRIMITIVE ALF_XNOR
9.14.9 Predefined PRIMITIVE ALF_BUFIF1
The primitive ALF_BUFIF1 shall be defined as shown in Semantics 90.
PRI M TI VE ALF_BUFI F1 {
PIN out { DI RECTION = output; }
PINin { D RECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? in: ‘bz ; } }

Semantics 90—Predefined PRIMITIVE ALF_BUFIF1

9.14.10 Predefined PRIMITIVE ALF_BUFIFO

The primitive ALF_BUFIFO shall be defined as shown in Semantics 91.

PRI M Tl VE ALF_BUFI FO {
PIN out { DI RECTION = output; }
PINin { D RECTION = input; }
PIN enable { DI RECTION = input; }

FUNCTION { BEHAVIOR { out = (! enable)? in :

‘bZ ;

b}

Semantics 91—Predefined PRIMITIVE ALF_BUFIFO

9.14.11 Predefined PRIMITIVE ALF_NOTIF1

The primitive ALF_NOTIF1 shall be defined as shown in Semantics 92.

PRI M TI VE ALF_NOTI F1 {
PIN out { DI RECTION = output; }
PINin { DI RECTION = input; }
PIN enable { DI RECTION = input; }
FUNCTI ON { BEHAVIOR { out = (enable)? !

in :

‘bZ ;

}}

Semantics 92—Predefined PRIMITIVE ALF_NOTIF1

9.14.12 Predefined PRIMITIVE ALF_NOTFIFO

The primitive ALF_NOTIFO shall be defined as shown in Semantics 93.

164 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

PRI M TI VE ALF_NOTI FO {
PIN out { DI RECTION = output; }
PINin { D RECTION = input; }
PIN enable { DI RECTION = input; }

FUNCTION { BEHAVIOR { out = (! enable)? !

in:

‘bZ ;

b}

Semantics 93—Predefined PRIMITIVE ALF_NOTIFO

9.14.13 Predefined PRIMITIVE ALF_MUX

The primitive ALF_MUX shall be defined as shown in Semantics 94.

PRIM TI VE ALF_MJX {

PIN Q { DIRECTION = output; }
PIN[1:0] D{ DIRECTION = input; }
PIN S { DIRECTION = input; }
FUNCTI ON {

BEHAVI OR {

}
}
}

Q=1!8&D0] | S&O1] | OOl & D1]

Semantics 94—Predefined PRIMITIVE ALF_MUX
9.14.14 Predefined PRIMITIVE ALF_LATCH
The primitive ALF_LATCH shall be defined as shown in Semantics 95.
9.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

The primitive ALF_FLIPFLOP shall be defined as shown in Semantics 96.

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

165

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Advanced Library Format (ALF) Reference Manual

PRI M TI VE ALF_LATCH {

PIN Q { DIRECTION = output; }
PIN QN { DI RECTI ON = output; }
PIN D { DIRECTION = input; }

PIN ENABLE { DI RECTION = input; }
PIN CLEAR { DI RECTION = input; }
PI N SET { DIRECTION = input; }

PIN Q CONFLICT { DI RECTION = input; }
PIN QN_CONFLI CT { DIRECTION = input; }
FUNCTI ON {

BEHAVI OR {

@(CLEAR && SET) {
Q= Q CONFLICT : QN = QN_CONFLI CT ;
} o (CLEAR) {

Q:O'Q\]:]_'
pooo(SET) {

Q:]_;Q\]:O;
} : (ENABLE) {

Q=D; N=1! D;

}
}
}
}

Semantics 95—Predefined PRIMITIVE ALF_LATCH

PRI M TI VE ALF_FLI PFLOP {
PIN Q { DI RECTION = output; }
PIN QN { DI RECTION = output; }
PIND { DIRECTION = input; }
PIN CLOCK { DIRECTION = input; }
PIN CLEAR { DI RECTION = input; }
PIN SET { DIRECTION = input; }

PIN Q CONFLICT { DI RECTION = input; }
PIN QN_CONFLI CT { DI RECTION = input; }
FUNCTI ON {

BEHAVI OR {

@ (CLEAR && SET) {
Q = Q CONFLICT ; QN = QN_CONFLICT ;
P (CLEAR) {

Q:O;Q\jzl;
oo SET) |
Q:]_;Q\]:O;
} (01 CLOCK) {
Q=D; WN=!D;
}
}

}
}

166

Semantics 96—Predefined PRIMITIVE ALF_FLIPFLOP

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

9.15 WIRE instantiation

A wire instantiation shall be defined as shown in Syntax 76.

wire_instantiation ::=
wire reference identifier wire instance identifier
| wire_reference_identifier wire_instance identifier 1 { wire_instance pin_value} }
| wire_reference_identifier wire_instance _identifier { { wire_instance pin_assignment } }
| wire_instantiation_template_instantiation
wire_instance_pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value,

Syntax 76—WIRE instantiation

The purpose of awire instantiation is to describe an electrical circuit for characterization or test. A reference of
the electrical circuit shall be given by awire declaration (see 8.10). A cell, subjected to characterization or test,
can be connected with an instance of the electrical circuit.

The mapping between the wire reference and the wire instance shall be established either by order or by name.
In case of mapping by order, a pin value (see 9.3.1) shall be associated with the wire instance. A corresponding
pin variable associated with the wire reference shall be inferred by the order of node declarations within the wire
reference.

If mapping by order is not possible without ambiguity, mapping shall be established by name, using pin assign-
ment (see 9.3.2). The left-hand side of the pin assignment shall represent the name of a node associated with the

wire reference. The right-hand side of the pin assignment shall represent a pin value associated with the wire
instance.

9.16 Geometric model

A geometric model shall be defined as shown in Syntax 77.

geometric_model ::=
nonescaped_identifier [geometric_model _identifier |
geometric_model_item { geometric_model_item }
| geometric_model_template instantiation
geometric_model_item ::=
POINT_TO_POINT_single vaue annotation
| coordinates
coordinates ::=
COORDINATES{ point { point} }
point ::=
X_nhumber y_number

Syntax 77—Geometric model

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
apattern (see 8.29) or aregion (see 8.31).

The numbersin the point statement shall be measured in units of distance (see 10.19.9).

The parent object of the geometric model can contain a geometric transformation (see 9.18) applicable to the
geometric model.

Copyright © 2003 IEEE. All rights reserved. 167
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The keywords for geometric models shown in Semantics 97 shall be predefined.

KEYWORD DOT = geonetric_nodel ;
KEYWORD POLYLI NE = geonetric_nodel ;
KEYWORD RI NG = geonetri c_nodel ;
KEYWORD POLYGON = geonetri c_nodel ;

Semantics 97—Predefined geometric models

Table 94 specifies the meaning of predefined geometric model identifiers.

Table 94—Geometric model identifiers

Identifier Description

DoT Describes one point.

POLYLI NE Defined by N>1 directly connected points, forming an open object.

Rl NG Defined by N>2 directly connected points, forming a closed object,
i.e., thelast point is connected with first point. The object occupiesthe
boundary of the enclosed space.

POLYGON Defined by N>2 connected points, forming aclosed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

The meaning of predefined geometric model identifiersis further illustrated in Figure 19.

DOT (5 dots) POLYLINE RING POLYGON

Figure 19—Illustration of geometric models
A point_to_point annotation shall be defined as shown in Semantics 98.

The point-to-point annotation applies for a polyline, aring or a polygon. The annotation value specifies, how
subsequent points in the coordinates statement are to be connected.

The meaning of the annotation value direct isillustrated in Figure 20. It specifies the shortest possible connection
between points.

168 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD PO NT_TO PO NT = single val ue_annotation {
CONTEXT { POLYLI NE RI NG POLYGON }

}

SEMANTI CS PO NT_TO PO NT {
VALUES { direct manhattan }
DEFAULT = direct;

}
Semantics 98—POINT_TO_POINT annotation
Y-axis o A ?irect(conr;ecti(on) direct connection

rom (-1,8) to (-1,5 i from (3,8) to (-1,8)
8 X X
7
6 direct connection
5 " . from(-35)t0(3,8)
4 E
3 direct connection
5 from (-1,5) to (3,5)
1

>
5 4 -3 -2 -1 01 2 3 4 5 X-axis

Figure 20—lllustration of direct point-to-point connection

The meaning of the annotation value manhattan is illustrated in Figure 21. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-

fication of arectilinear object using N/ 2 pointsinstead of N points.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

169

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Y-axis
A manhattan connection from (-3,8) to (-1,5)

X

X

manhattan connection from (-1,5) to (3,8)

R N W s OO N 00O ©

L
5 -4 -3 -2 -101 2 3 4 5 X-axis

Figure 21—lllustration of manhattan point-to-point connection

Example 1

POLYGON {
PO NT_TO PO NT = direct;
COORDINATES { -1 53538-181}

}
Example 2
POLYGON {
PO NT_TO PO NT = nanhatt an;
COORDINATES { -1 5 3 8}
}

Both statements describe the same rectangle.

9.17 Predefined geometric models using TEMPLATE

A template declaration (see 7.15) can be used to describe particular geometric models. This section describes
predefined geometric models.

9.17.1 Predefined TEMPLATE RECTANGLE

The template rectangle shall be predefined as shown in Semantics 99.

170 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

TEMPLATE RECTANGLE {
POLYGON {
PO NT_TO PO NT = nmanhatt an;
COORDI NATES { <l eft> <bottonp <right> <top> }
}
}

Semantics 99—Predefined TEMPLATE RECTANGLE

9.17.2 Predefined TEMPLATE LINE

The template line shall be predefined as shown in Semantics 100.

TEMPLATE LI NE {
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x_start> <y _start> <x_end> <y_end> }
}
}

Semantics 100—Predefined TEMPLATE LINE

9.18 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 78.

geometric_transformation ::=
shift
| rotate
| flip
| repeat

shift ::=

SHIFT { x_number y_number }
rotate ;:=

ROTATE = number ;
flip:=

pFLlP: number |

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }

Syntax 78—Geometric transformation

A geometric model (see 9.16) shall be subjected to a geometric transformation if both statements appear in the
same context, i.e., they have the same parent.

The following rules shall apply for the geometric transformations shift, rotate and flip.

— A number associated with a geometric transformation shall be measured in units of distance (see
10.19.9).

— A geometric transformation shall apply to the origin of a geometric model. Therefore, the result of subse-
guent transformations is independent of the order in which each individual transformation is applied.

— Thedirection of the transformation shall be from the geometric model to the actual object.

Copyright © 2003 IEEE. All rights reserved. 171
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The shift statement shall define the horizontal and vertical offset measured between the coordinates within a
declared geometric model and the actual coordinates of an object.

The rotate statement shall define the angle of rotation in degrees measured between the orientation of a defined
geometric model and the actual orientation of an object. The angle shall be measured in counter-clockwise direc-
tion, specified by a number between 0 and 360.

The flip statement shall define a mirror operation. The number shall represent the angle of the movement of the
object in degrees. By definition, the movement is orthogonal to the mirror axis. Therefore, the number O speci-
fies flip in horizontal direction, therefore the axis is vertical, whereas the number 90 specifies flip in vertical
direction, therefore the axisis horizontal.

The geometric transformations flip, rotate, and shift are further illustrated in Figure 22.

FLIP ROTATE ... SHIFT
o
[o [P
legend: @ origin of the object

Figure 22—Illustration of FLIP, ROTATE, and SHIFT

The repeat statement shall describe the replication of an object. The unsigned integer shall define the total num-
ber of replications, including the original instance. Therefore, the number 1 means that the object appears once.
A repeat statement without unsigned integer shall indicate an arbitrary number of replications.

Examples
The following example replicates an object three times along the horizontal axisin a distance of 7 units.

REPEAT = 3 {
SHIFT{ 7 0}
}

The following example replicates an object five times along a 45-degree axis in a horizontal and a vertical dis-
tance of 4 units each.

REPEAT = 5 {
SHIFT { 4 4}
}

The following example replicates an object twice along the horizontal axis and four times along the vertical axis
in a horizontal distance of 5 units and a vertical distance of 6 units.

172 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

REPEAT = 2 {
SHIFT { 5 0 }
REPEAT = 4 {

SHIFT { 0 6 }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHFT { 0 6 }
REPEAT = 2 {

SHFT { 50 }
}

9.19 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 79.

artwork ::=

ARTWORK = artwork identifier ;

|ARTWORK = artwork_reference

|ARTWORK { artwork_reference { artwork_reference} }

| artwork_template_instantiation
artwork_reference ::=

artwork_identifier { { geometric_transformation } { cell_pin_identifier} }
| artwork_identifier
{ { geometric_transformation} { artwork_pin_identifier = cell_pin_identifier ; } }

Syntax 79—ARTWORK statement

The purpose of the artwork statement is to create a reference between an artwork described in a physical layout
format, e.g., GDSII, and the cell described in the ALF.

A geometric transformation (see 9.18) can be used to define a transformation of coordinates from the artwork
geometry to the cell geometry. The artwork is considered the original object whereas the cell is the transformed
object.

The artwork statement can also establish a mapping between a pin within the artwork and a pin of the cell. The
name of the artwork pin shall appear on the left-hand side. The name of the cell pin shall appear on the right-hand
side.

Example
CELL ny_cell {
PINA{ /* fill inpinitems */ }
PINZ { /* fill inpinitems */ }

ARTWORK = \ GDS2$! @$ {
SHIFT { 0 0 }

ROTATE = O;
\ GDS2$! @$A = A
\ GDS2%$! @$B = B;
Copyright © 2003 IEEE. All rights reserved. 173

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

9.20 VIA instantiation

A viainstantiation shall be defined as shown in Syntax 80.

via instantiation :;=
via_identifier instance identifier |
| via_identifier instance identifier { { geometric_transformation} }

Syntax 80—VIA instantiation

The purpose of aviainstantiation is to enable the definition of adesign rule (see 8.20), a blockage (see 8.22) or a
port (see 8.23) involving adeclared via (see 8.18). A geometric transformation (see 9.18) can be used to describe
atransformation of coordinates from a via declaration to the viainstantiation. The declared viais considered the
original object, whereas the instantiated viais the transformed object.

174 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

10. Description of electrical and physical measurements

10.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 81.

arithmetic_expression ::=
arithmetic_expression)

| arithmetic_value

| identifier

| boolean_expression ? arithmetic_expression : arithmetic_expression

| sign arithmetic_expression

| arithmetic_expression arithmetic_operator arithmetic_expression

| macro_arithmetic_operator (arithmetic_expron{ , arithmetic_expression })
macro_arithmetic_operator ::=

abs|exp |Tog | min|max

Syntax 81—Arithmetic expression

The purpose of an arithmetic expression is the construction of an arithmetic model (see 10.3) or an arithmetic
assignment (see 7.16).

A legal operand in an arithmetic expression shall be an arithmetic value or an identifier (see 6.13) representing an
arithmetic value.

A legal operator in an arithmetic expression shall be a sign (see 6.5, 10.2.1), an arithmetic operator for floating
point arithmetic operation (see 6.4.1, 10.2.2), a macro arithmetic operator (see 10.2.3), or a combination of a
question mark and a colon defining a conditional operation (see 9.11.3).

The precedence of operators in arithmetic expressions shall be from strongest to weakest in the following order:

a aithmetic operation enclosed by parentheses, i.e,, (,)

b) sign,i.e, +, - (see10.2.1)

c) power,i.e,** (see10.2.2)

d) multiplication, division, modulus, i.e.,*, /, % (see 10.2.2)
€) addition, subtraction, i.e., +, - (see 10.2.2)

f) delimiter for conditional operation, i.e., ?, . (see 9.11.3)

When operators of the same precedence are subsequently encountered in an arithmetic expression, the evaluation
shall proceed from the left to the right.

Examples for arithmetic expressions

1.24

- Vvdd

Cl + C2

MAX (3.5*C, -vdd/2 , 0.0)
(C>10) ? wdd**2 : 1/2*vdd - 0.5*C

End of example

Copyright © 2003 IEEE. All rights reserved. 175
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

10.2 Arithmetic operations and operators
10.2.1 Sign inversion
A sign can be used as unary operator in an arithmetic expression.

Table 95 defines the semantics of the sign used as unary operator.

Table 95—Sign used as unary arithmetic operator

Operator Description

+ no sign inversion.

- sign inversion.

NOTE: The positive sign can be considered as neutral operator.

10.2.2 Floating point arithmetic operation

Table 96 defines the semantics of binary arithmetic operators.

Table 96—Binary arithmetic operators

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
*x Power

All operationsinvolving the operators in Table 96, including division and modulus, shall be floating point opera-
tions.

The following mathematical restrictions apply:
— The second operand of division can not be zero.
— The second operand of modulus can not be zero.
— The second operand of power shall be a positive value if the first operand is zero.
— The second operand of power shall be an integer value if the first operand is negative.

The application shall be responsible for handling the mathematical restrictions.

176 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

10.2.3 Macro arithmetic operator

Table 97 defines the semantics of macro arithmetic operators.

Table 97—Macro arithmetic operators

Operator Description number of operands
| og Natural logarithm. 1 operand
exp Natural exponential. 1 operand
abs Absolute value. 1 operand
mn Minimum. Noperands, N > 1
max Maximum. N operands, N > 1

The following mathematical restrictions shall apply:
— Theoperand of the natural logarithm shall be a positive value.

The application shall be responsible for handling the mathematical restrictions.

10.3 Arithmetic model

An arithmetic model shall be defined as atrivial arithmetic model, apartial arithmetic model, or afull arithmetic
model, as shown in Syntax 82.

arithmetic_model ::=
trivial_arithmetic_model
| partial_arithmetic_model
| full _arithmetic_model
| arithmetic_model_template instantiation

Syntax 82—Arithmetic model

The purpose of an arithmetic model isto specify a measurable or a calculable quantity.

A trivial arithmetic model shall be defined as shown in Syntax 83.

trivial_arithmetic_mode! ::=
arithmetic_model_identifier [name_identifier]| = arithmetic_value ;
| arithmetic_model_identifier [name_identifier] = arithmetic_value
{ { arithmetic_model_qualifier } }

Syntax 83—Trivial arithmetic model

The purpose of atrivial arithmetic model isto specify a constant arithmetic value associated with the arithmetic
model. Therefore, no mathematical operation is necessary to evaluate a trivial arithmetic model. A trivial arith-
metic model can contain asingular or a plural arithmetic model qualifier (see Syntax 87).

Copyright © 2003 IEEE. All rights reserved. 177
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

A partial arithmetic model shall be defined as shown in Syntax 84.

partial_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] { { partia_arithmetic_model_item } }
partial_arithmetic_model_item ::=
arithmetic_model_qudlifier
| table
| trivial_min-max

Syntax 84—Partial arithmetic model

The purpose of a partial arithmetic model isto specify asingular or a plural model qualifier (see Syntax 87), or a
table (see Syntax 91) or atrivial min-max statement (see Syntax 94). The specification contained within a partial
arithmetic model can be inherited by another arithmetic model of the same type, according to the following rules.

a) If the partia arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing either within the same parent or within a descendant of the same parent.

b) If the partia arithmetic model has a name, the specification shall only be inherited by an arithmetic
model containing a reference to the name, using the model reference annotation (see 10.9.5).

¢) Anarithmetic model can override an inherited specification by its own specification.

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

A full arithmetic model shall be defined as shown in Syntax 85.

full_arithmetic_model ::=
arithmetic_model_identifier [name_identifier]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

Syntax 85—Full arithmetic model

The purpose of a full arithmetic model is to specify mathematical data and a mathematical evaluation method
associated with the arithmetic model. This specification resides in the arithmetic model body (see Syntax 86). A
full arithmetic model can also contain a singular or aplural arithmetic model qualifier (see Syntax 87).

The arithmetic model identifier in Syntax 83, Syntax 84 and Syntax 85 shall be declared as a keyword (see 7.9)
and provide specific semantics for the arithmetic model.

An arithmetic model body shall be defined as shown in Syntax 86.

arithmetic_model_body ::=
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 86—Arithmetic model body

The purpose of the arithmetic model body is to specify mathematical data associated with a full arithmetic
model. The datais represented either by a header-table-equation statement (see 10.4), or by a min-typ-max state-
ment (see 10.5), or by asingular or aplural arithmetic submodel (see 10.7).

An arithmetic model qualifier shall be defined as shown in Syntax 87.

178 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

arithmetic_model_qualifier ::=
inheritable_arithmetic_model_qualifier
| non_inheritable_arithmetic_model_qualifier
inheritable_arithmetic_model_qualifier ::=
annotation
| annotation_container
| from-to
non_inheritable_arithmetic_model_qualifier ::=
auxiliary_arithmetic_model
| violation

Syntax 87—Arithmetic model qualifier
The purpose of an arithmetic model qualifier isto specify semantics related to an arithmetic model.
An inheritable arithmetic model qualifier, i.e., an annotation (see 7.3), an annotation container (see 7.4) or a
from-to statement (see 10.12) can be inherited by another arithmetic model using a model reference annotation

(see 10.9.5).

A non-inheritable arithmetic model qualifier, i.e., an auxiliary arithmetic model (see 10.6), a violation (see
10.10) or awire instantiation (see 9.15) shall apply only for the arithmetic model under evaluation.

10.4 HEADER, TABLE, and EQUATION statements

A header-table-eguation statement shall be defined as shown in Syntax 88.

header-table-equation ::=
header table | header equation

Syntax 88—Header table equation

The purpose of a header-table-equation statement isto specify the mathematical data and a method for evaluation
of the mathematical data associated with afull arithmetic model (see Syntax 85).

A header statement shall be defined as shown in Syntax 89.

header ::=
HEADER { header_arithmetic_model { header_arithmetic_model } }
header_arithmetic_model ::=
arithmetic_model_identifier [name_identifier] { { header_arithmetic_model_item } }
header_arithmetic_ model_item ::=
inheritable_arithmetic_model_qualifier
| table
| trivial_min-max

Syntax 89—HEADER statement

Each header arithmetic model shall represent a dimension of an arithmetic model.

Any arithmetic model (see 10.3) with a header as a parent shall be interpreted as a header arithmetic model. A
declared keyword (see 7.9) for arithmetic model shall apply as identifier.

NOTE — The syntax for header arithmetic model is atrue subset of the syntax for arithmetic model.

Copyright © 2003 IEEE. All rights reserved. 179
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

An equation statement shall be defined as shown in Syntax 90.

uation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 90—EQUATION statement

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua-
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-
sion by name, if aname identifier exists or by type otherwise. Consequently, the type or the name of adimension
shall be unique.

A table statement shall be defined as shown in Syntax 91.

table::=
TABLE { arithmetic_value{ arithmetic value} }

Syntax 91—TABLE statement

A table statement within a partial arithmetic model shall define a discrete set of legal and applicable values. A
table statement within a full arithmetic model shall represent a lookup table. If the arithmetic model body con-
tains a table statement, each header arithmetic model shall also contain a table statement. The table statement
within the header arithmetic model shall represent the lookup index for a particular dimension.

The mathematical relation between alookup table and its lookup indices shall be established as follows:

N N=>1
S=17S0 S>1
i=1 0<P(py, --pj-»Py) £S-1
N -1
~ S(i)=z1
P(Py P PN) = Y B[] S(K)
i=1 k|:|1 Ospi=S(i)-1

where

N denotes the number of dimensions

Sdenotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table

P(py, --pj--» Pn) denotes the position of an arithmetic value within the lookup table

i denotes the index corresponding to the order of appearance of a dimension within the header statement
S(i) denotes the size of adimension, i.e., the number of arithmetic valuesin the table within adimension
p; denotes the position of an arithmetic value within adimension

Figure 23 shows an example of athree-dimensional table.

180 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

dimension 1: (g & a3) Y1) =4 table: Xo(30: Po, Co) X1(ay, bo, o) X2(@p, by, Co) X3(ag, Py, Co)
imenson2: (bgby) — S2=2 5294 x(@, by, Co) Xs(a, by, Co) Xg(@, by, Co) X7(ag, by, o)
imension 3: (coc;) (3 =3 Xg(@p, by, €1) Xg(@y, by, €1) X10(8, b, 1) X11(3s, b, €1)

X12(80, b1, €1) Xq3(89, by, €1) X14(8, by, C1) X15(8, by, €1)

P(p1, P2, P3) =1 +4p2+8p3 X16(30, Do, C2) X17(84, by, C2) X18(8, bo, C2) X19(33, bo, €2)

X20(8p, D1, €2) X21(8y, by, C3) Xo(8p, by,) X23(3, by, €)

Figure 23—Example of a three-dimensional table

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
uesis allowed, and the arithmetic valuesin this dimension shall appear in strictly monotonic ascending order.

A full arithmetic model or any of its dimensions can inherit a set of legal values from a partial arithmetic model
(see Syntax 84), represented by a table statement. Such atable statement can not substitute alookup index within
adimension, and it can not pose a restriction on the evaluation of an arithmetic expression.

Rules and restrictions for the mathematical evaluation of an arithmetic model can only be defined within the
header-table-equation statement. A legal set or alegal range of values defined within an arithmetic model shall
not interfere with the mathematical evaluation of the arithmetic model itself. In particular, an arithmetic expres-
sion shall be evaluated within the domain of its mathematical validity. A lookup table shall be evaluated accord-
ing to the inter polation annotation (see 10.9.3).

10.5 MIN, MAX, and TYP statements

A min-typ-max statement shall be defined as shown in Syntax 92.

min-typ-max ::=

min-max | [min] typ [max]
min-max ::=

min | max | min max
min ::=

trivial_min | non_trivial_min
max ::=

trivial_max | non_trivial_max
typ =

trivia_typ | non_trivial_typ

Syntax 92—MIN-TYP-MAX statement

The purpose of a min-typ-max statement is to represent one or more possible sets of mathematical data associ-
ated with an arithmetic model, rather than a single actual set.

Data associated with a min statement shall represent the smallest possible eval uation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically greater.

Data associated with a max statement shall represent the greatest possible eval uation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically smaller.

Data associated with a typ statement shall represent a typical evaluation result under a given evaluation condi-
tion, i.e., actual evaluation results can be numerically greater or smaller.

Copyright © 2003 IEEE. All rights reserved. 181
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

A non-trivial min or max or typ statement shall be defined as shown in Syntax 93.

non_trivia_min ::=
"MIN = aithmetic_value{ violation }
IMIN {[violation] header-table-equation }
non_trivial_max ::=
"MAX = arithmetic_value{ violation }
|MAX { [violation | header-table-equation }
non _trivial_typ ::=
TY P { header-table-equation }

Syntax 93—Non-trivial MIN, MAX and TYP statements

By definition, a non-trivial min or max statement is associated with a header-table-equation statement (see
Syntax 88) or a violation statement (see 10.10). A non-trivial typ statement is associated with a header-table-
equation statement.

NOTE — A violation statement is a particular arithmetic model qualifier (see Syntax 87).

A trivial min, max, or typ statement shall be defined as shown in Syntax 94

trivia_min-max ::=
trivial_min | trivial_max | trivial_min trivial_max

trivial_min ::=

MTN = arithmetic_value;
trivial_max ::=

MAX = arithmetic_value;
trivia_t

Tv\ﬁ) = arithmetic_value

Syntax 94—Trivial MIN, MAX and TYP statements

By definition, atrivial min, max, or typ statement is associated with a constant arithmetic value.

A trivial min-max statement within a partial arithmetic model (see Syntax 84) shall define the legal range of val-
ues for an arithmetic model. The arithmetic value associated with the trivial min statement represent the smallest
legal number. The arithmetic value associated with the trivial max statement represents the greatest legal number.

A trivial min-max statement within a header arithmetic model (see Syntax 89) shall define the range of validity
of a particular dimension. An application tool can evaluate the header-table-equation statement (see Syntax 88)
outside the range of validity, however, the accuracy of the evaluation outside the range of validity is not guaran-
teed.

A trivial min-max statement shall be subjected to the following parsing rules.

a) Within apartial arithmetic model (see Syntax 84), a set of legal values defined by atable statement (see
Syntax 91) shall take precedence over arange of legal values defined by atrivial min-max statement.

b) Within an arithmetic model (see Syntax 82) that can be interpreted as either a partial arithmetic model
(see Syntax 84) or afull arithmetic model (see Syntax 85), the interpretation of a trivial min-max state-
ment as a min-typ-max statement (see Syntax 94) shall take precedence. As a consequence, the interpre-
tation of an arithmetic model as afull arithmetic model takes precedence.

Semantics 101 defines the interpretation of min, max, typ as a particular arithmetic submodel (see 10.7).

182 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD M N = arithnetic_subnodel {
CONTEXT { arithnetic_nodel arithnetic_subnodel }
}

KEYWORD MAX = arithnetic_subnodel {
CONTEXT { arithnetic_nodel arithnetic_subnodel }
}

KEYWORD TYP = arithnetic_subnodel {
CONTEXT { arithnetic_nodel arithnetic_subnodel }

}

Semantics 101—Interpretation of MIN, MAX, TYP as arithmetic submodel

This interpretation shall only apply in the context of a semantic rule, without invalidating a more restrictive syn-
tax rule.

NOTE — The syntax rule for min, max, typ (see Syntax 92, Syntax 93, and Syntax 94, respectively) is a true subset of the
syntax rule for arithmetic submodel (see Syntax 96).

10.6 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in Syntax 95.

auxiliary_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_vaue;
| arithmetic_model_identifier [= arithmetic_value]
{ inheritable_arithmetic_model_qualifier { inheritable_arithmetic_model_qualifier } }

Syntax 95—Auxiliary arithmetic model

An arithmetic model (see 10.3) with another arithmetic model as a parent shall be called auxiliary arithmetic
model. A declared keyword (see 7.9) for arithmetic model shall apply as identifier. The parent of the auxiliary
arithmetic model shall be called principal arithmetic model.

The purpose of an auxiliary arithmetic model is to serve as a non-inheritable arithmetic model qualifier (see
Syntax 87) for the principal arithmetic model. The auxiliary arithmetic model can be associated with a constant
arithmetic value and with an inheritable arithmetic model qualifier (see Syntax 87).

NOTE — The syntax for auxiliary arithmetic model is atrue subset of the syntax for arithmetic model.

A constant arithmetic value associated with an auxiliary arithmetic model shall indicate that an applicable
dimension of the principa arithmetic model shall be evaluated under this constant arithmetic value or that the
principal arithmetic model itself is characterized by this constant arithmetic value.

NOTE — The auxiliary arithmetic model is not a dimension of the principal arithmetic model.

10.7 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 96.

Copyright © 2003 IEEE. All rights reserved. 183
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

arithmetic_submodd ::=
arithmetic_submodel_identifier = arithmetic_value
| arithmetic_submodel_identifier 1 [violation] min-max}
| arithmetic_submodel_identifier 1 header-table-equation [trivial_min-max] }
| arithmetic_submodel_identifier { min-typ-max
| arithmetic_submodel_template _instantiation

Syntax 96—Arithmetic submodel
The purpose of an arithmetic submodel is to serve as arithmetic model body (see Syntax 86), wherein the data
associated with the full arithmetic model (see Syntax 82) is represented as one or more measurement-specific

sets rather than a single set. The arithmetic submodel identifier shall be declared as a keyword (see 7.9) and pro-
vide specific semantics.

10.8 Arithmetic model container
10.8.1 General arithmetic model container

A general arithmetic model container shall be defined as shown in Syntax 97.

arithmetic_model_container ::=
limit_arithmetic_model _container
| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 97—General arithmetic model container

The purpose of an arithmetic model container is to provide a context for an arithmetic model. The arithmetic
model container identifier shall be a declared keyword (see 7.9) and provide specific semantics.

10.8.2 Arithmetic model container LIMIT

The arithmetic model container limit shall be defined as shown in Syntax 98.

limit_arithmetic model_container ::=
MIT { limit_arithmetic_model { limit_arithmetic_model } }

limit_arithmetic_model ::=

arithmetic_model_identifier [name_identifier]

{ { arithmetic_model_qudlifier } Iimit_arithmetic_model_body}
limit_arithmetic_model_body ::=

limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

arithmetic_submodel_identifier { [violation] min-max }

Syntax 98—Arithmetic model container LIMIT

The purpose of the arithmetic model container limit is to specify one or more quantifiable design limits. The
design limit shall be represented as a min-max statement (see 10.5) in the context of alimit arithmetic model or a
limit arithmetic submodel.

Any arithmetic model (see 10.3) with a limit as a parent shall be interpreted as a limit arithmetic model. A
declared keyword (see 7.9) for arithmetic model shall apply as identifier. Any arithmetic submodel (see 10.7)

184 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

with alimit arithmetic model as a parent shall be interpreted as a limit arithmetic submodel. A declared keyword
(see 7.9) for arithmetic submodel shall apply asidentifier.

NOTE — The syntax for limit arithmetic model is atrue subset of the syntax for arithmetic model. The syntax for limit arith-
metic submodel is a true subset of the syntax for arithmetic submodel.

Semantics 102 defines the interpretation of limit as arithmetic model container.

KEYWORD LIMT = arithnetic_nodel container;

Semantics 102—Arithmetic model container LIMIT

10.8.3 Arithmetic model container EARLY and LATE

The arithmetic model containers early and late shall be defined as shown in Syntax 99.

early-late_arithmetic_model_container ::=
early_arithmetic_model_container
| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model _container
early arithmetic_model_container ::=
EARLY { early-late_arithmetic_model { early-late_arithmetic_model } }
late arithmetic model_container ::=
LATE { early-late_arithmetic_mode! { early-late_arithmetic_mode } }
early-late_arithmetic_model ::=
DELAY _arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 99—Arithmetic model container EARLY and LATE

The purpose of the arithmetic model containers early and late is to specify an envelope of a timing waveform.
The arithmetic model delay (see 10.11.3), retain (see 10.11.4) or slewrate (see 10.11.5) can be used to specify a
timing waveform. The arithmetic model container early and late shall be associated with the leading and trailing
part of the envelope, respectively. A partial specification of the envelope, i.e., only the leading part or only the
trailing part, is possible.

Semantics 103 defines the interpretation of early and late as arithmetic model container.

KEYWORD EARLY = arithnetic_nodel contai ner
{ CONTEXT = VECTOR, }
KEYWORD LATE = arithnetic_nodel _contai ner
{ CONTEXT = VECTOR, }

Semantics 103—Arithmetic model container EARLY and LATE

The arithmetic model containers early and late shall be children of a declared vector (see 8.14).

10.9 Generally applicable annotations for arithmetic models
10.9.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 104.

Copyright © 2003 IEEE. All rights reserved. 185
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD UNI T = singl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;
}

SEMANTICS UNI T {
VALUETYPE = mul tiplier_prefix_value ;
}

Semantics 104—UNIT annotation

The purpose of the unit annotation isto specify amultiplier prefix value (see 6.7) associated with the base unit of
the arithmetic model. The base unit of an arithmetic model shall be specified by the S-model annotation (see
7.11.6).

If the unit annotation is not present, alocally declared arithmetic model shall inherit the unit annotation of a glo-
bally declared arithmetic model of the same ALF type. If the ALF type of the globally declared arithmetic model
isan SI-model annotation value, alocally declared arithmetic model with the same associated SI-model annota-
tion value shall inherit the unit annotation as well.

NOTE — The multiplier prefix value specification given by the unit annotation applies to an arithmetic model declaration.
Therefore it can be locally changed. The S-model annotation applies to the keyword declaration (see 7.9) of an arithmetic
model. Therefore it can not be changed.

Example:

The arithmetic model delay (see 10.11.3) has the SI-model annotation value time. Therefore delay can inherit the
unit annotation value of the arithmetic model time (see 10.11.1).

10.9.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 105.

KEYWORD CALCULATI ON = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS CALCULATI ON {
CONTEXT = library_specific_object.arithmetic_nodel ;
VALUES { absolute increnental }
DEFAULT = absolute ;

}

Semantics 105—CALCULATION annotation

The meaning of the annotation values is shown in Table 98.

Table 98—Calculation annotation

Annotation value Description
absol ute The arithmetic model datais complete within itself.
i ncr ement al The arithmetic model data shall be combined with other arithmetic model data.
186 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The following rules for combination of arithmetic model data shall apply.

a) Datashall be combined by adding them together.
b) Datacan only be combined, if the respective arithmetic models have the same type.

¢) Data can only be combined, if a common semantic interpretation of the respective arithmetic models

within their context exists.
A specific application of rule c) is described in section 10.11.3 for the arithmetic model delay.
10.9.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 106.

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS | NTERPOLATI ON {
CONTEXT = HEADER. arithmetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

Semantics 106—INTERPOLATION annotation

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.

Every dimension in alookup table can have its own interpolation annotation.

The meaning of the annotation values is shown in Table 99.

Table 99—Interpolation annotation

Annotation value Evaluation method Handling data out of range
l'i near Linear interpolation Linear extrapolation
ceiling Select the next greater value in the table Select the largest value in the table
f1oor Select the next lesser value in the table Select the smallest value in the table
fit Linear or higher-order interpolation Linear extrapolation

The mathematical operations for floor, ceiling, and linear are specified as follows:

floor y(x) = y(x)
ceiling yo) = y(x)
linear y(x) = KX IO + (X =x) /(x)
X =X
where

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

187

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

x denotes the value in a dimension subjected to interpolation.

x" and X" denote two subsequent values in the table associated with that dimension.
X denotes the value to the left of x, such that X < x. If no such value exists, X' denotes the smallest value
inthe table.
x* denotes the value to the right of x, such that x < x*. If no such value exists, x* denotes the largest value
inthe table.

y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, aslong as the following conditions are satis-
fied:

y(X) is acontinuous function of order N>0, i.e., the first N-1 derivatives of y(x) are continuous.
y(X) is bound by y(x) and y(x").
In case of monotony, y(X) is aso bound by two straight linesin the region between x” and x*.
Onelineisconstructed by linear extrapolation based on x™ and its left neighbor.
The other line is constructed by linear extrapolation based on x™ and its right neighbor.
In case of amonotonic derivative, y(x) is also bound by another straight line.
Thislineis constructed by linear interpolation based on x” and x.

These conditions areillustrated in Figure 24.

arbitrary y(x) monotonic y(X) monotonic dy/dx
X
A AX A \
YOO == YOO — —
|
Y — — —— =K, WX — o — =% _
| | X | X
| | | |
| | | |
» 1 | > 1 1 »
X x* X x*

Figure 24—Bounding regions for y(x) with INTERPOLATION=fit
The application shall use a higher-order interpolation only if it provides a tighter bound than linear interpol ation.
10.9.4 DEFAULT annotation

A default annotation (see 7.11.3) shall be applicable for an arithmetic model, unless the keyword declaration (see
7.9) for the arithmetic model contains already a default annotation.

The purpose of the default annotation is the specification of an evaluation result for a full arithmetic model (see
Syntax 85) or aheader arithmetic model (see Syntax 89) in case the arithmetic model can not be evaluated other-
wise. A default annotation shall not apply for atrivial arithmetic model (see Syntax 83). A default annotation for
apartial arithmetic model (see Syntax 84) shall serve as inheritable arithmetic model qualifier (see Syntax 87),
to be acquired by another full arithmetic model.

188 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A default annotation value associated with a header arithmetic model or with a partial arithmetic model shall be
an arithmetic value (see 6.11) compatible with the arithmetic model’s valuetype (see 7.11.1). A default annota-
tion value associated with a full arithmetic model shall be either an arithmetic value compatible with its value-
type, or, aternatively, an identifier referring to another arithmetic model or to an arithmetic submodel (see 10.7).

The following rules shall apply for the usage of the default annotation value.

a) If the application provides values for al header arithmetic models, no default annotation value shall be
used for the evaluation of afull arithmetic model.

b) If the application provides values for some, but not all header arithmetic models, and the remaining
header arithmetic models have associated default annotations, those default annotation values shall be
used.

c) If application values for al header arithmetic models are missing and the full arithmetic model has an
associated default annotation, this default annotation value shall be used.

d) If application values for all header arithmetic models are missing and the full arithmetic model has no
associated default annotation, but all header arithmetic models have, those default annotation values
shall be used.

In any other case, the evaluation of the full arithmetic model shall fail and result in an application error.
10.9.5 MODEL reference annotation

A model reference annotation shall be defined as shown in Semantics 107.

KEYWORD MODEL = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MODEL {
REFERENCETYPE { arithnetic_nodel arithmetic_subnodel }

}

Semantics 107—MODEL reference annotation

The purpose of a model reference annotation is to acquire an inheritable arithmetic model qualifier (see
Syntax 87), an evaluation result (see Syntax 91 and Syntax 90) or both from another arithmetic model. The
model reference annotation value shall be the ALF name of the referenced arithmetic model.

An evaluation result can also be acquired from a referenced arithmetic submodel (see 10.7). In this case, the
model reference annotation value shall be ahierarchical identifier (see 6.13.4) composed of the ALF name of the
parent arithmetic model and the ALF type of the arithmetic submodel.

A calculation graph can be established by using the model reference annotation within aheader arithmetic model
(see Syntax 89). In this case, the evaluation of the arithmetic model containing the header arithmetic model
depends on the evaluation of the referenced model. A circular reference shall not be allowed.

The model reference annotation shall further be legal under the following restrictions:

a) Both the referencing and the referenced arithmetic model have the same ALF type,
or, aternatively:

b) the ALF type of either arithmetic model isan S-model annotation value (see 7.11.6), and both arithmetic
models have the same associated SI-model annotation value.

¢) Thesemantics of any arithmetic model qualifier are compatible with the semantics of any acquired arith-
metic model qualifier.

Copyright © 2003 IEEE. All rights reserved. 189
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Examples:
Rule a): An arithmetic model of ALF type time (see 10.11.1) can refer to the arithmetic model of ALF typetime.

Rule b): The arithmetic model delay (see 10.11.3) has the SI-model annotation value time. Therefore an arith-
metic model of ALF type delay can refer to an arithmetic model of ALF type time and vice-versa.

Rule ¢): If both arithmetic models have an annotation of the same ALF type (e.g. unit annotation, see 10.9.1), the
annotation values shall be the same.

10.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation

A violation statement shall be defined as shown in Syntax 100.

violation ::=
VIOLATION { violation_item { violation_item} }
| violation_template_instantiation
violation_item ::=
MESSAGE_TYPE_single value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 100—VIOLATION statement

The purpose of aviolation statement is to specify the consequence of an evaluation of an arithmetic model (see
10.3) that resultsin aviolation of adesign constraint or adesign limit.

A violation statement shall be subjected to the restriction shown in Semantics 108.

SEMANTI CS VI OLATI ON {
CONTEXT {
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL
NO SE_ MARG N LIM T..

}
}

Semantics 108—Semantic restriction for VIOLATION statement

The purpose of the restriction is to specify alegal ancestor of a violation statement. Only an arithmetic model
that serves the purpose of evaluating a design constraint or a design limit can be alegal ancestor of a violation
statement.

A violation statement can contain a message-type annotation, a message annotation, and a behavior statement
(see 9.4). A behavior statement as a child of a violation statement shall only be legal, if its ancestor is a vector
(see 8.14). Thisruleisformulated in Semantics 109.

SEMANTI CS VI OLATI ON. BEHAVI OR { CONTEXT { VECTOR. . } }

Semantics 109—BEHAVIOR statement within VIOLATION
In asimulation application, the control expression (see 9.12) associated with the vector shall trigger the behavior

as a conseguence of the violation.

190 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Example:

Consider aflip-flop with the following functional behavior:

FUNCTI ON {
BEHAVI OR {
@(01l clock) { Q= data; Qpar =! data; }
}
}

The behavior will change if a setup violation is encountered.

VECTOR (?! data -> 01 clock) {
SETUP = 0.1 { FROM{ PIN = data; } TO{ PIN = clock; }
VI QLATI ON {
BEHAVIOR { Q = ‘bX; Qoar = ‘bX; }
}

}

End of example

A message type annotation shall be defined as shown in Semantics 110.

KEYWORD MESSAGE TYPE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;

}

SEMANTI CS MESSAGE_TYPE {
VALUETYPE = identifier ;
VALUES { information warning error }

}

Semantics 110—MESSAGE_TYPE annotation

The purpose of the message type annotation valueisto classify the severity of aviolation.

The meaning of the annotation values is shown in Table 100.

Table 100—MESSAGE_TYPE annotation

Annotation value Description
i nfornation The application tool shall issue an informative message when the violation is encountered.
war ni ng The application tool shall issue awarning message when the violation is encountered.
error The application tool shall issue an error message when the violation is encountered.

A message annotation shall be defined as shown in Semantics 111.
The purpose of the message annotation is to specify verbatim the text of the message issued by the application

tool when aviolation is encountered.

Copyright © 2003 IEEE. All rights reserved. 191
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD MESSAGE = singl e_val ue_annotati on {
CONTEXT = VI OLATI ON ;

}

SEMANTI CS MESSAGE {
VALUETYPE = quoted_string ;

}

Semantics 111—MESSAGE annotation

10.11 Arithmetic models for timing, power and signal integrity
10.11.1 TIME

The arithmetic model time shall be defined as shown in Semantics 112.

KEYWORD TI ME = arithnetic_nodel ;
SEMANTI CS TI ME {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR arithnetic_nodel
VECTOR. ari t hneti c_nodel _cont ai ner
VECTOR. . HEADER LI M T. . HEADER
}
VALUETYPE = nunber ;
SI _MODEL = TI ME ;
}
TIME { UNIT = NanoSeconds ; }

Semantics 112—Arithmetic model TIME

The purpose of the arithmetic model time is to specify atimeinterval in general.

— TIME in context of adeclared library or sublibrary (see 8.2), adeclared cell (see 8.4), or adeclared wire
(see 8.10)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87).

— TIME in context of adeclared vector (see 8.14)
If the control expression associated with the vector is a vector expression (see 9.12), a from-to statement (see
10.12) shall be used as model qualifier. The arithmetic model shall represent a measured time interval between
two single events (see 9.13.1).
Otherwise, if the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic
model shall represent atime interval during which the boolean expression is true. A from-to statement shall not

be used as model qualifier.

As a child of the arithmetic model container limit (see 10.8.2), the arithmetic model shall specify a design limit
for atimeinterval. Otherwise, the arithmetic model shall specify a measured time interval.

— TIME as header arithmetic model (see Syntax 89)

192 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The header arithmetic model time shall represent a dimension of another arithmetic model. The dimension time
shall generally describe a quantity changing over time, which can be visualized by atiming waveform.

If the ancestor of the header arithmetic model is a vector with an associated vector expression, a from statement
can be used as model qualifier to define atemporal relationship between a single event and the dimension time.

If the ancestor of the header arithmetic model is the arithmetic model container limit, the dimension time shall
describe a dependency between a design limit and the expected lifetime of an electronic circuit, rather than atim-
ing waveform.

NOTE — By definition, the parent of a header arithmetic model is aways a full arithmetic model.

— TIME as auxiliary arithmetic model (see Syntax 95)

The auxiliary arithmetic model time shall be used in conjunction with a measurement annotation (see 10.13.7).
The auxiliary arithmetic model shall specify the timeinterval during which the measurement is taken.

If the ancestor of the auxiliary arithmetic model is a vector with an associated vector expression, afrom-to state-
ment can be used to define atemporal relationship between one or two single eventsin the vector expression and
thetimeinterval.

10.11.2 FREQUENCY

The arithmetic model frequency shall be defined as shown in Semantics 113.

KEYWORD FREQUENCY = arithnetic_nodel ;
SEMANTI CS FREQUENCY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR arithnetic_nodel
VECTOR. arit hmet i c_nodel _cont ai ner
VECTOR. . HEADER LI M T. . HEADER
}
VALUETYPE = nunber ;
SI _MODEL = FREQUENCY ;
}
FREQUENCY { UNIT = G gaHertz; MN = 0; }

Semantics 113—Arithmetic model FREQUENCY

The purpose of the arithmetic model frequency is to specify atemporal frequency, i.e., a frequency measured in
units of 1/time.

NOTE: If someone desires to specify a spatial frequency, i.e., a frequency measured in units of 1/distance, a different key-
word can be declared (see 7.9).

The arithmetic model frequency can be a child or a grandchild of a declared library or sublibrary (see 8.2), a
declared cell (see 8.4), wire (see 8.10) or vector (see 8.14).

— FREQUENCY in context of adeclared vector (see 8.14)

As a descendant of a declared vector with an associated vector expression (see 9.12), the arithmetic model shall
specify a statistical occurrence frequency of the vector.

Copyright © 2003 IEEE. All rights reserved. 193
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

As achild of the arithmetic model container limit (see 10.8.2), the arithmetic model shall specify a design limit
for an occurrence frequency. Otherwise, the arithmetic model shall specify a measured occurrence frequency.

— FREQUENCY as header arithmetic model (see Syntax 89)
The header arithmetic model frequency shall represent a dimension of another arithmetic model.

If the ancestor of the header arithmetic model is avector with an associated vector expression, the dimension fre-
guency shall represent the occurrence frequency of the vector.

If the ancestor of the header arithmetic model is not a vector, the frequency dimension shall be represent a spec-
tral dependency of the arithmetic model.

— FREQUENCY as auxiliary arithmetic model (see Syntax 95)
A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

The auxiliary arithmetic model frequency shall be used in conjunction with a measurement annotation (see
10.13.7). The auxiliary arithmetic model shall specify the repetition frequency of the measurement.

The auxiliary arithmetic models frequency and time (see 10.11.1) can be used interchangeably, unlessafromor a
to statement is associated with time. The measurement repetition frequency f and the measurement time interval
tcanbeequated by f=1/1.

10.11.3 DELAY

The arithmetic model delay shall be defined as shown in Semantics 114.

KEYWORD DELAY = arithnetic_nodel;
SEMANTI CS DELAY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE
VECTOR VECTOR. EARLY VECTOR. LATE
}
SI _MODEL = TI ME ;
}

Semantics 114—Arithmetic model DELAY

The purpose of the arithmetic model delay is to specify atime interval, implying a causal relationship between
two events. A from-to statement (see 10.12) shall be used as model qualifier.

— DELAY in context of adeclared vector (see 8.14)

As achild or a grandchild of a declared vector with an associated vector expression (see 9.12), the arithmetic
model delay shall specify a measured time interval between two single events (see 9.13.1), which are referred to
as from-event and to-event (see 10.12). It shall be implied that the from-event is the cause of the to-event.

If the model qualifier features only afrom or only ato statement, the arithmetic model delay shall be interpreted
as apartial time interval specification. The calculation annotation (see 10.9.2) shall be used in conjunction with
apartia timeinterval specification. If the annotation value is incremental, the partial time interval shall be added
to another time interval. If the annotation value is absolute, the partial time interval shall be used as a default and
otherwise be substituted by a completely specified timeinterval.

194 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

— DELAY in context of adeclared library or sublibrary (see 8.2), a declared cell (see 8.4), or a declared
wire (see 8.10)

Asapartial arithmetic model (see Syntax 84), delay can be used for global specification of a model qualifier. In
particular, the arithmetic model threshold (see 10.11.13) within a from-to statement can be globally specified.
The global specification of a model qualifier shall be inherited by the arithmetic models delay, retain (see
10.11.4), setup and hold (see 10.11.6), recovery and removal (see 10.11.7) and skew (see 10.11.12) in the context
of avector.

10.11.4 RETAIN

The arithmetic model retain shall be defined as shown in Semantics 115.

KEYWORD RETAIN = arithmetic_nodel ;
SEMANTI CS RETAI N{
CONTEXT {
VECTOR VECTOR. EARLY VECTOR. LATE
}
SI _MODEL = TI ME ;
}

Semantics 115—Arithmetic model RETAIN

The purpose of the arithmetic model retain is to specify atime interval, during which a cause has no observable
effect. A from-to statement (see 10.12) shall be used as model qualifier.

As achild or a grandchild of a declared vector with an associated vector expression (see 9.12), the arithmetic
model retain shall specify a measured time interval between two single events (see 9.13.1), which are referred to
as from-event and to-event (see 10.12). It shall be implied that the to-event is the earliest observable effect of the
from-event.

The arithmetic models retain and delay with matching model qualifiers can be jointly used. In this case, retain
shall represent the time interval between acause (i.e., an input signal) and the earliest effect (i.e., initial change of
an output signal), and delay shall represent the time interval between a cause and the latest effect (i.e., final
change of an output signal). During the timeinterval between initial and final change, the output signal is consid-
ered unstable.

Retain in conjunction with delay isillustrated in Figure 25.

delay

Figure 25—Illustration of RETAIN and DELAY

Copyright © 2003 IEEE. All rights reserved. 195
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

10.11.5 SLEWRATE

The arithmetic model slewrate statement shall be defined as shown in Semantics 116.

KEYWORD SLEWRATE = arithnetic_nodel ;
SEMANTI CS SLEWRATE {
CONTEXT {
LI BRARY LI BRARY. LI M T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE.LIMT
VECTOR VECTOR. EARLY VECTOR. LATE VECTOR. LIMT
VECTOR. . HEADER
}
SI _MODEL = TIME ;

}
SLEWRATE { MN = 0; }

Semantics 116—Arithmetic model SLEWRATE

The purpose of the arithmetic model dewrate is to specify the duration of a transient event, measured between
two reference points. A reference point shall be specified by the arithmetic model threshold (see 10.11.13) within
afrom-to statement (see 10.12). No particular waveform shape shall be implied for the transient event.

— SLEWRATE in context of adeclared vector (see 8.14)
If dewrate is a descendant of a declared vector with an associated vector expression (see 9.12), a pin reference
annotation, possibly in conjunction with an edge number annotation, shall be used (see 10.13.2) to refer to asin-
gleevent (see9.13.1).

— SLEWRATE in context of adeclared pin (see 8.6)

If dlewrate is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see 10.21) can be
used as a substitute for areference to asingle event.

— SLEWRATE in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a
declared wire (see 8.10)

Asapartial arithmetic model (see Syntax 84), slewrate can be used for global specification of amodel qualifier.
In particular, the arithmetic model threshold (see 10.11.13) within afrom-to statement can be globally specified.

The global specification of amodel qualifier shall be inherited by the arithmetic model slewrate in the context of
avector.

— SLEWRATE as header arithmetic model (see Syntax 89)

The header arithmetic model slewrate shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of avector. A reference to asingle event shall be used as model qualifier.

Slewrate isillustrated in Figure 26.

196 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

from.threshold.rise to.threshold.rise

from.threshold.fal to.threshold.fal
_ - —g—p!— — —

sewrate.fall

Figure 26—lllustration of SLEWRATE
10.11.6 SETUP and HOLD

The arithmetic models setup and hold shall be defined as shown in Semantics 117.

KEYWORD SETUP = arithnetic_nodel ;
SEMANTI CS SETUP { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD HOLD = arithnetic_nodel ;
SEMANTI CS HOLD { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

Semantics 117—Arithmetic models SETUP and HOLD

The purpose of the arithmetic models setup and hold isto specify timing constraints between a data signal and a
clock signal. Each arithmetic model shall be a child of a declared vector (see 8.14) with an associated vector
expression (see 9.12). A from-to statement (see 10.12) shall be used as model qualifier.

The arithmetic model setup shall represent the minimal required time interval during which adata signal needs to
be stable before activation of aclock signal. Thistime interva can be positive, zero, or negative. The data signal
shall be referred to within a from statement. The clock signal shall be referred to within ato statement.

The arithmetic model hold shall represent the minimal required time interval during which a data signal needs to
be stable after activation of aclock signal. Thistime interval can be positive, zero, or negative. The clock signal
shall be referred to within a from statement. The data signal shall be referred to within ato statement.

Co-dependent arithmetic model s setup and hold can be described as children of the same vector. A corresponding
timing diagram isillustrated in Figure 27.

Copyright © 2003 IEEE. All rights reserved. 197
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

data signal A

clock signal B |

i
|
from |to |
|—>
setup | |
from | to
hold)

Figure 27—Illustration of SETUP and HOLD
10.11.7 RECOVERY and REMOVAL

The arithmetic models recovery and removal shall be defined as shown in Semantics 118.

KEYWORD RECOVERY = arithmetic_nodel ;

SEMANTI CS RECOVERY { CONTEXT = VECTOR; SI_MODEL = TI ME; }
KEYWORD REMOVAL = arithnetic_nodel ;

SEMANTI CS REMOVAL { CONTEXT = VECTOR; SI_MODEL = TIME; }

Semantics 118—Arithmetic models RECOVERY and REMOVAL

The purpose of the arithmetic models recovery and removal is to specify timing constraints between a clock sig-
nal and an asynchronous control signal. Each arithmetic model shall be a child of a declared vector (see 8.14)
with an associated vector expression (see 9.12). A from-to statement (see 10.12) shall be used as model qualifier.

The arithmetic model recovery shall represent the minimal required time interval between de-assertion of an
asynchronous control signal and activation of a clock signal. Thistimeinterval can be positive, zero, or negative.
The asynchronous control signal shall be referred to within afrom statement. The clock signal shall be referred to
within ato statement.

The arithmetic model removal shall represent the minimal required time interval between a suppressed activation
of aclock signal and de-assertion of an asynchronous control signal. Thistime interval can be positive, zero, or
negative. The clock signal shall be referred to within a from statement. The asynchronous control signal shall be
referred to within ato statement.

Co-dependent arithmetic models recovery and removal can be described as children of the same vector. A corre-
sponding timing diagram isillustrated in Figure 28.

198 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A
asynchronous or |
control signa
g A |
from—hto
recovery I
| |
| |
clock signal B I
I

from) to
removal

Figure 28—RECOVERY and REMOVAL
10.11.8 NOCHANGE and ILLEGAL

The arithmetic models nochange and illegal shall be defined as shown in Semantics 119.

KEYWORD NOCHANGE = arithmetic_nodel ;

SEMANTI CS NOCHANGE { CONTEXT = VECTOR; SI_MODEL = TI ME; }
NOCHANGE { MN = 0; }

KEYWORD | LLEGAL = arithnetic_nodel ;

SEMANTI CS | LLEGAL { CONTEXT = VECTOR; SI_MODEL = TIME; }
ILLEGAL {| MN = 0; }

Semantics 119—Arithmetic models NOCHANGE and ILLEGAL

The purpose of the arithmetic models nochange and illegal isto specify requirements for the observation or dura-
tion of an event pattern in the context of a declared vector (see 8.14).

If the control expression associated with the vector is a vector expression (see 9.12), a from-event and a to-event
can be specified, using a from-to statement (see 10.12) as model qualifier.

— NOCHANGE in the context of a declared vector

If the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic model
nochange shall specify arequirement for a minimum time interval during which the boolean expression istrue. A
partial arithmetic model nochange shall specify arequirement for the boolean expression to be forever true.

If the control expression associated with the vector is a vector expression (see 9.12), the arithmetic model
nochange shall specify a requirement for a minimum time interval during which the event pattern specified by
the vector expression is observed. If a from-to statement is specified, this requirement shall pertain only to the
event pattern bound by the from-event and the to-event. A partial arithmetic model nochange shall specify a
requirement for the event pattern specified by the vector expression or the event pattern bound by the from-event
and the to-event to be observed without change.

— |ILLEGAL inthe context of adeclared vector

Copyright © 2003 IEEE. All rights reserved. 199
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

If the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic model illegal
shall specify arequirement for a maximum time interval during which the boolean expression is true. A partial
arithmetic model illegal shall specify arequirement for the boolean expression to be never true.

If the control expression associated with the vector is a vector expression (see 9.12), the arithmetic model illegal
shall specify arequirement for a maximum time interval during which the event pattern specified by the vector
expression is observed. If afrom-to statement is specified, this requirement shall pertain only to the event pattern
bound by the from-event and the to-event. A partial arithmetic model illegal shall specify a requirement for the
event pattern specified by the vector expression or the event pattern bound by the from-event and the to-event not
to be observed as specified.

Nochange and illegal in the context of avector expression areillustrated in Figure 29.

A"
|
B |
|
c L |
|
D \ —
I
frorrL |to
- nochange or 1llegal -

Figure 29—Illustration of NOCHANGE and ILLEGAL

A vector expression corresponding to the whole timing diagram (both grey and white parts) is required to trigger
the evaluation of the arithmetic model nochange or illegal.

If arealized sequence of events involving the four signals A, B, C and D matches the beginning and the end of
the timing diagram (underlaid in grey), including the from-and to-events (marked with small arrows), the actual
event sequence in-between the from-and to-events shall be examined.

In the case of nochange, the realized sequence of eventsis required to match the middle of the timing diagram,
and possibly aminimal time interval between from and to is required.

In the case of illegal, the realized sequence of eventsis required not to match the middle of the timing diagram,
or possibly a maximum time interval between fromand to is allowed.

10.11.9 PULSEWIDTH

The arithmetic model pulsewidth shall be defined as shown in Semantics 120.

The purpose of the arithmetic model pulsewidth is to specify the duration of a pulse, measured between two ref-
erence points. A reference point shall be specified by the arithmetic model threshold (see 10.11.13) within a

fromto statement (see 10.12). No particular waveform shape shall be implied for the sequence of transient
events.

200 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD PULSEW DTH = arithnetic_nodel ;
SEMANTI CS PULSEW DTH {
CONTEXT {
LI BRARY LI BRARY. LI M T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE.LIMT
VECTOR VECTOR. . HEADER
}
SI _MODEL = TI Mg

}
PULSEWDTH { MN = 0; }

Semantics 120—Arithmetic model PULSEWIDTH

For anoise waveform (see 10.11.14), i.e., awaveform that does not reach a constant logic value, pulsewidth shall
be measured between the crossings of 50% magnitude.

— PULSEWIDTH in context of adeclared vector (see 8.14)
If pulsewidth isachild or agrandchild of a declared vector with an associated vector expression (see 9.12), apin
reference annotation, possibly in conjunction with an edge number annotation, shall be used (see 10.13.2) to refer
to asingle event (see 9.13.1), representing the leading edge of the pul se.

— PULSEWIDTH in context of adeclared pin (see 8.6)

If pulsewidth is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see 10.21) can be
used as a substitute for areference to a single event.

— PULSEWIDTH in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a
declared wire (see 8.10)

Asapartial arithmetic model (see Syntax 84), pulsewidth can be used for global specification of a model quali-
fier. In particul ar, the arithmetic model threshold (see 10.11.13) within a from-to statement can be globally spec-
ified. The global specification of a model qualifier shall be inherited by the arithmetic model pulsewidth in the
context of a vector.

— PULSEWIDTH as header arithmetic model (see Syntax 89)

The header arithmetic model pulsewidth shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of avector. A reference to a single event shall be used as model qualifier.

Pulsewidth isillustrated in Figure 30.

Copyright © 2003 IEEE. All rights reserved. 201
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

to.threshold.fall

from.threshold.fall t } to.threshold.rise

Figure 30—lllustration of PULSEWIDTH
10.11.10 PERIOD

The arithmetic model period shall be defined as shown in Semantics 121.

KEYWORD PERI CD = arithmetic_nodel ;

SEMANTI CS PERI OD {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }
SI _MODEL = TI ME ;

}

PERFOD { MN = 0; }

Semantics 121—Arithmetic model PERIOD

The purpose of the arithmetic model period isto specify a primitive timeinterval between periodical repetitions
of events.

The arithmetic model period shall be in the context of a declared vector (see 8.14) with an associated vector
expression (see 9.12). The vector expression shall specify an event pattern within the primitive timeinterval (see
Figure 31).

The header arithmetic model (see Syntax 89) period shall represent a dimension of another arithmetic model,
which shall be in the context of avector. Period isillustrated in Figure 31.

event pattern A’ '
within primitive | |
time interval Bl |

| | | |
periodical Al | | | |
repetition | | | | |

I I I 1
Bl | | I I
- period : I period : I period : I period >

Figure 31—lllustration of PERIOD
202 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

An event pattern involving two signals A and B is repeated periodically.

10.11.11 JITTER

The arithmetic modél jitter shall be defined as shown in Semantics 122.

IEEE P1603/D9, July 2003

KEYWORD JI TTER = arithmetic_nodel ;

SEMANTI CS JI TTER {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }
SI_MODEL = TI ME ;

}

JITTER{ MN = 0; }

Semantics 122—Arithmetic model JITTER

The purpose of the arithmetic model jitter isto specify the variability of aprimitive time interval between period-
ical repetitions of an event pattern. The measurement annotation (see 10.13.7) shall be applicable as model qual-

ifier.

The arithmetic model jitter shall be in the context of a declared vector (see 8.14) with an associated vector

expression (see 9.12). The vector expression shall specify an event pattern within the primitive time interval (see

Figure 32).

A header arithmetic model (see Syntax 89) jitter shall represent a dimension of another arithmetic model, which
shall bein the context of a vector.

Jitter isillustrated in Figure 32.

A |

primitive |

event sequence Bl

periodical Al

repetition

without jitter |
‘ B

periodical

|
|
|
T
|
Nj it@ I [|tjterl<_

repetition

withjitter Bl

Figure 32—Illlustration of JITTER

An event pattern involving two signals A and B is repeated periodically. A timing diagram with and without jitter

is shown.

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

203

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

10.11.12 SKEW

The arithmetic model skew shall be defined as shown in Semantics 123.

KEYWORD SKEW = arithneti c_nodel ;

SEMANTI CS SKEW {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }
SI_MODEL = TI ME ;

}

SKEW{ MN = 0; }

Semantics 123—Arithmetic model SKEW

The purpose of the arithmetic model skew isto specify a non-negative temporal separation between multiple sig-
nals.

In the context of a declared vector (see 8.14) with an associated vector expression (see 9.12), a pin reference
annotation, possibly in conjunction with a matching edge number annotation, shall be used (see 10.13.5) to refer
to multiple single events (see 9.13.1). The arithmetic model itself shall not specify atemporal order of the events.
The temporal separation between events shall be considered for any order of events alowed by the vector
expression. If the vector expression specifies simultaneously occurring events (see 9.13.2), but the arithmetic
model skew specifies a non-zero temporal separation between these events, the skew shall take precedence, and
the temporal separation shall be considered for an arbitrary permutation of order of occurrence.

The header arithmetic model skew shall represent a dimension of another arithmetic model, which shall be in the
context of avector. A reference to multiple single events shall be used as model qualifier.

Skew isillustrated in Figure 33.

A | T T
T |
skew
B | I |
| ‘ skew)
C 1 1 I
or
A | | T
. skew) |
B I | |
| ‘ skew)
C 1 1 I
Restriction by vector expression: A occurs before C, B occurs before C

Figure 33—lllustration of SKEW

The arithmetic model skew involves three signals A, B and C, and the vector expression restricts A and B to
occur before C.

204 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

10.11.13 THRESHOLD

The arithmetic model threshold shall be defined as shown in Semantics 124.

KEYWORD THRESHOLD = arithnetic_nodel ;
SEMANTI CS THRESHOLD {

CONTEXT { PIN FROM TO }

VALUETYPE = nunber ;

}
THRESHOLD { MN = 0; MAX = 1; }

Semantics 124—Arithmetic model THRESHOLD

The purpose of the arithmetic model threshold is to specify areference point for a timing measurement.
Threshold shall be a normalized quantity, according to the following mathematical definition:

threshold.rise = (Vt, - Vig) / (V1 - Vo)
threshold.fall = (vt; - Vi) / (vq - V)

where
Vg isthe nominal voltage level for the value logic zero,
vy isthe nominal voltage level for the value logic one,
vt, is a specified voltage level crossed during arising transition,
vt; is a specified voltage level crossed during afalling transition,

subject to the following restrictions:

V0<V1
Vo< Wt <vpandvgp< vt <Vvy.

Threshold isillustrated in Figure 34.

threshold.rise * (vy - Vo) __threshold.fall * (v - Vo)

Vi Vi Vg Vi Vi Vg

Figure 34—THRESHOLD measurement definition

The arithmetic model threshold can contain the arithmetic submodels rise and fall (see 10.21). If atiming-related
arithmetic model referring to a single event (see 9.13.1) in the context of a declared vector (see 8.14) inherits a
definition for threshold, the matching arithmetic submaodel rise or fall shall apply according to the single event.

NOTE — The arithmetic submode! rise or fall is not necessary, if vt, = i;.

Threshold can be specified in the context of a from-to statement (see 10.12) or in the context of a declared pin
(see 8.6). As a child of a from-to statement, threshold shall apply to the parent arithmetic model of the from-to

Copyright © 2003 IEEE. All rights reserved. 205
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

statement. As a child of a declared pin, threshold shall apply to the parent arithmetic model of a from-to state-
ment, if the from-to statement contains a pin reference annotation (see 10.13.2) referring to the declared pin.

NOTE — Threshold in the context of a declared pin does not apply to slewrate (see 10.11.5) or pulsewidth (see 10.11.9),
since afrom-to statement in the context of slewrate or pulsewidth can not contain a pin reference annotation.

10.11.14 NOISE and NOISE_MARGIN

The arithmetic models noise and noise margin shall be defined as shown in Semantics 125.

KEYWORD NO SE = arithnetic_nodel ;
SEMANTI CS NO SE {
CONTEXT {
LI BRARY. LIM T SUBLI BRARY.LIMT CELL.LIMT
PIN PIN.LIMT VECTOR VECTOR LIM T VECTOR. . HEADER

}
VALUETYPE = nunber ;

}

KEYWORD NO SE MARG@ N = arithmetic_nodel ;

SEMANTI CS NO SE_MARA N {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PIN VECTOR }
VALUETYPE = nunber ;

}
NO SE MARG N { MN = 0; }

Semantics 125—Arithmetic models NOISE and NOISE_MARGIN

The purpose of the arithmetic model noise is to specify a noise measurement. The purpose of the arithmetic
model noise margin isto specify atolerance against noise.

Noise shall be anormalized quantity, according to the following mathematical definition:

noise.low = (vn - Vig) / (V4 - Vp)
noise.high = (v1 - vn) / (vq - V)

where
Vp isthe nominal voltage level for the value logic zero,
vy isthe nominal voltage level for the value logic one,

vn isameasured voltage level due to noise.

NOTE — Noise on asigna with the logic value zero is positive if vn > v, and negative if vn < v,
Noise on asignal with the logic value oneis positive if vn < vy, and negativeif vn > v,.

Noiseisillustrated in Figure 34.

206 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

noise.high* (vq - vp) \

noise.low * (vq - vp)

Vi vn Vg

Vi vn Vo

Figure 35—NOISE measurement definition
A distinction shall be made between a noise margin and adesign limit for noise. A noise margin shall be defined
as avalue for noise that ensures that the logic value of asignal is recognizable. A design limit for noise shall be
defined as avalue of noisethat is tolerable regardless whether the logic value is recognizable or not.

The distinction between a noise margin and a design limit for noiseisillustrated in Figure 36.

limit.noise.high.min * (v4 - vp)

imit.noisehighmax * (vi-vg) ~)~ ~

noise_margin.high * (v; - V) 3

. . —_ - mi i * _
noise_margin.low * (vy - Vo) limit.noise.low.max * (v - Vi)

4 limit.noise.low.min* (v - V) #
Vi Vo Vi Vo

Figure 36—Definition of NOISE MARGIN and LIMIT for NOISE

Per definition, noise can be positive or negative, noise margin shall be positive, a maximum design limit for
noise shall be positive, and a minimum design limit for noise shall be negative.

— NOISE in context of adeclared library or sublibrary (see 8.2) or adeclared cell (see 8.4)

The arithmetic model container limit (see 10.8.2) can be used to specify a design limit for noise. An arithmetic
submodel high, low (see 10.21) can optionally be used.

A child shall inherit the design limit specification from its parent, unless a design limit is specified within the
child. In particular, a sublibrary can inherit from alibrary. A cell can inherit from a sublibrary or from alibrary.
A pin caninherit from acell, asublibrary or alibrary.

— NOISE in context of adeclared pin (see 8.6)

A static noise measurement related to the pin can be described. An arithmetic submodel high, low can optionally
be used.

A design limit for noise can be described in the same way asin the context of alibrary, asublibrary or acell.

Copyright © 2003 IEEE. All rights reserved. 207
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

— NOISE in context of adeclared vector (see 8.14)
A noise measurement in response to a stimulus provided by the vector can be described. A pin reference annota-
tion shall be used. A static noise measurement can be described using a boolean expression (see 9.9) as a stimu-
lus. A transient noise measurement, i.e., either a waveform for noise or a peak value for noise, can be described
using a vector expression (see 9.12) as stimulus.

A design limit for noise related to the stimulus can be specified using the arithmetic model container limit. A pin
reference annotation shall be used.

— NOISE as header arithmetic model (see Syntax 89)
A noise that acts as a stimulus can be described. A pin reference annotation shall be used.
— NOISE MARGIN in context of adeclared class (see 7.12)

A static noise margin can be specified. An arithmetic submodel high, low can optionally be used. A declared pin
can inherit this specification by referring to the class.

— NOISE MARGIN in context of a declared library or sublibrary (see 8.2) or a declared cell (see 8.4) or a
declared pin (see 8.6).

A static noise margin can be specified. The arithmetic submodels high or low can optionally be used.

A child shall inherit the noise margin specification from its parent, unless a noise margin is specified within the
child. In particular, a sublibrary can inherit from alibrary. A cell can inherit from a sublibrary or from alibrary.
A pin can inherit from a cell, a sublibrary or alibrary. Inheritance from a class by a pin shall take precedence
over inheritance from a cell, a sublibrary or alibrary.

— NOISE MARGIN in the context of adeclared vector (see 8.14)

A noise margin in the context of a stimulus given by the vector can be described. A pin reference annotation (see
10.13.6) shall be used.

A state-dependent noise margin can be described using a boolean expression (see 9.9) as stimulus.

A sensitivity window for a noise margin can be described using a vector expression (see 9.12) as stimulus. The
arithmetic model time (see 10.11.1) shall be used as an auxiliary arithmetic model (see 10.6). A from-to state-
ment (see 10.12) shall be associated with time.

A transient noise margin, i.e., a noise margin that depends on the timing characteristics of the stimulus can be
described using a vector expression as stimulus and a timing-related arithmetic model, e.g. pulsewidth (see
10.11.9) or slewrate (see 10.11.5), as a header arithmetic model (see Syntax 89).

10.11.15 POWER and ENERGY

The arithmetic models power and energy shall be defined as shown in Semantics 126.

The purpose of the arithmetic models power and energy isto specify the electrical power consumption of an elec-
tronic circuit.

— POWER in context of adeclared class (see 7.12)

208 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD POAER = arithnetic_nodel ;
SEMANTI CS POVER {
CONTEXT {
LI BRARY SUBLI BRARY CELL VECTOR
CLASS. LIMT CELL.LIMT

}
VALUETYPE = nunber ;

}

PONER { UNIT = MI1liwatt; }

KEYWORD ENERGY = arithmetic_nodel ;

SEMANTI CS ENERGY {
CONTEXT { LI BRARY SUBLI BRARY CELL VECTOR }
VALUETYPE = nunber;

}
ENERGY { UNIT = Picodoul e; }

Semantics 126—Arithmetic models POWER and ENERGY
The arithmetic model container limit (see 10.8.2) can be used to specify a design limit for power consumption
associated with a class with usage annotation value supply-class (see 8.8.16). A measurement annotation (see
10.13.7) shall be used.
— POWER in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for power.

— POWER in context of adeclared cell (see 8.4)

Power consumption of acell or adesign limit for power consumption of a cell can be described. A measurement
annotation shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— POWER in context of adeclared vector (see 8.14)

Power consumption related to a stimulus defined by the vector can be described. A measurement annotation shall
be used.

— ENERGY in context of adeclared library or sublibrary (see 8.2) or adeclared cell (see 8.4)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for energy.

— ENERGY in context of adeclared vector (see 8.14)

Energy consumption related to a stimulus defined by the vector can be described. Total energy consumption
associated with different stimuli shall be additive, regardless whether the stimuli are mutually exclusive or not.
Also, energy consumption shall be additive with power consumption, if the measurement annotation value static
is associated with the latter.

Copyright © 2003 IEEE. All rights reserved. 209
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

10.12 FROM and TO statements

A from-to statement shall be defined as shown in Syntax 101.

from-to ::=
from | to | from to

rom ::=
FROM { from-to_item { from-to_item} }
to:=
TO { from-to_item { from-to_item} }
from-to_item ::=
PIN_reference_single value_annotation
| EDGE_NUMBER single_value_annotation
| THRESHOLD _arithmetic_model

Syntax 101—FROM and TO statements

The purpose of afrom and a to statement is to define the start and end point, respectively, of atiming measure-
ment. The timing measurement shall be applicable for digital signals.

A from and ato statement can contain a pin reference annotation (see 10.13.2), an edge number annotation (see
10.13.1) and a threshold arithmetic model (see 10.11.13).

A referenceto asingle event (see 9.13.1) is specified by the pin reference annotation in conjunction with the edge
number annotation. The single event referenced within the from and to statement, respectively, shall be called
from-event and to-event, respectively.

The from-and to-statements shall be subjected to the restriction shown in Semantics 127.

SEMANTI CS FROM {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}

}
SEMANTI CS TO {

CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}
}

Semantics 127—Restriction for FROM and TO statements

10.13 Annotations related to timing, power and signal integrity
10.13.1 EDGE_NUMBER annotation
An edge number annotation shall be defined as shown in Semantics 128.

The edge number annotation shall be achild of an arithmetic model (see 10.3) or afrom-to statement (see 10.12).

210 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD EDGE_NUMBER = annotation {
CONTEXT { arithnetic_nodel FROM TO }
}

SEMANTI CS EDGE_NUMBER
CONTEXT { VECTOR.. }
VALUETYPE = unsi gned_i nteger ;
DEFAULT = O;

}

Semantics 128—EDGE_NUMBER annotation

The purpose of the edge number annotation isto specify areferenceto asingle event (see 9.13.1) within a vector
expression. The vector expression shall be the name of a declared vector. The reference shall be established by
using the edge number annotation in conjunction with a pin reference annotation (see 8.8.1). The pin reference
annotation shall point to a pin variable (see 9.3) involved in the vector expression. The edge number annotation
shall point to a single event on the pin variable. Every single event on a pin variable shall be counted in chrono-
logical order, starting with O.

10.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO

A pin reference annotation shall be subjected to the restriction shown in Semantics 129.

SEMANTI CS FROM PI'N = singl e_val ue_annot ati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

SEMANTI CS TO. PI N = singl e_val ue_annotation {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

Semantics 129—Restriction for PIN reference annotation within FROM and TO

The purpose of the restriction isto define areference to asingle pin variable in the context of afrom-to statement
(see 10.12).

An edge_number annotation shall be subjected to the restriction shown in Semantics 130.

SEMANTI CS FROM EDGE_NUMBER = si ngl e_val ue_annotation {
CONTEXT { TI ME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

SEMANTI CS TO. EDGE_NUMBER = si ngl e_val ue_annot ation {
CONTEXT { TI ME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }

}

Semantics 130—Restriction for EDGE_NUMBER annotation within FROM and TO

The purpose of the restriction is to define a reference to a single event (see 9.13.1) in the context of a from-to
statement.

Copyright © 2003 IEEE. All rights reserved. 211
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Example:
TIME { FROM { PI N=A; EDGE_NUMBER=1; } TO { PIN=B; EDGE_NUMBER=3; } }

Figure 37 illustrates the restriction using a timing diagram.

pinvariable
A \
|
edge number 0 1 | 2
|
B | '
edge number 0 : 1 2 3J|
L
from > o

Figure 37—Illustration of PIN reference and EDGE NUMBER annotation within FROM and TO
A measurement is taken from edge number 1 at pin variable A to edge number 3 at pin variable B.
10.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in
Semantics 131.

SEMANTI CS SLEWRATE. PI N = singl e_val ue_annotati on ;
SEMANTI CS SLEWRATE. EDGE_NUMBER = si ngl e_val ue_annot ati on ;

Semantics 131—Restriction for PIN reference and EDGE_NUMBER annotation within SLEWRATE

The purpose of the restriction is to define a reference to a single event for which slewrate (see 10.11.5) is mea-
sured.

10.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in
Semantics 132.

SEMANTI CS PULSEW DTH. PI N = si ngl e_val ue_annot ati on;
SEMANTI CS PULSEW DTH. EDGE_NUMBER = si ngl e_val ue_annot ati on;

Semantics 132—Restriction for PIN reference and EDGE_NUMBER annotation within PULSEWIDTH

The purpose of the restriction is to define a reference to a single event which is the leading edge of a pulse for
which pulsewidth (see 10.11.9) is measured. The trailing edge shall be the following single event on the same

pin.

212 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

10.13.5 PIN reference and EDGE_NUMBER annotation for SKEW

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in
Semantics 133.

SEMANTI CS SKEWPIN = nul ti _val ue_annotation ;
SEMANTI CS SKEW EDGE_NUMBER = mul ti _val ue_annotation ;

Semantics 133—Restriction for PIN reference and EDGE_NUMBER annotation within SKEW

The purpose of the restriction isto define areference to plural events, for which skew (see 10.11.12) is measured.
The number of annotation values within the pin reference and edge number annotation shall match. Subsequent
annotation values shall correspond to each other. i.e., the first annotation value within the pin reference annota-
tion shall correspond to the first annotation value within the edge number annotation, etc.

10.13.6 PIN reference annotation for NOISE and NOISE_MARGIN

A pin reference annotation shall be subjected to the restriction shown in Semantics 134.

SEMANTI CS NO SE. PI N = singl e_val ue_annotation ;
SEMANTI CS NO SE_MARG N. PIN = singl e_val ue_annotation ;

Semantics 134—Restriction for PIN reference annotation within NOISE and NOISE MARGIN

The purpose of the restriction is to define areference to a pin, for which noise or noise margin (see 10.11.14) is
described.

10.13.7 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 135.

KEYWORD MEASUREMENT = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MEASUREMENT {
CONTEXT { ENERGY PONER CURRENT VOLTAGE JI TTER }
VALUETYPE = identifier ;
VALUES {
transient static average absol ute_average rns peak

}

}

Semantics 135—MEASUREMENT annotation

The purpose of the measurement annotation is to specify the mathematical definition of atemporal measurement.

Copyright © 2003 IEEE. All rights reserved. 213
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The mathematical definition of the annotation valuesis shown in Table 101.

Table 101 —MEASUREMENT annotation

Annotation value Mathematical description
transi ent measurement = x(t)
static measurement = X, with x constant
aver age t=T
1
measurement = T I x(t)at
t=0
absol ut e_aver age 1t=T
measurement = T .[(1)l
t=0
rns t=T
1 2
measurement = |3 .[x“(t)dt
t=0
peak measurement = max(max(x),-min(x)), with x = x(t)

The arithmetic model time (see 10.11.1) or frequency (see 10.11.2) shall be used as auxiliary arithmetic model
(see 10.6), if the measurement annotation value is average, absolute average, or rms. The auxiliary arithmetic
model time shall be interpreted as the integration time T in Table 101. The auxiliary arithmetic model frequency
shall beinterpreted as the repetition frequency f of the measurement, with f=1/T.

The auxiliary arithmetic model time can be used, if the parent arithmetic model is in the context of a declared
vector (see 8.14) and the measurement annotation value is peak. Either afrom or ato statement (see 10.12) can be
used to specify the time interval between a single event (see 9.13.1) and the occurrence of the measurement or
vice-versa

Thisisillustrated in Figure 38.

singl single
_ event event
peak peak
| I
	I	
from L gy to
fime fim

Figure 38—lllustration of peak measurement with FROM or TO statement

214
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

10.14 Arithmetic models for environmental conditions
10.14.1 PROCESS

The arithmetic model process shall be defined as shown in Semantics 136.

IEEE P1603/D9, July 2003

KEYWORD PROCESS = arithnetic_nodel ;
SEMANTI CS PROCESS {
CONTEXT {

arithmetic_nodel

}
VALUETYPE = identifier ;

}

CLASS LI BRARY SUBLI BRARY CELL W RE HEADER

PROCESS { DEFAULT = nom TABLE { nomsnsp snwp wnsp wnwp } }

Semantics 136—Arithmetic model PROCESS

The purpose of the arithmetic model processisto specify a dependency between an arithmetic model and a man-
ufacturing process condition. A partial arithmetic model (see Syntax 84), a header arithmetic model (see

Syntax 89), or an auxiliary arithmetic model (see 10.6) can be used.

The meaning of the predefined arithmetic values for processis explained in Table 102.

Table 102—Predefined arithmetic values for PROCESS

Value Description
nom NMOS and PMOS transistors with nominal strength
snsp Strong NMOS transistor, strong PMOS transistor.
snwp Strong NMOS transistor, weak PMOS transistor.
wnsp Weak NMOS transistor, strong PMOS transistor.
wnwp Weak NMOS transistor, weak PMOS transistor.

10.14.2 DERATE_CASE

The arithmetic model derate case shall be defined as shown in Semantics 137.

The purpose of the arithmetic model derate caseis to specify a dependency between an arithmetic model and an
environmental condition. A partial or afull arithmetic model (see Syntax 84 and Syntax 85), a header arithmetic

model (see Syntax 89), or an auxiliary arithmetic model (see 10.6) can be used.

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

215

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

Advanced Library Format (ALF) Reference Manual

KEYWORD DERATE CASE = arithmetic_nodel ;
SEMANTI CS DERATE_CASE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE HEADER
ari thnetic_nodel

}
VALUETYPE = identifier ;

}
DERATE_CASE { DEFAULT = nom

TABLE { nom bccom weccom bcind weind bemi | weni |

}

}

Semantics 137—Arithmetic model DERATE_CASE

The meaning of the predefined arithmetic values for derate case is explained in Table 103.

A full arithmetic model can be used to describe the dependency between the condition and its defining parame-

Table 103—Predefined arithmetic values for DERATE CASE

Derating case Description
nom Nominal environmental condition
bccom Best case commercia condition
bci nd Best caseindustrial condition
bcmi | Best case military condition
weccom Worst case commercia condition
wei nd Worst case industrial condition
wem | Worst case military condition

ters (e.g., process, voltage, temperature).

10.14.3 TEMPERATURE

The arithmetic model temperature shall be defined as shown in Semantics 138.

KEYWORD TEMPERATURE = arithmetic_nodel ;
SEMANTI CS TEMPERATURE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE
LIMT HEADER arithnetic_nodel

}
VALUETYPE = nunber ;

}
TEMPERATURE { UNIT = 1DegreeCel sius; MN = -273;

}

216

Semantics 138—Arithmetic model TEMPERATURE

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The purpose of the arithmetic model temperatureisto specify a dependency between an arithmetic model and an
environmental temperature. Temperature shall be measured in degrees Celsius. A partial or a full arithmetic
model (see Syntax 84 and Syntax 85), a header arithmetic model (see Syntax 89), or an auxiliary arithmetic
model (see 10.6) can be used.

10.15 Arithmetic models for electrical circuits
10.15.1 VOLTAGE

The arithmetic model voltage shall be defined as shown in Semantics 139.

KEYWORD VOLTAGE = arithnetic_nodel ;
SEMANTI CS VOLTAGE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL PIN W RE VECTOR HEADER
CLASS.LIMT CELL.LIMT PINLIMT VECTOR LIMT

}
VALUETYPE = nunber ;

}
VOLTAGE { UNIT = 1Volt; }

Semantics 139—Arithmetic model VOLTAGE

The purpose of the arithmetic model voltage is to specify either ameasurement of electrical voltage or an electri-
cal component that can be model ed as a voltage source.

— VOLTAGE in context of adeclared class (see 7.12)
An environmental voltage can be specified. An arithmetic submodel high, low (see 10.21) can optionally be
used. A pin (see 8.6) can inherit this specification by referring to the class. In particular, asupply class annotation
(see 8.8.16) or a connect class annotation (see 8.8.19) can be used for this purpose.

— VOLTAGE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) or atrivial min-max statement (see Syntax 94) for voltage.

— VOLTAGE in context of adeclared cell (see 8.4)

A voltage source that is part of the implementation of a cell can be specified. A node reference annotation (see
10.16.1) shall be used.

A design limit for a voltage related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— VOLTAGE in context of a declared pin (see 8.6)

An environmental voltage related to apin, e.g., asupply voltage, can be described. An arithmetic submodel high,
low can optionally be used.

Copyright © 2003 IEEE. All rights reserved. 217
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

A design limit for a voltage that can be applied to the pin can be described using the arithmetic model container
limit.

— VOLTAGE in context of a declared wire (see 8.10)

A voltage source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— VOLTAGE in context of adeclared vector (see 8.14)

A voltage measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or amodel reference annotation shall be used.

A design limit for a voltage related to the stimulus can be specified using the arithmetic model container limit
(see 10.8.2). Either a pin reference annotation or a model reference annotation shall be used.

— VOLTAGE as header arithmetic model (see Syntax 89)
A voltage that acts as a stimulus can be described. Either a pin reference annotation or a model reference annota-
tion shall be used. In particular, if awireinstantiation (see 9.15) is present, a reference to a voltage source speci-
fied within the declared wire can be established.
10.15.2 CURRENT

The arithmetic model current shall be defined as shown in Semantics 140.

KEYWORD CURRENT = arithnetic_nodel ;
SEMANTI CS CURRENT {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR HEADER
CELL.LIMT VECTOR LIMT
LAYER LIMT VIALIMT RULE.LIMT

}
VALUETYPE = nunber ;

}
CURRENT { UNIT = MI1i Arpere; }

Semantics 140—Arithmetic model CURRENT

The purpose of the arithmetic model current is to specify either a measurement of electrical current or an electri-
cal component that can be model ed as a current source.

— CURRENT in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for current.

— CURRENT in context of adeclared cell (see 8.4)

A current source that is part of the implementation of a cell can be specified. A node reference annotation (see
10.16.1) shall be used.

218 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A design limit for a current related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5) or a compo-
nent reference annotation (see 10.16.2) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— CURRENT in context of adeclared wire (see 8.10)

A current source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— CURRENT in context of a declared layer (see 8.16), a declared via (see 8.18), or a declared rule (see
8.20)

A design limit for current can be specified using the arithmetic model container limit. A measurement annotation
(see 10.13.7) shall be used.

In the context of alayer, the current shall flow through a general layout segment created by that layer. In the con-
text of aviaor in the context of arule, the current shall flow through a particular layout segment in context of
other layout segments described within the via or within the rule. A pattern reference annotation (see 10.20.9)
shall be used.

— CURRENT in context of adeclared vector (see 8.14)

A current measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or amodel reference annotation or a component reference annotation shall be used.

A design limit for a current related to the stimulus can be specified using the arithmetic model container limit.
Either a pin reference annotation or a model reference annotation or a component reference annotation shall be
used.

— CURRENT as header arithmetic model (see Syntax 89)
A current that acts as a stimulus can be described. Either a pin reference annotation or amodel reference annota-
tion or a component reference annotation shall be used. In particular, if awire instantiation (see 9.15) is present,
areference to a current source or to a component specified within the declared wire can be established.

10.15.3 CAPACITANCE

The arithmetic model capacitance shall be defined as shown in Semantics 141.

KEYWORD CAPACI TANCE = arithnetic_nodel ;
SEMANTI CS CAPACI TANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL CELL.LIMT PINPIN.LIMT
W RE LAYER RULE VECTOR HEADER
}
VALUETYPE = nunber ;
S| _MODEL = CAPACI TANCE ;

}
CAPACI TANCE { UNIT = PicoFarad; MN = 0; }

Semantics 141—Arithmetic model CAPACITANCE

Copyright © 2003 IEEE. All rights reserved. 219
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

The purpose of the arithmetic model capacitance is to describe either a measurement of electrical capacitance or
an electrical component that can be modeled as a capacitor.

— CAPACITANCE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for capacitance.

— CAPACITANCE in context of adeclared cell (see 8.4)

A capacitor that is part of the implementation of a cell can be described. A node reference annotation (see
10.16.1) shall be used.

A design limit for a capacitor related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— CAPACITANCE in context of adeclared pin (see 8.6)

The self-capacitance of a pin can be described as a child of a pin. An arithmetic submodel rise, fall, high, low
(see 10.21) can optionally be used.

A design limit for a capacitance that can be connected to the pin can be specified using the arithmetic model con-
tainer limit as a child of a pin.

— CAPACITANCE in context of adeclared wire (see 8.10)
A capacitance with or without node reference annotation can be described.
A capacitance with node reference annotation shall represent a capacitor within an electrically equivaent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the capacitance shall represent a parasitic capacitor within the
cell. Interconnect analysis shall either use a (lumped) self-capacitance of apin or a (distributed) parasitic capaci-
tor connected to a pin.

A capacitance without node reference annotation shall represent an estimation model for interconnect capaci-
tance.

— CAPACITANCE in context of a declared layer (see 8.16)

An estimation model for capacitance of a general layout segment can be described. An arithmetic submodel hor-
izontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— CAPACITANCE in context of a declared rule (see 8.20)
An estimation model for capacitance created by a particular layout pattern can be described.
— CAPACITANCE in context of a declared vector (see 8.14)
An effective capacitance can be described. Either a pin reference annotation or amodel reference annotation shall

be used. The effective capacitance shall be interpreted as a virtual capacitor, which, under the specific stimulus
provided by the vector, behavesin asimilar way asthe actual |oad circuit.

220 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

— CAPACITANCE as header arithmetic model (see Syntax 89)

A capacitance as a dimension of an arithmetic model can be described. Either a pin reference annotation or a
model reference annotation shall be used.

The pin reference annotation shall be used to specify alumped load capacitance. The self-capacitance of the pin
shall not be included in the load capacitance.

The model reference annotation shall be used to refer to another capacitor. In particular, if awire instantiation
(see 9.15) is present, areference to a capacitor described within the declared wire can be established.

10.15.4 RESISTANCE

The arithmetic model resistance shall be defined as shown in Semantics 142.

KEYWORD RESI STANCE = arithmetic_nodel ;
SEMANTI CS RESI STANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE LAYER RULE
CELL.LIM T VECTOR HEADER
}
VALUETYPE = nunber ;
S| _MODEL = RESI STANCE ;

}
RESI STANCE { UNIT = KiloChm MN = 0; }

Semantics 142—Arithmetic model RESISTANCE

The purpose of the arithmetic model resistance is to describe either a measurement of electrical resistance or an
electrical component that can be modeled as a resistor.

— RESISTANCE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for resistance.

— RESISTANCE in context of adeclared cell (see 8.4)

A resistor that is part of the implementation of a cell can be described. A node reference annotation (see 10.16.1)
shall be used.

A design limit for a resistor related to the cell can be specified using the arithmetic model container limit (see
10.8.2). A model reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way asin the context of library or sublibrary.
— RESISTANCE in context of adeclared wire (see 8.10)
A resistance with or without node reference annotation can be described.
A resistance with node reference annotation shall represent a resistor within an electrically equivalent circuit

used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the resistance shall represent a parasitic resistor within the cell.

Copyright © 2003 IEEE. All rights reserved. 221
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

A resistance without node reference annotation shall represent an estimation model for interconnect resistance.
— RESISTANCE in context of adeclared layer (see 8.16)

An estimation model for resistance of a general layout segment can be described. An arithmetic submodel hori-
zontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— RESISTANCE in context of adeclared rule (see 8.20)
An estimation model for resistance created by a particular layout pattern can be described.

— RESISTANCE in context of a declared vector (see 8.14)
A driver resistance can be described. Either a pin reference annotation or a model reference annotation shall be
used. The driver resistance shall be interpreted as part of an electrically equivalent circuit, which, under the spe-
cific stimulus provided by the vector, behavesin a similar way as the actual driver circuit.

— RESISTANCE as header arithmetic model (see Syntax 89)
A resistance as adimension of an arithmetic model can be described. A model reference annotation shall be used.
In particular, if awire instantiation (see 9.15) is present, a reference to a resistor described within the declared
wire can be established.
10.15.5 INDUCTANCE

The arithmetic model inductance shall be defined as shown in Semantics 143.

KEYWORD | NDUCTANCE = arithmetic_nodel ;
SEMANTI CS | NDUCTANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE LAYER RULE
CELL.LIM T VECTOR HEADER
}
VALUETYPE = nunber ;
S| _MODEL = | NDUCTANCE ;
}
I NDUCTANCE { UNIT = 1le-6; MN = 0; }

Semantics 143—Arithmetic model INDUCTANCE

The purpose of the arithmetic model inductance is to describe either a measurement of electro-magnetic induc-
tance or an electro-magnetic component that can be modeled as an inductor (i.e., a component with self-induc-
tance) or atransformer (i.e., acomponent with mutual inductance).

— INDUCTANCE in context of adeclared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for inductance.

— INDUCTANCE in context of a declared cell (see 8.4)

An inductor or atransformer that is part of the implementation of a cell can be described. A node reference anno-
tation (see 10.16.1) shall be used.

222 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A design limit for an inductor or for atransformer related to the cell can be specified using the arithmetic model
container limit (see 10.8.2). A pin reference annotation (see 10.16.3) or amodel reference annotation (see 10.9.5)
shall be used.
A partial arithmetic model can be used in the same way asin the context of library or sublibrary.

— INDUCTANCE in context of a declared wire (see 8.10)
An inductance with or without node reference annotation can be described.
An inductance with node reference annotation shall represent a self-inductance or a mutual inductance within an
electrically equivalent circuit used for interconnect analysis. If the wireisachild of the cell and a permanent con-
nectivity between pins and nodes of the cell and the nodes of the wire exists, the inductance shall represent a par-

asitic self-inductance or mutual inductance within the cell.

An inductance without node reference annotation shall represent an estimation model for interconnect self-
inductance.

— INDUCTANCE in context of a declared layer (see 8.16)

An estimation model for self-inductance of a general layout segment can be described. An arithmetic submodel
horizontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— INDUCTANCE in context of a declared rule (see 8.20)
An estimation model for inductance created by a particular layout pattern can be described.

— INDUCTANCE in context of a declared vector (see 8.14)
An equivalent inductance can be described. A model reference annotation shall be used. The equivalent induc-
tance shall be interpreted as part of an electrically equivalent circuit, which, under the specific stimulus provided
by the vector, behaves in asimilar way as the actual circuit.

— INDUCTANCE as header arithmetic model (see Syntax 89)
An inductance as a dimension of an arithmetic model can be described. A model reference annotation shall be

used. In particular, if awire instantiation (see 9.15) is present, a reference to a self-inductance or to a mutual
inductance described within the declared wire can be established.

10.16 Annotations for electrical circuits
10.16.1 NODE reference annotation for electrical circuits
The node reference annotation (see 8.13.1) shall be subjected to restrictions defined in Semantics 144.

The purpose of a node reference annotation with these restrictions is to specify the connectivity of an electrical
component within an electrical circuit.

Copyright © 2003 IEEE. All rights reserved. 223
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

SEMANTI CS VOLTAGE. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS CURRENT. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS CAPACI TANCE. NODE = nul ti_val ue_annot ati on {
CONTEXT { CELL WRE } }

SEMANTI CS RESI STANCE. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

SEMANTI CS | NDUCTANCE. NODE = nul ti _val ue_annotation {
CONTEXT { CELL WRE } }

Semantics 144—Restrictions for NODE reference annotation
The following restrictions shall further apply:

a) Anarithmetic model with a node reference annotation shall always have an ALF name.

b) A node annotation associated with the arithmetic model voltage shall have two values, representing the
terminal nodes of a voltage source. The defined polarity of the first and the second terminal shall be pos-
itive and negative, respectively.

¢) A node annotation associated with the arithmetic model current shall have two values, representing the
terminal nodes of a current source. The defined flow of the current shall be from the first to the second
terminal.

d) A node annotation associated with the arithmetic model capacitance shall have two values, representing
the terminal nodes of a capacitor.

€) A node annotation associated with the arithmetic model resistance shall have two values, representing
the terminal nodes of aresistor.

f) A node annotation associated with the arithmetic model inductance shall have either two values or four
values. Two values shall represent the terminal nodes of an inductor. Four values shall represent the ter-
minal nodes of two coupled inductors. The first two values shall represent the terminal s across which an
induced voltage is observed. The last two values shall represent the terminals across which a controlling
current flows.

The electrical components and their terminals are illustrated in Figure 39.

1 1 1 1 T 1 3
Vi, Iy, c __ R % L- ‘ M
2 2 2 2 4

2 2
dv dl di
|1,2=C[’ﬁ'2 Viz2 = ROy, Vl'2=LD-ﬁ’2 Vy, = |\/|[;..%1

Figure 39—Electrical components and their terminals

The numbersin Figure 39 indicate the first, second, third and fourth node annotation values. However, the node
annotation values shall be the ALF names of declared nodes.

10.16.2 COMPONENT reference annotation

A component reference annotation shall be defined as shown in Semantics 145.

224 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD COMPONENT = si ngl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS COVPONENT {
CONTEXT { CURRENT POWER ENERGY }
REFERENCETYPE {
CURRENT VOLTAGE CAPACI TANCE RESI STANCE | NDUCTANCE
}
}

Semantics 145—COMPONENT annotation

The purpose of the component reference annotation is to relate the arithmetic model current (see 10.15.2), power
or energy (see 10.11.15) to an electrical component.

Electrical current shall flow through an electrical component with two terminals, i.e., a voltage source, a current
source, acapacitor, aresistor, or an inductor. The defined flow of the current shall be from thefirst terminal to the
second terminal.

Electrical power or energy shall be supplied by avoltage source or by acurrent source, stored in a capacitor or in
an inductor and dissipated in aresistor. A negative value shall mean that a voltage source or a current sourceisa
sink of power or energy rather than a source, that a capacitor or an inductor releases energy or power, or that a
resistor virtually supplies power.

NOTE — A resistor that supplies power is physically impossible. However, certain active electronic circuits, for example a
Negative Impedance Convertor, can be modeled using a “negative’ resistor. The electrical energy “supplied” by the “nega
tive” resistor is dissipated in other parts of the electronic circuit.

10.16.3 PIN reference annotation for electrical circuits

The pin reference annotation (see 8.8.1) shall be subjected to restrictions defined in Semantics 146.

SEMANTI CS VOLTAGE. PI N = singl e_val ue_annotation {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER } }

SEMANTI CS CURRENT. PIN = si ngl e_val ue_annotation {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER } }

SEMANTI CS CAPACI TANCE. PIN = si ngl e_val ue_annotati on {
CONTEXT { VECTOR VECTOR. . HEADER } }

SEMANTI CS RESI STANCE. PI N = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR } }

Semantics 146—PIN reference annotation

The purpose of a pin reference annotation for electrical circuitsisto specify an association between an electrical
component with two terminals and a pin variable, i.e., a declared pin, port or node (see 9.3).

a) A pin reference annotation associated with the arithmetic model voltage shall specify a connection
between a pin, port or node and a voltage meter. The terminal with defined positive polarity shall be con-
nected to the pin, port or node. The termina with defined negative polarity shall be connected to ground.

b) A pin reference annotation associated with the arithmetic model current shall specify a connection
between a pin, port or node and a current meter. The flow of the current shall be defined by the flow
annotation (see 10.16.4).

Copyright © 2003 IEEE. All rights reserved. 225
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

0)

d)

Advanced Library Format (ALF) Reference Manual

A pin reference annotation associated with the arithmetic model capacitance shall specify a connection
between a pin, port or node and one terminal of a capacitor. The other terminal of the capacitor shall be
connected to ground. The capacitor shall represent either aload capacitance or an effective capacitance.
A pin reference annotation associated with the arithmetic model resistance shall specify a connection
between a pin and one terminal of aresistor. The other terminal of the resistor shall be connected to a vir-
tual voltage source. The resistor shall represent adriver resistance.

An electrical component can be associated with an input pin or with an output pin.

A node with nodetype annotation value receiver (see 8.13.2), a pin with direction annotation value input (see

8.8.5), aport, or anode connected to such a pin shall be considered an input pin.

The association between electrical components and an input pin involves amodel of a stimulus and a model of a

receiver circuit, asillustrated in Figure 40.

model of stimulus (outside cell) mode! of receiver circuit (inside cell)
;7 N current meter N
| l - |
voltage source —
or ! pin ‘	i		
current source	or] S?If-capaqtance	
	pinport	voltage — ofinputpin	
	or meter		
N , hode \ Y,

Figure 40—Association between electrical components and an input pin

A node with nodetype annotation value driver (see 8.13.2), a pin with direction annotation value output (see
8.8.5), aport, or anode connected to such a pin shall be considered an output pin.

The association between electrical components and an output pin involves a model of a driver circuit and a

model of aload circuit, asillustrated in Figure 41.

model of driver circuit (inside cell) model of load circuit (outside cell)
;7 N current meter N
| | - |
— .
| - ‘ ! load capacitance |
. . 4 pin
| virtual driver resistance | | or . |
| voltage sourct | pin.port voltagq _ effective capacitance |
\] or meter \ B J
~ ~ nhode ~ ~

Figure 41—Association between electrical components and an output pin

NOTE — In order to describe a more complex model for a stimulus, aload circuit, a driver circuit or a receiver circuit, an
electrical component in context of a declared wire can be used, as described in 10.15.

226

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

10.16.4 FLOW annotation

A flow annotation shall be defined as shown in Semantics 147.

KEYWORD FLOW = si ngl e_val ue_annot ati on {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS FLOW {
CONTEXT = CURRENT ;
VALUES { in out }
DEFAULT = in;
}

Semantics 147—FLOW annotation

The purpose of the flow annotation is to specify the defined measurement direction of a current in conjunction
with a pin reference annotation (see 10.16.3).

The meaning of the annotation values is shown in Table 104.

Table 104—FLOW annotation

Annotation value Description
in The defined flow of the current isfrom outside the cell to inside the cell.
out The defined flow of the current isfrom inside the cell to outside the cell.

NOTE — The flow annotation is not applicable in conjunction with a node reference annotation (see 10.16.1) or a component
reference annotation (see 10.16.2), since the direction of current measurement is already defined by the order of terminals of
the electrical component.

10.17 Miscellaneous arithmetic models
10.17.1 DRIVE STRENGTH

The arithmetic model drive strength shall be defined as shown in Semantics 148.

KEYWORD DRI VE_STRENGTH = arithmeti c_nodel ;

SEMANTI CS DRI VE_STRENGTH {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP }
VALUETYPE = unsi gned_nunber ;

}
DRI VE_STRENGTH { MN = 0; }

Semantics 148—Arithmetic model DRIVE_STRENGTH

The purpose of the arithmetic model drive strength is to specify an abstract, unit-less measure for drivability
associated with a primitive circuit or a compound circuit.

Copyright © 2003 IEEE. All rights reserved. 227
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

A cell (see 8.4) shall be considered either a primitive circuit or a compound circuit, depending on its celltype
annotation (see 8.5.2). In case of aprimitive circuit, drive strength can be a child of acell. In case of acompound
circuit, drive strength can be a child of a pin (see 8.6) or a pingroup (see 8.7).

A cell with celltype annotation value buffer, combinational, multiplexor, flip-flop, or latch shall be considered a
primitive circuit. A cell with celltype annotation value memory, block, or core shall be considered a compound
circuit.

A partial arithmetic model (see Syntax 84) in the context of aclass (see 7.12), alibrary or asublibrary (see 8.2)
can be used to globally specify a set of discrete values or arange of values for drive strength, using atable state-
ment (see Syntax 91) or atrivial min-max statement (see Syntax 94), respectively.

10.17.2 SWITCHING_BITS with PIN reference annotation

The arithmetic model switching bits shall be defined as shown in Semantics 149.

KEYWORD SW TCHI NG BI TS = arithnetic_nodel ;

SEMANTI CS SW TCHI NG BI TS {
CONTEXT { VECTOR POVWER. HEADER VECTOR. ENERGY. HEADER }
VALUETYPE = unsi gned_i nt eger ;

}
SEMANTI CS SW TCHI NG BI TS. PIN = si ngl e_val ue_annot ati on;

Semantics 149—Arithmetic model SWITCHING_BITS

The purpose of the arithmetic model switching bitsisto specify the number of binary value changes during asin-
gle event (see 9.13.1) on avectorized pin (see 8.6) or a pingroup (see 8.7).

Drive strength can be used as header arithmetic model (see Syntax 89) for calculation of power or energy (see
10.11.15) in context of a vector (see 8.14).

The pin reference annotation (see 8.8.1) shall be used.

10.18 Arithmetic models related to structural implementation
10.18.1 CONNECTIVITY

The arithmetic model connectivity shall be defined as shown in Semantics 150.

KEYWORD CONNECTI VI TY = ari thmetic_nodel ;

SEMANTI CS CONNECTI VI TY {
CONTEXT { LI BRARY SUBLI BRARY CELL RULE ANTENNA HEADER }
VALUES { 1 0 ? }

}

Semantics 150—Arithmetic model CONNECTIVITY

The purpose of the arithmetic model connectivity is to specify an actual connection or a requirement for a con-
nection between physical objects. Either a table statement (see Syntax 91) or a between annotation (see 10.20.2)
shall be used to establish arelation between physical objects and the arithmetic model connectivity. The interpre-
tation of connectivity as a requirement for a connection shall be specified by the connect-rule annotation (see
10.20.1).

228 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The arithmetic model connectivity shall evaluate to a bit literal (see 6.8). The interpretation of the bit literal is
specified in Table 105.

Table 105—Interpretation of bit literals for CONNECTIVITY

Bit literal Inter pretation as actual connection Inter pretation as requirement for a connection
1 Connection exists. Requirement istrue.
0 Connection does not exist. Requirement isfalse.
? Connection is not specified. Requirement is not specified.

NOTE — The hit literal “?" is defined as a non-assignabl e boolean value (see 9.10.3) and can therefore only be used, if the
connectivity ismodeled as atable (see Syntax 91).

10.18.2 DRIVER and RECEIVER

The arithmetic models driver and receiver shall be defined as shown in Semantics 151.

KEYWORD DRI VER = arithnetic_nodel ;
SEMANTI CS DRI VER {
CONTEXT = CONNECTI VI TY. HEADER;
REFERENCETYPE = CLASS ;
}
KEYWORD RECEI VER = arithmetic_nodel ;
SEMANTI CS RECEI VER {
CONTEXT = CONNECTI VI TY. HEADER;
REFERENCETYPE = CLASS ;

}

Semantics 151—Arithmetic models DRIVER and RECEIVER

The purpose of the header arithmetic model (see Syntax 89) driver or receiver is to specify a dependency
between connectivity (see 10.18.1) and a declared class (see 7.12) with usage annotation value connect-class (see
7.13.2 and 8.8.19).

The header arithmetic model driver or receiver shall contain a table statement (see Syntax 91). The parent arith-
metic model connectivity shall contain either a one-dimensional 1ookup table involving either dimension driver
or receiver, or dternatively atwo-dimensional 1ookup table involving both dimensions driver and receiver.

A declared pin (see 8.6) shall be subjected to a connection with another pin, if a connect-class annotation exists
for both pins, and the respective connect-class annotation values are found in a table statement within the header
arithmetic model driver or receiver.

The association of apin with the dimension driver or receiver shall depend on the direction annotation value (see
8.8.5). A pin with direction annotation value input shall be associated with the dimension receiver. A pin with
direction annotation value output shall be associated with the dimension driver. A pin with direction annotation
value both shall be associated with both dimensions driver and receiver.

Copyright © 2003 IEEE. All rights reserved. 229
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Example:

CLASS Normal { USAGE = CONNECT_CLASS; }
CLASS Speci al { USAGE = CONNECT_CLASS; }
CONNECTI VI TY Exanpl el {
HEADER { DRI VER { Nornal Special } }
TABLE { 0 1}

}
CONNECTI VI TY Exanpl e2 {
HEADER {
DRI VER { Normal Special } }
RECEI VER { Special Normal } }
}
TABLE { 0110}
}

Examplel specifies the following:

A connection between an output pin and another output pin associated with Normal is false.
A connection between an output pin and another output pin associated with Special istrue.

Example2 specified the following:
A connection between an output pin associated with Normal and an input pin associated with Special isfalse.
A connection between an output pin associated with Special and an input pin associated with Special istrue.
A connection between an output pin associated with Normal and an input pin associated with Normal is true.
A connection between an output pin associated with Special and an input pin associated with Normal isfalse.

10.18.3 FANOUT, FANIN and CONNECTIONS

The arithmetic model fanout shall be defined as shown in Semantics 152.

KEYWORD FANOQUT = arithnetic_nodel ;
SEMANTI CS FANQUT {
CONTEXT {
PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

Semantics 152—Arithmetic model FANOUT

The purpose of the arithmetic model fanout is to specify the total number of input pins connected to a net.
The arithmetic model fanin shall be defined as shown in Semantics 153.

The purpose of the arithmetic model fanin is to specify the total number of output pins connected to a net.

230 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD FANIN = arithnetic_nodel ;
SEMANTI CS FANI N {
CONTEXT {
PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

Semantics 153—Arithmetic model FANIN

The arithmetic model connections shall be defined as shown in Semantics 154.

KEYWORD CONNECTI ONS = arithnetic_nodel ;
SEMANTI CS CONNECTI ONS {
CONTEXT {
PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

Semantics 154—Arithmetic model CONNECTIONS

The purpose of the arithmetic model connections is to specify the total number of pins connected to a net. The
arithmetic value for connections shall equal the sum of arithmetic values for fanout and fanin.

The accounting of apin shall depend on its direction annotation value (see 8.8.5).

A pin with direction annotation value input shall count for fanout and for connections. A pin with direction anno-
tation value output shall count for fanin and for connections. A pin with direction value both shall count for fanin
and for fanout and twice for connections. A pin without direction annotation or with direction annotation value
none shall not count.

— FANOUT, FANIN, or CONNECTIONS as limit arithmetic model (see 10.8.2) in the context of a pin (see
8.6)

A design limit for the number of pins or nodes connected to a net can be described. The declared pin wherein the
design limit is described shall count, according to its direction annotation value.

— FANOUT, FANIN, or CONNECTIONS as header arithmetic model (see Syntax 89) in the context of a
wire (see 8.10)

The arithmetic value of size (see 10.19.1), capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see
10.15.5) can be calculated.

10.19 Arithmetic models related to layout implementation
10.19.1 SIZE

The arithmetic model size shall be defined as shown in Semantics 155.

Copyright © 2003 IEEE. All rights reserved. 231
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD S| ZE = arithnetic_nodel ;
SEMANTI CS Sl ZE {
CONTEXT {
CELL ANTENNA ANTENNA. LIM T PIN W RE
W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER
W RE. | NDUCTANCE. HEADER

}
VALUETYPE = nunber ;

}
SIZE{ MN=0; }

Semantics 155—Arithmetic model SIZE

The purpose of the arithmetic model size is to define an abstract, unit-less measure for the space occupied by a
physical object or the magnitude of a physical effect.

— SIZE as arithmetic model in the context of acell (see 8.4) or awire (see 8.10)
Size shall represent a measure for the space occupied by a placed cell or by arouted wire. The space occupied by
adesign or asubdesign shall be calculated as the sum of the space occupied by each cell instance and each routed
wire. The space allocated for a design or a subdesign can be greater or equal to the space occupied by the design
or subdesign.

— SIZE as header arithmetic model (see Syntax 89) in context of awire (see 8.10)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) in the
context of awire can be calculated. The dimension size shall represent a measure for space allocated for adesign
or subdesign wherein the wire is routed.

— SIZE as arithmetic model in the context of an antenna (see 8.21)
Size shall represent a measure for the magnitude of the antenna effect. A design limit for the magnitude of the
antenna effect can be given using the arithmetic model container limit (see 10.8.2). The calculated size shall be
compared against the design limit for size given in the context of the same antenna.

— SIZE as arithmetic model in the context of a pin (see 8.6)
Size shall represent a measure for the additive magnitude of an antenna (see 8.21), when the layout created by
the connection between a pin and a routed wire is subjected to an antenna effect. An antenna reference annota-
tion (see 10.20.7) and atarget annotation (see 10.20.8) shall be used.
10.19.2 AREA
The arithmetic model area shall be defined as shown in Semantics 156.

The purpose of the arithmetic model area is to define a physical area, according to the International System of
M easurements and Units [reference needed].

232 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD AREA = arithnetic_nodel ;
SEMANTI CS AREA {
CONTEXT {
CELL W RE W RE. . HEADER LAYER. . HEADER
RULE. . HEADER ANTENNA. . HEADER
}
VALUETYPE = unsi gned_nunber ;
SI _MODEL = AREA ;
}
AREA { UNIT = l1le-12; MN = 0; }

Semantics 156—Arithmetic model AREA
— AREA as arithmetic model in the context of a cell (see 8.4) or awire (see 8.10)

Areashall represent the physical area occupied by a placed cell or arouted wire, respectively. The area shall take
into account the required space between neighboring objects.

The physical area occupied by a design or a subdesign shall be calculated as the sum of the physical area occu-
pied by each cell instance and each routed wire. The physical area allocated for a design or a subdesign can be
greater or equal to the physical area occupied by the design or subdesign.

— AREA as header arithmetic model (see Syntax 89) in context of awire (see 8.10)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. The dimension area shall represent the physical area allocated for a design or subdesign wherein the
wire is routed.

— AREA asheader arithmetic model (see Syntax 89) in context of alayer (see 8.16)
The arithmetic value of capacitance (see 10.15.3) or resistance (see 10.15.4) can be calculated. A design limit
for current (see 10.15.2) can be calculated. The dimension area shall represent the physical area occupied by a
layout segment residing on the layer.

— AREA as header arithmetic model (see Syntax 89) in context of arule (see 8.20)
The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension area shall represent
the physical area occupied by a pattern or by aregion. A pattern reference annotation (see 10.20.9) or aregion
reference annotation (see 8.32.1) shall be used.

— AREA as header arithmetic model (see Syntax 89) in context of an antenna (see 8.21)
The arithmetic value of size (see 10.19.1) in the context of an antenna can be calculated. The dimension area
shall represent the physical area occupied by alayout segment residing on a layer (see 8.16). A layer reference
annotation (see 8.17.1) shall be used.
10.19.3 PERIMETER

The arithmetic model perimeter shall be defined as shown in Semantics 157.

Copyright © 2003 IEEE. All rights reserved. 233
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD PERI METER = arithnetic_nodel ;
SEMANTI CS PERI METER {
CONTEXT {
CELL WRE W RE. . HEADER LAYER. . HEADER
RULE. . HEADER ANTENNA. . HEADER
}
SI _MODEL = DI STANCE ;

}

Semantics 157—Arithmetic model PERIMETER

The purpose of the arithmetic model perimeter is to define the distance (see 10.19.9) measured when surround-
ing the boundaries of a physical object.

— PERIMETER as arithmetic model in the context of a cell (see 8.4) or awire (see 8.10)

Perimeter shall represent the perimeter surrounding a placed cell or a routed wire. The perimeter shall take into
account the required space between neighboring objects.

— PERIMETER as header arithmetic model (see Syntax 89) in context of awire (see 8.10)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. The dimension perimeter shall represent the perimeter surrounding a space allocated for a design or
subdesign wherein the wire is routed.

— PERIMETER as header arithmetic model (see Syntax 89) in context of alayer (see 8.16)

The arithmetic value of capacitance (see 10.15.3) or resistance (see 10.15.4) can be calculated. A design limit
for current (see 10.15.2) can be calculated. The dimension perimeter shall represent the perimeter surrounding a
layout segment residing on the layer.

— PERIMETER as header arithmetic model (see Syntax 89) in context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension perimeter shall repre-
sent the perimeter surrounding a pattern or by aregion. A pattern reference annotation (see 10.20.9) or aregion
reference annotation (see 8.32.1) shall be used.

— PERIMETER as header arithmetic model (see Syntax 89) in context of an antenna (see 8.21)
The arithmetic value of size (see 10.19.1) in the context of an antenna can be calculated. The dimension perime-
ter shall represent the perimeter surrounding a layout segment residing on a layer (see 8.16). A layer reference
annotation (see 8.17.1) shall be used.
10.19.4 EXTENSION
The arithmetic model extension shall be defined as shown in Semantics 158.
The purpose of the arithmetic model extension is to specify the size of a polygon created by expanding a point
within a geometric model (see Table 94). In the case of two allowed routing directions in an interval of 90

degrees, the expansion shall result in arectangle. In the case of four allowed routing directionsin intervals of 45
degrees, the expansion shall result in a hexagon.

234 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD EXTENSI ON = arithmeti c_nodel ;

SEMANTI CS EXTENSI ON {
CONTEXT { LAYER PATTERN RULE. LIM T RULE. . HEADER }
S| _MODEL = DI STANCE ;

}

Semantics 158—Arithmetic model EXTENSION

Thisisillustrated in Figure 42.

extension extension
.horizontal .horizontal
- -
T extension
. | . .obtuse
extension extension
.vertical | vertica
|
| extension
, .acute

Figure 42—lllustration of EXTENSION

The arithmetic submodels horizontal, vertical, acute and obtuse (see 10.22) can be used to specify anisotropic
expansion.

— EXTENSION as arithmetic model in the context of alayer (see 8.16)

Extension shall represent the expansion of an endpoint of arouting segment residing on a layer (see 8.16) with
layertype annotation value routing (see 8.17.2).

— EXTENSION as arithmetic model in the context of a pattern (see 8.29)

Extension shall represent the expansion of a pattern (see 8.29) with an associated shape annotation or with an
associated geometric model (see 9.16). Each reference point shall be subject to expansion.

— EXTENSION as limit arithmetic model (see 10.8.2) in the context of arule (see 8.20)

Extension shall represent a design limit for expansion of a pattern. Each reference point shall be subject to
expansion. A pattern reference annotation (see 10.20.9) shall be used.

— EXTENSION as header arithmetic model (see Syntax 89) in context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension extension shall repre-
sent the expansion of a pattern with shape annotation value tee, cross, corner or end (see 8.30.2). A pattern ref-
erence annotation (see 10.20.9) or a model reference annotation (see 10.9.5) shall be used. The model reference
annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic submodel as a
child of extension and a grandchild of pattern.

Copyright © 2003 IEEE. All rights reserved. 235
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

10.19.5 THICKNESS

The arithmetic model thickness shall be defined as shown in Semantics 159.

KEYWORD THI CKNESS = arithneti c_nodel ;
SEMANTI CS EXTENSI ON {

CONTEXT { LAYER RULE. . HEADER }

SI _MODEL = DI STANCE ;
}

Semantics 159—Arithmetic model THICKNESS

The purpose of the arithmetic model thicknessisto specify the distance between the bottom and the top of a man-
ufactured layer (see 8.16).

Thickness as header arithmetic model (see Syntax 89) can be used to calculate an arithmetic value of capaci-
tance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) in the context of arule (see 8.20).

10.19.6 HEIGHT

The arithmetic model height shall be defined as shown in Semantics 160.

KEYWORD HEI GHT = arithnetic_nodel ;

SEMANTI CS HEI GHT {
CONTEXT { CELL SI TE REA ON LAYER W RE. . HEADER }
SI _MODEL = DI STANCE ;

}

Semantics 160—Arithmetic model HEIGHT

The purpose of the arithmetic model height is to specify a vertical distance, i.e., a distance measured in y direc-
tion or in zdirection.

— HEIGHT as arithmetic model in the context of alayer (see 8.16)

Height shall represent a distance in z direction measured between the manufacturing substrate and the bottom of
amanufactured layer.

— HEIGHT as arithmetic model in the context of acell (see 8.4), site (see 8.25) or region (see 8.31)

Height shall represent a distance in y direction measured between the bottom and the top of a rectangular cell,
site, pattern or region.

— HEIGHT as header arithmetic modd (see Syntax 89) in context of awire (see 8.10)

Height shall represent the distance in y direction measured between the bottom and the top of an allocated rectan-
gular space for adesign or a subdesign wherein the wire is routed.

10.19.7 WIDTH

The arithmetic model width shall be defined as shown in Semantics 161.

236 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD W DTH = arithnetic_nodel ;
SEMANTI CS W DTH {
CONTEXT {
CELL SITE REG ON LAYER LAYER LIMT
PATTERN RULE. LIM T RULE. . HEADER
}
SI _MODEL = DI STANCE ;
}

Semantics 161—Arithmetic model WIDTH
The purpose of the arithmetic model width is to specify a distance within an x-y plane.
— WIDTH as arithmetic model in the context of acell (see 8.4), site (see 8.25) or region (see 8.31)

Width shall represent a distance in x direction measured between the left and the right border of a rectangular
cell, site or region.

— WIDTH as header arithmetic model (see Syntax 89) in context of awire (see 8.10)

Width shall represent the distance in x direction measured between the left and the right border of an allocated
rectangular space for adesign or a subdesign wherein the wire is routed.

— WIDTH as arithmetic model or limit arithmetic model (see 10.8.2) in the context of alayer (see 8.16)

Width shall represent a distance or adesign limit for a distance between the borders of arouting segment residing
on alayer with layertype annotation value routing (see 8.17.2). Width shall be measured orthogonal to the rout-
ing direction, i.e., iny (i.e., 90 degree) direction if the routing isin x (i.e., 0 degree) direction and vice-versa, in
135 degree direction if the routing isin 45 degree direction and vice versa.

— WIDTH as arithmetic model in the context of a pattern (see 8.29)

Width shall represent the distance between the borders of a pattern (see 8.29) with an associated shape annota-
tion value line or jog (see 8.30.2) or with an associated geometric model of type polyline or ring (see 9.16).
Width shall be measured orthogonal to the lines of the shape. A line shall be expanded by half the arithmetic
value of width to each side of theline.

— WIDTH aslimit arithmetic model (see 10.8.2) in the context of arule (see 8.20)

Width shall represent a design limit for the distance between the borders of a pattern with an associated shape
annotation value line or jog or with an associated a geometric model of type polyline or ring. A pattern reference
annotation (see 10.20.9) shall be used.

— WIDTH as header arithmetic model (see Syntax 89) in the context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension width shall represent
the distance between the borders of a pattern with shape annotation value line or end (see 8.30.2). A pattern ref-
erence annotation (see 10.20.9) or a model reference annotation (see 10.9.5) shall be used. The model reference
annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic submodel as a
child of extension and a grandchild of pattern.

Copyright © 2003 IEEE. All rights reserved. 237
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

1

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

10.19.8 LENGTH

The arithmetic model length shall be defined as shown in Semantics 162.

KEYWORD LENGTH = arithnetic_nodel ;
SEMANTI CS LENGTH {
CONTEXT {
LAYER LAYER LIM T PATTERN RULE. LIM T RULE. . HEADER
}
SI _MODEL = DI STANCE ;

}

Semantics 162—Arithmetic model LENGTH

— LENGTH as arithmetic model or limit arithmetic model (see 10.8.2) in the context of alayer (see 8.16)

Length shall represent a distance or a design limit for a distance between the end points of a routing segment
residing on a layer with layertype annotation value routing (see 8.17.2). Length shall be measured parallel to the
routing direction.

— LENGTH as arithmetic model in the context of a pattern (see 8.29)

Length shall represent the distance between the end points of a pattern (see 10.20.9) with an associated shape
annotation value line or jog (see 8.30.2).

— LENGTH aslimit arithmetic model (see 10.8.2) in the context of arule (see 8.20)

Length shall represent a design limit for the distance between the end points of a pattern with an associated
shape annotation value line or jog. A pattern reference annotation (see 10.20.9) shall be used.

— LENGTH as header arithmetic model (see Syntax 89) in the context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), or extension (see 10.19.4) can be calculated. The dimension length shall represent the distance between
the end points of a pattern with shape annotation value line or end (see 8.30.2). A pattern reference annotation
(see 10.20.9), amodel reference annotation (see 10.9.5) or a between annotation (see 10.20.4) shall be used. The
model reference annotation shall refer to an arithmetic model extension as achild of apattern or to an arithmetic
submodel as a child of extension and a grandchild of pattern. A between annotation shall refer to two patterns
representing two parallel routing segments

10.19.9 DISTANCE
The arithmetic model distance shall be defined as shown in Semantics 163.

The purpose of the arithmetic model distance is to define a space in-between two objects, according to the Inter-
national System of Units (see U.S. National Bureau of Standards, Spec. Pub. 330).

— DISTANCE as arithmetic model or as limit arithmetic model (see 10.8.2) in the context of arule (see
8.20)

Distance shall represent a measured distance or adesign limit for a distance between two patterns in the context
of therule. A between annotation (see 10.20.4) shall be used.

238 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD DI STANCE = arithmetic_nodel ;
SEMANTI CS DI STANCE {
CONTEXT { RULE RULE. LIM T RULE. . HEADER }
VALUETYPE = nunber ;
S| _MODEL = DI STANCE ;

}
DISTANCE { UNIT = 10e-6; MN = 0; }

Semantics 163—Arithmetic model DISTANCE
The arithmetic submodels horizontal, vertical, acute and obtuse (see 10.22) can be used.
— DISTANCE as header arithmetic model (see Syntax 89) in the context of arule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), length (see 10.19.8), overhang (see 10.19.10), width (see
10.19.7), or extension (see 10.19.4) can be calculated. The dimension distance shall represent the measured dis-
tance between two patterns. A between reference annotation (see 10.20.4) or model reference annotation (see
10.9.5) shall be used. The model reference annotation shall refer to an arithmetic model distance as a child of a
rule or to alimit arithmetic model distance as a grandchild of arule.

10.19.10 OVERHANG

The arithmetic model overhang shall be defined as shown in Semantics 164.

KEYWORD OVERHANG = arithneti c_nodel ;
SEMANTI CS OVERHANG ({
CONTEXT { RULE RULE. LIM T RULE. . HEADER }
SI _MODEL = DI STANCE ;

}

Semantics 164—Arithmetic model OVERHANG

The purpose of the arithmetic model overhang is to define an overlapping space between two objects.

Overhang can be used as arithmetic model or as limit arithmetic model (see 10.8.2) or as header arithmetic
model (see Syntax 89) in the context of a rule (see 8.20), with similar semantic restrictions as distance (see
10.19.9).

Overhang can be interpreted as the distance between the nearest parallel edges in the region of overlap between
two objects.

NOTE: The use of the arithmetic model distance instead of overhang would imply that there is no overlap.

Thisisillustrated in Figure 43.

Copyright © 2003 IEEE. All rights reserved. 239
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

distance
——P

Figure 43—lllustration of DISTANCE versus OVERHANG
10.19.11 DENSITY

The arithmetic model density shall be defined as shown in Semantics 165.

KEYWORD DENSI TY = arithnetic_nodel ;
SEMANTI CS DENSI TY {
CONTEXT { LAYER. LIMT RULE RULE.LIMT }
VALUETYPE = nunber ;

}
DENSITY { MN = 0; MAX = 1; }

Semantics 165—Arithmetic model DENSITY

The purpose of the arithmetic model density is to specify a design limit or a calculation model for metal density.
Metal density shall be defined as the area occupied by all metal segmentsresiding on alayer (see 8.16) with lay-
ertype annotation value routing (see 8.17.2), divided by an allocated area wherein the metal segments are found.
— DENSITY aslimit arithmetic model (see 10.8.2) in the context of alayer (see 8.16)
A constant design limit for metal density can be specified.
— DENSITY as arithmetic model or as limit arithmetic model (see 10.8.2) in the context of arule (see 8.20)
A design limit or a calculation model for metal density can be specified. A region reference annotation (see
8.32.1) can be used to relate the design limit or the calculation model for metal density to a region (see 8.31)

declared in the context of the same rule. A model reference annotation (see 10.9.5) can be used to relate adesign
limit to arelated cal culation model.

10.20 Annotations related to arithmetic models for layout implementation
10.20.1 CONNECT_RULE annotation
A connect-rule annotation shall be defined as shown in Semantics 166.

The purpose of the connect-rule annotation is to specify that the arithmetic model connectivity (see 10.18.1) isto
be interpreted as a requirement for connection rather than an actual connection.

240 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

}

}

KEYWORD CONNECT_RULE = singl e_val ue_annotati on {
CONTEXT = arithnetic_nodel ;

SEMANTI CS CONNECT_RULE {
CONTEXT = CONNECTI VI TY ;
VALUES { nust_short can_short cannot_short }

Semantics 166—CONNECT_RULE annotation

The meaning of the annotation valuesis shown in Table 106.

Table 106—CONNECT_RULE annotation

Annotation value

Description

nmust _short

Electrical connection required.

can_short

Electrical connection allowed.

cannot _short

Electrical connection disallowed.

Implications between requirements for a connection are shown in Table 107.

Table 107—Implications between CONNECT_RULE specifications

specified rule must_short can_short cannot_short
implied rule 1 0 ? 1 0 ? 1 0 ?
must_short 1 0 2 ? 0 ? 0 ? ?
can_short 1 ? ? 1 0) 0 1 2
cannot_short 0 ? ? 0 1 ? 1 0 ?

A set of requirements for a connection that can be inferred by implication according to Table 107 is redundant. A
set of reguirements contradicting Table 107 shall be a conflict. The application shall be responsible for handling
redundant requirements and conflicts.

10.20.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 167.

The purpose of the between annotation is to specify a reference to multiple objects related to an arithmetic model
distance (see 10.19.9), length (see 10.19.8), overhang (see 10.19.10), or connectivity (see 10.18.1).

10.20.3 BETWEEN annotation for CONNECTIVITY

A between annotation shall be subjected to the restriction shown in Semantics 168.

Copyright © 2003 IEEE. All rights reserved. 241
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD BETWEEN = nulti _val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS BETWEEN {
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}

Semantics 167—BETWEEN annotation

SEMANTI CS ANTENNA. CONNECTI VI TY. BETWEEN {
REFERENCETYPE = LAYER;

}

SEMANTI CS HEADER. CONNECTI VI TY. BETWEEN {
REFERENCETYPE { PATTERN REG ON LAYER }

}

SEMANTI CS LI BRARY. CONNECTI VI TY. BETVEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS SUBLI BRARY. CONNECTI VI TY. BETVEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS CELL. CONNECTI VI TY. BETVEEN {
REFERENCETYPE { PI'N CLASS }

}

Semantics 168—BETWEEN annotation for CONNECTIVITY

The purpose of the restriction is to alow only areference to objects which are semantically valid in the context
of connectivity (see 10.18.1).

10.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

A between annotation shall be subjected to the restriction shown in Semantics 169.

SEMANTI CS DI STANCE. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS LENGTH. BETVEEEN {
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS OVERHANG. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}

Semantics 169—BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

The purpose of the restriction is to alow only areference to objects which are semantically valid in the context
of distance (see 10.19.9), length (see 10.19.8), or overhang (see 10.19.10).

Furthermore, the number of annotation values, i.e., the number of referenced objects for distance, length, over-
hang shall be restricted to exactly two objects.

242 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

A distance between two objects can be generally defined. An overhang or a length involving two objects can be
defined only between the nearest parallel edges of two objects.

In the case of two objects with nearest parallel edges, distance prescribes an empty space between the objects.
Overhang prescribes an overlapping space between the objects. Length is defined as the distance between the end
points of the intersection formed by projecting the parallel edges onto each other.

Thisisillustrated in Figure 44.

distance
length length
Figure 44—lllustration of DISTANCE versus OVERHANG versus LENGTH
10.20.5 MEASURE annotation
A measure annotation shall be defined as shown in Semantics 170.
KEYWORD MEASURE = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MEASURE {
CONTEXT { DI STANCE LENGTH OVERHANG }
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = eucl i dean ;
}
Semantics 170—DISTANCE_MEASUREMENT annotation
The mathematical description of the annotation values is specified in Table 108.
Table 108—Annotation values for MEASURE
Annotation value Mathematical description
eucl i dean
measure= X+ y2
manhat t an
measure = X+y
hori zont al
measure = X
Copyright © 2003 IEEE. All rights reserved. 243

This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

Table 108—Annotation values for MEASURE (Continued)

Annotation value Mathematical description

verti cal
measure = y

Distance can be measured between two points, between a point and a line, or between two paralel lines. The
shape annotation (see 8.30.2) specifies whether a pattern is represented by a point or by aline.

The specification of x and y for the mathematical definition of the measure annotation values is illustrated in
Figure 45.

point
- @
7
Yl oo
¢]
point |
i

Figure 45—Illustration of MEASURE
Figure 45 shows the distance between two points, between a point and aline, and between two parallel lines.
10.20.6 REFERENCE annotation container

A reference annotation container shall be defined as shown in Semantics 171.

KEYWORD REFERENCE = annot ati on_cont ai ner {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS REFERENCE {
CONTEXT { DI STANCE LENGTH OVERHANG }
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS REFERENCE. i denti fier = single_val ue_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

Semantics 171—REFERENCE annotation container
The purpose of the reference annotation container is to specify the reference points for a measurement of dis-

tance (see 10.19.9).

244 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

An annotation within the reference annotation container shall associate a pattern (see 8.29) or aregion (see 8.31)
with areference point specified by an annotation value.

The meaning of the annotation values is specified in Table 1009.

Table 109—Annotation values for REFERENCE

Annotation value Description
origin Thereference point is the origin of a pattern or aregion.
center Thereference point is the center of a pattern or aregion
near _edge Thereference point is the edge of a pattern or aregion

which is nearest to a parallel edge of another pattern or
another region.

far _edge The reference point is the edge of a pattern or aregion
which isfarthest from a parallel edge of another pattern
or another region.

The following restrictions shall further apply:

a) Theannotation value origin can only apply in the following cases:

1) A shape annotation is associated with the pattern, and the annotation value is tee, cross, corner or
end. The reference point of the shape shall be considered the origin.

2) A geometric model (see 9.16) is associated with the pattern or region. A geometric transformation
(see 9.18) can describe the location of the origin. If no geometric transformation is given, the loca-
tion of the origin shall be the point x=0, y=0.

b) The annotation value center, near edge or far edge can only apply in the following cases:

1) A shape annotation is associated with the pattern, and the annotation value is line or jog. The
straight line connecting the end points shall be considered as center. The border of the line given by
width (see 10.19.7) shall be considered either as near edge or as far edge.

2) A predefined geometric model rectangle (see 9.16) is associated with the pattern or region. The
point of gravity of the rectangle shall be considered as center.

3) A predefined geometric model line (see 9.16) is associated with the pattern or region. The straight
line connecting the end points shall be considered as center.

The meaning of the reference annotation valuesis further illustrated in Figure 46.

Copyright © 2003 IEEE. All rights reserved. 245
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

far edge

center Ak origin objectl
e
S IR !
\®origin object?

center | Y| | _L _ _v__ __________

far edge \i V V

Figure 46—lllustration of REFERENCE for DISTANCE
Figure 46 shows euclidean distance between all possible reference points of objectl and object2.
10.20.7 ANTENNA reference annotation

An antenna reference annotation shall be defined as shown in Semantics 172.

KEYWORD ANTENNA = annotation {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS ANTENNA {
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }
REFERENCETYPE = ANTENNA;

}

Semantics 172—ANTENNA reference annotation

An antenna reference annotation shall be used to relate a calculated size (see 10.19.1) or area (see 10.19.2) or
perimeter (see 10.19.3) in the context of the pin with a calculation rule for size in the context of an antenna (see
8.21). A reference to multiple antennas can be made using a multi-value annotation.

10.20.8 TARGET annotation

An target annotation shall be defined as shown in Semantics 173.

KEYWORD TARGET = annotation {
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS TARGET {
VALUETYPE = identifier ;
CONTEXT = PI N. SI ZE;
REFERENCETYPE = PI N. PATTERN,

}

Semantics 173—TARGET annotation

246 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

The target annotation shall be associated with the arithmetic model size (see 10.19.1) in the context of apin (see
8.6).

The purpose of the target annotation is to specify a pattern (see 8.29) in the context of the same pin which isthe
victim of an antenna effect (see 8.21). The referenced pattern shall have alayer reference annotation (see 8.17.1)
and atrivial or afull arithmetic model (see Syntax 83 and Syntax 85) for area (see 10.19.2) or perimeter (see
10.19.3).

An antenna reference annotation (see 10.20.7) shall also be associated with the arithmetic model size. The
referred antenna (see 8.21) shall also contain an arithmetic model size, used as a calculation rule. The sizein the
context of the pin shall be considered additive to the size formulated by the calculation rule. The arithmetic value
for area or perimeter in the referenced pattern shall further be used as evaluation results for the dimension area
or perimeter within the calculation rule.

10.20.9 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in Semantics 174.

KEYWORD PATTERN = singl e_val ue_annotation {
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS PATTERN {
CONTEXT {
LENGTH W DTH HEI GHT S| ZE AREA THI CKNESS
PERI METER EXTENSI ON
}
REFERENCETYPE = PATTERN ;
}

Semantics 174—PATTERN annotation

The purpose of the pattern reference annotation is to relate an arithmetic model or aheader arithmetic model (see
Syntax 89) to a declared pattern (see 8.29).

10.21 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 110 shall be applicable in the context of electrical modeling.

Table 110—Overview of arithmetic submodels for timing and electrical data

Keyword Description
H GH Applicable for electrical data measured at alogic hi gh state of apin.
Low Applicable for electrical data measured at alogic | ow state of apin.
Rl SE Applicable for electrical data measured during alogic | owto hi gh transition of apin.
FALL Applicable for electrical data measured during alogic hi gh tol owtransition of apin.

The arithmetic submodel s high and low shall be defined as shown in Semantics 175.

Copyright © 2003 IEEE. All rights reserved. 247
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD HI GH = arithneti c_subnodel ;
SEMANTI CS HI GH { CONTEXT ({
CLASS. VOLTAGE CLASS. LIM T. VOLTAGE
PI N. VOLTAGE PI N. LI M T. VOLTAGE PI N. CAPACI TANCE
PI N. NO SE PIN. NO SE_MARG N PIN. LIMT. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE
P}
KEYWORD LOW = arithnetic_subnodel ;
SEMANTI CS LOW { CONTEXT {
CLASS. VOLTAGE CLASS. LIM T. VOLTAGE
PI N. VOLTAGE PIN. LI M T. VOLTAGE PI N. CAPACI TANCE
PIN. NO SE PIN. NO SE MARG N PIN. LI M T. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE

b}

Semantics 175—Arithmetic submodels HIGH and LOW

The arithmetic submodels rise and fall shall be defined as shown in Semantics 176.

KEYWORD RI SE = arithnetic_subnodel ;

SEMANTI CS RI SE { CONTEXT {
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
Pl N. CAPACI TANCE PI N. SLEWRATE PI N. LI M T. SLEWRATE
PI N. PULSEW DTH PI N. LI M T. PULSEW DTH

b}

KEYWORD FALL = arithmnetic_subnodel ;

SEMANTI CS FALL { CONTEXT {
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
Pl N. CAPACI TANCE PI N. SLEWRATE PI N. LI M T. SLEWRATE
PI N. PULSEW DTH PI N. LI M T. PULSEW DTH

}}

Semantics 176—Arithmetic submodels RISE and FALL

10.22 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 111 shall be applicable in the context of physical modeling.

Table 111—Overview of arithmetic submodels for physical data

Keyword Description
HORI ZONTAL Applicable for layout measurementsin O degree, i.e., horizontal direction.
VERTI CAL Applicable for layout measurementsin 90 degree, i.e., vertical direction.
ACUTE Applicable for layout measurements in 45 degree direction.
OBTUSE Applicable for layout measurements in 135 degree direction.

The arithmetic submodels horizontal, vertical, acute and obtuse shall be defined as shown in Semantics 177.

248 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

IEEE P1603/D9, July 2003

KEYWORD HORI ZONTAL = arithnetic_subnodel ;
SEMANTI CS HORI ZONTAL { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD VERTI CAL = arithnmetic_subnodel ;
SEMANTI CS VERTI CAL { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD ACUTE = arithnetic_subnodel ;
SEMANTI CS ACUTE { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
P}
KEYWORD OBTUSE = arithneti c_subnodel ;
SEMANTI CS OBTUSE { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG

b}

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to chan

Semantics 177—Arithmetic submodels HORIZONTAL, VERTICAL, ACUTE and OBTUSE

249
ge.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

250

Advanced Library Format (ALF) Reference Manual

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The syntax for description of lexical and syntax rules uses the conventions shown in 1.4.

ALF_statement ::= /I See Syntax 1 on page 25
ALF type[[index] ALF_name[index]][= ALF vaue];
| ALF _type[[index]ALF _name[index]][=ALF value] {{ ALF value|:|;}}
| ALF _type[[index]ALF_name[index]][=ALF value] { { ALF statement} }
ALF type::=
identifier
| @
|:
ALF_name::=
identifier
| control_expression
ALF vaue::=
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge value
| arithmetic_expression
| boolean_expression
| control_expression
ALF_statement_termination ::=

[{{ ALF_value|:|;}}
|{ { ALF_statement } }
character ::= /I See Syntax 2 on page 37
whitespace
| letter
| digit
| special
whitespace ::=
space | horizontal_tab | new_line | vertical_tab | form_feed | carriage _return
letter ::=
uppercase | lowercase
uppercase ::=
A|BICIDIEIFIGIH|I'|J|IK|L|M
INIOIPIQIRISITIUIVIWI[X|Y|Z
lowercase ::= o
albjcidielfigrhiifjikiliminjolplgirisitjujviw|x|y|z
digit::=
0111213141516171819

Copyright © 2003 IEEE. All rights reserved. 251
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

specid ::=
M=+ -1 1% 1210 s L " 1@ =1\ 18| |#
ICI) i< t1>1 111}
comment ::= /I See Syntax 3 on page 39
in_line_comment
| block_comment
in_line_comment ::=
| I{ character} new _line
|/ [{ character} carriage return
block_comment ::=
[*{character}* /
delimiter ::= /I See Syntax 4 on page 39
(IO,
operator ::= /I See Syntax 5 on page 40
arithmetic_operator
| boolean_operator
| relational _operator
| shift_operator
| event_operator
| meta_operator
arithmetic_operator ::=
H-1* %
boolean_operator ::=
&& | [I[~& [~ 1M [~ &]
relational_operator ::=
==|!=|>=|<=|>|<
shift_operator ::=
<<|>>
event_operator ::=
S>> <> <> &> <& >
meta_operator ::=
=1?1@
number ::= /I See Syntax 6 on page 43
signed integer | signed real | unsigned integer | unsigned real
signed_number ::=
signed_integer | signed_real
unsigned_number ::=
unsigned_integer | unsigned_rea
integer ::=
signed_integer | unsigned_integer
signed_integer ::=
sign unsigned_integer
unsigned_integer ::=
digit { [_] digit}

real ::=

signed real |unsigned rea
signed real ::=

sign unsigned real
unsigned real ::=

mantissa [exponent]

| unsigned_integer exponent

252 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

sign::=

+ -

mantissa ;=
. unsigned_integer

| unsigned_integer .

exponent ::=
E [sign] unsigned_integer
| €[sign] unsigned_integer
index_value ::=
unsigned_integer | atomic_identifier

index ::=

multi_index ::=
[index_value : index_value |

multiplier_prefix_symbol ::=

unity ::=

K=

P:=

F:=

multiplier_prefix_value ::=

alphanumeric_bit_literal

numeric_bit_literal ::=

aphabetic_bit_literal ::=

[unsigned_integer]

/I See Syntax 7 on page 43

/I See Syntax 8 on page 44

single_index | multi_index
single_index ::=
[index_value]

/I See Syntax 9 on page 44

unity { letter} |K { letter} |M EG{ letter } | G{ letter }
[M { letter} |U { letter } | N { letter } | P{ letter } | F { letter}

1

K|k
M |m
Ele
Glg
Ulu
N|n
Pip
FIf

/I See Syntax 10 on page 45

unsigned_number | multiplier_prefix_symbol
bit_litera ::=

alphanumeric_bit_literal
| symbolic_bit_literal

/I See Syntax 11 on page 45

numeric_bit_literal
| alphabetic_bit_literal

01

X|Z|LIH|U|W

IX]z[l1h|ujw

Copyright © 2003 IEEE. All rights reserved. 253
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

symbolic_bit_literal ::=
?1*

based literal ::= /I See Syntax 12 on page 46
binary based literal | octal_based literal | decimal_based literal | hexadecimal based literal
binary_based literal ::=
binary_base bit_literal { [_] bit_litera }

binary base ::=
'‘B|'b
octal_based litera ::=
octal_base octal_digit { [_] octal_digit }
octal_base ::=
'‘Ol'o
octal_digit ::=

bit_literal [2]3]14|5|6|7
decimal_based litera ::=
decimal_basedigit{ [_] digit}
decimal_base ::=
'D|'d
hexadecimal_based literal ::=
hexadecimal _base hexadecimal_digit{ [_] hexadecimal_digit }
hexadecimal_base ::=

'H|'h
hexadecimal_digit ::=
octal_digit|81]9
|IAIBICIDI|E|F
lalblcid|elf
boolean value::= /I See Syntax 13 on page 46
alphanumeric_bit_literal | based literal | integer
arithmetic_value ::= /I See Syntax 14 on page 47
number | identifier | bit_literal | based_literal
edge litera ::= /I See Syntax 15 on page 47
bit_edge literal
| based_edge literal
| symbolic_edge literal
bit_edge litera ::=
bit_literal bit_literal
based edge literal ::=

based literal based_litera
symbolic_edge literal ::=

2~ 71| 7-

edge value::= /I See Syntax 16 on page 47
(edge literal)

identifier ::= /I See Syntax 17 on page 47

atomic_identifier | indexed_identifier | hierarchical_identifier | escaped_identifier
atomic_identifier ::=
non_escaped_identifier | placeholder_identifier
hierarchical_identifier ::=
full_hierarchical_identifier | partial_hierarchical _identifier
non_escaped identifier ::= /I See Syntax 18 on page 48
letter { letter |digit| | $|#}

254 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

placeholder_identifier ::= /I See Syntax 19 on page 48
< non_escaped_identifier >

indexed_identifier ::= /I See Syntax 20 on page 48
atomic_identifier index

full_hierarchical_identifier ::= /I See Syntax 21 on page 49
atomic_identifier [index] . atomic_identifier [index] { . atomic_identifier [index] }

partial _hierarchical_identifier ::= /I See Syntax 22 on page 49

atomic_identifier [index] { . atomic_identifier [index]} ..
{ atomic_identifier [index] { . atomic_identifier [index]} ..}
[atomic_identifier [index] { . atomic_identifier [index]}]
escaped_identifier ::= /I See Syntax 23 on page 49
\ escapable _character { escapable _character }
escapable _character ::=
letter | digit | specia
keyword_identifier ::= /I See Syntax 24 on page 50
letter { [_] letter }
quoted_string ::= /I See Syntax 25 on page 50
" { character} "
string_value ::= /I See Syntax 26 on page 51
quoted_string | identifier
generic_value ::= /I See Syntax 27 on page 51
number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_litera
| edge_value
vector_expression_macro ::= /I See Syntax 28 on page 52
. non_escaped identifier
generic_object ::= /I See Syntax 29 on page 53
alias declaration
| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration
all_purpose_item ::= /I See Syntax 30 on page 53
generic_object
| include_statement
| associate statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model _container
| all_purpose_item template_instantiation
annotation ::= /I See Syntax 31 on page 54
single value _annotation
| multi_value_annotation
single value annotation ::=
annotation_identifier = annotation_value ;
multi_value annotation ::=
annotation_identifier { annotation_value { annotation value} }

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

255

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

annotation_value ::=
generic_value
| control_expression
| boolean_expression
| arithmetic_expression

annotation_container ::= /I See Syntax 32 on page 54
annotation_container_identifier { annotation { annotation} }

attribute ::= /I See Syntax 33 on page 54
ATTRIBUTE { identifier { identifier} }

property 1= /I See Syntax 34 on page 55
PROPERTY [identifier] { annotation { annotation} }

alias_declaration ::= /I See Syntax 35 on page 55

ALIASalias identifier = original_identifier ;
| AL1AS vector_expression_macro = (vector_expression) ;
constant_declaration ::= /I See Syntax 36 on page 56
CONSTANT constant_identifier = constant_value ;
constant_value ::=
number | based literal
keyword_declaration ::= /I See Syntax 37 on page 56
KEYWORD keyword identifier = syntax_item identifier ;
| KEYWORD keyword_identifier = syntax_item identifier { { CONTEXT_annotation } }
semantics_declaration ::= /I See Syntax 38 on page 57
SEMANTICS semantics_identifier = syntax_item_identifier ;
| SEMANTICS semantics_identifier [= syntax_item_identifier] { { semantics item} }
semantics item ::=
CONTEXT _annotation
| VALUETYPE_single value_annotation
| VALUES multi_value_annotation
| REFERENCETYPE_annotation
| DEFAULT _single_value_annotation
| S_MODEL_single_value_annotation
class declaration ::= /I See Syntax 39 on page 65
CLASSclass identifier ;
| CLASSclass identifier { { class item} }
class item::=
all_purpose_item
| geometric_model
| geometric_transformation
group_declaration ::= /I See Syntax 40 on page 67
GROUP group_identifier { generic_value{ generic_vaue} }
| GROUP group_identifier { left_index_value : right_index_value }

template_declaration ::= /I See Syntax 41 on page 68
TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template instantiation ::= /I See Syntax 42 on page 69

static_template_instantiation
| dynamic_template instantiation
static_template_instantiation ::=
template_identifier [= static] ;
| template_identifier [= static] { { generic_value} }
| template_identifier [= static] { { annotation} }
dynamic_template instantiation ::=
template_identifier = dynamic { { dynamic_template instantiation_item} }

256 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

dynamic_template_instantiation_item ::=

annotation
| arithmetic_model
| arithmetic_assignment

arithmetic_assignment ::=

include :

identifier = arithmetic_expression ;
= /I See Syntax 43 on page 72
INCLUDE quoted string ;

associate ::= /I See Syntax 44 on page 72

revision

ASSOCIATE quoted_string ;
| ASSOCIATE quoted_string{ FORMAT single value_annotation }

n= /I See Syntax 45 on page 73
ALF_REVISION string_value

library_specific_object ::= /I See Syntax 46 on page 75

library ::

library
| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
[rule
| antenna
| site
| array
| blockage
| port
| pattern
| region
= /I See Syntax 47 on page 76
LIBRARY library_identifier ;
|LIBRARY library_identifier { { library_item} }
| library template instantiation

library_item ::=

sublibrary
| sublibrary_item

sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item} }
| sublibrary_template instantiation

sublibrary_item ::=

all_purpose_item
| cell
| primitive
| wire
| layer
| via
[rule
| antenna

| array

Copyright © 2003 IEEE. All rights reserved. 257
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

| site
| region
cell ::

/I See Syntax 48 on page 78
CELL cdl_identifier ;
| CELL cell_identifier { { cell_item} }
| cell_template instantiation
cell_item::=
all_purpose_item
| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region
pin:= /I See Syntax 49 on page 88
scalar_pin | vector_pin | matrix_pin
scalar_pin ::=
PIN pin_identifier ;
| PIN pin_identifier { { scalar_pin_item} }
| scalar_pin_template instantiation
scalar_pin_item ::=
all_purpose_item
| pattern
| port
vector_pin ::=
PIN multi_index pin_identifier ;
| PIN multi_index pin_identifier { { vector_pin_item} }
| vector_pin_template instantiation
vector_pin_item ::=
all_purpose_item
| range
matrix_pin ::=
PIN first._multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier sscond_multi_index { { matrix_pin_item} }
| matrix_pin_template instantiation
matrix_pin_item ::=
vector_pin_item
pingroup ::= /I See Syntax 50 on page 89
simple_pingroup | vector_pingroup
simple_pingroup ::=
PINGROUP pingroup_identifier
{ MEMBERS multi_value_annotation { all_purpose item} }
| ssmple_pingroup_template instantiation
vector_pingroup ::=
| PINGROUP multi_index pingroup_identifier
{ MEMBERS multi_value_annotation { vector_pingroup_item} }
| vector_pingroup_template instantiation

258 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

vector_pingroup_item ::=

all_purpose_item
| range

primitive ::= /I See Syntax 51 on page 110

PRIMITIVE primitive identifier { { primitive_item} }
| PRIMITIVE primitive identifier ;
| primitive_template_instantiation

primitive_item ::=

wire ;=

all_purpose_item
| pin
| pingroup
| function
| test
/I See Syntax 52 on page 110
WIRE wire_identifier { { wire_item} }
| WIRE wire_identifier ;
| wire_template_instantiation

wire_item::=

node ::=

all_purpose_item
| node
/I See Syntax 53 on page 112
NODE node _identifier ;
| NODE node identifier { { node item} }
| node_template instantiation

node item ::=

all_purpose_item

vector ;= /I See Syntax 54 on page 115

VECTOR control_expression ;
| VECTOR control_expression { { vector_item} }
| vector_template_instantiation

vector_item ::=

layer ::=

all_purpose_item
| wire_instantiation
/I See Syntax 55 on page 121
LAYER layer_identifier ;
|LAYER layer_identifier { { layer_item} }
| layer_template instantiation

layer_item ::=

via:=

al_purpose_item
/I See Syntax 56 on page 123
VIA via_identifier ;
| VIA via_identifier { { via_item} }
| via_template instantiation

via item ::=

rule::=

all_purpose_item
| pattern
| artwork
/I See Syntax 57 on page 124
RULE rule identifier ;
| RULE rule_identifier { { rule_item} }
| rule_template instantiation

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1603/D9, July 2003

259

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

rule item ::=
all_purpose_item
| pattern
| region
| via_instantiation
antenna ::= /I See Syntax 58 on page 125
ANTENNA antenna_identifier ;
| ANTENNA antenna_identifier { { antenna_item} }
| antenna_template_instantiation
antenna_item ::=
all_purpose_item
| region
blockage ::= /I See Syntax 59 on page 126
BL OCK AGE blockage identifier ;
| BLOCKAGE blockage_identifier { { blockage item} }
| blockage template instantiation
blockage item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
port ::= /I See Syntax 60 on page 126
PORT port_identifier ;{ { port_item} }
| PORT port_identifier ;
| port_template instantiation

port_item ::=
all_purpose_item
| pattern
| region
[rule
| via_instantiation
site::= /I See Syntax 61 on page 127

SITE site identifier ;
| SITE site identifier { { site_item} }
| site_template instantiation
site item ::=
al_purpose_item
| WIDTH_arithmetic_model
| HEIGHT arithmetic_model
aray ::= /I See Syntax 62 on page 129
ARRAY array identifier ;
| ARRAY array_identifier { { array_item} }
| array_template instantiation
array_item::=
al_purpose_item
| geometric_transformation
pattern ::= /I See Syntax 63 on page 131
PATTERN pattern_identifier ;
| PATTERN pattern_identifier { { pattern_item} }
| pattern_template_instantiation

260 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

pattern_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
region ::= /I See Syntax 64 on page 135
REGION region_name identifier ;
| REGION region_name_identifier { { region_item} }
| region_template instantiation
region_item ::=
all_purpose_item
| geometric_model
| geometric_transformation
| BOOLEAN single value annotation
function ::= /I See Syntax 65 on page 137
FUNCTION { function_item { function_item} }
| function_template instantiation

function_item ::=
all_purpose_item
| behavior
| structure
| statetable
test ::= /I See Syntax 66 on page 137

TEST { test_item { test_item} }
| test_template instantiation

test item ::=
all_purpose_item
| behavior
| statetable
pin_variable::= /I See Syntax 67 on page 138
pin_variable identifier
pin_value::=
pin_variable | boolean_value
pin_assignment ::= /I See Syntax 68 on page 138
pin_variable = pin_vaue;
behavior ::= /I See Syntax 69 on page 140

BEHAVIOR { behavior_item { behavior_item} }
| behavior_template instantiation
behavior_item ::=
boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item template instantiation
boolean_assignment ::=
pin_variable = boolean_expression ;
control_statement ::=
primary_control_statement { alternative control_statement }
primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }
alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }
primitive_instantiation ::=
primitive_identifier [identifier] { pin_value{ pin_value} }
| primitive_identifier [identifier] { boolean_assignment { boolean_assignment } }

Copyright © 2003 IEEE. All rights reserved. 261
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

structure ::= /I See Syntax 70 on page 141
STRUCTURE { cell_instantiation { cell_instantiation} }
| structure_template instantiation
cell_instantiation ::=
cell_reference identifier cell_instance identifier ;
| cell_reference_identifier cell_instance _identifier { { cell_instance pin value} }
| cell_reference_identifier cell_instance_identifier { { cell_instance pin_assignment } }
| cell _instantiation_template_instantiation
cell_instance pin_assignment ::=
cell_reference pin_variable = cell_instance pin_value;
statetable ::= /I See Syntax 71 on page 142
STATETABLE [identifier]
{ statetable_header statetable_row { statetable row } }
| statetable_template instantiation
statetable header ::=
input_pin_variable { input_pin variable} : output_pin variable{ output pin variable} ;
statetable row ::=
statetable control_values . statetable data values;
statetable _control_values ::=
statetable_control_value { statetable control_vaue}

statetable control_value ::=
boolean value
| symbolic_bit_literal
| edge value
statetable data values ::=
statetable data value { statetable data value}
statetable data value::=
boolean value
| ([!]input_pin variable)
| ([~] input_pin_variable)
non_scan_cdl ::= /I See Syntax 72 on page 142
NON_SCAN_CELL = non_scan_cell_reference
INON_SCAN_CELL { non_scan_cell_reference { non_scan_cell_reference} }
| non_scan_cell_template instantiation
non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier} }
| non_scan_cell_identifier { { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }

range ::= /I See Syntax 73 on page 143
RANGE {index_value: index_value }
boolean_expression ::= /I See Syntax 74 on page 144

(' boolean_expression)
| boolean_value
| identifier
| boolean_unary_operator boolean_expression
| boolean_expression boolean_binary_operator boolean_expression
| boolean_expression ? boolean_expression : boolean_expression
boolean_unary_operator ::=

P~ 1& [~& [I~ 1M [
boolean_binary_operator ::=
& 1&& |~& (|1l I~ 1™ 1

| relational_operator

262 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

| arithmetic_operator
| shift_operator
Vector_expression ::= /I See Syntax 75 on page 154
(vector_expression)
| single_event
| vector_expression vector_operator vector_expression
| boolean_expression ? vector_expression . vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro
single event ::=
edge literal boolean_expression
vector_operator ::=
event_operator | event_and | event_or
event_and ::=
& | &&
event_or ::=
1]
control_and ::=
& |&&
control_expression ::=
('vector_expression)
| (boolean_expression)
wire_instantiation ::= /I See Syntax 76 on page 167
wire_reference identifier wire_instance_identifier ;
| wire_reference_identifier wire_instance_identifier { { wire_instance pin_value} }
| wire_reference_identifier wire_instance_identifier { { wire_instance pin_assignment } }
| wire_instantiation_template_instantiation
wire_instance pin_assignment ::=
wire_reference _pin_variable = wire_instance pin_value;
geometric_model ::= /I See Syntax 77 on page 167
nonescaped_identifier [geometric_model _identifier]
{ geometric_model_item { geometric_model_item} }
| geometric_model_template instantiation
geometric_model_item ::=
POINT_TO_POINT_single_value_annotation

| coordinates
coordinates ::=

COORDINATES{ point { point} }
point ::=

X_number y_number
geometric_transformation ::= /I See Syntax 78 on page 171

shift

| rotate

[flip

| repeat
shift ::=

SHIFT { x_number y_number }
rotate ::=

ROTATE = number ;
flip::=

FLIP = number ;

Copyright © 2003 IEEE. All rights reserved. 263
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

repeat ::=
REPEAT [= unsigned_integer] { geometric_transformation { geometric_transformation} }
artwork ::= /I See Syntax 79 on page 173
ARTWORK = artwork_identifier ;
|ARTWORK = artwork_reference
|ARTWORK { artwork_reference { artwork_reference} }
| artwork_template instantiation
artwork_reference ::=
artwork_identifier { { geometric_transformation } { cell_pin_identifier } }

| artwork_identifier
{ { geometric_transformation } { artwork_pin_identifier = cell_pin_identifier ; } }
via_instantiation ::= /I See Syntax 80 on page 174
via_identifier instance_identifier ;
| via_identifier instance_identifier { { geometric_transformation } }
arithmetic_expression ::= /I See Syntax 81 on page 175
(‘arithmetic_expression)
| arithmetic_value
| identifier
| boolean_expression ? arithmetic_expression : arithmetic_expression
| sign arithmetic_expression
| arithmetic_expression arithmetic_operator arithmetic_expression
| macro_arithmetic_operator (arithmetic_expression { , arithmetic_expression})
macro_arithmetic_operator ::=
abs|exp |log| min | max
arithmetic_model ::= /I See Syntax 82 on page 177
trivial_arithmetic_model
| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_ model_template instantiation
trivial_arithmetic_model ::= /I See Syntax 83 on page 177
arithmetic_model_identifier [name_identifier]| = arithmetic_value;
| arithmetic_model_identifier [name_identifier | = arithmetic_value
{ { arithmetic_model_qualifier } }
partial_arithmetic_model ::= /I See Syntax 84 on page 178
arithmetic_model_identifier [name_identifier] { { partial_arithmetic_model_item} }
partial_arithmetic_model_item ::=
arithmetic_model_qualifier
| table
| trivial_min-max
full_arithmetic_model ::= /I See Syntax 85 on page 178
arithmetic_model_identifier [name_identifier]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

arithmetic_model_body ::= /I See Syntax 86 on page 178
header-table-equation [trivial_min-max]
| min-typ-max
| arithmetic_submodel { arithmetic_submodel }
arithmetic_model_qualifier ::= /I See Syntax 87 on page 179

inheritable_arithmetic_model _qualifier
| non_inheritable_arithmetic_model_qualifier

264 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

inheritable_arithmetic_model _qualifier ::=
annotation
| annotation_container
| from-to
non_inheritable_arithmetic_ model_qualifier ::=
auxiliary_arithmetic_model
| violation
header-table-equation ::=
header table | header equation
header ::=

IEEE P1603/D9, July 2003

/I See Syntax 88 on page 179

/I See Syntax 89 on page 179

HEADER { header_arithmetic_model { header_arithmetic_mode! } }

header_arithmetic_model ::=

arithmetic_model_identifier [name_identifier | { { header_arithmetic_model_item} }

header_arithmetic_model_item ::=
inheritable_arithmetic_model_qualifier
| table
| trivial_min-max
equation ::=
EQUATION { arithmetic_expression }
| equation_template instantiation

table::=

TABLE { arithmetic_value { arithmetic value} }
min-typ-max ::=

min-max | [min] typ [max]
min-max ::=

min | max | min max
min ::=

trivial_min | non_trivial_min
max ::=

trivial_max | non_trivial_max
typ =

trivial_typ | non_trivial_typ
non_trivial_min ::=
MIN = arithmetic_value{ violation }
IMIN {[violation] header-table-equation }
non_trivial_max ::=
MAX = arithmetic_value{ violation }
|MAX {[violation] header-table-equation }
non_trivia_typ ::=
TY P { header-table-equation }
trivial_min-max ::=
trivial_min | trivial_max |trivia_mintrivia_max

trivial_min ::=

M IN = arithmetic_value;
trivial_max ::=

MAX = arithmetic_value;
trivia_typ ::=

TYP = arithmetic_value;
auxiliary_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_value;

| arithmetic_model_identifier [= arithmetic_value]

/I See Syntax 90 on page 180

/I See Syntax 91 on page 180

/I See Syntax 92 on page 181

/I See Syntax 93 on page 182

/I See Syntax 94 on page 182

/I See Syntax 95 on page 183

{ inheritable_arithmetic_model_qualifier { inheritable arithmetic_model_qualifier } }

Copyright © 2003 IEEE. All rights reserved. 265
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

arithmetic_submodel ::= /I See Syntax 96 on page 184
arithmetic_submodel_identifier = arithmetic_value,
| arithmetic_submodel_identifier { [violation] min-max }
| arithmetic_submodel_identifier { header-table-equation [trivial_min-max] }
| arithmetic_submodel_identifier { min-typ-max }
| arithmetic_submodel_template instantiation
arithmetic_model_container ::= /I See Syntax 97 on page 184
limit_arithmetic_model _container
| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_mode! } }
limit_arithmetic_model_container ::= /I See Syntax 98 on page 184
LIMIT { limit_arithmetic_model { limit_arithmetic_ model } }
limit_arithmetic_model ::=
arithmetic_model_identifier [name_identifier]
{ { arithmetic_model_qualifier } limit_arithmetic_model_body }
limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }
| min-max
limit_arithmetic_submodel ::=
arithmetic_submode!_identifier { [violation] min-max }
early-late_arithmetic_model_container ::= /I See Syntax 99 on page 185
early arithmetic_model_container
| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model_container
early arithmetic_model_container ::=
EARLY { early-late_arithmetic model { early-late_arithmetic model } }
late_arithmetic_model _container ::=
LATE { early-late_arithmetic_model { early-late_arithmetic_model } }
early-late_arithmetic_model ::=
DELAY_arithmetic_model
| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model
violation ::= /I See Syntax 100 on page 190
VIOLATION { violation_item { violation_item} }
| violation_template instantiation
violation_item ::=
MESSAGE_TYPE single value annotation
| MESSAGE_single value annotation

| behavior

from-to ::= /I See Syntax 101 on page 210
from | to | from to

from::=
FROM { from-to_item { from-to_item} }

to::=

TO { from-to_item { from-to_item} }
from-to_item ::=
PIN_reference single value annotation
| EDGE_NUMBER single_value _annotation
| THRESHOLD _arithmetic_model

266 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If thereisany conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

KEYWORD VALUETYPE = singl e_val ue_annotation { I/ See Semantics 1 on page 59
CONTEXT = SEMANTI CS;
}
SEMANTI CS VALUETYPE {
VALUES {
nunber signed_integer unsigned_integer
mul tiplier_prefix_val ue
identifier quoted_string string_value
bit literal based_literal bool ean_val ue edge_val ue
control _expression bool ean_expression
arithmetic_expression

}

}

KEYWORD VALUES = multi _val ue_annotation { Il See Semantics 2 on page 60
CONTEXT = SEMANTI CS;

}

KEYWORD DEFAULT = singl e_val ue_annotation { I/ See Semantics 3 on page 61
CONTEXT { SEMANTICS arithmetic_nodel }

}

KEYWORD CONTEXT = annot ati on; Il See Semantics 4 on page 61

SEMANTI CS CONTEXT {
CONTEXT { KEYWORD SEMANTI CS }
VALUETYPE = identifier;

}

KEYWORD REFERENCETYPE = annotation { Il See Semantics 5 on page 62
CONTEXT = SEMANTI CS;

}

SEMANTI CS REFERENCETYPE {

VALUES { CLASS LI BRARY SUBLI BRARY CELL PI N Pl NGROUP
PRI M Tl VE W RE NODE VECTOR LAYER VI A RULE ANTENNA
BLOCKAGE PORT SI TE ARRAY PATTERN REGQ ON
arithnetic_nodel arithnetic_subnodel }

}

KEYWORD SI _MODEL = single_val ue_annotation { /I See Semantics 6 on page 63
CONTEXT = SEMANTI CS;

}

SEMANTI CS SI _MODEL {
VALUES ({

TI ME FREQUENCY CURRENT VOLTAGE PONER ENERGY
RESI STANCE CAPACI TANCE | NDUCTANCE
DI STANCE AREA

Copyright © 2003 IEEE. All rights reserved. 267
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

}

}

KEYWORD CLASS = annotation { Il See Semantics 7 on page 65
CONTEXT { library_specific_object arithnetic_nodel }

}

SEMANTI CS CLASS { REFERENCETYPE = CLASS; }

KEYWORD USAGE = annotation { CONTEXT = CLASS; } I/ See Semantics 8 on page 66

SEMANTI CS USAGE {

VALUETYPE = identifier;

VALUES ({
SWAP_CLASS RESTRI CT_CLASS
SI GNAL_CLASS SUPPLY_CLASS CONNECT_ CLASS
SELECT_CLASS NCDE_CLASS
EXI STENCE_CLASS CHARACTERI ZATI ON_CLASS
ORI ENTATI ON_CLASS SYMMETRY_CLASS

}

}

KEYWORD FORMAT = singl e val ue_annotation { Il See Semantics 9 on page 73
CONTEXT = ASSQCI ATE;

}

SEMANTI CS FORMAT {
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = al f;

}

KEYWORD LI BRARY = annotation { Il See Semantics 10 on page 76
CONTEXT = arithnetic_nodel;

}

SEMANTI CS LI BRARY {
REFERENCETYPE { LI BRARY SUBLI| BRARY }

}

KEYWORD | NFORVATI ON = annot ati on_cont ai ner { /I See Semantics 11 on page 77
CONTEXT { LI BRARY SUBLI BRARY CELL W RE PRI M Tl VE }

}

KEYWORD PRODUCT = singl e _val ue_annotation {
CONTEXT = | NFORMATI ON;

}

SEMANTI CS PRODUCT {
VALUETYPE = string val ue; DEFAULT = "";

}

KEYWORD Tl TLE = singl e_val ue_annotation {
CONTEXT = | NFORMATI ON;

}

SEMANTI CS TI TLE {
VALUETYPE = string_val ue; DEFAULT = "";

}

KEYWORD VERSI ON = singl e_val ue_annotation {
CONTEXT = | NFORMATI QN,;

}

268 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

SEMANTI CS VERSI ON {
VALUETYPE = string_val ue; DEFAULT = "";
}
KEYWORD AUTHOR = singl e_val ue_annotation {
CONTEXT = | NFORMATI ON;
}
SEMANTI CS AUTHOR {
VALUETYPE = string_val ue; DEFAULT = "";
}
KEYWORD DATETI ME = singl e val ue_annotation {
CONTEXT = | NFORMATI ON;
}
SENVANTI CS DATETI ME {
VALUETYPE = string_val ue; DEFAULT = "";

}

KEYWORD CELL = annotation { CONTEXT = arithmetic_nodel; }

SEMANTI CS CELL { REFERENCETYPE = CELL; } /I See Semantics 12 on page 78

KEYWORD CELLTYPE = singl e_val ue_annotation { Il See Semantics 13 on page 79
CONTEXT = CELL;

}

SEMANTI CS CELLTYPE {
VALUETYPE = identifier;
VALUES {
buf fer conbi national nultiplexor flipflop |latch
nmenory bl ock core speci al
}
}
KEYWORD RESTRI CT_CLASS = annotation { /I See Semantics 14 on page 80
CONTEXT { CELL CLASS }

}
SEMANTI CS RESTRI CT_CLASS {
REFERENCETYPE = CLASS;
}
CLASS synthesis { USAGE = RESTRI CT_CLASS ; }
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS clock { USAGE = RESTRICT_CLASS ; }
CLASS | ayout { USAGE = RESTRI CT_CLASS ; }
KEYWORD SWAP_CLASS = annotation { /I See Semantics 15 on page 81
CONTEXT = CELL;
}
SEMANTI CS SWAP_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD SCAN TYPE = single_val ue_annotation { Il See Semantics 16 on page 82
CONTEXT = CELL;

}

SEMANTI CS SCAN _TYPE {
VALUETYPE = identifier;
VALUES { muxscan cl ocked | ssd control 0O control _1 }

}

Copyright © 2003 IEEE. All rights reserved. 269
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

1 KEYWORD SCAN USAGE = singl e_val ue_annotation { /I See Semantics 17 on page 83
CONTEXT = CELL;
}
SEMANTI CS SCAN_USAGE {

S VALUETYPE = identifier;
VALUES { input output hold }
}
KEYWORD BUFFERTYPE = singl e_val ue_annotation { I/ See Semantics 18 on page 83
10 CONTEXT = CELL:
}

SEMANTI CS BUFFERTYPE {
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}
KEYWORD DRI VERTYPE = si ngl e_val ue_annotation { /I See Semantics 19 on page 84
CONTEXT = CELL;
20 }
SEMANTI CS DRI VERTYPE {
VALUETYPE = identifier;
VALUES { predriver slotdriver both }
}
25 KEYWORD PARALLEL_DRI VE = singl e_val ue_annotation { // SeeSemantics?20 on page 85
CONTEXT = CELL;
}
SEMANTI CS PARALLEL_DRI VE {
VALUETYPE = unsi gned_i nt eger;
30 DEFAULT = 1;
}
KEYWORD PLACEMENT _TYPE = singl e val ue_annotation { // SeeSemantics?21 on page 85
CONTEXT = CELL;
}
SEMANTI CS PLACEMENT_TYPE {
VALUETYPE = identifier;
VALUES { pad core ring bl ock connector }
DEFAULT = core;
40 } _ _ _
SEMANTI CS CELL. SI TE = singl e_val ue_annot ati on; /I See Semantics 22 on page 86
KEYWORD PI'N = annotation { Il See Semantics 23 on page 90
CONTEXT { arithnetic_nodel FROM TO }
}
45 SEMANTI CS PI'N {
REFERENCETYPE { PI N PI NGROUP PORT NCDE }

}
KEYWORD MEMBERS = nul ti _val ue_annotation { /I See Semantics 24 on page 90
CONTEXT = PI NGROUP;
50 }
SEMANTI CS MEMBERS ({
REFERENCETYPE = PIN;

}

15

35

55

270 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD VI EW = si ngl e_val ue_annotation { /I See Semantics 25 on page 90
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS VI EW {
VALUES { functional physical both none }
DEFAULT = bot h;

}

KEYWORD PI NTYPE = singl e _val ue_annotation { Il See Semantics 26 on page 91
CONTEXT = PIN;

}

SEMANTI CS PI NTYPE {
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

KEYWORD DI RECTI ON = singl e_val ue_annot ati on { Il See Semantics 27 on page 92
CONTEXT = PIN;

}

SEMANTI CS DI RECTI ON {
VALUES { input output both none }

}

KEYWORD S| GNALTYPE = singl e_val ue_annotation { /I See Semantics 28 on page 93
CONTEXT = PIN;

}

SEMANTI CS SI GNALTYPE {
VALUETYPE = identifier
VALUES ({
data scan_data address control select tie clear set
enabl e out _enabl e scan_enabl e scan_out _enabl e
cl ock master_cl ock slave_cl ock
scan_naster_cl ock scan_sl ave_cl ock

}
DEFAULT = dat a;

}

KEYWORD ACTI ON = singl e_val ue_annotation { Il See Semantics 29 on page 95
CONTEXT = PIN;

}

SEMANTI CS ACTI ON {
VALUES { asynchronous synchronous }

}

KEYWORD POLARI TY = singl e_val ue_annotation { /I See Semantics 30 on page 96
CONTEXT = PIN;

}

SEMANTI CS POLARI TY {
VALUES { high low rising edge falling _edge doubl e _edge }

}

KEYWORD CONTROL_POLARI TY = annotation_contai ner { // See Semantics 31 on page 97
CONTEXT = PIN ;

}

Copyright © 2003 IEEE. All rights reserved. 271
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

SEMANTI CS
CONTROL_POLARI TY.identifier = single_value_annotation {
VALUES { high low rising edge falling _edge doubl e _edge }

}
KEYWORD DATATYPE = singl e_val ue_annotation { Il See Semantics 32 on page 98
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS DATATYPE {
VALUES { signed unsigned }

}

KEYWORD | NI TI AL_VALUE = single_value_annotation { // SeeSemantics 33 on page 99
CONTEXT { PI'N PI NGROUP }

}
SEMANTI CS | NI TI AL_VALUE {
VALUETYPE = bool ean_val ue;
DEFAULT = U;
}
KEYWORD SCAN POSI TI ON = singl e_value_annotation { // SeeSemantics 34 on page 99
CONTEXT = PIN;
}
SEMANTI CS SCAN_POCsI TI ON {
VALUETYPE = unsi gned_i nt eger;

DEFAULT = O;

}

KEYWORD STUCK = singl e_val ue_annotation { /I See Semantics 35 on page 99
CONTEXT = PI N;

}

SEMANTI CS STUCK {
VALUES { stuck_at 0 stuck_at 1 both none }
DEFAULT = bot h;

}

KEYWORD SUPPLYTYPE = annotation { /I See Semantics 36 on page 100
CONTEXT { PIN CLASS }

}

SEMANTI CS SUPPLYTYPE {
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SI GNAL_CLASS = annotation { Il See Semantics 37 on page 101
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS SI GNAL_CLASS ({
REFERENCETYPE = CLASS;

}

KEYWORD SUPPLY_CLASS = annotation { /I See Semantics 38 on page 101
CONTEXT { PI N CLASS PONER ENERGY }

}

SEMANTI CS SUPPLY_CLASS {
REFERENCETYPE = CLASS;

}

272 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD DRI VETYPE = single_val ue_annotation { Il See Semantics 39 on page 102
CONTEXT { PI N CLASS }
}
SEMANTI CS DRI VETYPE {
VALUETYPE = identifier;
VALUES ({
CNDS NNDS pNDS CNDS_pass NNDS_pass pnos_pass
ttl open_drain open_source
}
DEFAULT = cnos;
}
KEYWORD SCOPE = singl e val ue_annotation { Il See Semantics 40 on page 103
CONTEXT { PI'N PI NGROUP }
}
SEMANTI CS SCOPE {
VALUES { behavi or nmeasure both none }
DEFAULT = bot h;

}

KEYWORD CONNECT_CLASS = singl e_val ue_annotation { // SeeSemantics41 on page 104
CONTEXT = PIN;

}

SEMANTI CS CONNECT_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD SI DE = singl e_val ue_annotation { /I See Semantics 42 on page 105
CONTEXT { PIN PI NGROUP }

}

SEMANTI CS Sl DE {
VALUETYPE = identifier;
VALUES { left right top bottominside }

}

KEYWORD ROW = annot ation { Il See Semantics 43 on page 105
CONTEXT { PI'N PI NGROUP }

}

SEMANTI CS ROW {
VALUETYPE = unsi gned_i nt eger;
}
KEYWORD COLUWN = annot ati on {
CONTEXT { PI'N PI NGROUP }
}
SEMANTI CS COLUMWN {
VALUETYPE = unsi gned_i nt eger;
}
KEYWORD ROUTI NG TYPE = single_val ue_annotation { // SeeSemantics44 on page 106
CONTEXT { PIN PORT }
}
SEMANTI CS ROUTI NG_TYPE {
VALUETYPE = identifier;
VALUES { regul ar abutnent ring feedthrough }
DEFAULT = regul ar;
}

Copyright © 2003 IEEE. All rights reserved. 273
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD PULL = single_value_annotation { Il See Semantics 45 on page 107
CONTEXT = PIN;

}

SEMANTI CS PULL {
VALUES { up down both none }
DEFAULT = none;

}

KEYWORD W RE = annot ation { Il See Semantics 46 on page 110
CONTEXT = arithnetic_nodel;

}

SEMANTI CS W RE {
REFERENCETYPE = W RE;

}

KEYWORD W RETYPE = singl e_val ue_annotation { Il See Semantics 47 on page 111
CONTEXT = W RE;

}

SEMANTI CS W RETYPE {
VALUETYPE = identifier;
VALUES { estimated extracted interconnect |oad }

}

KEYWORD SELECT_CLASS = annotation { /I See Semantics 48 on page 112
CONTEXT = W RE;

}

SEMANTI CS SELECT_CLASS ({
REFERENCETYPE = CLASS;

}

KEYWORD NODE = rnul ti _val ue_annotation { Il See Semantics 49 on page 113
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS NODE {
REFERENCETYPE { PI N PORT NOCDE }

}

KEYWORD NODETYPE = si ngl e_val ue_annot ati on { /I See Semantics 50 on page 113
CONTEXT = NODE;

}

SEMANTI CS NODETYPE {
VALUETYPE = identifier;
VALUES { power ground source sink
driver receiver interconnect }
DEFAULT = interconnect;

}

KEYWORD NODE_CLASS = annotation { /I See Semantics 51 on page 115
CONTEXT = NODE;

}

SEMANTI CS NODE_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD VECTOR = singl e _val ue_annotation { Il See Semantics 52 on page 116
CONTEXT = arithnetic_nodel ;

}

274 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

SEMANTI CS VECTCR {
VALUETYPE = control _expression;
REFERENCETYPE = VECTOR;

}

KEYWORD PURPCSE = annotati on { Il See Semantics 53 on page 116
CONTEXT { VECTOR CLASS }

}

SEMANTI CS PURPCSE {
VALUETYPE = identifier ;
VALUES { bist test timng power noise reliability }

}

KEYWORD OPERATI ON = singl e _val ue_annotation { Il See Semantics 54 on page 117
CONTEXT = VECTOR;

}

SEMANTI CS OPERATI ON {
VALUETYPE = identifier;
VALUES ({
read wite read_nodify wite refresh | oad
start end iddq

}

}

KEYWORD LABEL = singl e_val ue_annotation { /I See Semantics 55 on page 118
CONTEXT = VECTOR;

}

SEMANTI CS LABEL {
VALUETYPE = string_val ue;

}
KEYWORD EXI STENCE_CONDI TI ON = si ngl e_val ue_annot ati on {

CONTEXT { VECTOR CLASS } /I See Semantics 56 on page 118
}

SEMANTI CS EXI STENCE_CONDI TI ON {
VALUETYPE = bool ean_expr essi on;
DEFAULT = 1,
}
KEYWORD EXI STENCE _CLASS = annotation { /I See Semantics 57 on page 119
CONTEXT { VECTOR CLASS }
}
SEMANTI CS EXI STENCE_CLASS {
REFERENCETYPE = CLASS;
}
KEYWORD Il See Semantics 58 on page 119
CHARACTERI ZATI ON_CONDI TI ON = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR CLASS }
}
SEMANTI CS CHARACTERI ZATI ON_CONDI Tl ON {
VALUETYPE = bool ean_expressi on;

}
KEYWORD CHARACTERI ZATI ON_VECTOR = si ngl e_val ue_annot ati on {

CONTEXT { VECTOR CLASS } /I See Semantics 59 on page 120
}

Copyright © 2003 IEEE. All rights reserved. 275
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

SEMANTI CS CHARACTERI ZATI ON_VECTCR {
VALUETYPE = control _expression;

}

KEYWORD CHARACTERI ZATI ON_CLASS = annot ation { /I See Semantics 60 on page 120
CONTEXT { VECTOR CLASS }

}

SEMANTI CS CHARACTERI ZATI ON_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD MONI TOR = annot ati on { I/ See Semantics 61 on page 120
CONTEXT { VECTCOR CLASS }

}

SEMANTI CS MONI TOR {
VALUETYPE = identifier;

}

KEYWORD LAYER = annotation { /I See Semantics 62 on page 121
CONTEXT { arithnetic_nodel PATTERN ARRAY }

}

SEMANTI CS LAYER {
REFERENCETYPE = LAYER;

}

KEYWORD LAYERTYPE = singl e_val ue_annotation { /I See Semantics 63 on page 121
CONTEXT = LAYER;

}

SEMANTI CS LAYERTYPE {
VALUETYPE = identifier;
VALUES { routing cut substrate dielectric reserved abstract }
}
KEYWORD PI TCH = singl e_val ue_annotation { Il See Semantics 64 on page 122
CONTEXT = LAYER;
}
SEMANTI CS PI TCH {
VALUETYPE = unsi gned_nunber;

}

KEYWORD PREFERENCE = si ngl e_val ue_annotation { Il See Semantics 65 on page 122
CONTEXT = LAYER,

}

SEMANTI CS PREFERENCE {
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

KEYWORD VI A = annotation { /I See Semantics 66 on page 123
CONTEXT = arithnetic_nodel;

}

SEMANTI CS VI A {
REFERENCETYPE = VI A;

}

KEYWORD VI ATYPE = singl e _val ue_annotation { /I See Semantics 67 on page 124
CONTEXT = VI A

}

276 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

SEMANTI CS VI ATYPE {

}

VALUETYPE = identifier;
VALUES { default non_default partial _stack full _stack }
DEFAULT = defaul t;

KEYWORD PORTTYPE = singl e_val ue_annotation { I/ See Semantics 68 on page 127

}

CONTEXT = PORT;

SEMANTI CS PORTTYPE {

}

KEYWORD SI TE = annotation {

}

VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

/I See Semantics 69 on page 128
CONTEXT { CELL ARRAY CLASS }

SEMANTI CS SI TE {

}

KEYWORD ORI ENTATI ON_CLASS = annotation {

}

REFERENCETYPE = S| TE;

/I See Semantics 70 on page 128
CONTEXT { SITE CELL }

SEMANTI CS ORI ENTATI ON_CLASS {

}

REFERENCETYPE = CLASS;

KEYWORD SYMVETRY_CLASS = mul ti _val ue_annotation { // SeeSemantics71 on page 128

}

CONTEXT = SI TE;

SEMANTI CS SYMVETRY_CLASS {

}

REFERENCETYPE = CLASS;

KEYWORD ARRAYTYPE = singl e _val ue_annotation { /I See Semantics 72 on page 130

}

CONTEXT = ARRAY;

SEMANTI CS ARRAYTYPE {

}

VALUETYPE = identifier;
VALUES { fl oorplan pl acenent
gl obal _routing detailed routing }

SEMANTI CS ARRAY. LAYER = nul ti _val ue_annot ati on; /I See Semantics 73 on page 130
SEMANTI CS ARRAY. SI TE = singl e_val ue_annot ati on; /I See Semantics 74 on page 130

KEYWORD PATTERN = annotation { /I See Semantics 75 on page 131
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS PATTERN ({
REFERENCETYPE = PATTERN ;

}

KEYWORD SHAPE = singl e_val ue_annotation { /I See Semantics 76 on page 131

}

CONTEXT = PATTERN,

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1603/D9, July 2003

277

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

SEMANTI CS SHAPE {
VALUETYPE = i dent

Advanced Library Format (ALF) Reference Manual

ifier;

VALUES { line tee cross jog corner end }

DEFAULT = |i ne;

}
KEYWORD VERTEX = si

ngl e_val ue_annot ati on { I/ See Semantics 77 on page 133

CONTEXT = PATTERN,

}
SEMANTI CS VERTEX {
VALUETYPE = i dent

ifier;

VALUES { round angul ar }

DEFAULT = angul ar
}

1

KEYWORD ROUTE = singl e_val ue_annotation { /I See Semantics 78 on page 133
CONTEXT = PATTERN;

}

SEMANTI CS ROUTE {
VALUETYPE = i dent
VALUES { hori zont

}

ifier;
al acute vertical obtuse }

SEMANTI CS PATTERN. LAYER = singl e_val ue_annot ati on; // See Semantics 79 on page 134

KEYWORD REA ON = annotation { /I See Semantics 80 on page 135
CONTEXT = arithnetic_nodel ;

}
SEMANTI CS REG ON {

REFERENCETYPE = REGQ ON ;

}

KEYWORD BOCOLEAN = singl e_val ue_annotation { I/ See Semantics 81 on page 135

CONTEXT = REG ON

}
SEMANTI CS BOOLEAN {

VALUETYPE = bool ean_expression ;

}
PRI M Tl VE ALF_BUF {

PINin { DIRECTION = input; }

GROUP index { 1 :
FUNCTI ON { BEHAVI
}
PRI M Tl VE ALF_NOT {

PINin { DIRECTION = input; }

GROUP index { 1 :
FUNCTI ON { BEHAVI

}

/I See Semantics 82 on page 162
PIN[1:<bitwidth>] out { D RECTION = output; }
<bi twi dt h> }
OR{ out[index] =in ; } }
/I See Semantics 83 on page 162
PIN [1: <bitwi dt h>] out { DI RECTI ON = output; }
<bitwi dt h> }
OR{ out[index] =1! in; } }
/I See Semantics 84 on page 162

PRI M Tl VE ALF_AND {
PIN out { DI RECTI

ON = out put; }

PIN [1:<bitwidth>] in { DIRECTION = input; }

FUNCTI ON { BEHAVI
}

278

OR{ out =∈ } }

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual

PRI M Tl VE ALF_NAND {
PIN out { DI RECTI ON
PIN[1:<bitwi dth>] i
FUNCTI ON { BEHAVI OR {

}

PRIM TI VE ALF_OR {
PI'N out { DI RECTI ON
PIN [1:<bitwi dth>] i
FUNCTI ON { BEHAVI OR {

}

PRI M TI VE ALF_NOR {
PI N out { DI RECTI ON
PIN [1: <bitwi dth>] i
FUNCTI ON { BEHAVI OR {

}

PRIM TI VE ALF_XOR {
PI'N out { DI RECTI ON
PIN [1:<bitwi dth>] i
FUNCTI ON { BEHAVI OR {

}

PRI M TI VE ALF_XNOR {
PI'N out { DI RECTI ON
PIN [1:<bitwi dth>] i
FUNCTI ON { BEHAVI OR {

}

PRIM Tl VE ALF_BUFI F1 {
PIN out { DI RECTION =
PINin { D RECTION =

Sl

Sl

S

=

Sl

PIN enable { DIRECTION = input; }

FUNCTI ON { BEHAVI OR {
}
PRI M TI VE ALF_BUFI FO {
PIN out { DI RECTION =
PINin { DI RECTION =

PIN enable { DIRECTION = input; }

FUNCTI ON { BEHAVI OR {
}
PRI M Tl VE ALF_NOTI F1 {
PIN out { DI RECTION =
PINin { DI RECTION =

PIN enable { DIRECTION = input; }

FUNCTI ON { BEHAVI OR {

}

PRIM TI VE ALF_NOTI FO {
PIN out { DIRECTION =
PINin { DI RECTION =

PIN enable { DIRECTION = input; }

FUNCTI ON { BEHAVI OR {

}
PRI M TI VE ALF_MJX {

I/ See Semantics 85 on page 163
out put; }
{ DIRECTION = input; }
out = ~∈ } }

Il See Semantics 86 on page 163
out put; }
{ DIRECTION = input; }
out = | in; } }

/I See Semantics 87 on page 163
out put; }
{ DIRECTION = input; }
out =~ in; } }

/I See Semantics 88 on page 163
out put; }
{ DIRECTION = input; }
out ="~in; } }

/I See Semantics 89 on page 164
out put; }
{ DIRECTION = input; }
out = ~~in; } }

I/ See Semantics 90 on page 164
out put; }
i nput; }
out = (enable)? in: ‘bz ; } }

/I See Semantics 91 on page 164
output; }
i nput; }
out = (! enable)? in: ‘bz ; } }

/I See Semantics 92 on page 164
output; }
i nput; }
out = (enable)? ! in: ‘bz ; } }

Il See Semantics 93 on page 165
out put; }
i nput; }
out = (! enable)? ! in: *bz; } }

/I See Semantics 94 on page 165

PIN Q { DI RECTION = output; }
PIN[1:0] D{ DIRECTION = input; }

Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE P1603/D9, July 2003

279

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

PIN S { DIRECTION = input; }

FUNCTI ON {
BEHAVI OR {
Q=1! S&DO0] | S&D1] | DO &D1] ;
}
}
}
PRI M Tl VE ALF_LATCH { /I See Semantics 95 on page 166
PIN Q { DI RECTION = output; }
PIN ON { DI RECTI ON = out put; }
PIN D { DIRECTION = input; }
PI N ENABLE { DI RECTION = input; }
PIN CLEAR { DIRECTION = input; }
PI N SET { DIRECTION = input; }
PIN Q CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTI ON {
BEHAVI OR {
@(CLEAR && SET) {
Q = Q. CONFLICT ; QN = QN_CONFLICT ;
} o (CLEAR) {
Q:O; Q\lzl;
} i (SET) {
Q:]_; Q\l:O;
} : (ENABLE) {
Q=D; N=1!D;
}
}
}
}
PRI M TI VE ALF_FLI PFLOP { I/ See Semantics 96 on page 166
PIN Q { DI RECTION = output; }
PIN ON { DI RECTI ON = output; }
PIN D { DIRECTION = input; }
PIN CLOCK { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PI N SET { DIRECTION = input; }
PIN Q CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTI ON {
BEHAVI OR {
@ (CLEAR && SET) {
Q = QCONFLICT ; QN = QN_CONFLICT ;
}o (GLEAR) |
Q=0; N=1;
}oo (SET) |
Q=1; N=0;
} ¢ (01 CcLocK) {
Q=D; N=1! D
}
}
}
}
280 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD DOT = geonetric_nodel ; Il See Semantics 97 on page 168
KEYWORD POLYLI NE = geonetric_nodel ;

KEYWORD RI NG = geonetri c_nodel ;

KEYWORD POLYGON = geonetri c_nodel ;

KEYWORD PO NT_TO PO NT = singl e_val ue_annot ati on { // See Semantics 98 on page 169
CONTEXT { POLYLINE RI NG POLYGON }

}

SEMANTI CS PO NT_TO PO NT {
VALUES { direct manhattan }
DEFAULT = direct;

}
TEMPLATE RECTANGLE { /I See Semantics 99 on page 171
POLYGON {
PO NT_TO PO NT = manhatt an;
COORDI NATES { <left> <bottone <right> <top> }
}
}
TEMPLATE LI NE { /I See Semantics 100 on page 171
POLYLI NE {
PO NT_TO PO NT = direct;
COORDI NATES { <x_start> <y start> <x_end> <y_end> }
}
}
KEYWORD M N = arithnetic_subnodel { /I See Semantics 101 on page 183
CONTEXT { arithnetic_nodel arithmetic_subnodel }
}

KEYWORD MAX = arithnetic_subnodel {
CONTEXT { arithnetic_nodel arithmetic_subnodel }

}
KEYWORD TYP = arithnetic_subnodel {
CONTEXT { arithnetic_nodel arithmetic_subnodel }
}
KEYWORD LIMT = arithnetic_nodel contai ner; /I See Semantics 102 on page 185
KEYWORD EARLY = arithnetic_nodel container /I See Semantics 103 on page 185
{ CONTEXT = VECTOR; }
KEYWORD LATE = arithmetic_nodel _contai ner
{ CONTEXT = VECTOR; }
KEYWORD UNI T = singl e_val ue_annotation { /I See Semantics 104 on page 186
CONTEXT = arithnetic_nodel ;
}
SEMANTICS UNI' T {
VALUETYPE = nul tiplier_prefix_value ;
}
KEYWORD CALCULATI ON = singl e_val ue_annotation { // SeeSemantics 105 on page 186
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS CALCULATI ON {
CONTEXT = library_specific_object.arithmetic_nodel ;
VALUES { absol ute incremental }
DEFAULT = absol ute ;

Copyright © 2003 IEEE. All rights reserved. 281
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD | NTERPOLATI ON = si ngl e_val ue_annot ati on { // See Semantics 106 on page 187
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS | NTERPOLATI ON {
CONTEXT = HEADER. arithnetic_nodel ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

KEYWORD MODEL = singl e_val ue_annotation { /I See Semantics 107 on page 189
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS MODEL {
REFERENCETYPE { arithnetic_nodel arithmetic_subnodel }

}
SEMANTI CS VI OLATI ON { /1 See Semantics 108 on page 190
CONTEXT {
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL
NO SE_ MARGI N LIM T. .

}
}
SEMANTI CS VI OLATI ON. BEHAVI OR { CONTEXT { VECTOR.. }// See Semantics 109 on page 190
KEYWORD MESSAGE TYPE = single val ue_annotation { // SeeSemantics110 on page 191
CONTEXT = VI OLATI ON ;
}
SEMANTI CS MESSAGE_TYPE {
VALUETYPE = identifier ;
VALUES { information warning error }

}

KEYWORD MESSAGE = singl e_val ue_annotation { /I See Semantics 111 on page 192
CONTEXT = VI OLATI ON ;

}

SEMANTI CS MESSAGE {
VALUETYPE = quoted_string ;

}
KEYWORD TI ME = arithmetic_nodel ; /I See Semantics 112 on page 192
SEMANTI CS TI ME {

CONTEXT {

LI BRARY SUBLI BRARY CELL W RE VECTOR arithmetic_nodel
VECTOR. ari t hneti c_nodel _cont ai ner
VECTOR. . HEADER LI M T. . HEADER
}
VALUETYPE = nunber ;
SI _MODEL = TI ME ;
}
TIME { UNIT = NanoSeconds ; }
KEYWORD FREQUENCY = arithnetic_nodel ; /I See Semantics 113 on page 193
SEMANTI CS FREQUENCY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE VECTOR arithmetic_nodel
VECTOR. arithnmeti c_nodel _cont ai ner
VECTOR. . HEADER LI M T. . HEADER

282 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

VALUETYPE = nunber ;
S| _MODEL = FREQUENCY ;
}
FREQUENCY { UNIT = G gaHertz; MN = 0; }

KEYWORD DELAY = arithnetic_nodel ; /I See Semantics 114 on page 194

SEMANTI CS DELAY {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE
VECTOR VECTOR EARLY VECTOR LATE

}
SI _MODEL = TI ME ;
}
KEYWORD RETAIN = arithnetic_nodel ; /I See Semantics 115 on page 195
SEMANTI CS RETAI N
CONTEXT {
VECTOR VECTOR. EARLY VECTOR. LATE
}
SI _MODEL = TI ME ;
}
KEYWORD SLEWRATE = arithnetic_nodel ; /I See Semantics 116 on page 196
SEMANTI CS SLEWRATE {
CONTEXT {
LI BRARY LI BRARY. LI M T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE.LIMT
VECTOR VECTOR. EARLY VECTOR. LATE VECTOR. LIMT
VECTOR. . HEADER
}
SI _MODEL = TI ME ;
}
SLEWRATE { MN = 0; }
KEYWORD SETUP = arithnetic_nodel ; /I See Semantics 117 on page 197

SEMANTI CS SETUP { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD HOLD = arithnetic_nodel ;
SEMANTI CS HOLD { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD RECOVERY = arithnetic_nodel ; /I See Semantics 118 on page 198
SEMANTI CS RECOVERY { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD REMOVAL = arithnetic_nodel ;
SEMANTI CS REMOVAL { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD NOCHANGE = arithnetic_nodel ; /I See Semantics 119 on page 199
SEMANTI CS NOCHANGE { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
NOCHANGE { MN = 0; }
KEYWORD | LLEGAL = arithmetic_nodel ;
SEMANTI CS | LLEGAL { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
ILLEGAL { MN = 0; }
KEYWORD PULSEW DTH=arit hneti c_nodel ; /I See Semantics 120 on page 201
SEMANTI CS PULSEW DTH {
CONTEXT {
LI BRARY LI BRARY. LIM T SUBLI BRARY SUBLI BRARY.LIM T
CELL CELL.LIMT PINPINLIMT WRE WRE.LIMT
VECTOR VECTOR. . HEADER

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

283

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

}
SI _MODEL = TIME ;
}
PULSEWDTH { MN = 0; }
KEYWORD PERI OD = arithnetic_nodel ; /I See Semantics 121 on page 202

SEMANTI CS PERI OD {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }
SI _MODEL = TI ME ;

}
PERROD { MN = 0; }
KEYWORD JI TTER = arithnetic_nodel ; /I See Semantics 122 on page 203

SEMANTI CS JI TTER {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER }
SI_MODEL = TI ME

}
JITTER { MN = 0; }
KEYWORD SKEW = arithnetic_nodel ; /I See Semantics 123 on page 204

SEMANTI CS SKEW {
CONTEXT { VECTOR VECTOR. LIM T VECTCR. . HEADER }
SI_MODEL = TI ME

}
SKEW{ MN = 0; }
KEYWORD THRESHOLD = arithnetic_nodel ; /I See Semantics 124 on page 205

SEMANTI CS THRESHOLD {
CONTEXT { PIN FROM TO }
VALUETYPE = nunber ;

}
THRESHOLD { M N = 0; MAX = 1; }
KEYWORD NO SE = arithnetic_nodel ; /I See Semantics 125 on page 206
SEMANTI CS NO SE {
CONTEXT {

LI BRARY. LIM T SUBLI BRARY. LIM T CELL.LIMT
PIN PIN.LIMT VECTOR VECTOR. LIM T VECTOR. . HEADER
}
VALUETYPE = nunber ;
}
KEYWORD NO SE MARA N = arithnmetic_nodel ;
SEMANTI CS NO SE_MARG N {
CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PI N VECTOR }
VALUETYPE = nunber ;

}
NO SE MARGN{ MN = 0; }
KEYWORD PONER = arithnetic_nodel ; /I See Semantics 126 on page 209
SEMANTI CS POAER {
CONTEXT {
LI BRARY SUBLI BRARY CELL VECTOR
CLASS.LIMT CELL.LIMT
}
VALUETYPE = nunber ;
}
284 Copyright © 2003 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

POAER { UNIT = MIliwatt; }
KEYWORD ENERGY = arithmetic_nodel { VALUETYPE = nunber; }

SEMANTI CS ENERGY {
CONTEXT { LI BRARY SUBLI BRARY CELL VECTCR }
VALUETYPE = nunber ;

}

ENERGY { UNIT = PicoJdoul e; }

SEMANTI CS FROM { /I See Semantics 127 on page 210
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}
}
SEMANTI CS TO {
CONTEXT {
TI ME DELAY RETAI N SLEWRATE PULSEW DTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE | LLEGAL SKEW

}

}

KEYWORD EDGE_NUMBER = annot ati on { /I See Semantics 128 on page 211
CONTEXT { arithnetic_nodel FROM TO }

}
SEMANTI CS EDGE_NUMBER {
CONTEXT { VECTOR . }
VALUETYPE = unsi gned_i nt eger ;
DEFAULT = 0;
}
SEMANTI CS FROM PI'N = singl e_val ue_annotation { /I See Semantics 129 on page 211
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }
}
SEMANTI CS TO PIN = single_val ue_annotation {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }
}
SEMANTI CS FROM EDGE_NUMBER = si ngl e_val ue_annotati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD /I See Semantics 130 on page 211
RECOVERY REMOVAL NOCHANGE | LLEGAL }
}
SEMANTI CS TO EDGE_NUMBER = singl e_val ue_annot ati on {
CONTEXT { TI ME DELAY RETAI N SETUP HOLD
RECOVERY REMOVAL NOCHANGE | LLEGAL }
}
SEMANTI CS SLEWRATE. PI N = si ngl e_val ue_annot ati on ; // See Semantics 131 on page 212

SEMANTI CS SLEWRATE. EDGE_NUMBER = si ngl e_val ue_annotati on ;
SEMANTI CS PULSEW DTH. PI N = si ngl e_val ue_annot at i on; // See Semantics 132 on page 212
SEMANTI CS PULSEW DTH. EDGE_NUMBER = si ngl e_val ue_annot ati on;

SEMANTI CS SKEWPIN = multi _val ue_annotation ; /I See Semantics 133 on page 213
SEMANTI CS SKEW EDGE_NUMBER = nul ti _val ue_annot ati on ;
SEMANTI CS NO SE. PIN = singl e_val ue_annotation ; /I See Semantics 134 on page 213

SEMANTI CS NO SE_MARG N. PI N = singl e_val ue_annotation ;

Copyright © 2003 IEEE. All rights reserved. 285
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD MEASUREMENT = singl e _val ue_annotation { // See Semantics 135 on page 213
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS MEASUREMENT {
CONTEXT { ENERGY POWNER CURRENT VOLTAGE JITTER }
VALUETYPE = identifier ;
VALUES { transient static average absol ute_average rns peak }

}

KEYWORD PROCESS = arithnetic_nodel ; /I See Semantics 136 on page 215
SEMANTI CS PROCESS {
CONTEXT {

CLASS LI BRARY SUBLI BRARY CELL W RE HEADER
arithnetic_nodel

}
VALUETYPE = identifier ;

}
PROCESS { DEFAULT = nom TABLE { nom snsp snwp wnsp wnwp } }
KEYWORD DERATE_CASE = arithnetic_nodel ; /I See Semantics 137 on page 216
SEMANTI CS DERATE_CASE {
CONTEXT {
CLASS LI BRARY SUBLI BRARY CELL W RE HEADER
arithnetic_nodel

}
VALUETYPE = identifier ;

}
DERATE_CASE { DEFAULT = nom
TABLE { nom bccom wccom bci nd weind bemi|l wem |}

}
KEYWORD TEMPERATURE = arithnetic_nodel { /I See Semantics 138 on page 216
}
SEMANTI CS TEMPERATURE {
CONTEXT {

CLASS LI BRARY SUBLI BRARY CELL W RE
LIMT HEADER arithneti c_nodel
}
VALUETYPE = nunber ;
}
TEMPERATURE { UNIT = 1DegreeCel sius; MN = -273; }

KEYWORD VOLTACE = arithnetic_nodel ; /I See Semantics 139 on page 217
SEMANTI CS VOLTAGE {
CONTEXT {

CLASS LI BRARY SUBLI BRARY CELL PIN W RE VECTOR HEADER
CLASS.LIMT CELL.LIMT PIN.LIMT VECTOR LIM T
}
VALUETYPE = nunber ;
}
VOLTAGE { UNIT = 1Volt; }

286 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD CURRENT = arithnetic_nodel ; /I See Semantics 140 on page 218
SEMANTI CS CURRENT {
CONTEXT {

LI BRARY SUBLI BRARY CELL W RE VECTOR HEADER
CELL. LIMT VECTOR LIMT
LAYER LIMT VIALIMT RULE.LIMT

}
VALUETYPE = nunber ;
}
CURRENT { UNIT = MIIi Anpere; }
KEYWORD CAPACI TANCE = arithnetic_nodel ; /I See Semantics 141 on page 219
SEMANTI CS CAPACI TANCE {
CONTEXT {

LI BRARY SUBLI BRARY CELL CELL.LIMT PIN PIN.LIMT
W RE LAYER RULE VECTOR HEADER

}

VALUETYPE = nunber ;

SI _MODEL = CAPACI TANCE ;

}
CAPACI TANCE { UNIT Pi coFarad; M N = 0; }

KEYWORD RESI STANCE = arithmeti c_nodel ; /I See Semantics 142 on page 221

SEMANTI CS RESI STANCE {
CONTEXT {
LI BRARY SUBLI BRARY CELL W RE LAYER RULE
CELL.LIM T VECTOR HEADER
}
VALUETYPE = nunber ;
SI _MODEL = RESI STANCE ;

}
RESI STANCE { UNIT = Kil oChm MN = 0; }
KEYWORD | NDUCTANCE = arithnetic_nodel ; /I See Semantics 143 on page 222
SEMANTI CS | NDUCTANCE {
CONTEXT {

LI BRARY SUBLI BRARY CELL W RE LAYER RULE
CELL. LIM T VECTOR HEADER
{/ALUETYPE = nunber ;
SI _MODEL = | NDUCTANCE ;
}
I NDUCTANCE { UNIT = 1e-6; MN = 0; }
SEMANTI CS VOLTAGE. NODE = mul ti _val ue_annot ati on { // See Semantics 144 on page 224
CONTEXT { CELL WRE } }
SEMANTI CS CURRENT. NODE = mul ti _val ue_annot ati on {
CONTEXT { CELL WRE } }
SEMANTI CS CAPACI TANCE. NODE = mul ti _val ue_annot ati on {
CONTEXT { CELL WRE } }
SEMANTI CS RESI STANCE. NODE
CONTEXT { CELL WRE } }
SEMANTI CS | NDUCTANCE. NODE
CONTEXT { CELL WRE } }

mul ti _val ue_annotation {

mul ti _val ue_annotati on {

Copyright © 2003 IEEE. All rights reserved. 287
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD COVPONENT = singl e _val ue_annotation { /I See Semantics 145 on page 225
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS COVPONENT {
CONTEXT { CURRENT PONER ENERGY }
REFERENCETYPE {
CURRENT VOLTAGE CAPACI TANCE RESI STANCE | NDUCTANCE

}

}

SEMANTI CS VOLTAGE. PI N = singl e val ue_annot ati on { // See Semantics 146 on page 225
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER } }

SEMANTI CS CURRENT. PI N = singl e_val ue_annotation {
CONTEXT { VECTOR VECTOR. LIM T VECTOR. . HEADER } }

SEMANTI CS CAPACI TANCE. PI N = si ngl e_val ue_annot ati on {
CONTEXT { VECTOR VECTOR. . HEADER } }

SEMANTI CS RESI STANCE. PI N = si ngl e_val ue_annotation {
CONTEXT { VECTOR } }

KEYWORD FLOW = singl e_val ue_annot ati on { /I See Semantics 147 on page 227
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS FLOW {
CONTEXT = CURRENT;
VALUES { in out }
DEFAULT = in;
}
KEYWORD DRI VE_STRENGTH = arithmetic_nodel ; /I See Semantics 148 on page 227
SEMANTI CS DRI VE_STRENGTH {

CONTEXT { CLASS LI BRARY SUBLI BRARY CELL PI'N Pl NGROUP }
VALUETYPE = nunber ;

}
DRI VE_STRENGTH { MN = 0; }
KEYWORD SW TCHI NG BI TS = arithmetic_nodel ; /I See Semantics 149 on page 228

SEMANTI CS SW TCHI NG _BI TS {
CONTEXT { VECTOR. POAER. HEADER VECTOR. ENERGY. HEADER }
VALUETYPE = unsi gned_i nteger ;
}
SEMANTI CS SW TCHI NG BI TS. PI N = singl e_val ue_annot ati on;
KEYWORD CONNECTI VITY = arithnetic_nodel ; /I See Semantics 150 on page 228
SEMANTI CS CONNECTI VI TY {
CONTEXT { LI BRARY SUBLI BRARY CELL RULE ANTENNA HEADER }
VALUES { 1 0 ? }
}
KEYWORD DRI VER = arithmetic_nodel { /I See Semantics 151 on page 229
SEMANTI CS DRI VER {
CONTEXT = CONNECTI VI TY. HEADER;
REFERENCETYPE = CLASS ;
}
KEYWORD RECEI VER = arithmetic_nodel ;

288 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

SEMANTI CS RECEI VER {
CONTEXT = CONNECTI VI TY. HEADER;
REFERENCETYPE = CLASS ;

}

KEYWORD FANQUT = arithnetic_nodel ; /I See Semantics 152 on page 230
SEMANTI CS FANOUT {
CONTEXT {

PIN.LIMT W RE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}

VALUETYPE = unsi gned_i nt eger ;

}

KEYWORD FANIN = arithnetic_nodel ; /I See Semantics 153 on page 231
SEMANTI CS FANI N {
CONTEXT {

PIN.LIMT WRE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

KEYWORD CONNECTI ONS = arithnetic_nodel ; /I See Semantics 154 on page 231
SEMANTI CS CONNECTI ONS {
CONTEXT {

PIN.LIMT WRE. SI ZE. HEADER W RE. CAPACI TANCE. HEADER
W RE. RES|I STANCE. HEADER W RE. | NDUCTANCE. HEADER

}
VALUETYPE = unsi gned_i nt eger ;

}

KEYWORD Sl ZE = arithnetic_nodel ; /I See Semantics 155 on page 232
SEMANTI CS Sl ZE {
CONTEXT {

CELL ANTENNA ANTENNA. LIM T PIN W RE
W RE. CAPACI TANCE. HEADER
W RE. RESI STANCE. HEADER
W RE. | NDUCTANCE. HEADER
}
VALUETYPE = nunber :
}
SIZE{ MN = 0; }

KEYWORD AREA = arithnetic_nodel ; /I See Semantics 156 on page 233
SEMANTI CS AREA {
CONTEXT {

CELL W RE W RE. . HEADER LAYER. . HEADER
RULE. . HEADER ANTENNA. . HEADER
}
VALUETYPE = nunber ;
SI_MODEL = AREA ;
}
AREA { UNIT = l1le-12; MN = 0; }

Copyright © 2003 IEEE. All rights reserved. 289
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

KEYWORD PERI METER = arithnetic_nodel ; /I See Semantics 157 on page 234
SEMANTI CS PERI METER {
CONTEXT {

CELL W RE W RE. . HEADER LAYER. . HEADER
RULE. . HEADER ANTENNA. . HEADER

}

S| _MODEL = DI STANCE ;
}
KEYWORD EXTENSI ON = arithnetic_nodel ; /I See Semantics 158 on page 235
SEMANTI CS EXTENSI ON {

CONTEXT { LAYER PATTERN RULE. LIM T RULE..HEADER }

SI _MODEL = DI STANCE ;
}
KEYWORD THI CKNESS = arithmetic_nodel ; /I See Semantics 159 on page 236
SEMANTI CS EXTENSI ON {

CONTEXT { LAYER RULE. . HEADER }

SI _MODEL = DI STANCE ;
}
KEYWORD HEI GHT = arithnetic_nodel ; /I See Semantics 160 on page 236
SEMANTI CS HEI GHT {

CONTEXT { CELL SITE REG ON LAYER W RE. . HEADER }

S| _MODEL = DI STANCE ;
}

KEYWORD W DTH = arithnetic_nodel ; /I See Semantics 161 on page 237
SEMANTI CS W DTH {
CONTEXT {

CELL SITE REG ON LAYER LAYER LIM T
PATTERN RULE. LIM T RULE. . HEADER

}

SI _MODEL = DI STANCE ;

}

KEYWORD LENGTH = arithmetic_nodel ; /I See Semantics 162 on page 238
SEMANTI CS LENGTH {
CONTEXT {

LAYER LAYER LIM T PATTERN RULE. LIM T RULE. . HEADER

}

SI _MODEL = DI STANCE ;
}
KEYWORD DI STANCE = arithmetic_nodel ; /I See Semantics 163 on page 239
SEMANTI CS DI STANCE {

CONTEXT { RULE RULE.LIM T RULE. . HEADER }

VALUETYPE = nunber ;

S| _MODEL = DI STANCE ;
}
DISTANCE { UNNT = 10e-6; MN = 0; }
KEYWORD OVERHANG = arithmeti c_nodel ; /I See Semantics 164 on page 239
SEMANTI CS OVERHANG {

CONTEXT { RULE RULE.LIM T RULE. . HEADER }

S| _MODEL = DI STANCE ;
}

290 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

KEYWORD DENSI TY = arithnetic_nodel ; /I See Semantics 165 on page 240

SEMANTI CS DENSI TY {
CONTEXT { LAYER LIMT RULE RULE.LIMT }
VALUETYPE = nunber ;

}

DENSITY { MN = 0; MAX = 1; }

KEYWORD CONNECT_RULE = singl e _val ue_annotati on { // SeeSemantics 166 on page 241
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS CONNECT_RULE {
CONTEXT = CONNECTI VI TY ;
VALUES { nust_short can_short cannot_short }

}

KEYWORD BETWEEN = mul ti _val ue_annotation { /I See Semantics 167 on page 242
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS BETWEEN {
CONTEXT { DI STANCE LENGTH OVERHANG CONNECTI VI TY }

}
SEMANTI CS ANTENNA. CONNECTI VI TY. BETVEEN { /I See Semantics 168 on page 242
REFERENCETYPE = LAYER;

}
SEMANTI CS HEADER. CONNECTI VI TY. BETWEEN {
REFERENCETYPE { PATTERN REG ON LAYER }

}
SEMANTI CS LI BRARY. CONNECTI VI TY. BETVEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS SUBLI BRARY. CONNECTI VI TY. BETWEEN {
REFERENCETYPE = CLASS ;

}

SEMANTI CS CELL. CONNECTI VI TY. BETVEEN {
REFERENCETYPE { PI N CLASS }

}

SEMANTI CS DI STANCE. BETWEEN { /I See Semantics 169 on page 242
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS LENGTH. BETVEEEN {
REFERENCETYPE { PATTERN REG ON }

}

SEMANTI CS OVERHANG. BETWEEN {
REFERENCETYPE { PATTERN REG ON }

}

KEYWORD MEASURE = singl e _val ue_annotation { /I See Semantics 170 on page 243
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS MEASURE {
CONTEXT { DI STANCE LENGTH OVERHANG }
VALUETYPE = identifier ;

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

291

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

VALUES { euclidean horizontal vertical nanhattan }
DEFAULT = eucl i dean ;

}

KEYWORD REFERENCE = annot ati on_cont ai ner { /I See Semantics 171 on page 244
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS REFERENCE {
CONTEXT { DI STANCE LENGTH OVERHANG }
REFERENCETYPE { PATTERN REGQ ON }
}
SEMANTI CS REFERENCE. i denti fier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

KEYWORD ANTENNA = annot ati on { /I See Semantics 172 on page 246
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS ANTENNA
CONTEXT { PIN. SI ZE PI N. AREA PI N. PERI METER }
REFERENCETYPE = ANTENNA;

}

KEYWORD TARGET = annotation { /I See Semantics 173 on page 246
CONTEXT = arithnetic_nodel ;

}

SEMANTI CS TARCET ({
CONTEXT = PI N. SI ZE;
REFERENCETYPE = PI N. PATTERN;

}
KEYWORD PATTERN = singl e _val ue_annotation {{ /I See Semantics 174 on page 247
CONTEXT = arithnetic_nodel ;
}
SEMANTI CS PATTERN {
CONTEXT {
LENGTH W DTH HEI GHT SI ZE AREA THI CKNESS
PERI METER EXTENSI ON
}
REFERENCETYPE = PATTERN ;
}
KEYWORD HI GH = arithneti c_subnodel ; /I See Semantics 175 on page 248

SEMANTI CS H GH { CONTEXT {
CLASS. VOLTACGE CLASS. LI M T. VOLTAGE
PI'N. VOLTAGE PIN. LI M T. VOLTAGE PI N. CAPACI TANCE
PIN. NO SE PI N. NO SE MARG N PIN. LI M T. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE
b}
KEYWORD LOW = arithnetic_subnodel ;
SEMANTI CS LOW { CONTEXT ({
CLASS. VOLTAGE CLASS. LI M T. VOLTAGE
PI'N. VOLTAGE PIN. LI M T. VOLTAGE PI N. CAPACI TANCE

292 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

PI'N. NO SE PIN. NO SE_MARG N PIN. LIMT. NO SE
LI BRARY. NO SE_MARG N LI BRARY. LI M T. NO SE
b}
KEYWORD RI SE = arithmetic_subnodel ; /I See Semantics 176 on page 248

SEMANTI CS RI SE { CONTEXT {
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
PI N. CAPACI TANCE PI N. SLEWRATE PI N. LI M T. SLEWRATE
PI N. PULSEW DTH PI N. LI M T. PULSEW DTH

b}

KEYWORD FALL = arithnetic_subnodel ;

SEMANTI CS FALL { CONTEXT {
FROM THRESHOLD TO. THRESHOLD PI N. THRESHOLD
PI N. CAPACI TANCE PI N. SLEWRATE PI N. LI M T. SLEWRATE
PI'N. PULSEW DTH PI N. LI M T. PULSEW DTH

b}
KEYWORD HORI ZONTAL = arithnetic_subnodel ; /I See Semantics 177 on page 249

SEMANTI CS HORI ZONTAL { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}
KEYWORD VERTI CAL = arithmetic_subnodel ;
SEMANTI CS VERTI CAL { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}
KEYWORD ACUTE = arithnetic_subnodel ;
SEMANTI CS ACUTE { CONTEXT {

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}
KEYWORD OBTUSE = arithnetic_subnodel ;
SEMANTI CS OBTUSE { CONTEXT ({

W DTH LENGTH EXTENSI ON DI STANCE OVERHANG
b}

Copyright © 2003 IEEE. All rights reserved. 293
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

294

Advanced Library Format (ALF) Reference Manual

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Annex C

(informative)

ALF library example
This annex shows a sample ALF library.
ALF_REVI SI ON "I EEE 1603-2003"
LI BRARY sanpl eLi brary {
/1 global units for physical neasurenents

TIME { UNIT = 1e-9; }
FREQUENCY { UNIT = 1e6; }
DISTANCE { UNIT = le-6; }
AREA { UNIT = le-12; }
VOLTAGE { UNIT = 1; }
CURRENT { UNIT = le-3; }
ENERGY { UNIT = le-12; }
PONER { UNIT = le-3; }
CAPACI TANCE { UNIT = le-12; }
RESI STANCE { UNIT = 1e3; }
I NDUCTANCE { UNIT = 1le-9; }

/1 global definitions for PVT

PROCESS {
TABLE { nom snsp snwp wnsp wnwp }
DEFAULT = nom

}

DERATE_CASE {
TABLE { nom bccom wccom bcind weind beni|l wenil }
DEFAULT = nom

}

VOLTAGE VDD {
HEADER {
DERATE_CASE {
TABLE { nom bccom wccom becind weind bemil wenil }
}
}
TABLE { 1.5
DEFAULT = 1.

1.7 1.31.6 1.41.91.1}

3;

}

TEMPERATURE { M N = -40; MAX = 125; DEFAULT = 25; }

/1 global thresholds for tining neasurenents

DELAY {
FROM { THRESHOLD = 0.5
5-

= ; }
TO { THRESHOLD = 0.5; }

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

296

}

SLEWRATE {
FROM { THRESHOLD { RISE = 0.3; FALL = 0.7; } }
TO{ THRESHOLD { RISE = 0.6; FALL = 0.4; } }

}

/1 tenplates for cell characterization

TEMPLATE Del ayPower Arc {
DELAY {

FROM { PIN = <FronPi n>; }

TO{ PIN = <ToPi n>; }

HEADER {
CAPACI TANCE { PIN = <ToPin>; TABLE { 0 0.5 1} }
SLEWRATE { PIN = <FronPin>;, TABLE { 0.1 1} }

} TABLE { <Del ayTabl e> }

}
SLEWRATE {
PI N = <ToPi n>;
HEADER {
CAPACI TANCE { PIN = <ToPin>, TABLE { 0 0.5 1} }
SLEWRATE { PIN = <FronPin>, TABLE { 0.1 1} }
} TABLE { <SI ewTabl e> }
}

RESI STANCE = <Rdriver> {
PI N = <ToPi n>;
}
ENERGY {
HEADER {
CAPACI TANCE { PIN = <ToPin>;, TABLE { 0 0.5 1} }
SLEWRATE { PIN = <FronmPin>;, TABLE { 0.1 1} }
} TABLE { <Power Tabl e> }
}

}
TEMPLATE Noi sePropagation {

NO SE {
PI N = <ToPi n>;
HEADER {
NO SE H { PIN = <FronPi n>; }
PULSEW DTH W{ PIN = <FronPi n>; }
CAPACI TANCE C { PIN = <ToPi n>; }
} EQUATI ON { <Noi seHi ght> }
}
PULSEW DTH {
PI N = <ToPi n>;
HEADER {
NO SE H { PIN = <FronPi n>; }
PULSEW DTH W{ PIN = <FronPi n>; }
CAPACI TANCE C { PIN = <ToPi n>; }
} EQUATI ON { <Noi seW dt h> }
}
DELAY {
FROM { PIN = <FronPi n>; }
TO { PIN = <ToPin>; }

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

HEADER {
NO SE H{ PIN = <FronPi n>; }
PULSEW DTH W{ PIN = <FronPi n>; }
CAPACI TANCE C { PIN = <ToPi n>; }
} EQUATI ON { <Noi seDel ay> }

}
}
TEMPLATE Set upHol d {
SETUP {
FROM { PIN = <DataPi n>; EDGE_NUMBER = 0; }
TO { PIN = <d ockPi n>; }
HEADER {
SLEWRATE s1 { PIN = <DataPi n>, EDGE_NUMBER = 0; TABLE { 0.1 1} }
SLEWRATE s2 { PIN = <Cl ockPin> TABLE { 0.1 0.2 0.3} }
} TABLE { <SetupTabl e> }
}
HOLD {

TO { PIN = <d ockPi n>; }
FROM { PIN = <Dat aPi n>; EDGE_NUMBER = 1; }
HEADER {
SLEWRATE s1 { PIN = <DataPi n>, EDGE_NUMBER = 1; TABLE { 0.1 1} }
SLEWRATE s2 { PIN = <C ockPin> TABLE{ 0.1 0.2 0.3} }
} TABLE { <Hol dTabl e> }
}
NO SE_MARG N = <Dat aNoi seMar gi n> {
PI N = <Dat aPi n>;
TI VE {
FROM { PIN = <Dat aPi n>; EDGE_NUMBER = 0; }
TO { PIN = <DataPi n>; EDGE_NUMBER = 1; }
}
}
}

/1 exanple of conbinatorial circuit

CELL sanpl eNand2 {
CELLTYPE = combi nati onal ;
PIN A { DI RECTION = input; CAPACI TANCE = 0.01; }
PIN B { DI RECTION = input; CAPACI TANCE = 0.01; }
PINY { DIRECTION = output; LIMT { CAPACI TANCE { MAX = 1.0; } } }
FUNCTI ON {
BEHAVIOR { Y =!I (A&B); }
}
GROUP Anylnput { AB}
VECTOR (01 Anylnput -> 10 Y) {
Del ayPower Arc {
FronPi n = Anyl nput ;
ToPin =Y;
Rdriver = 1,
Del ayTable { 0 0.5 1 0 0.5 1}
SlewTable { 0 0.5 1 0 0.5 1}
PowerTable { 111111}

Copyright © 2003 IEEE. All rights reserved. 297
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

298

VECTOR (10

Advanced Library Format (ALF) Reference Manual

Anylnput -> 01 Y) {

Del ayPower Arc {

FronPi n
ToPin =
Rdri ver

= Anyl nput ;
Y;
= 1,

Del ayTable { 0 0.5 1 0 0.5 1}

SlewTable { 0 0.5 1 0 0.5 1}
PowerTable { 111111}
}
}
VECTOR (1* Anylnput -> *1 Anylnput <& 0* Y -> *0 Y) {
Noi sePropagati on = dynam ¢ {
FronPi n = Anyl nput;
ToPin =Y,
Noi seHeight = 0.5*H/ (C*(W+ 1));
Noi seWdth = 0.5*H*W/ (C + 1);
Noi seDelay = 0.5*C ;
}
}
VECTOR (0* Anylnput -> *0 Anylnput <& 1* Y -> *1 Y) {
Noi sePropagati on = dynam ¢ {
FronmPi n = Anyl nput ;
ToPin =Y,
Noi seHeight = 0.5*H/ (C*(W+ 1));
Noi seWdth = 0.5*H*W/ (C + 1);
Noi seDelay = 0.5*C ;
}
}
} // end CELL sanpl eNand2

/1 exanmpl e of sequential circuit

CELL sanpl eDFl
CELLTYPE = f
PIN D {

DI RECTI ON

i pFl op {
i pflop;

= i nput;

SI GNALTYPE = dat a;
CAPACI TANCE = 0. 01,

}
PIN C {

DI RECTI ON

= i nput;

SI GNALTYPE = cl ock;

POLARI TY = ri si ng_edge;

CAPACI TANCE = 0. 01;

NO SE MARG N { LOW=0.1; HGH =0.2; }
LIMT { SLEWRATE { MAX = 0.3; } }

}

PIN Q {
DI RECTI ON

= out put ;

SI GNALTYPE = dat a;
LIMT { CAPACITANCE { MAX = 1.0; } }

}
FUNCTI ON {

BEHAVI OR {

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

@(o01cCc){ Q=0 1}
}}
VECTOR (01 C->?! Q) {
Del ayPower Arc {

FronPin = C
ToPin = Q
Rdriver = 1;

Del ayTable { 0 0.5 1 0 0.5 1}
SlewTable { 0 0.5 1 0 0.5 1}
PowerTable { 111111}

}
}
VECTOR (?! D->01 C->7? D) {
Set upHol d {
DataPin = D
G ockPin = C
Dat aNoi seMargin = 0. 2;
SetupTable { 1 11111}
Hol dTable { 0 0 0 0 0 0 }
}
}

} // end CELL sanpl eDFl i pFl op
/1 tenplate for paranetrized negacell

TEMPLATE \ 1Por t AsyncRAM {
CELL <RAM nst ance> {
CELLTYPE = nenory;,
GROUP Addr { <AddrPins> }
GROUP Din { <Datal nputs> }
GROUP Dout { <Dat aQut puts> }

PI'N Addr { DI RECTI ON=i nput; SI GNALTYPE=addr ess; VI EWephysi cal ;
PIN Din { DI RECTION=i nput; Sl GNALTYPE=dat a; VI EWephysi cal ;
PI' N Dout { DI RECTI ON=out put; S| GNALTYPE=dat a; VI EWephysi cal ;
PIN WVE { DI RECTI ON=i nput; SIGNALTYPE=enabl e; POLARITY = hi gh;

PI N [<Dat aHi gh>: <Dat aLow>] Dat aArray [<Rows>:1] {
DI RECTI ON=none; VI EW = none;

}

Pl NGROUP [<Addr Hi gh>: <Addr Low>] Addr Bus {
MEMBERS { <Addr Pi ns> } VI EW = functi onal ;

}

PI NGROUP [<Dat aHi gh>: <Dat aLow>] Di nBus {
MEMBERS { <Datal nputs>} VIEW= functional;

}

Pl NGROUP [<Dat aHi gh>: <Dat aLow>] Dout Bus {
MEMBERS { <Dat aQut puts> } VIEW= functional;

}
FUNCTI ON {
BEHAVI OR {
Dout Bus = Dat aArray[Addr Bus] ;
@(WE) { DataArray[AddrBus] = Di nBus; }
}
}

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

}

}

}
}

299

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IEEE P1603/D9, July 2003

300

11

Advanced Library Format (ALF) Reference Manual

GROUP Addr I ndex { <AddrLow> : <AddrHi gh> }
GROUP Dat al ndex { <DatalLow> : <DataHi gh> }
VECTOR (01 AddrBus[Addr | ndex] -> ?? DoutBus[Datal ndex]) {
DELAY {
FROM { PIN = Addr Bus[Addr | ndex]; }
TO { PIN = Dout Bus[Dat al ndex]; }
HEADER {
CAPACI TANCE { PIN = Dout Bus[Dat al ndex]; }
} EQUATION { <DoeO> + <Doel> * CAPACI TANCE }

}
}

VECTOR (?! DinBus[Datal ndex] -> ?! DoutBus[Datal ndex]) {
EXI STENCE_CONDI TI ON = V\E;
DELAY {
FROM { PIN = Di nBus[Dat al ndex]; }
TO { PIN = Dout Bus[Dat al ndex]; }
HEADER {
CAPACI TANCE { PI N = Dout Bus[Dat al ndex]; }
} EQUATI ON { <Di 00> + <Di 01> * CAPACI TANCE }

}
}

VECTOR (*? AddrBus[Addr I ndex] -> 01 WE
-> 10 WE -> ?* AddrBus[Addrlndex]) {
SETUP = <Addr Set up> {

FROM { PI'N = Addr Bus[Addr | ndex]; EDGE_NUMBER = O0; }
TO{ PIN = WE; EDGE_NUMBER = 0; }
}
HOLD = <Addr Hol d> {
FROM { PIN = WE; EDGE_NUMBER = 1; }
TO { PIN = AddrBus[Addr | ndex]; EDGE_NUMBER = 1; }

}
}
}

} // end TEMPLATE \ 1Port AsyncRAM

i nstance of paranetrized negacel |

\ 1Por t AsyncRAM {
RAM nst ance
AddrPins { Addr5 Addr4 Addr3 Addr2 Addrl1l AddrO }

Datalnputs { Din7 Din6 Din5 Din4d Din3 Din2 Dinl Din0O }
Dat aQut puts { Dout7 Dout6 Dout5 Dout4 Dout3 Dout2 Doutl DoutO }

AddrHi gh = 5; AddrLow =

Dat aHi gh =
Rows 64;
Doe0 1,
Di 00 1,
Addr Set up
Addr Hol d

= \ 1Port AsyncRAM64X8 ;

= 0;
7; DatalLow = O;
Doel = 1;
Dol = 1;
=]_;
=]_;

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

Annex D

(informative)

Bibliography

[B1] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.
[B2] OVI, Advanced Library Format, Version 1.1.

[B3] Accellera, Advanced Library Format, Version 2.0.

[B4] Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Ca,
SPICE 2G6 User’s Guide.

[B5] IEEE Std. 1481-1999, |EEE Standard for Delay and Power Calculation for Integrated Circuit Design,
Clause 9.

[B6] Zvi Kohavi: Switching and Finite Automata Theory, McGraw-Hill Publishing Company, ISBN 0-07-
035310-7

[B7] Matthew W. Crocker: Computational Psycholinguistics - An Interdisciplinary Approach to the Sudy of
Language, Kluwer 1996, ISBN 0-7923-3802-2

[B8] Stroustrup, Bjarne : The C++ Programming Language (Third Edition and Special Edition), Addison-Wes-
ley, ISBN 0-201-88954-4 and 0-201-70073-5.

[B9] Weste, N. H. E., and Eshraghian, K.: Principles of CMOSVLS Design, Addison-Wesley, 1985, 1990, ISBN
0-201-08222-5.

Copyright © 2003 IEEE. All rights reserved. 301
This is an unapproved IEEE Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

IEEE P1603/D9, July 2003

302

Advanced Library Format (ALF) Reference Manual

Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

	Introduction
	Wolfgang Roethig, Chair
	Joe Daniels, Technical Editor

	1. Overview
	1.1 Scope and purpose of this standard
	1.2 Application of this standard
	1.2.1 Creation and characterization of library elements
	1.2.2 Basic implementation and performance analysis of an IC
	1.2.3 Hierarchical implementation and virtual prototyping of an IC

	1.3 Conventions used in this standard
	1.4 Contents of this standard

	2. References
	3. Definitions
	4. Acronyms
	5. ALF language construction principles
	5.1 ALF metalanguage
	5.2 Categories of ALF statements
	5.3 Generic objects and library-specific objects
	5.4 Singular statements and plural statements
	5.5 Instantiation statement and assignment statement
	5.6 Annotation, arithmetic model, and related statements
	5.7 Statements for parser control
	5.8 Name space and visibility of statements

	6. Lexical rules
	6.1 Character set
	6.2 Comment
	6.3 Delimiter
	6.4 Operator
	6.4.1 Arithmetic operator
	6.4.2 Boolean operator
	6.4.3 Relational operator
	6.4.4 Shift operator
	6.4.5 Event operator
	6.4.6 Meta operator

	6.5 Number
	6.6 Index value and Index
	6.7 Multiplier prefix symbol and multiplier prefix value
	6.8 Bit literal
	6.9 Based literal
	6.10 Boolean value
	6.11 Arithmetic value
	6.12 Edge literal and edge value
	6.13 Identifier
	6.13.1 Non-escaped identifier
	6.13.2 Placeholder identifier
	6.13.3 Indexed identifier
	6.13.4 Full hierarchical identifier
	6.13.5 Partial hierarchical identifier
	6.13.6 Escaped identifier
	6.13.7 Keyword identifier

	6.14 Quoted string
	6.15 String value
	6.16 Generic value
	6.17 Vector expression macro
	6.18 Rules for whitespace usage
	6.19 Rules against parser ambiguity

	7. Generic objects and related statements
	7.1 Generic object
	7.2 All purpose item
	7.3 Annotation
	7.4 Annotation container
	7.5 ATTRIBUTE statement
	7.6 PROPERTY statement
	7.7 ALIAS declaration
	7.8 CONSTANT declaration
	7.9 KEYWORD declaration
	7.10 SEMANTICS declaration
	7.11 Annotations and rules related to a KEYWORD or a SEMANTICS declaration
	7.11.1 VALUETYPE annotation
	7.11.2 VALUES annotation
	7.11.3 DEFAULT annotation
	7.11.4 CONTEXT annotation
	7.11.5 REFERENCETYPE annotation
	7.11.6 SI_MODEL annotation
	7.11.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

	7.12 CLASS declaration
	7.13 Annotations related to a CLASS declaration
	7.13.1 General CLASS reference annotation
	7.13.2 USAGE annotation

	7.14 GROUP declaration
	7.15 TEMPLATE declaration
	7.16 TEMPLATE instantiation
	7.17 INCLUDE statement
	7.18 ASSOCIATE statement and FORMAT annotation
	7.19 REVISION statement

	8. Library-specific objects and related statements
	8.1 Library-specific object
	8.2 LIBRARY and SUBLIBRARY declaration
	8.3 Annotations related to a LIBRARY or a SUBLIBRARY declaration
	8.3.1 LIBRARY reference annotation
	8.3.2 INFORMATION annotation container

	8.4 CELL declaration
	8.5 Annotations related to a CELL declaration
	8.5.1 CELL reference annotation
	8.5.2 CELLTYPE annotation
	8.5.3 RESTRICT_CLASS annotation
	8.5.4 SWAP_CLASS annotation
	8.5.5 SCAN_TYPE annotation
	8.5.6 SCAN_USAGE annotation
	8.5.7 BUFFERTYPE annotation
	8.5.8 DRIVERTYPE annotation
	8.5.9 PARALLEL_DRIVE annotation
	8.5.10 PLACEMENT_TYPE annotation
	8.5.11 SITE reference annotation for a CELL
	8.5.12 ATTRIBUTE values for a CELL

	8.6 PIN declaration
	8.7 PINGROUP declaration
	8.8 Annotations related to a PIN or a PINGROUP declaration
	8.8.1 PIN reference annotation
	8.8.2 MEMBERS annotation
	8.8.3 VIEW annotation
	8.8.4 PINTYPE annotation
	8.8.5 DIRECTION annotation
	8.8.6 SIGNALTYPE annotation
	8.8.7 ACTION annotation
	8.8.8 POLARITY annotation
	8.8.9 CONTROL_POLARITY annotation container
	8.8.10 DATATYPE annotation
	8.8.11 INITIAL_VALUE annotation
	8.8.12 SCAN_POSITION annotation
	8.8.13 STUCK annotation
	8.8.14 SUPPLYTYPE annotation
	8.8.15 SIGNAL_CLASS annotation
	8.8.16 SUPPLY_CLASS annotation
	8.8.17 DRIVETYPE annotation
	8.8.18 SCOPE annotation
	8.8.19 CONNECT_CLASS annotation
	8.8.20 SIDE annotation
	8.8.21 ROW and COLUMN annotation
	8.8.22 ROUTING_TYPE annotation
	8.8.23 PULL annotation
	8.8.24 ATTRIBUTE values for a PIN or a PINGROUP

	8.9 PRIMITIVE declaration
	8.10 WIRE declaration
	8.11 Annotations related to a WIRE declaration
	8.11.1 WIRE reference annotation
	8.11.2 WIRETYPE annotation
	8.11.3 SELECT_CLASS annotation

	8.12 NODE declaration
	8.13 Annotations related to a NODE declaration
	8.13.1 NODE reference annotation
	8.13.2 NODETYPE annotation
	8.13.3 NODE_CLASS annotation

	8.14 VECTOR declaration
	8.15 Annotations related to a VECTOR declaration
	8.15.1 VECTOR reference annotation
	8.15.2 PURPOSE annotation
	8.15.3 OPERATION annotation
	8.15.4 LABEL annotation
	8.15.5 EXISTENCE_CONDITION annotation
	8.15.6 EXISTENCE_CLASS annotation
	8.15.7 CHARACTERIZATION_CONDITION annotation
	8.15.8 CHARACTERIZATION_VECTOR annotation
	8.15.9 CHARACTERIZATION_CLASS annotation
	8.15.10 MONITOR annotation

	8.16 LAYER declaration
	8.17 Annotations related to a LAYER declaration
	8.17.1 LAYER reference annotation
	8.17.2 LAYERTYPE annotation
	8.17.3 PITCH annotation
	8.17.4 PREFERENCE annotation

	8.18 VIA declaration
	8.19 Annotations related to a VIA declaration
	8.19.1 VIA reference annotation
	8.19.2 VIATYPE annotation

	8.20 RULE declaration
	8.21 ANTENNA declaration
	8.22 BLOCKAGE declaration
	8.23 PORT declaration
	8.24 Annotations related to a PORT declaration
	8.24.1 Reference to a PORT using PIN reference annotation
	8.24.2 PORTTYPE annotation

	8.25 SITE declaration
	8.26 Annotations related to a SITE declaration
	8.26.1 SITE reference annotation
	8.26.2 ORIENTATION_CLASS annotation
	8.26.3 SYMMETRY_CLASS annotation

	8.27 ARRAY declaration
	8.28 Annotations related to an ARRAY declaration
	8.28.1 ARRAYTYPE annotation
	8.28.2 LAYER reference annotation for ARRAY
	8.28.3 SITE reference annotation for ARRAY

	8.29 PATTERN declaration
	8.30 Annotations related to a PATTERN declaration
	8.30.1 PATTERN reference annotation
	8.30.2 SHAPE annotation
	8.30.3 VERTEX annotation
	8.30.4 ROUTE annotation
	8.30.5 LAYER reference annotation for PATTERN

	8.31 REGION declaration
	8.32 Annotations related to a REGION declaration
	8.32.1 REGION reference annotation
	8.32.2 BOOLEAN annotation

	9. Description of functional and physical implementation
	9.1 FUNCTION statement
	9.2 TEST statement
	9.3 Definition and usage of a pin variable
	9.3.1 Pin variable and pin value
	9.3.2 Pin assignment
	9.3.3 Usage of a pin variable in the context of a FUNCTION or a TEST statement

	9.4 BEHAVIOR statement
	9.5 STRUCTURE statement and CELL instantiation
	9.6 STATETABLE statement
	9.7 NON_SCAN_CELL statement
	9.8 RANGE statement
	9.9 Boolean expression
	9.10 Boolean value system
	9.10.1 Scalar boolean value
	9.10.2 Vectorized boolean value
	9.10.3 Non-assignable boolean value

	9.11 Boolean operations and operators
	9.11.1 Logical operation
	9.11.2 Bitwise operation
	9.11.3 Conditional operation
	9.11.4 Integer arithmetic operation
	9.11.5 Shift operation
	9.11.6 Comparison operation

	9.12 Vector expression and control expression
	9.13 Specification of a pattern of events
	9.13.1 Specification of a single event
	9.13.2 Specification of a compound event
	9.13.3 Specification of a compound event with alternatives
	9.13.4 Evaluation of a specified pattern of events against a realized pattern of events
	9.13.5 Specification of a conditional pattern of events

	9.14 Predefined PRIMITIVE
	9.14.1 Predefined PRIMITIVE ALF_BUF
	9.14.2 Predefined PRIMITIVE ALF_NOT
	9.14.3 Predefined PRIMITIVE ALF_AND
	9.14.4 Predefined PRIMITIVE ALF_NAND
	9.14.5 Predefined PRIMITIVE ALF_OR
	9.14.6 Predefined PRIMITIVE ALF_NOR
	9.14.7 Predefined PRIMITIVE ALF_XOR
	9.14.8 Predefined PRIMITIVE ALF_XNOR
	9.14.9 Predefined PRIMITIVE ALF_BUFIF1
	9.14.10 Predefined PRIMITIVE ALF_BUFIF0
	9.14.11 Predefined PRIMITIVE ALF_NOTIF1
	9.14.12 Predefined PRIMITIVE ALF_NOTFIF0
	9.14.13 Predefined PRIMITIVE ALF_MUX
	9.14.14 Predefined PRIMITIVE ALF_LATCH
	9.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

	9.15 WIRE instantiation
	9.16 Geometric model
	9.17 Predefined geometric models using TEMPLATE
	9.17.1 Predefined TEMPLATE RECTANGLE
	9.17.2 Predefined TEMPLATE LINE

	9.18 Geometric transformation
	9.19 ARTWORK statement
	9.20 VIA instantiation

	10. Description of electrical and physical measurements
	10.1 Arithmetic expression
	10.2 Arithmetic operations and operators
	10.2.1 Sign inversion
	10.2.2 Floating point arithmetic operation
	10.2.3 Macro arithmetic operator

	10.3 Arithmetic model
	10.4 HEADER, TABLE, and EQUATION statements
	10.5 MIN, MAX, and TYP statements
	10.6 Auxiliary arithmetic model
	10.7 Arithmetic submodel
	10.8 Arithmetic model container
	10.8.1 General arithmetic model container
	10.8.2 Arithmetic model container LIMIT
	10.8.3 Arithmetic model container EARLY and LATE

	10.9 Generally applicable annotations for arithmetic models
	10.9.1 UNIT annotation
	10.9.2 CALCULATION annotation
	10.9.3 INTERPOLATION annotation
	10.9.4 DEFAULT annotation
	10.9.5 MODEL reference annotation

	10.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation
	10.11 Arithmetic models for timing, power and signal integrity
	10.11.1 TIME
	10.11.2 FREQUENCY
	10.11.3 DELAY
	10.11.4 RETAIN
	10.11.5 SLEWRATE
	10.11.6 SETUP and HOLD
	10.11.7 RECOVERY and REMOVAL
	10.11.8 NOCHANGE and ILLEGAL
	10.11.9 PULSEWIDTH
	10.11.10 PERIOD
	10.11.11 JITTER
	10.11.12 SKEW
	10.11.13 THRESHOLD
	10.11.14 NOISE and NOISE_MARGIN
	10.11.15 POWER and ENERGY

	10.12 FROM and TO statements
	10.13 Annotations related to timing, power and signal integrity
	10.13.1 EDGE_NUMBER annotation
	10.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO
	10.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE
	10.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH
	10.13.5 PIN reference and EDGE_NUMBER annotation for SKEW
	10.13.6 PIN reference annotation for NOISE and NOISE_MARGIN
	10.13.7 MEASUREMENT annotation

	10.14 Arithmetic models for environmental conditions
	10.14.1 PROCESS
	10.14.2 DERATE_CASE
	10.14.3 TEMPERATURE

	10.15 Arithmetic models for electrical circuits
	10.15.1 VOLTAGE
	10.15.2 CURRENT
	10.15.3 CAPACITANCE
	10.15.4 RESISTANCE
	10.15.5 INDUCTANCE

	10.16 Annotations for electrical circuits
	10.16.1 NODE reference annotation for electrical circuits
	10.16.2 COMPONENT reference annotation
	10.16.3 PIN reference annotation for electrical circuits
	10.16.4 FLOW annotation

	10.17 Miscellaneous arithmetic models
	10.17.1 DRIVE STRENGTH
	10.17.2 SWITCHING_BITS with PIN reference annotation

	10.18 Arithmetic models related to structural implementation
	10.18.1 CONNECTIVITY
	10.18.2 DRIVER and RECEIVER
	10.18.3 FANOUT, FANIN and CONNECTIONS

	10.19 Arithmetic models related to layout implementation
	10.19.1 SIZE
	10.19.2 AREA
	10.19.3 PERIMETER
	10.19.4 EXTENSION
	10.19.5 THICKNESS
	10.19.6 HEIGHT
	10.19.7 WIDTH
	10.19.8 LENGTH
	10.19.9 DISTANCE
	10.19.10 OVERHANG
	10.19.11 DENSITY

	10.20 Annotations related to arithmetic models for layout implementation
	10.20.1 CONNECT_RULE annotation
	10.20.2 BETWEEN annotation
	10.20.3 BETWEEN annotation for CONNECTIVITY
	10.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG
	10.20.5 MEASURE annotation
	10.20.6 REFERENCE annotation container
	10.20.7 ANTENNA reference annotation
	10.20.8 TARGET annotation
	10.20.9 PATTERN reference annotation

	10.21 Arithmetic submodels for timing and electrical data
	10.22 Arithmetic submodels for physical data

	Annex A
	Annex B
	Annex C
	Annex D

