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Introduction

(This introduction is not part of IEEE P1603, Advanced Library Format (ALF) Reference Manual.)

The purpose of the Advanced Library Format (ALF) is to provide a modeling language and semantics for the
functional, physical, and electrical performance description of technology-specific libraries for cell-based and
block-based design. Without a standard, EDA tools would be left to use tool-specific and fragmented library
descriptions. The semantics would be defined by tool implementations only, which are subject to change and
prone to misinterpretation. Therefore, ALF is proposed to create a consistent library view suitable as a reference
for library creators and users, as well as for electronic design automation (EDA) tool developers and integrators.

The IEEE P1603 standard for ALF is based on the work of Open Verilog International (OVI) and its successor
organization Accellera.

The ALF standard began as the OVI Power & Synthesis Technical Steering Committee (PS-TSC) early in 1996,
with the charter to define a standard library data format for synthesis, power analysis, and optimization. As the
committee grew in membership, with the addition of experts in other fields, such as design for test, it became
clear that such a format could be easily extended to cover other design tools. Furthermore, the benefit to both sil-
icon and EDA vendors of having a single, flexible format that would fully describe the functional, electrical, and
physical performance of a technology library in an accurate and unambiguous fashion was widely recognized.

ALF was announced at the occasion of the OVI/VI-sponsored HDL conference in March 1997, where a trial ver-
sion of the standard was released. Amongst the pioneers of proving the feasibility of ALF was the European
CAD Standardization Initiative, sister organization of VSIA, who demonstrated an ALF-based ASIC implemen-
tation flow in 1997. In November 1997, OVI approved and released ALF version 1.0.

In 1998, the ASIC Council, under the auspices of the Silicon Integration Initiative (SI2), selected ALF as a com-
plementary description of library elements within the Open Library Architecture (OLA), which builds upon the
IEEE 1481-1999 standard for a delay calculation system. This endorsement triggered the initial adoption of ALF
libraries by major ASIC vendors and the development of ALF version 1.1, which was approved and released by
OVI in April 1999.

In June 1999, the ASIC council encouraged the ALF workgroup to include layout modeling. Consequently, deep
submicron (DSM) issues, such as on-chip interconnect modeling, signal integrity, and reliability became a major
focus for ALF. The work culminated in the release of ALF version 2.0 in December 2000, under the auspices of
the OVI/VI successor organization Accellera.

ALF version 2.0 became the foundation for this IEEE standard. An IEEE study group was formed in February
2001. The study group became the IEEE P1603 workgroup in June 2001. The name ALF has been retained due
to already existing name recognition. By that time, the ALF had already set a standard for the industry, which can
be measured by direct adoption and the influence on existing vendor-proprietary library formats. Major EDA
vendors also made the specification of their existing proprietary library formats available to the industry and
allowed the user community to extend those formats and strive for compatibility with ALF.

Although IEEE is now the legal owner of ALF, Accellera continues to foster and promote ALF. As a result, ALF
has gained attention of other national and international standardization bodies, such as JEITA in May 2002 and
the IEC in October 2003.

From its inception, the goal for ALF has been to provide a solid foundation for library modeling within a contin-
uously evolving application space. ALF has been designed to be more general in scope and purpose than a partic-
ular tool-oriented format. At the same time, care has been taken to make ALF easily adoptable and to make the
migration path from legacy formats as smooth as possible. Therefore, an ALF library can be very similar in
appearance to a library in a conventional format, but ALF has also the expression power of a modeling language.
2 Copyright © 2003 IEEE. All rights reserved.
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The construction principles for ALF can be summarized as follows:

Simplicity
ALF has relatively few basic syntax construction principles. Once they are understood, reading and writ-
ing an ALF library or translating other library formats into ALF is very easy. Also, attention has been
paid to the fact all ALF keywords are taken from natural language, i.e., spoken and written English, and
their semantic meaning is as close to the natural language as possible. The use of artificial words or acro-
nyms is limited to constructs, which have already become part of technical language in the industry.

Completeness
Conventional library formats would support data without self-evident meaning such as coefficients, scal-
ing factors, etc. The interpretation of the data would be left to the application tool. On the other hand, an
ALF library specifies a complete and self-contained description by providing the complete model, i.e., a
calculation rule using an arithmetic expression. Furthermore, ALF contains information for characteriza-
tion of particular measurement data, for example delay, power, or noise. ALF introduces the original con-
cept of a vector expression to describe the event pattern associated with the measurement. This concept
has a far-reaching potential for creating abstract, yet accurate, modeling views for cells and larger blocks.
Any timing, power, or signal integrity measurement on a digital circuit or a mixed-signal circuit can be
associated with a vector expression.

Orthogonality
Orthogonality allows for modeling features to be combined most efficiently with each other to yield a
maximum expression capability. In ALF, orthogonality is closely related to context-sensitivity. A partic-
ular semantic meaning is created by describing a particular model in a particular context. For example, a
model for capacitance can be described in the context of a wire, pin, or rule. A model for delay can be
described in the context of a cell or wire. In a non-orthogonal approach, different keywords might be
used for cell delay, wire delay, etc., and the fundamental semantics of delay would not be inherited by
each construct.

Re-usability and self-extensibility
ALF supports the language constructs template and group, which allow for efficient representation of
replicated statements with parameterized values. As these constructs follow the principle of orthogonal-
ity, a template can be used for parameterizing any ALF statement and not just a particular type of state-
ments, such as a lookup table. ALF also supports language constructs for the definition of new keywords,
their usage for construction of statements, and the context where they can be used.

In summary, ALF is a well-structured language that supports a true superset of virtually all existing library for-
mats. Its conciseness and unique description features make it well-suited for innovative EDA applications.
Copyright © 2003 IEEE. All rights reserved. 3
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A Draft Standard for an
Advanced Library Format (ALF)
describing Integrated Circuit (IC)
technology, cells, and blocks

1. Overview

This clause explains the scope and purpose of this standard, gives an overview of applications of this standard,
explains the conventions used in this standard and summarizes the contents of this standard.

1.1 Scope and purpose of this standard

The scope of this standard is to serve as the data specification language of library elements for design applica-
tions used to implement an integrated circuit (IC). The range of abstraction shall include from the register-trans-
fer level (RTL) to the physical level. The language shall model behavior, timing, power, signal integrity, physical
abstraction and physical implementation rules of library elements.

Library elements for implementation of an IC include sets of predefined components, composed of transistors
and interconnect, and sets of predefined rules for the assembly of such components. The design of application-
specific ICs (ASICs) in particular relies on the availability of predefined components, called cells. An IC that
uses large predefined compound library elements with a standardized functionality, for example, microproces-
sors as building blocks, is called a system on a chip (SOC).

The design of an ASIC or of an SOC involves electronic design automation (EDA) tools. These tools assist the
designer in the choice and assembly of library elements for creating and implementing the IC and verifying the
functionality and performance specification of the IC. In order to create an IC involving several million instances
of library elements within a manageable time period counted in weeks or months, the usage of EDA tools is man-
datory.

A suitable description of library elements for design applications involving EDA tools is required. A key feature
is to represent a library element at a level of abstraction that does not reveal the implementation of the library ele-
ment itself. This is important for the following reasons:
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— The complexity of the design data itself mandates data reduction.
— The complexity of the verification process, i.e., the verification for functional, physical, and electrical

correctness, mandates a library elements is already characterized and verified by itself. Only the data
necessary for creation and verification of the assembled IC is represented in the library.

— A library element is considered an intellectual property (IP) of the library provider.

Therefore, the purpose of this standard is to provide a modeling language and semantics for the functional, phys-
ical, and electrical performance description of technology-specific libraries for cell-based and block-based
design. Without a standard, EDA tools would use multiple proprietary and tool-specific library descriptions. The
semantics would be defined by tool implementations only, which are subject to change and prone to misinterpre-
tation. Also there would be redundancy using multiple descriptions for similar library aspects. Therefore, this
standard is proposed to create a consistent library view suitable as a reference for IC designers as well as for elec-
tronic design automation (EDA) tool developers and integrators.

1.2 Application of this standard

The ALF standard can be used in many different places throughout the design flow. The major use include cre-
ation and characterization of library elements, basic implementation and performance analysis of an IC, and hier-
archical implementation and virtual prototyping of an IC.

An application, as described in 1.2.1 through 1.2.3, shall be called compliant to ALF, if and only if it satisfies the
following criteria:

a) An application tool that uses ALF as input is capable of parsing any ALF file according to the rules spec-
ified in Clause 5 through Clause 10, even if not all data in that file is used by the application. In this way,
one ALF library can be used for multiple applications with different scope.

b) A tool, as referred to in (a), uses a well-defined set of data from the ALF file within the scope of its appli-
cation and interprets this data according to the rules specified in Clause 5 through Clause 10. In this way,
any two applications using the same set of ALF data interpret the ALF data in the same consistent way.

c) An application tool that uses ALF as output is capable of generating an ALF file according to the rules
specified in Clause 5 through Clause 10, and the generated file contains a well-defined set of data for an
application as referred to in (a).

The following conventions are used in the flow diagrams depicted in Figure 1 through Figure 4:

— Rectangle: data file, format optionally indicated in parentheses
— Oval: application
— Solid arrow: existing, established function in the design flow
— Dotted arrow: possible design flow

1.2.1 Creation and characterization of library elements

ALF can be used to specify the desired functionality and characterization space of a library element, i.e., a cell.

The application for creation of a cell is shown in Figure 1.
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Figure 1—Cell library creation flow

A specification of a library element, i.e., a cell (see 8.2, 8.4), can be described in ALF. This specification includes
the name of the cell and its terminals, i.e., pins (see 8.6) and a formal description of the function (see 9.1) per-
formed by the cell. This formal description is sufficient for the purpose of generating hardware description lan-
guage (HDL) simulation models in various languages, for example, VHDL (see IEEE Std 1076-2002)1 or
Verilog (see IEEE Std 1364-2001).

Multiple HDL models can be generated for different purposes, where the difference is defined by the user’s pref-
erence for modeling style rather than by the functionality of the cell. For example, one model can handle
unknown logic states in a crude way, resulting in fast simulation, while another model can handle unknown logic
states in a case-by-case way, resulting is slow but more accurate simulation. The ALF model can serve as a com-
mon reference for all those HDL models.

A physical layout of a cell can be represented in the GDSII format. A transistor-level netlist of a cell in SPICE
format [B4]2 can be extracted from the physical layout. Such a transistor netlist includes parasitic electrical com-
ponents. Alternatively, a designer can create a transistor netlist by hand or by using an EDA tool that maps a
functional specification described in ALF into a transistor level netlist. Such a transistor netlist is less accurate
than one extracted from layout, but can still be useful for prototyping a library.

Both the transistor netlist and the various HDL models can be compared against the functional specification
described in ALF. More importantly, the transistor netlist can be used to characterize the performance of the cell,
i.e., measure timing, power, noise (see 10.11), and other electrical characteristics (see 10.15) by running a SPICE
simulation. The set of necessary SPICE simulations is determined and controlled by a characterization tool. The
characterization tool can infer pertinent information from the specification represented in ALF, as far as this
information relates to the functionality of the cell itself. For example, the timing arcs that need to be character-
ized can be represented in or inferred from ALF. The output of the characterization tool is a library cell model,
populated with characterization data, also represented in ALF.

1For information on references, see Clause 2.
2The numbers in brackets correspond to those in the bibliography in Annex D.
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Optionally, a library compiler can be used to combine all the library cell models into a binary file, as a data prep-
aration step for an EDA application tool.

1.2.2 Basic implementation and performance analysis of an IC

The ALF library can be used in an IC implementation flow which uses cells as building blocks, in particular, an
ASIC implementation flow.

A basic flow for an IC implementation using cells as building blocks is shown in Figure 2.

Figure 2—Basic IC implementation flow

In this flow, an RTL design description is transformed into a netlist by an RTL synthesis tool. The netlist contains
instances of cells, also called gates, rather than transistors. This application can use the ALF library to find the
library elements needed to map the RTL description into a netlist containing instances of cells. The transistors
inside the cells are not described in the ALF cell models.

An equivalence checking tool can be used to decide whether the RTL-to-netlist transformation has been done
correctly, by comparing the RTL design description with the netlist. This application can use the same ALF
library as the RTL synthesis tool. Also, an HDL simulation tool (not shown in Figure 2) can be used to decide
whether both the RTL design description and the netlist behave as expected in response to a given stimulus. The
simulation tool can use an ALF model or an HDL model derived from the ALF model (see 9.4, 9.6).

The flow in Figure 2 is simplified. Special netlist transformations, such as the creation of data path structures,
creation structures related to design for test (DFT), and especially scan insertion, are not shown here. However,
the ALF cell models also contain information pertaining to these applications (see 8.5.3, 8.5.5, 8.5.6, 8.8.12, 9.2,
9.7).
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The process of cell placement and interconnect routing is summarily referred to as layout. Special layout opera-
tions, such as the layout of a power supply structure or layout of a clock network structure, are not explicitly
shown in Figure 2. The ALF cell models contain abstract physical information, such as the size and shape of the
cell, and the location, size, and shape of the cell pins and routing blockages, which are pertinent for layout (see
8.22, 8.23). Also, abstract information concerning the artwork within the cell can be represented in ALF, for
example, the area, perimeter, and connectivity of artwork on specific layers (see 10.18, 10.19). This information
is pertinent for manufacturability, such as antenna rule (see 8.21, 10.19.1, 10.19.2, 10.19.3) and metal density
checks (see 8.31, 10.19.11).

In addition to cell models, technology rules for routing can also be represented in ALF, such as constraints for the
width and length of routing segments, the distance between routing segments, the distance between vias, etc. (see
8.16, 8.18, 8.20, 10.19.7, 10.19.8, 10.19.9).

The implemented IC needs not only be correct in terms of functionality and layout, it also has to meet electrical
performance constraints, predominantly timing constraints. Other aspects of electrical performance, such as
power consumption, signal integrity, and reliability have become increasingly important. Signal integrity aspects
include the cleanliness of signal waveform shapes and the immunity against noise induced by crosstalk and volt-
age drop (see 10.11.1, 10.11.14, 10.15.1, 10.15.2). Reliability aspects include dependable long-term operation in
the presence of electromigration stress, hot electron effect, and thermal instability. The cell models in ALF sup-
port characterization data for timing, power, signal integrity, and reliability. For example, reliability data can be
described as a limit for voltage, current, or operation frequency (see 10.11.2). A particular feature in ALF is the
representation of these data in the context of a stimulus, described by a vector expression (see 8.14, 9.12, 9.13).
With this feature, the data can be related to particular environmental operation conditions, and a more accurate
performance analysis can be performed.

Performance analysis happens within each step of the IC implementation process. RTL synthesis, cell placement
and interconnect routing applications have embedded static timing analysis (STA) and other performance analy-
sis capabilities. Also, after completion of each step, a standalone performance analysis can be applied to measure
the achieved performance more accurately.

Electrical performance depends not only on the interaction between instances of cells, but also on the parasitics
introduced by the interconnect wires. After netlist creation, parasitics can be statistically estimated using a wire
load model (WLM). After placement, parasitics can be more accurately predicted by estimating the length of par-
ticular routing wires between pins of placed cells. After routing, actual parasitics can be extracted and repre-
sented in a file using the standard parasitic exchange format (SPEF) [B5]. An interconnect model in ALF can
describe a statistical WLM, a rule for parasitic estimation based on estimated routes, or an interconnect analysis
model (see 8.10, 8.12). The interconnect analysis model specifies the desired level of granularity for the parasit-
ics (see 10.15.3, 10.15.4, 10.15.5, 10.16) and the calculation of timing, noise, voltage, or current based on
instances of parasitics and on an electrical model of a driver cell. The data for the electrical model of a particular
driver cell can be represented in ALF as a part of the cell characterization data.

1.2.3 Hierarchical implementation and virtual prototyping of an IC

An IC implementation flow with cells as building blocks has its limits imposed by the number of objects, i.e., the
instances of cells and nets that can be reasonably handled by designers and by application flows.

For ICs exceeding the limits of objects that can be reasonably handled, the following approaches are used, possi-
bly in combination with each other:

— Bottom-up design: Create larger building blocks from cells first, then use these blocks for IC implementa-
tion.

— Top-down design: Divide a design into subdesigns first, implement each subdesign as a block, then
assemble the blocks.
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— Virtual prototyping: Do a simplified so-called virtual implementation of the entire design first, then parti-
tion the virtually implemented design into blocks, use the results of the virtual implementation as con-
straints for actual implementation of each block, and implement and assemble the blocks.

The common denominator for all these methods is creation of blocks, in order to reduce the number of objects
seen by the application.

The application for creation of a block is shown in Figure 3.

Figure 3—Block creation flow

A block can be created by using the basic IC implementation flow (see Figure 2). A block with a functionality
that can be used and re-used is commonly referred to as intellectual property (IP) of the designer. In case of a
“hard” block, the primary output of the implementation flow, i.e., a gate-level netlist with placement and routing,
is preserved and eventually transformed into a physical artwork. In case of a “soft” block, only the primary input
of the implementation flow, i.e., the RTL design description, is preserved. The output of the implementation flow
serves only for the purpose of block characterization, i.e., creation of an abstract model for the block. The block
characterization consists of a repeated application of performance analysis within the range of desired character-
ization followed by abstraction. Abstraction includes reduction of the physical implementation data and associa-
tion of the performance analysis data with a specified model. Both the specification of the model and the model
itself can be represented in ALF.

Variants to this flow include partial IC implementation, for example, only RTL synthesis and placement without
routing, especially in the case of a soft block, where the implementation data is not preserved. The rationale for
not preserving the implementation data of a block is the possibility of achieving a better overall IC implementa-
tion result by implementing the block later in context of other blocks, instead of implementing the block stand-
alone up front.

Depending on whether a block is used as a hard block or a soft block, the ALF model can represent a different
level of abstraction. An ALF model for a hard block can have similar features as an ALF model for a cell (see
1.2.1 and 1.2.2). In addition, the netlist and the parasitics representing the output of the implementation flow can
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be partially preserved in the ALF model, especially at the boundary of the block (see 9.5). This enables accurate
analysis of the electrical interaction of a block with adjacent blocks in the context of an IC implementation. On
the other hand, an ALF model for a soft block can represent a statistical range or upper and lower bounds (see
10.5) for characterization data rather than “hard” characterization data, since there is a degree of variability in the
implementation of actual instances of the block. Also, a statistical WLM can be encapsulated within the model of
the block.

ALF supports specific modeling features for parameterizeable blocks, i.e., blocks which can be implemented in
various physical shapes or sizes and with variable bitwidth and performance characteristics. The ALF constructs
group (see 7.14), template (see 7.15), static and dynamic template instantiation (see 7.16) can be used for this
purpose.

Independent of whether a block is a hard block or a soft block, the application for creating the IC can now use the
abstract model of the block as a library element rather than using a cell. In a similar way, as an ALF model of a
cell does not reveal transistor-level implementation details, an ALF model of a block does not reveal gate-level
implementation details. However, the ALF model of a block still provides enough information for an application
to implement or explore the implementation of an IC and analyze the performance and the compliance to logical
and physical design constraints.

An IC is designed in the context of a specific environment with specific constraints. Environmental constraints
include for the characteristics of the package, the printed board, the range of process, voltage, and temperature
(PVT) conditions (see 10.14). Other constraints are given by globally applicable physical design rules, for exam-
ple, the available routing layers, the amount of routing resources reserved for the power distribution, and the
available locations for IO pins at the boundary and in the center of a chip. The virtual prototyping approach can
be used to evaluate whether a design can be implemented within these constraints. The electrical characterization
data in ALF, i.e., timing, power, noise, physical and electrical rules, estimation models for parasitics, etc., can be
represented as mathematical functions of environmental conditions and constraints (see 10.3, 10.4).

A conceptual flow for the virtual prototyping and hierarchical implementation of an IC involving ALF models at
different levels of abstraction is shown in Figure 4.
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Figure 4—IC prototyping and hierarchical implementation flow

The design planning and prototyping application uses predefined models of blocks as library elements, referred
to as “library block models”. The design is partitioned into subdesigns. The block creation flow (see Figure 3),
i.e., a combination of block implementation and block characterization, is applied to each subdesign. The appli-
cable library elements for each block are cells. The outputs of the block creation flow are the characterized mod-
els of the subdesigns, referred to as “design block models”. The design block models can be used to iterate on the
design planning application, resulting in a possible refinement and repartitioning of the design. Once the evalua-
tion of each block against the subdesign constraints and the evaluation of the virtually assembled blocks against
the global design constraints are satisfactory, the block implementation results, i.e., the netlist with placement
and routing for each block, can actually be assembled to form the IC.

The design of an IC can use a combination of cells, hard blocks and soft blocks, blocks with fixed specification,
and parameterizeable blocks as library elements. Some of the library elements are available independent of the
design, others are created during and only for the purpose of that particular design. An abstract model for a soft
block can be used in conjunction with a more detailed model for a hard block. The abstract model can be
replaced with a more detailed model during implementation of the block. Technology rules and interconnect
models are used throughout the flow.

In summary, the ALF standard provides a common modeling language for library elements, technology rules,
and interconnect models. ALF models at different levels of abstraction can be used concurrently by EDA appli-
cations for planning, prototyping, implementation, analysis, optimization and verification of complex ICs.
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1.3 Conventions used in this standard

The syntax for description of lexical and syntax rules uses the following conventions.

::= definition of a syntax rule
| alternative definition
[item] an optional item
[item1 | item2 | ... ]

optional item with alternatives
{item} optional item that can be repeated
{item1 | item2 | ... }

optional items with alternatives which can be repeated
item boldface specifies verbatim usage of a string of characters.
ITEM uppercase boldface specifies verbatim usage of a keyword.
prefix_item

prefix in italic is for explanation purpose only
PREFIX_item

prefix in uppercase italic indicates that a keyword is used

NOTE: These conventions do not prescribe usage of uppercase or lowercase characters, as ALF is case-insensitive.

1.4 Contents of this standard

The organization of the remainder of this standard is

— Clause 2 (References) provides references to other applicable standards that are assumed or required for
this standard.

— Clause 3 (Definitions) defines terms used throughout the different specifications contained in this stan-
dard.

— Clause 4 (Acronyms) defines the acronyms used in this standard.
— Clause 5 (ALF language construction principles) defines the language construction principles used in this

standard.
— Clause 6 (Lexical rules) specifies the lexical rules.
— Clause 7 (Generic objects and related statements) defines syntax and semantics of generic objects used in

this standard.
— Clause 8 (Library-specific objects and related statements) defines syntax and semantics of library-spe-

cific objects used in this standard.
— Clause 9 (Description of functional and physical implementation) defines syntax and semantics of state-

ments related to functional and physical implementation of library elements used in this standard
— Clause 10 (Description of electrical and physical measurements) defines syntax and semantics of state-

ments describing electrical and physical measurements related to library elements used in this standard.
— Annexes. Following Clause 10 are a series of informative annexes.
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3ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzerland/
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3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of
Electrical and Electronics Terms [B1] should be consulted for terms not defined in this standard.

3.1 ALF: See: advanced library format.

3.2 ALF name: The name of an ALF object.

3.3 ALF object: An element described in ALF.

3.4 ALF type: The type of an ALF object.

3.5 ALF value: A value associated with an ALF object.

3.6 advanced library format (ALF): The format of any file that can be parsed according to the syntax and
semantics defined within this standard.

3.7 application, electric design automation (EDA) application: Any software program that uses data repre-
sented in the Advanced Library Format (ALF). Examples include RTL (Register Transfer Level) synthesis tools,
static timing analyzers, etc. See also: advanced library format; register transfer level.

3.8 arc: See: timing arc.

3.9 argument: A data item required for the mathematical evaluation of an arithmetic model. See also: arith-
metic model.

3.10 arithmetic model: A description of a mathematical model for an electrical or physical measurement in
ALF.

3.11 cell, library cell: An electronic circuit that is a component of a library described in ALF.

3.12 geometric model: A description of a layout geometry in ALF.

3.13 register transfer level: A technology-independent description of a digital electronic design allowing infer-
ence of sequential and combinatorial logic components.

3.14 timing arc: An abstract representation of a measurement of an interval between two points in time during
operation of a library cell.
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4. Acronyms

This clause lists the acronyms used in this standard.

ALF advanced library format, title of the herein proposed standard

ASIC application specific integrated circuit

BIST built-in self test

BNF Backus-Naur form

CAE computer-aided engineering [the term electronic design automation (EDA) is preferred]

CAM content-addressable memory

CPU central processing unit

DFT design for test

DSP digital signal processor

EDA electronic design automation

EDIF electronic design interchange format

GPU graphical processing unit

HDL hardware description language

IC integrated circuit

IP intellectual property

LSB least significant bit

LSSD level-sensitive scan design

MPU micro processor unit

MSB most significant bit

PLL phase-locked loop

PVT process/voltage/temperature (denoting a set of environmental conditions)

RAM random access memory

RC resistance (times) capacitance

ROM read-only memory

RTL register transfer level

SDF standard delay format (see IEEE Std 1497-2001)

SOC system on a chip

SPEF standard parasitic exchange format (see IEEE Std 1481-1999)

SPICE simulation program with integrated circuit emphasis [B4]

STA static timing analysis

VHDL VHSIC hardware description language (see IEEE Std 1076-2002)

VHSIC very high-speed integrated circuit

VLSI very large-scale integration

WLM wire load model
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5. ALF language construction principles

This section presents the ALF language construction principles and gives an overview of the language features.
The ALF statements and the rules for relationships between ALF statements are presented summarily. Keywords
are involved in the declaration of ALF statements. The keywords in ALF shall be case-insensitive. However,
uppercase is used for keywords throughout this section for clarity.

5.1 ALF metalanguage

Syntax 1 establishes an ALF metalanguage.

Syntax 1—Syntax construction for ALF metalanguage

The ALF type is defined by an identifier (see 6.13) or by the operator “@” (see 6.4) or by the delimiter “:” (see
6.3). The usage of an identifier, an operator, or a delimiter as ALF type is defined by ALF language rules con-
cerning the particular ALF type. The identifier can be a predefined keyword (see 6.13.7).

The ALF name is defined by an identifier (see 6.13) or by a control expression (see 9.4). Depending on the ALF
type, the ALF name is mandatory or optional or not applicable. The usage of an identifier or a control expression
as ALF name is defined by ALF language rules concerning the particular ALF type. The ALF name is optionally
preceded by an index (see 6.6) to specify a vectorized object. Another index can optionally succeed the ALF
name to specify a two-dimensional vectorized object. A two-dimensional vectorized object shall be called matrix
object. An object without index shall be called scalar object. The usage of an index in conjunction with an ALF
name is defined by ALF language rules concerning the particular ALF type.

The ALF value is defined by a number (see 6.5), a multiplier prefix symbol (see 6.7), an identifier (see 6.13), a
quoted string (see 6.14), a bit literal (see 6.8), a based literal (see 6.9), an edge value (see 6.12), an arithmetic
expression (see 10.1), a boolean expression (see 9.9), or a control expression (see 9.4). Depending on the type of
the ALF statement, the ALF value is mandatory or optional or not applicable. The usage of a particular kind of
ALF value is defined by ALF language rules concerning the particular ALF type.

ALF_statement ::=
ALF_type [ [ index ] ALF_name [ index ] ] [ = ALF_value ] ;

| ALF_type [ [ index ] ALF_name [ index ] ] [ = ALF_value ] { { ALF_value | : | ; } }
| ALF_type [ [ index ] ALF_name [ index ] ] [ = ALF_value ] { { ALF_statement } }

ALF_type ::=
identifier

| @
| :

ALF_name ::=
identifier

| control_expression
ALF_value ::=

number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| arithmetic_expression
| boolean_expression
| control_expression
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An ALF statement can contain one or more other ALF statements. The former is called parent of the latter. Con-
versely, the latter is called child of the former. An ALF statement with a child is called a compound ALF state-
ment. An ALF statement that is related to another ALF statement by ancestry in the parent/child relationship is
called an ancestor of the other ALF statement. Conversely, the latter is called a descendant of the former.

An ALF statement containing one or more ALF values, possibly interspersed with the delimiters “;” or “:”, is
called a semi compound ALF statement. The items between the delimiters “{“and “}” are called contents of the
ALF statement. The usage of the delimiters “;” or “:” within the contents of an ALF statement is defined by ALF
language rules concerning the particular ALF statement.

An ALF statement without child is called an atomic ALF statement. An ALF statement which is either com-
pound or semi compound is called a non-atomic ALF statement.

Example

a) ALF statement describing an unnamed object without value:
ARBITRARY_ALF_TYPE {

// put children here
}

b) ALF statement describing an unnamed object with value:
ARBITRARY_ALF_TYPE = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE = arbitrary_ALF_value {

// put children here
}

c) ALF statement describing a named object without value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name {

// put children here
}

d) ALF statement describing a named object with value:
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value;

or
ARBITRARY_ALF_TYPE arbitrary_ALF_name = arbitrary_ALF_value {

// put children here
}

End of example

5.2 Categories of ALF statements

In this section, the terms statement, type, name, value are used for shortness in lieu of ALF statement, ALF name,
ALF value, respectively.
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Statements are divided into the following categories: generic object, library-specific object, arithmetic model,
arithmetic submodel, arithmetic model container, geometric model, annotation, annotation container, and auxil-
iary statement, as shown in Table 1.

Figure 5 illustrates the parent/child relationship between categories of statements.

Table 1—Categories of ALF statements

Category Purpose Syntax particularity

Generic object Provide a definition for use within other
ALF statements.

Statement is atomic, semi compound or com-
pound.
Name is mandatory.
Value is either mandatory or not applicable.

Library-specific object Describe the contents of a IC technology
library.

Statement is atomic or compound.
Name is mandatory.
Value does not apply.
Category of parent is library-specific object.

Arithmetic model Describe an abstract mathematical quan-
tity that can be calculated and possibly
measured within the design of an IC.

Statement is atomic or compound.
Name is optional.
Value is mandatory, if atomic.

Arithmetic submodel Describe an arithmetic model under a
specific measurement condition.

Statement is atomic or compound.
Name does not apply.
Value is mandatory, if atomic.
Category of parent is arithmetic model.

Arithmetic model con-
tainer

Provide a context for an arithmetic
model.

Statement is compound.
Name and value do not apply.
Category of child is arithmetic model.

Geometric model Describe an abstract geometry used in
physical design of an IC.

Statement is semi compound or compound.
Name is optional.
Value does not apply.

Annotation Provide a qualifier or a set of qualifiers
for an ALF statement.

Statement is atomic or semi compound.
Name does not apply.
Value is mandatory, if atomic. Value does not
apply, if semi compound.

Annotation container Provide a context for an annotation. Statement is compound.
Name and value do not apply.
Category of child is annotation.

Auxiliary statement Provide an additional description within
the context of a library-specific object,
an arithmetic model, an arithmetic sub-
model, geometric model or another aux-
iliary statement.

Dependent on subcategory.
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Figure 5—Parent/child relationship between ALF statements

More detailed rules for parent/child relationships for particular types of statements apply.

5.3 Generic objects and library-specific objects

Statements with mandatory name are called objects, i.e., generic object and library-specific object. Table 2 lists
the keywords and items in the category generic object. The keywords used in this category are called generic
keywords.

Table 2—Generic objects

Keyword Item Section

ALIAS Alias declaration See 7.7.

CONSTANT Constant declaration See 7.8.

library-specific object

legend:

arithmetic model

arithmetic model container

arithmetic submodel

annotation

annotation container

auxiliary statement

geometric model

library-specific object

auxiliary statement

generic objectarithmetic model

parent child

parent child no restrictive rules

with restrictive rules

generic object

library-specific object

auxiliary statement

arithmetic model

annotation container
annotation

arithmetic submodel

arithmetic model container
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Table 3 lists the keywords and items in the category library-specific object. The keywords used in this category
are called library-specific keywords.

Figure 6 illustrates the parent/child relationship between statements within the category library-specific object.

CLASS Class declaration See 7.12.

GROUP Group declaration See 7.14.

KEYWORD Keyword declaration See 7.9.

SEMANTICS Semantics declaration See 7.10.

TEMPLATE Template declaration See 7.15.

Table 3—Library-specific objects

Keyword Item Section

ANTENNA Antenna declaration See 8.21.

ARRAY Array declaration See 8.27.

BLOCKAGE Blockage declaration See 8.22.

CELL Cell declaration See 8.4.

LAYER Layer declaration See 8.16.

LIBRARY Library declaration See 8.2.

NODE Node declaration See 8.12.

PATTERN Pattern declaration See 8.29.

PIN Pin declaration See 8.6.

PINGROUP Pin group declaration See 8.7.

PORT Port declaration See 8.23.

PRIMITIVE Primitive declaration See 8.9.

REGION Region declaration See 8.31.

RULE Rule declaration See 8.20.

SITE Site declaration See 8.25.

SUBLIBRARY Sublibrary declaration See 8.2.

VECTOR Vector declaration See 8.14.

VIA Via declaration See 8.18.

WIRE Wire declaration See 8.10.

Table 2—Generic objects (Continued)

Keyword Item Section
Copyright © 2003 IEEE. All rights reserved. 29
This is an unapproved IEEE Standards Draft, subject to change.



IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

1

5

10

15

20

25

30

35

40

45

50

55
Figure 6—Parent/child relationship amongst library-specific objects

A parent can have multiple library-specific objects of the same type as children. Each child is distinguished by
name.

5.4 Singular statements and plural statements

Auxiliary statements with predefined keywords are divided in the following subcategories: singular statement
and plural statement.

Auxiliary statements with predefined keywords and without name are called singular statements. Auxiliary state-
ments with predefined keywords and with name, yet without value, are called plural statements.

Table 4 lists the singular statements.

Table 4—Singular statements

Keyword Item Value Complexity Section

FUNCTION Function statement N/A Compound See 9.1.

TEST Test statement N/A Compound See 9.2.

RANGE Range statement N/A Semi compound See 9.8.

FROM From statement N/A Compound See 10.12.

TO To statement N/A Compound See 10.12.

library
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30 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.



Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

1

5

10

15

20

25

30

35

40

45

50

55
Table 5 lists the plural statements.

Figure 7 illustrates the parent/child relationship for singular statements and plural statements.

VIOLATION Violation statement N/A Compound See 10.10.

HEADER Header statement N/A Compound See 10.4.

TABLE Table statement N/A Semi compound See 10.4.

EQUATION Equation statement N/A Semi compound See 10.4.

BEHAVIOR Behavior statement N/A Compound See 9.4.

STRUCTURE Structure statement N/A Compound See 9.5.

NON_SCAN_CELL Non-scan cell statement Optional Compound or semi compound See 9.7.

ARTWORK Artwork statement Mandatory Compound or atomic See 9.19.

Table 5—Plural statements

Keyword Item Name Complexity Section

STATETABLE State table statement Optional Semi compound See 9.6.

@ Control statement Mandatory Compound See 9.4.

: Alternative control statement Mandatory Compound See 9.4.

Table 4—Singular statements (Continued)

Keyword Item Value Complexity Section
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Figure 7—Parent/child relationship involving singular statements and plural statements

A parent can have at most one child of a particular type in the category singular statements, but multiple children
of a particular type in the category plural statements.

5.5 Instantiation statement and assignment statement

Auxiliary statements without predefined keywords use the name of an object as keyword. Such statements are
divided in the following subcategories: instantiation statement and assignment statement.

Compound or semi compound statements using the name of an object as keyword are called instantiation state-
ments. Their purpose is to specify an instance of the object.

Table 6 lists the instantiation statements.

Table 6—Instantiation statements

Item Section

Cell instantiation See 9.5.

Primitive instantiation See 9.4.

Template instantiation See 7.16.

Via instantiation See 9.20.

Wire instantiation See 9.15

legend:

parent child

function test range

from

to

violation

header

table

equation

behavior

structure

cellprimitive pin

arithmetic model

arithmetic submodel

non-scan cell

artwork

arithmetic submodel

statetable

control statement

alternative control statement
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Atomic statements without name using an identifier as keyword which has been defined within the context of
another object are called assignment statements. A value is mandatory for assignment statements, as their pur-
pose is to assign a value to the identifier. Such an identifier is called a variable.

Table 7 lists the assignment statements.

Figure 8 illustrates the parent/child relationship involving instantiation and assignment statements.

Figure 8—Parent/child relationship involving instantiation and assignment statements

A parent can have multiple children using the same keyword in the category instantiation statement, but at most
one child using the same variable in the category assignment statement.

5.6 Annotation, arithmetic model, and related statements

Multiple keywords are predefined in the categories arithmetic model, arithmetic model container, arithmetic
submodel, annotation, annotation container, and geometric model. Their semantics are established within the

Table 7—Assignment statements

Item Section

Pin assignment See 9.3.2, Syntax 68.

Arithmetic assignment See 7.16, Syntax 42.

Boolean assignment See 9.4, Syntax 69.
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context of their parent. Therefore they are called context-sensitive keywords. In addition, the ALF language
allows additional definition of keywords in these categories. Table 8 provides a reference to sections where more
definitions about these categories can be found.

There exist predefined keywords with generic semantics in the category annotation and annotation container.
They are called generic keywords, comparable to keywords for generic objects. Table 9 lists the generic key-
words in the category annotation and annotation container.

Table 10 lists predefined keywords in categories related to arithmetic model.

Table 8—Other categories of ALF statements

Item Section

Arithmetic model See 10.3, Syntax 82.

Arithmetic submodel See 10.7, Syntax 96.

Arithmetic model container See 10.8, Syntax 97.

Annotation See 7.3, Syntax 31.

Annotation container See 7.4, Syntax 32.

Geometric model See 9.16, Syntax 77.

Table 9—Annotations and annotation containers with generic keyword

Keyword Item / subcategory Section

PROPERTY Annotation container. See 7.6.

ATTRIBUTE Multi-value annotation. See 7.5.

INFORMATION Annotation container. See 8.3.2.

Table 10—Keywords related to arithmetic model

Keyword Item / category Section

LIMIT Arithmetic model container. See 10.8.2.

MIN Arithmetic submodel, also operator within arithmetic expression. See 10.5, 10.2.3.

MAX Arithmetic submodel, also operator within arithmetic expression. See 10.5, 10.2.3.

TYP Arithmetic submodel. See 10.5.

DEFAULT Annotation. See 10.9.4.

ABS Operator within arithmetic expression. See 10.2.3.

EXP Operator within arithmetic expression. See 10.2.3.

LOG Operator within arithmetic expression. See 10.2.3.
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The definitions of other predefined keywords, especially in the category arithmetic model, can be self-described
in ALF using the keyword declaration statement (see 7.9).

5.7 Statements for parser control

Table 11 provides a reference to statements used for ALF parser control.

The statements for parser control do not necessarily follow the ALF metalanguage shown in Syntax 1.

5.8 Name space and visibility of statements

The following rules for name space and visibility shall apply.

a) A statement shall be visible within its parent statement, but not outside its parent statement.
b) A statement visible within another statement shall also be visible within a child of that other statement.
c) All objects (i.e., generic objects and library-specific objects) shall share a common name space within

their scope of visibility. No object shall use the same name as any other visible object. Conversely, an
object can use the same name as any other object outside the scope of its visibility.

d) The following exception of rule c) is allowed for specific objects and with specific semantic implica-
tions. An object of the same type and the same name can be redeclared, if semantic support for this
redeclaration is provided. The purpose of such a redeclaration is to supplement the original declaration
with new children statements which augment the original declaration without contradicting it.

e) All statements with optional names (i.e., property, arithmetic model, geometric model) shall share a com-
mon name space within their scope of visibility. No statement with optional name shall use the same
name as any other visible statement with optional name. Conversely, a statement can use the same
optional name as any other statement with optional name outside the scope of its visibility.

Table 11—Statements for ALF parser control

Keyword Statement Section

INCLUDE Include statement See 7.17.

ASSOCIATE Associate statement See 7.18.

ALF_REVISION Revision statement See 7.19.
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6. Lexical rules

This section discusses the lexical rules.

The ALF source text files shall be a stream of lexical tokens and whitespace. Lexical tokens shall be divided into
the categories delimiter, operator, comment, number, bit literal, based literal, edge, quoted string, and identifier.

Each lexical token shall be composed of one or more characters. Whitespace shall be used to separate lexical
tokens from each other. Whitespace shall not be allowed within a lexical token with the exception of comment
and quoted string.

The specific rules for construction of lexical tokens and for usage of whitespace are defined in this section.

6.1 Character set

This standard shall use the ASCII character set (see ISO/IEC 8859-1 : 1987(E)).

The ASCII character set shall be divided into the following categories: whitespace, letter, digit, and special, as
shown in Syntax 2.

Table 12 shows the list of whitespace characters and their ASCII code.

character ::=
whitespace

| letter
| digit
| special

whitespace ::=
space | horizontal_tab | new_line | vertical_tab | form_feed | carriage_return

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z
lowercase ::=

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
digit ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
special ::=

& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | " | ' | @ | = | \ | . | $ | _ | #
| ( | ) | < | > | [ | ] | { | }

Syntax 2—ASCII character set divided into categories

Table 12—List of whitespace characters

Name ASCII code (octal)

Space 040

Horizontal tab 011

New line 012

Vertical tab 013
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Table 13 shows the list of special characters and their names used in this standard.

Form feed 014

Carriage return 015

Table 13—List of special characters

Symbol Name

& Ampersand

| Vertical bar

^ Caret

~ Tilde

+ Plus

- Dash

* Asterix

/ Slash

% Percent

? Question mark

! Exclamation mark

: Colon

; Semicolon

, Comma

" Double quote

' Single quote

@ At sign

= Equal sign

\ Backslash

. Dot

$ Dollar

_ Underscore

Table 12—List of whitespace characters (Continued)

Name ASCII code (octal)
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6.2 Comment

A comment shall be divided into the subcategories in-line comment and block comment, as shown in Syntax 3.

The start of an in-line comment shall be determined by the occurrence of two subsequent slash characters with-
out whitespace in-between. The end of an in-line comment shall be determined by the occurrence of a new line or
of a carriage return character.

The start of a block comment shall be determined by the occurrence of a slash character followed by an asterix
without whitespace in-between. The end of a block comment shall be determined by the occurrence of an asterix
character followed by a slash character.

A comment shall have the same semantic meaning as a whitespace. Therefore, no syntax rule shall involve a
comment.

6.3 Delimiter

The special characters shown in Syntax 4 shall be considered delimiters.

When appearing in a syntax rule, a delimiter shall be used to indicate the end of a statement or of a partial state-
ment, the begin and end of an expression or of a partial expression.

# Pound

( ) Parenthesis (open, close)

< > Angular bracket (open, close)

[ ] Square bracket (open, close)

{ } Curly bracket (open, close)

comment ::=
in_line_comment

| block_comment
in_line_comment ::=

/ /{character} new_line
| / /{character} carriage_return

block_comment ::=
/ *{character}* /

Syntax 3—Comment

delimiter ::=
( | ) | [ | ] | { | } | : | ; | ,

Syntax 4—Delimiter

Table 13—List of special characters (Continued)

Symbol Name
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6.4 Operator

Operators shall be divided into the following subcategories: arithmetic operator, boolean operator, relational
operator, shift operator, event operator, and meta operator, as shown in Syntax 5.

When appearing in a syntax rule, an operator shall be used within a statement or within an expression. An opera-
tor with one operand shall be called unary operator. An unary operator shall precede the operand. An operator
with two operands shall be called binary operator. A binary operator shall succeed the first operand and precede
the second operand.

6.4.1 Arithmetic operator

Table 14 shows the list of arithmetic operators and their names used in this standard.

Arithmetic operators shall be used to specify arithmetic operations.

operator ::=
arithmetic_operator

| boolean_operator
| relational_operator
| shift_operator
| event_operator
| meta_operator

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

Syntax 5—Operator

Table 14—List arithmetic operators

Symbol Operator name Unary / binary Section

+ Plus Binary See 9.11.4.

- Minus Both See 9.11.4.

* Multiply Binary See 9.11.4.

/ Divide Binary See 9.11.4.

% Modulus Binary See 9.11.4.

** Power Binary See 10.2.2.
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6.4.2 Boolean operator

Table 15 shows the list of boolean operators and their names used in this standard.

Boolean operators shall be used to specify boolean operations.

6.4.3 Relational operator

Table 16 shows the list of relational operators and their names used in this standard.

Relational operators shall be used to specify mathematical relationships between numbers.

Table 15—List of boolean operators

Symbol Operator name Unary / binary Section

! Logical inversion Unary See 9.11.1.

&& Logical and Binary See 9.11.1.

|| Logical or Binary See 9.11.1.

~ bit-wise inversion Unary See 9.11.2.

& bit-wise and Both See 9.11.2.

~& bit-wise nand Both See 9.11.2.

| bit-wise or Both See 9.11.2.

~| bit-wise nor Both See 9.11.2.

^ Exclusive or Both See 9.11.2.

~^ Exclusive nor Both See 9.11.2.

Table 16—List of relational operators

Symbol Operator name Unary / binary Section

== Equal Binary See 9.11.6.

!= Not equal Binary See 9.11.6.

> Greater Binary See 9.11.6.

< Lesser Binary See 9.11.6.

>= Greater or equal Binary See 9.11.6.

<= Lesser or equal Binary See 9.11.6.
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6.4.4 Shift operator

Table 17 shows the list of shift operators and their names used in this standard.

Shift operators shall be used to specify manipulations of discrete mathematical values.

6.4.5 Event operator

Table 18 shows the list of event operators and their names used in this standard.

Event operators shall be used to express temporal relationships between discrete events.

6.4.6 Meta operator

Table 19 shows the list of meta operators and their names used in this standard.

Table 17—List of shift operators

Symbol Operator name Unary / binary Section

<< Shift left Binary See 9.11.5.

>> Shift right Binary See 9.11.5.

Table 18—List of event operators

Symbol Operator name Unary / binary Section

-> Immediately followed by Binary See 9.13.2.

~> Eventually followed by Binary See 9.13.2.

<-> Immediately following each other Binary See 9.13.3.

<~> Eventually following each other Binary See 9.13.3.

&> Simultaneous or immediately followed by Binary See 9.13.3.

<&> Simultaneous or immediately following each other Binary See 9.13.3.

Table 19—List of meta operators

Symbol Operator name Unary / binary Section

= Assignment Binary See 9.3.2, 7.16, 9.4.

? Condition Binary See 9.13.5.

@ Control Unary See 9.4.
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Meta operators shall be used to specify transactions between variables.

6.5 Number

Numbers shall be divided into subcategories signed integer, signed real, unsigned integer, and unsigned real.
Furthermore, the categories signed number, unsigned number, integer and real shall be defined as shown in
Syntax 6.

A number shall be used to represent a numerical quantity.

6.6 Index value and Index

An index value shall be defined as shown in Syntax 7.

The purpose of an index value is to represent a position within a range of discrete, countable values. A discrete,
countable value shall be represented by an unsigned integer (see 6.5). The usage of atomic identifier (see 6.13) as
index value shall only be allowed, if the semantic interpretation of the atomic identifier resolves to a value of the
category unsigned integer.

An index value can represent a particular position within a pin of the category vector pin, a matrix pin (see 8.6)
or a pingroup (see 8.7).

number ::=
signed_integer | signed_real | unsigned_integer | unsigned_real

signed_number ::=
signed_integer | signed_real

unsigned_number ::=
unsigned_integer | unsigned_real

integer ::=
signed_integer | unsigned_integer

signed_integer ::=
sign unsigned_integer

unsigned_integer ::=
digit { [ _ ] digit }

real ::=
signed_real | unsigned_real

signed_real ::=
sign unsigned_real

unsigned_real ::=
mantissa [ exponent ]

| unsigned_integer exponent
sign ::=

+ | -
mantissa ::=

. unsigned_integer
| unsigned_integer . [ unsigned_integer ]

exponent ::=
E [ sign ] unsigned_integer

| e [ sign ] unsigned_integer

Syntax 6—Number

index_value ::=
unsigned_integer | atomic_identifier

Syntax 7—Index value
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An index value can also be used in the context of a group declaration (see 7.14) and in the context of a range
statement (see 9.8).

An index shall be defined as shown in Syntax 8.

An index shall be used in conjunction with the name of a pingroup, a vector pin or a matrix pin. A single index
shall represent a particular scalar within a one-dimensional vector or a particular one-dimensional vector within a
two-dimensional matrix. A multi index shall represent a range of scalars or a range of vectors, wherein the posi-
tion of the most significant bit (MSB) is specified by the left index value and the position of the least significant
bit (LSB) is specified by the right index value.

6.7 Multiplier prefix symbol and multiplier prefix value

A multiplier prefix symbol shall be defined as shown in Syntax 9.

The purpose of a multiplier prefix symbol is the specification of a multiplier for the base unit associated with an
arithmetic model (see 10.3). Only the leading characters of the multiplier prefix symbol shall be used for identi-
fication of the corresponding number. Optional subsequent letters can be used to indicate the base unit. For
example, “pF” can be used to denote “picofarad”, “MegaHz” can be used to denote “megahertz”, etc.

index ::=
single_index | multi_index

single_index ::=
[ index_value ]

multi_index ::=
[ index_value : index_value ]

Syntax 8—Index

multiplier_prefix_symbol ::=
unity { letter } | K { letter } | M E G { letter } | G { letter }

| M { letter } | U { letter } | N { letter } | P { letter } | F { letter }
unity ::=

1
K ::=

K | k
M ::=

M | m
E ::=

E | e
G ::=

G | g
U ::=

U | u
N ::=

N | n
P ::=

P | p
F ::=

F | f

Syntax 9—Multiplier prefix symbol
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A multiplier prefix symbol shall relate to the International System of Units (see U.S. National Bureau of Stan-
dards, Spec. Pub. 330) as shown in Table 20.

A multiplier prefix value shall be defined as shown in Syntax 10.

The multiplier prefix value shall be represented either as an unsigned number (see 6.5) or a multiplier prefix sym-
bol (see 6.7). An application shall interpret a multiplier prefix value semantically as unsigned number.

6.8 Bit literal

Bit literals shall be divided into the subcategories alphanumeric bit literal and symbolic bit literal, as shown in
Syntax 11.

Table 20—Multiplier prefix symbol and corresponding SI-prefix

Lexical token SI-prefix (symbol) SI-prefix (word) Numerical value

F f femto 1e-15

P p pico 1e-12

N n nano 1e-9

U µ micro 1e-6

M m milli 1e-3

unity 1 one 1e0

K k kilo 1e+3

MEG M mega 1e+6

G G giga 1e+9

multiplier_prefix_value ::=
unsigned_number | multiplier_prefix_symbol

Syntax 10—Multiplier prefix value

bit_literal ::=
alphanumeric_bit_literal

| symbolic_bit_literal
alphanumeric_bit_literal

numeric_bit_literal
| alphabetic_bit_literal

numeric_bit_literal ::=
0 | 1

alphabetic_bit_literal ::=
X | Z | L | H | U | W

| x | z | l | h | u | w
symbolic_bit_literal ::=

? | *

Syntax 11—Bit literal
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Bit literals shall be used to specify scalar values within a boolean value system (see 9.10).

6.9 Based literal

Based literals shall be divided into subcategories binary based literal, octal based literal, decimal based literal,
and hexadecimal based literal, as shown in Syntax 12.

Based literals shall be used to specify vectorized values within a boolean value system.

6.10 Boolean value

A boolean value shall be defined as shown in Syntax 13.

The semantics of a boolean value are explained in section 9.10.

6.11 Arithmetic value

An arithmetic value shall be defined as shown in Syntax 14.

An arithmetic value shall represent data for an arithmetic model (see 10.3) or for an arithmetic assignment (see
7.16). Semantic restrictions apply, depending on the particular type of arithmetic model.

based_literal ::=
binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal

binary_based_literal ::=
binary_base bit_literal { [ _ ] bit_literal }

binary_base ::=
'B | 'b

octal_based_literal ::=
octal_base octal_digit { [ _ ] octal_digit }

octal_base ::=
'O | 'o

octal_digit ::=
bit_literal | 2 | 3 | 4 | 5 | 6 | 7

decimal_based_literal ::=
decimal_base digit { [ _ ] digit }

decimal_base ::=
'D | 'd

hexadecimal_based_literal ::=
hexadecimal_base hexadecimal_digit { [ _ ] hexadecimal_digit }

hexadecimal_base ::=
'H | 'h

hexadecimal_digit ::=
octal_digit | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

Syntax 12—Based literal

boolean_value ::=
alphanumeric_bit_literal | based_literal | integer

Syntax 13—Boolean value
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6.12 Edge literal and edge value

Edge literals shall be divided into subcategories bit edge literal, based edge literal, and symbolic edge literal, as
shown in Syntax 15.

Edge literals shall be used to specify a change of value within a boolean system. In general, bit edge literals shall
specify a change of a scalar value, based edge literals shall specify a change of a vectorized value, and symbolic
edge literals shall specify a change of a scalar or of a vectorized value.

An edge value shall be defined as shown in Syntax 16.

An edge value shall be used to represent a standalone edge literal that is not embedded in a vector expression.

6.13 Identifier

Identifiers shall be divided into the subcategories atomic identifier, indexed identifier, hierarchical identifier and
escaped identifier, as shown in Syntax 17. The subcategory atomic identifier shall be further divided into non-
escaped identifier and placeholder identifier. The subcategory hierarchical identifier shall be further divided into
full hierarchical identifier and partial hierarchical identifier.

arithmetic_value ::=
number | identifier | bit_literal | based_literal

Syntax 14—Arithmetic value

edge_literal ::=
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

Syntax 15—Edge literal

edge_value ::=
( edge_literal )

Syntax 16—Edge value

identifier ::=
atomic_identifier | indexed_identifier | hierarchical_identifier | escaped_identifier

atomic_identifier ::=
non_escaped_identifier | placeholder_identifier

hierarchical_identifier ::=
full_hierarchical_identifier | partial_hierarchical_identifier

Syntax 17—Identifier
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An identifier shall be used to specify an ALF name or an ALF value. An identifier can also appear as a variable in
an arithmetic expression (see 10.1), in a boolean expression (see 9.9) or in a vector expression (see 9.12).

A lowercase character used within a keyword or within an identifier shall be considered equivalent to the corre-
sponding uppercase character, i.e., ALF shall be case-insensitive. However, whenever an identifier is used to
specify an ALF name, the usage of the exact uppercase or lowercase letters shall be preserved by the parser to
enable usage of the same name by a case-sensitive application.

6.13.1 Non-escaped identifier

A non-escaped identifier shall be defined as shown in Syntax 18.

A non-escaped identifier shall be used, when there is no lexical conflict, i.e., no appearance of a character with
special meaning, and no semantic conflict, i.e., the identifier is not used elsewhere as a keyword.

6.13.2 Placeholder identifier

A placeholder identifier shall be defined as a non-escaped identifier enclosed by angular brackets without
whitespace, as shown in Syntax 19.

A placeholder identifier shall be used to represent a formal parameter in a template statement (see 7.15), which is
to be replaced by an actual parameter in a template instantiation statement (see 7.16).

6.13.3 Indexed identifier

An indexed identifier shall be defined as an atomic identifier followed by an index (see 6.6) without whitespace,
as shown in Syntax 20.

The atomic identifier shall be interpreted as the ALF name of a one-or a two-dimensional object, i.e., a vector pin
or a matrix pin (see 8.6). The index shall be interpreted as the position of a scalar element within a one-dimen-
sional object or a one-dimensional slice within a two-dimensional object.

6.13.4 Full hierarchical identifier

A full hierarchical identifier shall be defined as shown in Syntax 21.

non_escaped_identifier ::=
letter { letter | digit | _ | $ | # }

Syntax 18—Non-escaped identifier

placeholder_identifier ::=
< non_escaped_identifier >

Syntax 19—Placeholder identifier

indexed_identifier ::=
atomic_identifier index

Syntax 20—Indexed identifier
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A full hierarchical identifier shall be used to specify a hierarchical name, i.e., the name of a child preceded by the
name of its parent. A dot within a hierarchical identifier shall be used to separate a parent from a child.

6.13.5 Partial hierarchical identifier

A partial hierarchical identifier shall be defined as shown in Syntax 22.

A partial hierarchical identifier shall be used to specify an incomplete hierarchical name. The two dots shall
indicate that the preceding atomic identifier is an ancestor of the subsequent atomic identifier. A partial hierar-
chical identifier terminated by two dots shall be interpreted as a reference to any possible descendant of the pre-
ceding ancestor.

NOTE — A restriction as to which descendant is applicable, can be given by a particular syntax or semantic rule.

6.13.6 Escaped identifier

An escaped identifier shall be defined as shown in Syntax 23.

An escaped identifier shall be used to legalize the usage of a special character or the usage of an identifier other-
wise reserved as a keyword.

A dot within an escaped identifier shall be semantically interpreted in the same way as a dot within a full hierar-
chical identifier (see 6.13.4), unless the dot is immediately preceded by a backslash.

A lexical sequence of characters according to Syntax 8 at the end of the escaped identifier or preceding a dot
within the escaped identifier shall be interpreted as an index (see 6.6) in the same way as within a full hierarchi-
cal identifier or within an indexed identifier (see 6.13.3), unless the lexical sequence of characters is immediately
preceded by a backslash.

A backslash within an escaped identifier shall semantically be considered part of an ALF name or of an ALF
value designated by the escaped identifier, with exception of the leading backslash and a backslash immediately
preceding a dot or an index.

full_hierarchical_identifier ::=
atomic_identifier [ index ] . atomic_identifier [ index ] { . atomic_identifier [index ] }

Syntax 21—Hierarchical identifier

partial_hierarchical_identifier ::=
atomic_identifier [ index ] { . atomic_identifier [ index ] } . .
{ atomic_identifier [ index ] { . atomic_identifier [ index ] } . . }
[ atomic_identifier [ index ] { . atomic_identifier [ index ] } ]

Syntax 22—Partial hierarchical identifier

escaped_identifier ::=
\ escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

Syntax 23—Escaped identifier
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Example

\id1[0].id2\[1].\id3\.id4 represents 3 levels of hierarchy.

The ancestor is the element at position 0 of the one-dimensional object ”id1”. The child of ”id1[0]” is the scalar
object ”id2[1]”. The child of ”id2[1]” is the scalar object ”id3.id4”.

NOTE — The scalar object ”id2[1]” by itself has to be declared as ”\id2\[1]”. The scalar object ”id3.id4” by itself has to be
declared as ”\id3\.id4”.

End of example

6.13.7 Keyword identifier

Keywords shall be lexically equivalent to non-escaped identifiers. Predefined keywords are listed in Table 2 —
Table 5 and Table 9 — Table 11. Additional keywords are predefined in 7.9.

The predefined keywords in this standard shall follow a more restrictive lexical rule than general non-escaped
identifiers, as shown in Syntax 24.

The reason for the more restrictive lexical rule is to encourage the use of words taken from a natural language as
keywords. Words in a natural language are constructed from lexical characters only, not from numbers. The
underscore can be used to indicate that there would be a whitespace or a dash in the word from the natural lan-
guage.

NOTE—This document presents keywords in all-uppercase letters for clarity.

6.14 Quoted string

A quoted string shall be a sequence of zero or more characters enclosed between two double quote characters, as
shown in Syntax 25.

Within a quoted string, a sequence of characters starting with an escape character shall represent a symbol for
another character, as shown in Table 21.

keyword_identifier ::=
letter { [ _ ] letter }

Syntax 24—Keyword identifier

quoted_string ::=
" { character } "

Syntax 25—Quoted string

Table 21—Character symbols within a quoted string

Symbol Character ASCII code (octal)

\g Alert or bell. 007

\h Backspace. 010
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The start of a quoted string shall be determined by a double quote character. The end of a quoted string shall be
determined by a double quote character preceded by an even number of escape characters or by any other charac-
ter than escape character.

6.15 String value

A string value shall be defined as shown in Syntax 26.

A string value shall represent textual data in general and the name of a referenced object in particular.

6.16 Generic value

An generic value shall be defined as shown in Syntax 27.

A generic value shall be used as an ALF value for an annotation (see 7.3), for a group declaration (see 7.14) or
for a template instantiation (see 7.16). Restrictions for applicable values in a particular context shall be defined
by semantic rules.

\t Horizontal tab. 011

\n New line. 012

\v Vertical tab. 013

\f Form feed. 014

\r Carriage return. 015

\" Double quote. 042

\\ Backslash. 134

\ digit digit digit ASCII character represented by three digit
octal ASCII code.

digit digit digit

string_value ::=
quoted_string | identifier

Syntax 26—String value

generic_value ::=
number

| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value

Syntax 27—Generic value

Table 21—Character symbols within a quoted string (Continued)
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6.17 Vector expression macro

A vector expression macro shall be defined as shown in Syntax 28.

A vector expression macro shall be used as a substitution for a predefined vector expression (see 9.12). The alias
declaration (see 7.7) shall be used to establish the substitution mechanism.

6.18 Rules for whitespace usage

Whitespace shall be used to separate lexical tokens from each other, according to the following rules.

a) Whitespace before and after a delimiter shall be optional.
b) Whitespace before and after an operator shall be optional.
c) Whitespace before and after a quoted string shall be optional.
d) Whitespace before and after a comment shall be mandatory. This rule shall override a), b), and c).
e) Whitespace between subsequent quoted strings shall be mandatory. This rule shall override c).
f) Whitespace between subsequent lexical tokens amongst the categories number, bit literal, based literal,

and identifier shall be mandatory.
g) Whitespace before and after a placeholder identifier shall be mandatory. This rule shall override a), b),

and c).
h) Whitespace after an escaped identifier shall be mandatory. This rule shall override a), b), and c).
i) Either whitespace or delimiter before a signed number shall be mandatory. This rule shall override a), b),

and c).
j) Either whitespace or delimiter before a symbolic edge literal shall be mandatory. This rule shall override

a), b), and c).

Whitespace before the first lexical token or after the last lexical token in a file shall be optional. Hence in all rules
prescribing mandatory whitespace, “before” shall not apply for the first lexical token in a file, and “after” shall
not apply for the last lexical token in a file.

6.19 Rules against parser ambiguity

In a syntax rule where multiple legal interpretations of a lexical token are possible, the resulting ambiguity shall
be resolved according to the following rules.

a) In a context where both bit literal and identifier are legal, a non-escaped identifier shall take priority over
a symbolic bit literal.

b) In a context where both bit literal and number are legal, an unsigned integer shall take priority over a
numeric bit literal.

c) In a context where both edge literal and identifier are legal, a non-escaped identifier shall take priority
over a bit edge literal.

d) In a context where both edge literal and number are legal, an unsigned integer shall take priority over a
bit edge literal.

If the interpretation as bit literal is desired in case a) or b), a based literal can be substituted for a bit literal. If the
interpretation as edge literal is desired in case c) or d), a based edge literal can be substituted for a bit edge lit-
eral.

vector_expression_macro ::=
# . non_escaped_identifier

Syntax 28—Vector expression macro
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7. Generic objects and related statements

7.1 Generic object

A generic object shall be defined as shown in Syntax 29.

The purpose of a generic object is to specify a re-usable statement in ALF. A generic object shall be either a
declared alias (see 7.7), a declared constant (see 7.8), a declared class (see 7.12), a declared keyword (see 7.9), a
declared semantics (see 7.10), a declared group (see 7.14) or a declared template (see 7.15).

A generic object shall have an ALF name. Plural generic objects of the same ALF type can be declared within the
same context. They shall be distinguished by their ALF name.

7.2 All purpose item

An all-purpose item shall be defined as shown in Syntax 30.

The purpose of an all-purpose item is to specify a category of statements that are supported in the syntax rules of
a library-specific object (see 8.1), without semantic restrictions. The semantic restrictions for an all-purpose item
shall be defined by a keyword declaration (see 7.9) or by a semantics declaration (see 7.10).

An all-purpose item shall be either a generic object (see 7.1), an include statement (see 7.17), an associate state-
ment (see 7.18), an annotation (see 7.3), an annotation container (see 7.4), an arithmetic model (see 10.3), or an
arithmetic model container (see 10.8).

7.3 Annotation

An annotation shall be divided into the subcategories single value annotation and multi value annotation, as
shown in Syntax 31.

generic_object ::=
alias_declaration

| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration

Syntax 29—Generic object

all_purpose_item ::=
generic_object

| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

Syntax 30—All purpose item
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The purpose of an annotation is to describe a particular semantic aspect of a statement in ALF.

An annotation shall represent an association between an identifier and a set of annotation values (values for
shortness). In case of a single value annotation, only one value shall be legal. In case of a multi value annotation,
one or more values shall be legal. The annotation shall serve as a semantic qualifier of its parent statement. The
value shall be subject to semantic restrictions, depending on the identifier.

The annotation identifier shall be either a declared keyword (see 7.9) or the ALF type of an object, i.e., a generic
object (see 7.1) or a library-specific object (see 8.1). In the latter case, the annotation shall be called reference
annotation. A semantics declaration (see 7.10) shall be used to legalize a reference annotation. The annotation
value of a reference annotation shall be the ALF name of an object of the specified ALF type.

7.4 Annotation container

An annotation container shall be defined as shown in Syntax 32.

An annotation container shall represent a collection of annotations. The annotation container shall serve as a
semantic qualifier of its parent statement. The annotation container identifier shall be a keyword. An annotation
within an annotation container shall be subject to semantic restrictions, depending on the annotation container
identifier.

7.5 ATTRIBUTE statement

An attribute statement shall be defined as shown in Syntax 33.

The attribute statement shall be used to associate arbitrary identifiers with the parent of the attribute statement.
Semantics of such identifiers can be defined depending on the parent of the attribute statement. The attribute
statement has a similar syntax definition as a multi-value annotation (see 7.3). While a multi-value annotation

annotation ::=
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
multi_value_annotation ::=

annotation_identifier { annotation_value { annotation_value } }
annotation_value ::=

generic_value
| control_expression
| boolean_expression
| arithmetic_expression

Syntax 31—Annotation

annotation_container ::=
annotation_container_identifier { annotation { annotation } }

Syntax 32—Annotation container

attribute ::=
ATTRIBUTE { identifier { identifier } }

Syntax 33—ATTRIBUTE statement
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can have restricted semantics and a restricted set of applicable values, identifiers with and without predefined
semantics can co-exist within the same attribute statement.

Example

CELL myRAM8x128 {
ATTRIBUTE { rom asynchronous static }

}

7.6 PROPERTY statement

A property statement shall be defined as shown in Syntax 34.

The property statement shall be used to associate arbitrary annotations with the parent of the property statement.
The property statement has a similar syntax definition as an annotation container (see 7.4). While the keyword of
an annotation container usually restricts the semantics and the set of applicable annotations, the keyword “prop-
erty” does not. Annotations shall have no predefined semantics, when they appear within the property statement,
even if annotation identifiers with otherwise defined semantics are used.

Example

PROPERTY myProperties {
parameter1 = value1 ;
parameter2 = value2 ;
parameter3 { value3 value4 value5 }

}

7.7 ALIAS declaration

An alias shall be declared as shown in Syntax 35.

The alias declaration shall specify an alias identifier (see 6.13) or a vector expression macro (see 6.17).

The alias identifier can be used as a substitution of an original identifier, used to specify a name or a value of an
ALF statement. The alias identifier shall be semantically interpreted in the same way as the original identifier.

The vector expression macro can be used as a substitution of a vector expression.

property ::=
PROPERTY [ identifier ] { annotation { annotation } }

Syntax 34—PROPERTY statement

alias_declaration ::=
ALIAS alias_identifier = original_identifier ;

| ALIAS vector_expression_macro = ( vector_expression ) ;

Syntax 35—ALIAS declaration
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Example

ALIAS reset = clear;
ALIAS #.rising_edge = ( 01 clock );

7.8 CONSTANT declaration

A constant shall be declared as shown in Syntax 36.

The constant declaration shall specify an identifier which can be used instead of a constant value, i.e., a number
or a based literal. The identifier shall be semantically interpreted in the same way as the constant value.

Example

CONSTANT vdd = 3.3;
CONSTANT opcode = ‘h0f3a;

7.9 KEYWORD declaration

A keyword shall be declared as shown in Syntax 37.

A keyword declaration shall be used to define a new keyword in a category or in a subcategory of ALF state-
ments specified by a syntax item identifier.

A keyword item can be used to qualify the contents of the keyword declaration. One or more annotations (see
7.11) can be used as a keyword item.

A legal syntax item identifier shall be defined as shown in Table 22.

constant_declaration ::=
CONSTANT constant_identifier = constant_value ;

constant_value ::=
number | based_literal

Syntax 36—CONSTANT declaration

keyword_declaration ::=
KEYWORD keyword_identifier = syntax_item_identifier ;

| KEYWORD keyword_identifier = syntax_item_identifier { { CONTEXT_annotation } }

Syntax 37—KEYWORD declaration

Table 22—Syntax item identifier

Syntax item identifier Semantic meaning

annotation The keyword shall specify an annotation (see 7.3).

single_value_annotation The keyword shall specify a single value annotation (see 7.3).

multi_value_annotation The keyword shall specify a multi-value annotation (see 7.3).
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A keyword declaration shall be equivalent to an extension of the ALF syntax. A keyword declaration shall not be
overwritten or duplicated.

Example

Declaration of a keyword:

KEYWORD MySingleValueAnnotation = single_value_annotation ;

The equivalent syntax rule in BNF looks as follows:

MySingleValueAnnotation ::=
MySingleValueAnnotation = annotation_value ;

End of example

7.10 SEMANTICS declaration

Semantics shall be declared as shown in Syntax 38.

A semantics declaration shall be used to define context-specific rules in a category or in a subcategory of ALF
statements. The semantics item identifier shall make reference to a legal ALF statement or to a category or sub-
category of legal ALF statements.

annotation_container The keyword shall specify an annotation container (see 7.4).

arithmetic_model The keyword shall specify an arithmetic model (see 10.3).

arithmetic_submodel The keyword shall specify an arithmetic submodel (see 10.7).

arithmetic_model_container The keyword shall specify an arithmetic model container (see 10.8).

geometric_model The keyword shall specify a geometric model (see 9.16).

semantics_declaration ::=
SEMANTICS semantics_identifier = syntax_item_identifier ;

| SEMANTICS semantics_identifier [ = syntax_item_identifier ] { { semantics_item } }
semantics_item ::=

CONTEXT_annotation
| VALUETYPE_single_value_annotation
| VALUES_multi_value_annotation
| REFERENCETYPE_annotation
| DEFAULT_single_value_annotation
| SI_MODEL_single_value_annotation

Syntax 38—SEMANTICS declaration

Table 22—Syntax item identifier (Continued)

Syntax item identifier Semantic meaning
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The semantics identifier shall be a keyword identifier (see 6.13.7) or a syntax item identifier (see 7.9, Table 22) or
a full hierarchical identifier (see 6.13.4), composed of one or more keyword identifiers and/or syntax item iden-
tifiers.

A syntax item identifier can be used as ALF value of a semantics declaration under the following restriction:

a) The syntax item identifier in a related keyword declaration is “annotation”,

and

b) the syntax item identifier of the actual semantics declaration is “single value annotation” or “multi-value
annotation”.

A semantic item can be used to qualify the contents of the semantics declaration. One or more annotations (see
7.11) can be used as a semantic item.

A semantics declaration can be used to complement a keyword declaration or another semantics declaration. A
semantics declaration shall not be contradictory to an existing keyword or semantics declaration.

7.11 Annotations and rules related to a KEYWORD or a SEMANTICS declaration

This subsection defines annotations and rules related to a keyword or a semantics declaration.

7.11.1 VALUETYPE annotation

The valuetype annotation shall be a single value annotation. The set of legal values shall depend on the syntax
item identifier associated with the related keyword declaration, as shown in Table 23.

Table 23—VALUETYPE annotation

Syntax item identifier Set of legal values for
VALUETYPE

Default value
for

VALUETYPE
Comment

annotation
or
single_value_annotation
or
multi_value_annotation

number,
signed_integer,
unsigned_integer,
multiplier_prefix_value,
identifier,
string_value,
quoted_string,
boolean_value,
edge_value,
control_expression,
boolean_expression,
arithmetic_expression.

identifier See Syntax 31, def-
inition of annota-
tion value.

annotation_container N/A N/A An annotation con-
tainer (see
Syntax 32) has no
value.
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The valuetype annotation shall specify the category of legal ALF values applicable for an ALF statement whose
ALF type is given by the declared keyword.

The valuetype shall refer to the semantic interpretation of a value, not to the encountered lexical token. For
example, a non-escaped identifier (see 6.13.1) can be the name of a constant (see 7.8) holding a numerical value.
Therefore the identifier (see 6.13) would be semantically interpreted as a number (see 6.5).

The valuetype annotation can be partially self-described as shown in Semantics 1.

arithmetic_model number,
signed_integer,
unsigned_integer,
identifier,
bit_literal,
based_literal.

number See Syntax 14, def-
inition of arith-
metic value.

arithmetic_submodel N/A N/A An arithmetic sub-
model (see 10.7)
shall always have
the same valuetype
as its parent arith-
metic model.

arithmetic_model_container N/A N/A An arithmetic
model container
(see 10.8) has no
value.

geometric_model N/A N/A A geometric model
(see 9.16) has no
value.

KEYWORD VALUETYPE = single_value_annotation {
CONTEXT = SEMANTICS;

}
SEMANTICS VALUETYPE {

VALUES {
number signed_integer unsigned_integer

multiplier_prefix_value

identifier quoted_string string_value

bit_literal based_literal boolean_value edge_value

control_expression boolean_expression

arithmetic_expression

}
}

Semantics 1—Partial self-description of VALUETYPE annotation

Table 23—VALUETYPE annotation (Continued)

Syntax item identifier Set of legal values for
VALUETYPE

Default value
for

VALUETYPE
Comment
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Example:

This example shows a correct and an incorrect usage of a declared keyword with specified valuetype.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
CELL cell1 { Greeting = HiThere ; } // correct
CELL cell2 { Greeting = "Hi There" ; } // incorrect

The first usage is correct, since HiThere is an identifier. The second usage is incorrect, since "Hi There" is
a quoted string and not an identifier.

7.11.2 VALUES annotation

The values annotation shall be a multi value annotation. It shall be applicable in the case where the valuetype
annotation is also applicable. The values annotation shall specify a discrete set of legal values applicable for an
ALF statement using the declared keyword. The values annotation within the semantics declaration and the valuetype annota-
tion within a related keyword declaration shall be compatible.

The values annotation can be partially self-described as shown in Semantics 2.

Example:

This example shows a correct and an incorrect usage of a declared keyword and semantics with specified value-
type and values.

KEYWORD Greeting = annotation { VALUETYPE = identifier ; }
SEMANTICS Greeting { VALUES { HiThere Hello HowDoYouDo } }
}
CELL cell3 { Greeting = Hello ; } // semantically correct
CELL cell4 { Greeting = GoodBye ; } // semantically incorrect

The first usage is correct, since Hello is contained within the set of values. The second usage is incorrect, since
GoodBye is not contained within the set of values.

End of example

7.11.3 DEFAULT annotation

The default annotation shall be a single value annotation applicable in the case where the valuetype annotation is
also applicable. Compatibility between the default annotation, the valuetype annotation, and the values annota-
tion shall be mandatory.

The default annotation shall specify a presumed value in absence of an ALF statement specifying a value.

A partial self-description of the default annotation is given in Semantics 3.

KEYWORD VALUES = multi_value_annotation {
CONTEXT = SEMANTICS;

}

Semantics 2—Partial self-description of VALUES annotation
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Example:

KEYWORD Greeting = annotation {
VALUETYPE = identifier ;
VALUES { HiThere Hello HowDoYouDo }
DEFAULT = Hello ;

}
CELL cell5 { /* no Greeting */ }

In this example, the absence of a Greeting statement is equivalent to the following:

CELL cell5 { Greeting = Hello ; }

7.11.4 CONTEXT annotation

The context annotation shall be a single value annotation or a multi value annotation. It shall specify the ALF
type of a legal parent of the statement using the declared keyword. The ALF type of a legal parent can be a pre-
defined keyword or a declared keyword.

A hierarchical identifier can be used to specify the ALF type of a legal parent of the statement, constraint by the
ALF type of the ancestor of the statement.

A partial self-description of the context annotation is given in Semantics 4.

A context annotation within a keyword declaration shall be equivalent to a syntax rule applicable to the syntax
item specified by the context annotation value. Only a keyword identifier (see 6.13.7) or a syntax item identifier
(see 7.9, Table 22) shall be a legal annotation value.

Example

Declaration of a keyword with context:

KEYWORD MyAnnotationContainer = annotation_container;
KEYWORD MyAnnotation = single_value_annotation {

CONTEXT = MyAnnotationContainer;
}

The equivalent syntax rule in BNF looks as follows:

KEYWORD DEFAULT = single_value_annotation {
CONTEXT { SEMANTICS arithmetic_model }

}

Semantics 3—Partial self-description of DEFAULT annotation

KEYWORD CONTEXT = annotation;
SEMANTICS CONTEXT {

CONTEXT { KEYWORD SEMANTICS }
VALUETYPE = identifier;

}

Semantics 4—Partial self-description of CONTEXT annotation
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MyAnnotationContainer ::=
MyAnnotationContainer { [ MyAnnotation = annotation_value ; ] }

End of example

A context annotation within a semantics declaration shall be used to specify a legal ancestor of a statement. Only
a keyword identifier (see 6.13.7) or a syntax item identifier (see 7.9, Table 22) or a full hierarchical identifier (see
6.13.4) or a partial hierarchical identifier (see 6.13.5) involving one or more keyword identifiers and/or one or
more syntax item identifiers shall be a legal annotation value.

Example:

KEYWORD LibraryQualifier = annotation { CONTEXT { LIBRARY SUBLIBRARY } }
KEYWORD CellQualifier = annotation { CONTEXT = CELL ; }
KEYWORD PinQualifier = annotation { CONTEXT = PIN ; }
LIBRARY library1 {

LibraryQualifier = foo ; // correct
CELL cell1 {

CellQualifier = bar ; // correct
PinQualifier = foobar ; // incorrect, illegal context

}
}

The following change would legalize the example above:

KEYWORD PinQualifier = annotation { CONTEXT { PIN CELL } }

The following example shows the use of an hierarchical identifier.

KEYWORD PrimitivePinQualifier = annotation { CONTEXT = PIN ; }
SEMANTICS PrimitivePinQualifier { CONTEXT = PRIMITIVE.PIN; }

End of example

7.11.5 REFERENCETYPE annotation

The referencetype annotation shall be a single value annotation or a multi value annotation. The referencetype
annotation shall be legal if the syntax item identifier in the related keyword declaration is annotation, single
value annotation or multi value annotation.

A partial self-description of the referencetype annotation is given in Semantics 5.

KEYWORD REFERENCETYPE = annotation {
CONTEXT = SEMANTICS;

}
SEMANTICS REFERENCETYPE {

VALUES { CLASS LIBRARY SUBLIBRARY CELL PIN PINGROUP
PRIMITIVE WIRE NODE VECTOR LAYER VIA RULE ANTENNA
BLOCKAGE PORT SITE ARRAY PATTERN REGION
arithmetic_model arithmetic_submodel }

}

Semantics 5—Partial self-description of REFERENCETYPE annotation
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The purpose of the referencetype annotation is to specify the ALF type of a referenced object. An object shall be
referenced by its ALF name or possibly by a full hierarchical identifier (see 6.13.4) involving the ALF name of
the parent of the object and the ALF name of the object itself.

Example:

The following example shows the definition of an annotation “myReference”, which refers to an object of the
ALF type “CLASS” with the ALF name “myClass”.

CLASS myClass;
KEYWORD myReference = single_value_annotation;
SEMANTICS myReference { REFERENCETYPE = CLASS; }
myReference = myClass;

In this example, a full hierarchical identifier is used to refer to a CLASS with the ALF name “myOtherClass”,
declared as a child of a CELL with ALF name “myCell”.

CELL myCell {
CLASS myOtherClass;

}
myReference = myCell.myOtherClass;

End of example

7.11.6 SI_MODEL annotation

The SI-model annotation shall be a single value annotation. It shall be only applicable for a keyword declaring an
arithmetic model (see 10.3). It shall specify a relation of a declared keyword with the International System of
Units (see U.S. National Bureau of Standards, Spec. Pub. 330). In particular, it shall specify the base unit of an
arithmetic model.

A self-description of the SI-model annotation is given in Semantics 6.

KEYWORD SI_MODEL = single_value_annotation {
CONTEXT = SEMANTICS;

}
SEMANTICS SI_MODEL {

VALUES {
TIME FREQUENCY CURRENT VOLTAGE POWER ENERGY
RESISTANCE CAPACITANCE INDUCTANCE
DISTANCE AREA

}
}

Semantics 6—SI model annotation
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The set of legal annotation values is shown in Table 24.

7.11.7 Rules for legal usage of KEYWORD and SEMANTICS declaration

The following rules shall apply for legal use of annotations within a keyword or a semantics declaration.

a) A keyword declaration can not overwrite, redefine, or otherwise invalidate a syntax rule.
b) A semantics declaration shall relate to a keyword declaration or a syntax rule. A semantics declaration

shall be compatible with a related keyword declaration or a related syntax rule.

Example:

KEYWORD myAnnotation = annotation {
CONTEXT { CELL PIN }

}
SEMANTICS myAnnotation {

VALUES { value1 value2 value3 value4 value5 }
}
SEMANTICS CELL.myAnnotation = multi_value_annotation {

VALUES { value1 value2 value3 }
}
SEMANTICS PIN.myAnnotation = single_value_annotation {

VALUES { value4 value5 }
DEFAULT = value4;

}
CELL myCell {

myAnnotation { value1 value2 }
PIN myPin { myAnnotation = value5; }

}

Table 24—SI_MODEL annotation

Annotation value Mathematical
symbol Base unit

Relationship
with other
quantity

Reference to arithmetic
model declaration

TIME t Second See 10.11.1

FREQUENCY f Hertz 1 / t See 10.11.2

CURRENT I Ampere See 10.15.2

VOLTAGE V Volt See 10.15.1

RESISTANCE R Ohm V / I See 10.15.4

CAPACITANCE C Farad I / (dV / dt) See 10.15.3

INDUCTANCE L Henry V / (dI / dt) See 10.15.5

ENERGY E Joule See 10.11.15

POWER P Watt I V, dE / dt See 10.11.15

DISTANCE d Meter See 10.19.9

AREA A Square meter d2 See 10.19.2
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7.12 CLASS declaration

A class shall be declared as shown in Syntax 39.

A class declaration shall be used to establish a semantic association between ALF statements, including, but not
restricted to, other class declarations. ALF statements shall be associated with each other, if they contain a refer-
ence to the same class. Such a reference is made by a class reference annotation (see 7.13).

The semantics specified by a class item within a class declaration shall be inherited by the statement containing
the reference. A class item can be an all purpose item (see 7.2), a geometric model (see 9.16) or a geometric
transformation (see 9.18).

7.13 Annotations related to a CLASS declaration

This subsection specifies how other objects can make a reference to a class by using either a general class refer-
ence annotation or a specific class reference annotation.

7.13.1 General CLASS reference annotation

A general class reference annotation shall be defined as shown in Semantics 7.

Example

CLASS \1stclass { ATTRIBUTE { everything } }
CLASS \2ndclass { ATTRIBUTE { nothing } }
CELL cell1 { CLASS = \1stclass; }
CELL cell2 { CLASS = \2ndclass; }
CELL cell3 { CLASS { \1stclass \2ndclass } }
// cell1 inherits "everything"
// cell2 inherits "nothing"
// cell3 inherits "everything" and "nothing"

NOTES

1 — A class declaration itself can not contain a general class reference annotation. This avoids circular reference.

class_declaration ::=
CLASS class_identifier ;

| CLASS class_identifier { { class_item } }
class_item ::=

all_purpose_item
| geometric_model
| geometric_transformation

Syntax 39—CLASS declaration

KEYWORD CLASS = annotation {
CONTEXT { library_specific_object arithmetic_model }

}
SEMANTICS CLASS { REFERENCETYPE = CLASS; }

Semantics 7—CLASS reference annotation
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2 — It is possible that a reference to multiple classes can result in the inheritance of semantically incompatible attributes. It is
expected that an ALF compiler or an ALF interpreter detects such semantic incompatibility. However, the behavior of an
application as a consequence of this detection is not specified by this standard, since the desired behavior can depend on the
nature of the application.

7.13.2 USAGE annotation

The usage annotation shall be defined as shown in Semantics 8.

The usage annotation shall specify, which specific class reference annotation can be legally used to make a refer-
ence to the class.

The set of legal annotation values is shown in Table 25.

KEYWORD USAGE = annotation { CONTEXT = CLASS; }
SEMANTICS USAGE {

VALUETYPE = identifier;
VALUES {

SWAP_CLASS RESTRICT_CLASS
SIGNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXISTENCE_CLASS CHARACTERIZATION_CLASS
ORIENTATION_CLASS SYMMETRY_CLASS

}
}

Semantics 8—USAGE annotation

Table 25—USAGE annotation

Annotation value Definition of specific
class reference annotation

SWAP_CLASS See 8.5.4

RESTRICT_CLASS See 8.5.3

SIGNAL_CLASS See 8.8.15

SUPPLY_CLASS See 8.8.16

CONNECT_CLASS See 8.8.19

SELECT_CLASS See 8.11.3

NODE_CLASS See 8.13.3

EXISTENCE_CLASS See 8.15.6

CHARACTERIZATION_CLASS See 8.15.9

ORIENTATION_CLASS See 8.26.2

SYMMETRY_CLASS See 8.26.3
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NOTE — Knowing the ALF type of a legal parent of a specific class reference annotation, the ALF parser can evaluate the
contents of the class declaration for semantic correctness. If the usage annotation is not present, the ALF parser can evaluate
the contents of the class declaration for semantic correctness only when encountering a reference to the class.

7.14 GROUP declaration

A group shall be declared as shown in Syntax 40.

A group declaration shall be used to specify the semantic equivalent of multiple similar ALF statements within a
single ALF statement. An ALF statement containing a group identifier shall be semantically replicated by substi-
tuting each group value for the group identifier, or, by substituting subsequent index values bound by the left
index value and by the right index value for the group identifier. The ALF parser shall verify whether each sub-
stitution results in a legal statement.

The ALF statement which has the same parent as the group declaration shall be semantically replicated, if the
group identifier is found within the statement itself or within a child of the statement or within a child of a child
of the statement etc. If the group identifier is found more than once within the statement or within its children,
the same group value or index value per replication shall be substituted for the group identifier, but no additional
replication shall occur.

The group identifier (i.e., the name associated with the group declaration) can be re-used as name of another
statement. As a consequence, the other statement shall be interpreted as multiple statements wherein the group
identifier within each replication shall be replaced by the generic value. On the other hand, no name of any visi-
ble statement shall be allowed to be re-used as group identifier.

Examples

The following example shows substitution involving group values.

// statement using GROUP:
CELL myCell {

GROUP data { data1 data2 data3 }
PIN data { DIRECTION = input ; }

}
// semantically equivalent statement:
CELL myCell {

PIN data1 { DIRECTION = input ; }
PIN data2 { DIRECTION = input ; }
PIN data3 { DIRECTION = input ; }

}

The following example shows substitution involving index values.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] data { DIRECTION = input ; }

group_declaration ::=
GROUP group_identifier { generic_value { generic_value } }

| GROUP group_identifier { left_index_value : right_index_value }

Syntax 40—GROUP declaration
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PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[dataIndex]; } TO { PIN = clock ; } }

}
// semantically equivalent statement:
CELL myCell {

PIN [1:3] data { DIRECTION = input ; }
PIN clock { DIRECTION = input ; }
SETUP = 0.5 { FROM { PIN = data[1]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[2]; } TO { PIN = clock ; } }
SETUP = 0.5 { FROM { PIN = data[3]; } TO { PIN = clock ; } }

}

The following example shows multiple occurrences of the same group identifier within a statement.

// statement using GROUP:
CELL myCell {

GROUP dataIndex { 1 : 3 }
PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[dataIndex];} TO {PIN=Dout[dataIndex];} }

}
// semantically equivalent statement:
CELL myCell {

PIN [1:3] Din { DIRECTION = input ; }
PIN [1:3] Dout { DIRECTION = input ; }
DELAY = 1.0 { FROM {PIN=Din[1];} TO {PIN=Dout[1];} }
DELAY = 1.0 { FROM {PIN=Din[2];} TO {PIN=Dout[2];} }
DELAY = 1.0 { FROM {PIN=Din[3];} TO {PIN=Dout[3];} }

}

7.15 TEMPLATE declaration

A template shall be declared as shown in Syntax 41.

A template declaration shall be used to specify one or more ALF statements with variable contents. A template
instantiation (see 7.16) shall specify the usage of such an ALF statement. Within the template declaration, the
variable contents shall be specified by a placeholder identifier (see 6.13.2).

An ALF statement within a template declaration shall be partially exempt from the semantics rule check defined
by valuetype, values, context, and referencetype, as follows:

a) A declared template shall be presumed a legal ancestor within an applicable context.
b) A placeholder identifier shall be presumed a value within an applicable set of values.
c) A placeholder identifier shall be presumed a value of applicable valuetype.
d) A placeholder identifier shall be presumed a legal reference within an applicable referencetype.

The semantic rule check that can not be performed during parsing of the template declaration shall be deferred
until parsing of the template instantiation.

template_declaration ::=
TEMPLATE template_identifier { ALF_statement { ALF_statement } }

Syntax 41—TEMPLATE declaration
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7.16 TEMPLATE instantiation

A template shall be instantiated in form of a static template instantiation or a dynamic template instantiation, as
shown in Syntax 42.

A template instantiation shall be semantically equivalent to the ALF statement or the ALF statements found
within the template declaration, after replacing the placeholder identifiers with replacement values. A static tem-
plate instantiation shall support replacement by order, using an generic value, or alternatively, replacement by
reference, using an annotation (see 7.3). A dynamic template instantiation shall support replacement by reference
only, using an annotation and/or an arithmetic model (see 7.3 and 10.3) and/or an arithmetic assignment.

In the case of replacement by reference, the reference shall be established by a non-escaped identifier matching
the placeholder identifier without the angular brackets. The matching shall be case-insensitive.

The following rules shall apply.

a) A static template instantiation shall be used when the replacement value of any placeholder identifier can
be determined during compilation of the library. Only a matching identifier shall be considered legal.
Each occurrence of the placeholder identifier shall be replaced by the annotation value associated with
the annotation identifier.

b) A dynamic template instantiation shall be used when the replacement value of at least one placeholder
identifier can only determined during runtime of the application. Only a matching identifier shall be con-
sidered legal.

c) Multiple replacement values within a multi-value annotation shall be legal if and only if the syntax rules
for the ALF statement within the template declaration allow substitution of multiple values for one place-
holder identifier.

d) In the case replacement by order, subsequently occurring placeholder identifiers in the template declara-
tion shall be replaced by subsequently occurring generic values in the template instantiation. If a place-
holder identifier occurs more than once within the template declaration, all occurrences of that
placeholder identifier shall be immediately replaced by the same generic value. The first amongst the
remaining placeholder identifiers shall then be considered the next placeholder to be replaced by the next
generic value.

e) A static template instantiation for which a placeholder identifier is not replaced shall be legal if and only
if the semantic rules for the ALF statement support a placeholder identifier outside a template declara-
tion. However, the semantics of a placeholder identifier as an item to be substituted shall only apply
within the template declaration statement.

template_instantiation ::=
static_template_instantiation

| dynamic_template_instantiation
static_template_instantiation ::=

template_identifier [ = static ] ;
| template_identifier [ = static ] { { generic_value } }
| template_identifier [ = static ] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = dynamic { { dynamic_template_instantiation_item } }

dynamic_template_instantiation_item ::=
annotation

| arithmetic_model
| arithmetic_assignment

arithmetic_assignment ::=
identifier = arithmetic_expression ;

Syntax 42—TEMPLATE instantiation
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Examples

The following example illustrates rule a).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someAnnotations {

KEYWORD <oneAnnotation> = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
<oneAnnotation> = value1 ;
annotation2 = <anotherValue> ;

}
someAnnotations {

oneAnnotation = annotation1 ;
anotherValue = value2 ;

}
// semantically equivalent statement:
KEYWORD annotation1 = single_value_annotation ;
KEYWORD annotation2 = single_value_annotation ;
annotation1 = value1 ;
annotation2 = value2 ;

The following example illustrates rule b).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE someNumbers {

KEYWORD N1 = single_value_annotation { VALUETYPE=number ; }
KEYWORD N2 = single_value_annotation { VALUETYPE=number ; }
N1 = <number1> ;
N2 = <number2> ;

}
someNumbers = DYNAMIC {

number2 = number1 + 1;
}
// semantically equivalent statement, assuming number1=3 at runtime:
N1 = 3 ;
N2 = 4 ;

The following example illustrates rule c).

TEMPLATE moreAnnotations {
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { <someValue> }
annotation4 = <yetAnotherValue> ;

}
moreAnnotations {

someValue { value1 value2 }
yetAnotherValue = value3 ;

}
// semantically equivalent statement:
KEYWORD annotation3 = annotation ;
KEYWORD annotation4 = annotation ;
annotation3 { value1 value2 }
annotation4 = value3 ;
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The following example illustrates rule d).

TEMPLATE evenMoreAnnotations {
KEYWORD <thisAnnotation> = single_value_annotation ;
KEYWORD <thatAnnotation> = single_value_annotation ;
<thatAnnotation> = <thisValue> ;
<thisAnnotation> = <thatValue> ;

}
// template instantiation by reference:
evenMoreAnnotations = STATIC {

thatAnnotation = day ;
thisAnnotation = month;
thatValue = April;
thisValue = Monday;

}
// semantically equivalent template instantiation by order:
evenMoreAnnotations = STATIC { day month Monday April }

// semantically equivalent statement:
KEYWORD day = single_value_annotation ;
KEYWORD month = single_value_annotation ;
month = April;
day = Monday;

The following example illustrates rule e).

// statement using TEMPLATE declaration and instantiation:
TEMPLATE encoreAnnotation {

KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { <something> <nothing> }

}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = <something> ; }

}
encoreAnnotation {

something = everything ;
}
// semantically equivalent statement:
KEYWORD context1 = annotation_container;
KEYWORD context2 = annotation_container;
KEYWORD annotation5 = single_value_annotation {

CONTEXT { context1 context2 }
VALUES { everything <nothing> }

}
context1 { annotation5 = <nothing> ; }
context2 { annotation5 = everything ; }
// Both everything (without brackets) and <nothing> (with brackets)
// are legal values for annotation5.
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7.17 INCLUDE statement

An include statement shall be defined as shown in Syntax 43.

The quoted string shall specify the name of a file. When the include statement is encountered during parsing of a
file, the application shall parse the specified file and then continue parsing the former file. The format of the file
containing the include statement and the format of the file specified by the include statement shall be the same.

Example

LIBRARY myLib {
INCLUDE "templates.alf";
INCLUDE "technology.alf";
INCLUDE "primitives.alf";
INCLUDE "wires.alf";
INCLUDE "cells.alf";

}

NOTE — The filename specified by the quoted string shall be interpreted according to the rules of the application and/or the
operating system. The ALF parser itself shall make no semantic interpretation of the filename.

7.18 ASSOCIATE statement and FORMAT annotation

An associate statement shall be defined as shown in Syntax 44.

The associate statement shall specify a relationship of the parent of the associate statement with an object
described in a file referenced by the quoted string. The format annotation shall specify the format of the associ-
ated file. In contrast to the include statement (see 7.17), the ALF parser is not expected to read the associated file.
The formal specification of the semantic validity of the association is beyond the scope of this standard.

Using a keyword declaration (see 7.9) in conjunction with a context annotation (see 7.11.4), a valuetype annota-
tion (see 7.11.1), a values annotation (see 7.11.2), and a default annotation (see 7.11.3), the format annotation
shall be defined as shown in Semantics 9.

include ::=
INCLUDE quoted_string ;

Syntax 43—INCLUDE statement

associate ::=
ASSOCIATE quoted_string ;

| ASSOCIATE quoted_string { FORMAT_single_value_annotation }

Syntax 44—ASSOCIATE statement
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The meaning of the annotation values is specified in Table 26.

NOTE — The format annotation value does not specify the format version of the associated file. An application that can read
the associated file can obtain the version either from the associated file itself or by other means of version control.

7.19 REVISION statement

A revision statement shall be defined as shown in Syntax 45

A revision statement shall be used to identify the revision or version of the file to be parsed. One, and only one,
revision statement can appear at the beginning of an ALF file.

A set of recognized string values within the revision statement shall be defined as shown in Table 27

KEYWORD FORMAT = single_value_annotation {
CONTEXT = ASSOCIATE;

}
SEMANTICS FORMAT {

VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = alf;

}

Semantics 9—FORMAT annotation

Table 26—FORMAT annotation values

Annotation value Description

vhdl The associated file is in a format specified by the IEEE Std 1076-2002.

verilog The associated file is in a format specified by the IEEE Std 1364-2001.

c The associated file is in a format specified by the ISO/IEC 9899:1990.

\c++ The associated file is in a format specified by the ANSI/ISO/IEC 14882.

alf The associated file is in a format specified by this standard

revision ::=
ALF_REVISION string_value

Syntax 45—Revision statement

Table 27—Recognized string values within the REVISION statement

String value Revision or version

"1.1" Advanced Library Format, Version 1.1 [B2]

"2.0" Advanced Library Format, Version 2.0 [B3]
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The revision statement shall be optional, as the application program parsing the ALF file can provide other
means of specifying the revision or version of the file to be parsed. If a revision statement is encountered while a
revision has already been specified to the parser (e.g. if an included file is parsed), the parser shall be responsible
to decide whether the newly encountered revision is compatible with the originally specified revision and then
either proceed assuming the original revision or abandon.

NOTE — This document suggests that this standard is largely backward compatible with the previous versions of the
Advanced Library Format mentioned in Table 27.

"P1603.2003-07-18" Advanced Library Format specified by this draft IEEE P1603/D9
** please delete this row after ballot approval **

"IEEE 1603-2003" Advanced Library Format specified by this standard

Table 27—Recognized string values within the REVISION statement (Continued)

String value Revision or version
74 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.



Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

1

5

10

15

20

25

30

35

40

45

50

55
8. Library-specific objects and related statements

8.1 Library-specific object

A library-specific object shall be defined as shown in Syntax 46.

A library-specific object shall be defined as a library (see 8.2), a sublibrary (see 8.2), a cell (see 8.4), a primitive
(see 8.9), a wire (see 8.10), a pin (see 8.6), a pingroup (see 8.7), a vector (see 8.14), a node (see 8.12), a layer (see
8.16), a via (see 8.18), a rule (see 8.20), an antenna (see 8.21), a site (see 8.25), an array (see 8.27), a blockage
(see 8.22), a port (see 8.23), a pattern (see 8.29) or a region (see 8.31).

The purpose of a library-specific object is to specify a model for a technology item, distinguished by an ALF
name.

8.2 LIBRARY and SUBLIBRARY declaration

A library and a sublibrary shall be declared as shown in Syntax 47.

A library shall serve as a repository of technology data for creation of an electronic integrated circuit. A subli-
brary can optionally be used to create different scopes of visibility for particular statements describing technol-
ogy data.

Any two objects of the same ALF type and the same ALF name can not appear in one library or in one sublibrary.
However, they can appear in two libraries, or in two sublibraries with the same library as parents. For example,
two cells (see 8.4) with the same name can appear in two different libraries. It shall be the responsibility of the
application tool to properly handle such cases, as the selection of a library or a sublibrary is controlled by the user
of the application tool.

library_specific_object ::=
library

| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region

Syntax 46—Library-specific object
Copyright © 2003 IEEE. All rights reserved. 75
This is an unapproved IEEE Standards Draft, subject to change.



IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

1

5

10

15

20

25

30

35

40

45

50

55
8.3 Annotations related to a LIBRARY or a SUBLIBRARY declaration

8.3.1 LIBRARY reference annotation

A library reference annotation shall be defined as shown in Semantics 10.

The purpose of a library reference annotation is to establish an association between a library or a sublibrary and
an arithmetic model (see 10.3).

A full hierarchical identifier (see 6.13.4) can be used to specify a reference to a sublibrary as a child of a library.

8.3.2 INFORMATION annotation container

An information annotation container shall be defined as shown in Semantics 11.

The information annotation container shall be used to associate its parent statement with a product specification.
The following semantic restrictions shall apply.

a) A library, a sublibrary, or a cell can be a legal parent of the information statement.
b) A wire, or a primitive can be a legal parent of the information statement, provided the parent of the wire

or the primitive is a library or a sublibrary.

library ::=
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
| site
| region

Syntax 47—LIBRARY and SUBLIBRARY declaration

KEYWORD LIBRARY = annotation {
CONTEXT = arithmetic_model;

}
SEMANTICS LIBRARY {

REFERENCETYPE { LIBRARY SUBLIBRARY }
}

Semantics 10—LIBRARY reference annotation
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The semantics of the information contents are specified in Table 28.

KEYWORD INFORMATION = annotation_container {
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}
KEYWORD PRODUCT = single_value_annotation {

CONTEXT = INFORMATION;
}
SEMANTICS PRODUCT {

VALUETYPE = string_value; DEFAULT = "";
}
KEYWORD TITLE = single_value_annotation {

CONTEXT = INFORMATION;
}
SEMANTICS TITLE {

VALUETYPE = string_value; DEFAULT = "";
}
KEYWORD VERSION = single_value_annotation {

CONTEXT = INFORMATION;
}
SEMANTICS VERSION {

VALUETYPE = string_value; DEFAULT = "";
}
KEYWORD AUTHOR = single_value_annotation {

CONTEXT = INFORMATION;
}
SEMANTICS AUTHOR {

VALUETYPE = string_value; DEFAULT = "";
}
KEYWORD DATETIME = single_value_annotation {

CONTEXT = INFORMATION;
}
SEMANTICS DATETIME {

VALUETYPE = string_value; DEFAULT = "";
}

Semantics 11—INFORMATION statement

Table 28—Annotations within an INFORMATION statement

Annotation identifier Semantics of annotation value

PRODUCT A code name of a product described herein.

TITLE A descriptive title of the product described herein.

VERSION A version number of the product description.

AUTHOR The name of a person or company generating this product description.

DATETIME Date and time of day when this product description was created.
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The product developer shall be responsible for any rules concerning the format and detailed contents of the string
value itself.

Example

LIBRARY myProduct {
INFORMATION {

PRODUCT = p10sc;
TITLE = "0.10 standard cell";
VERSION = "v2.1.0";
AUTHOR = "Major Asic Vendor, Inc.";
DATETIME = "Mon Apr 8 18:33:12 PST 2002";

}
}

8.4 CELL declaration

A cell shall be declared as shown in Syntax 48.

A cell shall represent an electronic circuit which can be used as a building block for a larger electronic circuit.

8.5 Annotations related to a CELL declaration

This section defines annotations and attribute values related to a cell declaration.

8.5.1 CELL reference annotation

A cell reference annotation shall be defined as shown in Semantics 12.

cell ::=
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

Syntax 48—CELL declaration

KEYWORD CELL = annotation { CONTEXT = arithmetic_model; }
SEMANTICS CELL { REFERENCETYPE = CELL; }

Semantics 12—CELL reference annotation
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The purpose of a cell reference annotation is to establish an association between a cell and an arithmetic model
(see 10.3).

A hierarchical identifier can be used to specify a reference to a cell as a child of a library or a sublibrary.

8.5.2 CELLTYPE annotation

A celltype annotation shall be defined as shown in Semantics 13.

The meaning of the celltype annotation values is specified in Table 29.

KEYWORD CELLTYPE = single_value_annotation {
CONTEXT = CELL;

}
SEMANTICS CELLTYPE {

VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

Semantics 13—CELLTYPE annotation

Table 29—CELLTYPE annotation values

Annotation value Description

buffer CELL is a buffer, i.e., an element for transmission of a digital signal without per-
forming a logic operation, except for possible logic inversion.

combinational CELL is a combinatorial logic element, i.e., an element performing a logic opera-
tion on two or more digital input signals.

multiplexor CELL is a multiplexor, i.e., an element for selective transmission of digital signals.

flipflop CELL is a flip-flop, i.e., a one-bit storage element with edge-sensitive clock

latch CELL is a latch, i.e., a one-bit storage element without edge-sensitive clock

memory CELL is a memory, i.e., a multi-bit storage element with selectable addresses.

block CELL is a hierarchical block, i.e., a complex element which has an associated
netlist for implementation purpose. All instances of the netlist are library ele-
ments, i.e., there is a CELL model for each of them in the library.

core CELL is a core, i.e., a complex element which has no associated netlist for imple-
mentation purpose. However, a netlist representation can exist for modeling pur-
pose.

special CELL is a special element, which does not fall into any other category of cells.
Examples: bus holder, protection diode, filler cell.
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Example

CELL myNandGate {
CELLTYPE = combinational;
// put detailed description here

}
CELL myFlipflop {

CELLTYPE = flipflop;
// put detailed description here

}

8.5.3 RESTRICT_CLASS annotation

A restrict-class annotation shall be defined as shown in Semantics 14.

The annotation value shall be the name of a declared class (see 7.12).

The restrict-class annotation shall establish a necessary condition for the usage of a cell by an application per-
forming a design transformation involving instantiations of cells. An application other than a design transforma-
tion (e.g. analysis, file format translation) can disregard the restrict-class annotation or use it for informational
purpose only.

The meaning of the predefined restrict-class values established by Semantics 14 is specified in Table 30.

KEYWORD RESTRICT_CLASS = annotation {
CONTEXT { CELL CLASS }

}
SEMANTICS RESTRICT_CLASS {

REFERENCETYPE = CLASS;
}
CLASS synthesis { USAGE = RESTRICT_CLASS ; }
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS clock { USAGE = RESTRICT_CLASS ; }
CLASS layout { USAGE = RESTRICT_CLASS ; }

Semantics 14—RESTRICT_CLASS annotation

Table 30—Predefined RESTRICT_CLASS annotation values

Annotation value Description

synthesis Cell is suitable for creation or modification of a structural design
description (i.e., a netlist) while providing functional equivalence.

scan Cell is suitable for creation or modification of a scan chain within a netlist.

datapath Cell is suitable for structural implementation of a data flow graph.

clock Cell is suitable for distribution of a global synchronization signal.

layout Cell is suitable for usage within a physical artwork.
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Additional restrict-class values can be defined within the context of a library or a sublibrary (see 8.2), using a
class declaration (see 7.12) and a semantics declaration (see 7.10) in a similar way as shown in Semantics 14.

From the application standpoint, the following usage model for restrict-class shall apply.

a) A set of restrict-class values shall be associated with the application. These values are considered
“known” by the application. Usage of a cell shall only be authorized, if the set of restrict-class values
associated with the cell is a subset of the “known” restrict-class values.

b) Optionally, a boolean condition involving the set of “known” restrict-class values or a subset thereof can
be associated with the application. In addition to a), usage of a cell shall only be authorized, if the set of
restrict-class values associated with the cell satisfies the boolean condition.

Example:

Specification within the library:

CLASS A { USAGE = RESTRICT_CLASS; }
CLASS B { USAGE = RESTRICT_CLASS; }
CLASS C { USAGE = RESTRICT_CLASS; }
CLASS D { USAGE = RESTRICT_CLASS; }
CLASS E { USAGE = RESTRICT_CLASS; }
CLASS F { USAGE = RESTRICT_CLASS; }
CLASS G { USAGE = RESTRICT_CLASS; }
CELL X { RESTRICT_CLASS { A B } }
CELL Y { RESTRICT_CLASS { C } }
CELL Z { RESTRICT_CLASS { A C F } }

Specification for the application:

Set of “known” restrict-class values = ( A, B, C, D, E)
Boolean condition = ( A and not B ) or C

Result:

Usage of CELL X is not authorized, because boolean condition is not true.
Usage of CELL Y is authorized, because all values are “known”, and boolean condition is true.
Usage of CELL Z is not authorized, because value F is not “known”.

8.5.4 SWAP_CLASS annotation

A swap-class annotation shall be defined as shown in Semantics 15.

The annotation value shall be the name of a declared class (see 7.12). Single-value or multi-value annotation can
be used.

KEYWORD SWAP_CLASS = annotation {
CONTEXT = CELL;

}
SEMANTICS SWAP_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 15—SWAP_CLASS annotation
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Cells referring to the same class can be swapped for certain applications. Cell-swapping shall be only allowed
under the following conditions:

a) The restrict-class annotation (see 8.5.3) authorizes usage of the cell.
b) The cells are compatible from an application standpoint.

Example:

CLASS U { USAGE = SWAP_CLASS; }
CLASS V { USAGE = SWAP_CLASS; }
CELL X1 { SWAP_CLASS { U V } }
CELL X2 { SWAP_CLASS { U } }
CELL Y1 { SWAP_CLASS { U V } }
CELL Y2 { SWAP_CLASS { V } }

Cell X1 can be swapped with cell X2, provided the application authorizes the usage of both X1 and X2.
Cell X1 can be swapped with cell Y1, provided the application authorizes the usage of both X1 and Y1.
Cell Y1 can be swapped with cell Y2, provided the application authorizes the usage of both Y1 and Y2.
Cell X2 can not be swapped with cell Y2, even if the application authorizes the usage of both X2 and Y2.

End of example

8.5.5 SCAN_TYPE annotation

A scan type annotation shall be defined as shown in Semantics 16.

The meaning of the scan type annotation values is specified in Table 31.

KEYWORD SCAN_TYPE = single_value_annotation {
CONTEXT = CELL;

}
SEMANTICS SCAN_TYPE {

VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}

Semantics 16—SCAN_TYPE annotation

Table 31—SCAN_TYPE annotation values

Annotation value Description

muxscan Cell contains a multiplexor for selection between non-scan-mode and
scan-mode data.

clocked Cell supports a dedicated scan clock.

lssd Cell is suitable for level sensitive scan design.

control_0 Combinatorial cell, controlling pin shall be 0 in scan mode.

control_1 Combinatorial cell, controlling pin shall be 1 in scan mode.
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8.5.6 SCAN_USAGE annotation

A scan usage annotation shall be defined as shown in Semantics 17.

The meaning of the scan usage annotation values is specified in Table 32.

The scan usage annotation is applicable for a cell which is designed to be the primary input, output or intermedi-
ate stage of a scan chain.

8.5.7 BUFFERTYPE annotation

A buffertype annotation shall be defined as shown in Semantics 18.

KEYWORD SCAN_USAGE = single_value_annotation {
CONTEXT = CELL;

}
SEMANTICS SCAN_USAGE {

VALUETYPE = identifier;
VALUES { input output hold }

}

Semantics 17—SCAN_USAGE annotation

Table 32—SCAN_USAGE annotation values

Annotation value Description

input Primary input cell in a scan chain.

output Primary output cell in a scan chain.

hold Intermediate cell in a scan chain.

KEYWORD BUFFERTYPE = single_value_annotation {
CONTEXT = CELL;

}
SEMANTICS BUFFERTYPE {

VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

Semantics 18—BUFFERTYPE annotation
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The meaning of the buffertype annotation values is specified in Table 33.

8.5.8 DRIVERTYPE annotation

A drivertype annotation shall be defined as shown in Semantics 19.

The meaning of the drivertype annotation values is specified in Table 34.

The drivertype annotation applies only for a cell with buffertype value input or output or inout.

8.5.9 PARALLEL_DRIVE annotation

A parallel drive annotation shall be defined as shown in Semantics 20.

The annotation value shall specify the number of cells connected in parallel.

Table 33—BUFFERTYPE annotation values

Annotation value Description

input CELL has an external (i.e., off-chip) input pin.

output CELL has an external output pin.

inout CELL has an external bidirectional pin or an external input pin and an
external output pin.

internal CELL has no external pin.

KEYWORD DRIVERTYPE = single_value_annotation {
CONTEXT = CELL;

}
SEMANTICS DRIVERTYPE {

VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

Semantics 19—DRIVERTYPE annotation

Table 34—DRIVERTYPE annotation values

Annotation value Description

predriver CELL is a predriver, i.e., the core part of an I/O buffer.

slotdriver CELL is a slotdriver, i.e., the pad of an I/O buffer with off-chip connection.

both CELL is both a predriver and a slot driver, i.e., a complete I/O buffer.
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8.5.10 PLACEMENT_TYPE annotation

A placement type annotation shall be defined as shown in Semantics 21.

The purpose of the placement type annotation is to establish categories of cells in terms of placement and power
routing requirements.

The meaning of the placement type annotation values is specified in Table 35.

8.5.11 SITE reference annotation for a CELL

A site reference annotation (see 8.26.1) in the context of a cell shall be defined as shown in Semantics 22.

The purpose of a site reference annotation in the context of a cell is to specify a legal placement location for the
cell.

KEYWORD PARALLEL_DRIVE = single_value_annotation {
CONTEXT = CELL;

}
SEMANTICS PARALLEL_DRIVE {

VALUETYPE = unsigned_integer;
DEFAULT = 1;

}

Semantics 20—PARALLEL_DRIVE annotation

KEYWORD PLACEMENT_TYPE = single_value_annotation {
CONTEXT = CELL;

}
SEMANTICS PLACEMENT_TYPE {

VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = core;

}

Semantics 21—PLACEMENT_TYPE annotation

Table 35—PLACEMENT_TYPE annotation values

Annotation value Description

pad The cell is an element to be placed in the I/O area of a die.

core The cell is a regular element to be placed in the core area of a die, using a regular
power structure.

ring The cell is a macro element with built-in power structure.

block The cell is an abstraction of a collection of regular elements, each of which uses
a regular power structure.

connector The cell is to be placed at the border of the core area of a die in order to establish
a connection between a regular power structure and a power ring in the I/O area.
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8.5.12 ATTRIBUTE values for a CELL

An attribute in the context of a cell declaration shall specify more specific information within the category given
by the celltype annotation.

The attribute values shown in Table 36 can be used within cell with celltype annotation value memory.

The attributes shown in Table 37 can be used within a cell with celltype annotation value block.

SEMANTICS CELL.SITE = single_value_annotation;

Semantics 22—SITE reference annotation

Table 36—Attribute values for a CELL with CELLTYPE memory

Attribute item Description

RAM Random Access Memory.

ROM Read Only Memory.

CAM Content Addressable Memory.

static Static memory, needs no refreshment.

dynamic Dynamic memory, needs refreshment.

asynchronous Operation self-timed.

synchronous Operation synchronized with a clock signal.

Table 37—Attribute values for a CELL with CELLTYPE block

Attribute item Description

counter CELL is a counter, i.e., a complex sequential circuit going through a
predefined sequence of states in its normal operation mode where
each state represents an encoded control value.

shift_register CELL is a shift register, i.e., a complex sequential circuit going
through a predefined sequence of states in its normal operation
mode, where each subsequent state can be obtained from the previ-
ous one by a shift operation. Each bit represents a data value.

adder CELL is an adder, i.e., a combinatorial circuit performing an addition
of two operands.

subtractor CELL is a subtractor, i.e., a combinatorial circuit performing a sub-
traction of two operands.

multiplier CELL is a multiplier, i.e., a combinatorial circuit performing a multi-
plication of two operands.

comparator CELL is a comparator, i.e., a combinatorial circuit comparing the
magnitude of two operands.
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The attributes shown in Table 38 can be used within a cell with celltype annotation value core.

The attributes shown in Table 39 can be used within a cell with celltype annotation value special.

A cell with attribute value busholder shall have one or more pin declarations (see 8.6). The direction annotation
value shall be both (see 8.8.5). A cell with attribute value clamp shall have one or more pin declarations. The
direction annotation value shall be output. The logical value and drive strength shall be defined within a function
statement (see 9.1). A cell with attribute value diode, capacitor, resistor, or inductor shall have two pin declara-
tions and no function statement. A cell with attribute value fillcell shall have no pin declaration and no function
statement.

8.6 PIN declaration

A pin shall be declared as a scalar pin or as a vector pin or a matrix pin, as shown in Syntax 49.

ALU CELL is an arithmetic logic unit, i.e., a combinatorial circuit combin-
ing the functionality of adder, subtractor, and comparator.

Table 38—Attribute values for a CELL with CELLTYPE core

Attribute item Description

PLL CELL is a phase-locked loop.

DSP CELL is a digital signal processor.

CPU CELL is a central processing unit.

GPU CELL is a graphical processing unit.

Table 39—Attribute values for a CELL with CELLTYPE special

Attribute item Description

busholder CELL enables a tristate bus to hold its last value before all drivers
went into high-impedance state (see Table 74 in 9.10).

clamp CELL connects a net to a constant logic value (see 9.10).

diode CELL is a diode.

capacitor CELL is a capacitor.

resistor CELL is a resistor.

inductor CELL is an inductor.

fillcell CELL is used to fill unused space in layout.

Table 37—Attribute values for a CELL with CELLTYPE block (Continued)

Attribute item Description
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A pin shall represent a terminal of an electronic circuit. The purpose of a pin is exchange of information or
energy between the circuit and its environment. A constant value of information shall be called state. A time-
dependent value of information shall be called signal.

The order of pin declarations within a cell declaration shall reflect the order in which pins are referenced, when
the cell is instantiated in a netlist. The view annotation (see 8.8.3) shall further specify which pin is visible in a
netlist.

A scalar pin can be associated with a general electrical signal. However, a vector pin or a matrix pin can only be
associated with a digital signal. One element of a vector pin or of a matrix pin shall be associated with one bit of
information, i.e., a binary digital signal.

A vector-pin can be considered as a bus, i.e., a combination of scalar pins. The declaration of a vector-pin shall
involve a multi index (see 6.6). A reference to a scalar within the vector-pin shall be established by the pin iden-
tifier followed by a single index (see 6.6). A reference to a subvector within the vector-pin shall be established by
the pin identifier followed by a multi index.

A matrix-pin can be considered as a combination of vector-pins. A reference to a vector or to a submatrix,
respectively, within the matrix-pin shall be established by the pin identifier followed by a single index or by a
multi index, respectively.

Within a matrix-pin declaration, the first multi index shall specify the range of scalars or bits, and the second
multi index shall specify the range of vectors. Support for direct reference of a scalar within a matrix is not pro-
vided.

Example

PIN [5:8] myVectorPin ;
PIN [3:0] myMatrixPin [1:1000] ;

pin ::=
scalar_pin | vector_pin | matrix_pin

scalar_pin ::=
PIN pin_identifier ;

| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| pattern
| port

vector_pin ::=
PIN multi_index pin_identifier ;

| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

vector_pin_item ::=
all_purpose_item

| range
matrix_pin ::=

PIN first_multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

matrix_pin_item ::=
vector_pin_item

Syntax 49—PIN declaration
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The pin variable myVectorPin[5] refers to the scalar associated with the MSB of myVectorPin.
The pin variable myVectorPin[8] refers to the scalar associated with the LSB of myVectorPin.
The pin variable myVectorPin[6:7] refers to a subvector within myVectorPin.
The pin variable myMatrixPin[500] refers to a vector within myMatrixPin.
The pin variable myMatrixPin[500:502] refers to 3 subsequent vectors within myMatrixPin.

Consider the following pin assignment:
myVectorPin=myMatrixPin[500];

This establishes the following exchange of information:
myVectorPin[5] receives information from element [3] of myMatrixPin[500].
myVectorPin[6] receives information from element [2] of myMatrixPin[500].
myVectorPin[7] receives information from element [1] of myMatrixPin[500].
myVectorPin[8] receives information from element [0] of myMatrixPin[500].

8.7 PINGROUP declaration

A pingroup shall be declared as a simple pingroup or as a vector pingroup, as shown in Syntax 50.

A pingroup in general shall serve the purpose to specify items applicable to a combination of pins. The combina-
tion of pins shall be specified by the members annotation.

A vector pingroup can only combine scalar pins. A vector pingroup can be used as a pin variable, in the same
capacity as a vector pin.

A simple pingroup can combine pins of any format, i.e., scalar pins, vector pins, and matrix pins. A simple pin-
group can not be used as a pin variable.

8.8 Annotations related to a PIN or a PINGROUP declaration

This section defines annotations and attribute values in the context of a pin declaration or a pingroup declaration.

8.8.1 PIN reference annotation

A pin reference annotation shall be defined as shown in Semantics 23.

pingroup ::=
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier
{ MEMBERS_multi_value_annotation { all_purpose_item } }

| simple_pingroup_template_instantiation
vector_pingroup ::=

| PINGROUP multi_index pingroup_identifier
{ MEMBERS_multi_value_annotation { vector_pingroup_item } }

| vector_pingroup_template_instantiation
vector_pingroup_item ::=

all_purpose_item
| range

Syntax 50—PINGROUP declaration
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The purpose of a pin reference annotation is to establish an association between a pin, a pingroup, a port (see
8.23) or a node (see 8.12) and an arithmetic model (see 10.3) or a from-to statement (see 10.12). In this context,
the pin, pingroup, port or node is used as a reference point related to a timing measurement or an electrical mea-
surement.

A hierarchical identifier can be used to specify a reference to a pin, a pingroup, a port or a node as a child of a
cell, a pin or a wire.

8.8.2 MEMBERS annotation

A members annotation shall be defined as shown in Semantics 24.

The purpose of the members annotation is to specify the constituent pins of a pingroup.

8.8.3 VIEW annotation

A view annotation shall be defined as shown in Semantics 25.

The purpose of the view annotation is to specify the visibility of a pin in a netlist.

KEYWORD PIN = annotation {
CONTEXT { arithmetic_model FROM TO }

}
SEMANTICS PIN {

REFERENCETYPE { PIN PINGROUP PORT NODE }
}

Semantics 23—PIN reference annotation

KEYWORD MEMBERS = multi_value_annotation {
CONTEXT = PINGROUP;

}
SEMANTICS MEMBERS {

REFERENCETYPE = PIN;
}

Semantics 24—MEMBERS annotation

KEYWORD VIEW = single_value_annotation {
CONTEXT { PIN PINGROUP }

}
SEMANTICS VIEW {

VALUES { functional physical both none }
DEFAULT = both;

}

Semantics 25—VIEW annotation
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It can take the values shown in Table 40.

8.8.4 PINTYPE annotation

A pintype annotation shall be defined as shown in Semantics 26.

The purpose of the pintype annotation is to establish broad categories of pins.

It can take the values shown in Table 41.

8.8.5 DIRECTION annotation

A direction annotation shall be defined as shown in Semantics 27.

The purpose of the direction annotation is to establish the flow of information and/or electrical energy through a
pin. Information/energy can flow into a cell or out of a cell through a pin. The information/energy flow is not to
be mistaken as the flow of electrical current through a pin.

Table 40—VIEW annotation values

Annotation value Description

functional pin appears in functional netlist.

physical pin appears in physical netlist.

both pin appears in both functional and physical netlist.

none pin does not appear in netlist.

KEYWORD PINTYPE = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS PINTYPE {

VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

Semantics 26—PINTYPE annotation

Table 41—PINTYPE annotation values

Annotation value Description

digital Digital signal pin.

analog Analog signal pin.

supply Power supply or ground pin.
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The direction annotation can take the values shown in Table 42.

The direction annotation shall be orthogonal to the pintype annotation (see 8.8.4), i.e., all combinations of anno-
tation values are possible.

Examples

— The power and ground pins of a regular cell have the direction value input.
— A level converter cell has a power supply pin with direction value input and another power supply pin

with direction value output.
— A level converter can have a common ground pin with direction value both or separate ground pins

related to its power supply pins, i.e., one ground pin with direction value input and another ground pin
with direction value output.

— The power and ground pins of a feed through cell have the direction value none.

8.8.6 SIGNALTYPE annotation

A signaltype annotation shall be defined as shown in Semantics 28.

The purpose of the signaltype annotation is to classify the functionality of a pin. The set of defined values apply
for pins with pintype value digital. Conceptually, a pin with pintype value analog can also have a signaltype
annotation. However, no values are currently defined.

KEYWORD DIRECTION = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS DIRECTION {

VALUES { input output both none }
}

Semantics 27—DIRECTION annotation

Table 42—DIRECTION annotation values

Annotation value Description

input Information/energy flows through the pin into the cell. The pin is a
receiver or a sink.

output Information/energy flows through the pin out of the cell. The pin is a
driver or a source.

both Information/energy flows through the pin in and out of the cell. The
pin is both a receiver/sink and driver/source, dependent on the mode
of operation.

none No information/energy flows through the pin in or out of the cell.
The pin can be an internal pin without connection to its environment
or a feedthrough where both ends are represented by the same pin.
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The fundamental signaltype values are defined in Table 43

Figure 9 shows how to construct composite signaltype values.

KEYWORD SIGNALTYPE = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS SIGNALTYPE {

VALUETYPE = identifier;
VALUES {

data scan_data address control select tie clear set
enable out_enable scan_enable scan_out_enable
clock master_clock slave_clock
scan_master_clock scan_slave_clock

}
DEFAULT = data;

}

Semantics 28—SIGNALTYPE annotation

Table 43—Fundamental SIGNALTYPE annotation values

Annotation value Description

data General data signal, i.e., a signal that carries information to be trans-
mitted, received, or subjected to logic operations within the CELL.

address Address signal of a memory, i.e., an encoded signal, usually a bus or
part of a bus, driving an address decoder within the CELL.

control General control signal, i.e., an encoded signal that controls at least
two modes of operation of the CELL, possibly in conjunction with
other signals. The signal value is allowed to change during real-time
circuit operation.

select Select signal, i.e., a signal that selects the data path of a multiplexor
or de-multiplexor within the CELL. Each selected signal has the
same SIGNALTYPE.

enable The signal enables storage of general input data in a latch or a flip-
flop or a memory

tie The signal needs to be tied to a fixed value statically in order to
define a fixed or programmable mode of operation of the CELL, pos-
sibly in conjunction with other signals. The signal value is not
allowed to change during real-time circuit operation.

clear Clear or reset signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value 0 within the CELL.

set Preset or set signal of a flip-flop or latch, i.e., a signal that controls
the storage of the value 1 within the CELL.

clock Clock signal of a flip-flop or latch, i.e., a timing-critical signal that
triggers data storage within the CELL.
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Figure 9—Scheme for constructing composite signaltype values

The composite signaltype values are defined in Table 44

Within the definitions of Table 43 and Table 44, the elements flipflop, latch, multiplexor, or memory can be stan-
dalone cells or embedded in larger cells. In the former case, the celltype value (see 8.5.2) is flipflop, latch, multi-
plexor, or memory, respectively. In the latter case, the celltype value can be block or core.

8.8.7 ACTION annotation

An action annotation shall be defined as shown in Semantics 29.

The purpose of the action annotation is to define, whether a signal is self-timed or synchronized with a clock sig-
nal.

Table 44—Composite SIGNALTYPE annotation values

Annotation value Description

scan_data Scan data signal, i.e., signal is relevant in scan mode only.

out_enable Enables visibility of general data at an output pin of a cell.

scan_enable Enables storage of scan input data in a latch or a flipflop.

scan_out_enable Enables visibility of scan data at an output pin of a cell.

master_clock Triggers storage of input data in the first stage of a flipflop in a two-
phase clocking scheme.

slave_clock Triggers data transfer from first the stage to the second stage of a
flipflop in a two-phase clocking scheme.

scan_clock Triggers storage of scan input data within a cell.

scan_master_clock Triggers storage of input scan data in the first stage of a flipflop in a
two-phase clocking scheme.

scan_slave_clock Triggers scan data transfer from the first stage to the second stage of
a flipflop in a two-phase clocking scheme.

data

enable

clock

master_clock

slave_clock

out_enable

scan_data

scan_enable

scan_out_enable

scan_clock

scan_master_clock

scan_slave_clock
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The action annotation can take the values shown in Table 45.

The action annotation applies only in conjunction with specific signaltype values (see 8.8.6), as shown in
Table 46.

8.8.8 POLARITY annotation

A polarity annotation shall be defined as shown in Semantics 30.

KEYWORD ACTION = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS ACTION {

VALUES { asynchronous synchronous }
}

Semantics 29—ACTION annotation

Table 45—ACTION annotation values

Annotation value Description

asynchronous Signal acts in an asynchronous way, i.e., self-timed

synchronous Signal acts in a synchronous way, i.e., triggered by a clock signal

Table 46—ACTION in conjunction with SIGNALTYPE

fundamental
SIGNALTYPE value

composite
SIGNALTYPE value ACTION applicable

data scan_data No

address No

control Yes

select No

enable scan_enable
out_enable
scan_out_enable

Yes

tie No

clear Yes

set Yes

clock scan_clock
master_clock
slave_clock
scan_master_clock
scan_slave_clock

No
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The purpose of the polarity annotation is to define the active state or the active edge of an input signal.

The polarity annotation can take the values shown in Table 47.

The polarity annotation applies only in conjunction with specific signaltype values (see 8.8.6), as shown in
Table 48.

KEYWORD POLARITY = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS POLARITY {

VALUETYPE = identifier;
VALUES { high low rising_edge falling_edge double_edge }

}

Semantics 30—POLARITY annotation

Table 47—POLARITY annotation values

Annotation value Description

high Signal is active high or to be driven high.

low Signal is active low or to be driven low.

rising_edge Signal is activated by rising edge.

falling_edge Signal is activated by falling edge.

double_edge Signal is activated by both rising and falling edge.

Table 48—POLARITY in conjunction with SIGNALTYPE

fundamental
SIGNALTYPE value

composite
SIGNALTYPE value Applicable POLARITY value

data scan_data N/A

address N/A

control N/A

select N/A

enable scan_enable
out_enable
scan_out_enable

high
low

tie high
low

clear high
low

set high
low
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8.8.9 CONTROL_POLARITY annotation container

A control polarity annotation container shall be defined as shown in Semantics 31.

The purpose of the control polarity annotation container is to specify the active state or the active edge of an
input signal in association with a particular mode of operation, wherein the name of the mode of operation is
given by the annotation identifier.

The control polarity annotation container can be used only in conjunction with specific signaltype values (see
8.8.6), as shown in Table 49.

clock scan_clock
master_clock
slave_clock
scan_master_clock
scan_slave_clock

high
low
rising_edge
falling_edge
double_edge

KEYWORD CONTROL_POLARITY = annotation_container {
CONTEXT = PIN ;

}
SEMANTICS
CONTROL_POLARITY.identifier = single_value_annotation {

VALUES { high low rising_edge falling_edge double_edge }
}

Semantics 31—Control polarity annotation container

Table 49—CONTROL_POLARITY in conjunction with SIGNALTYPE

fundamental
SIGNALTYPE value

composite
SIGNALTYPE value

Applicable annotation value
within CONTROL_POLARITY

control high
low

clock scan_clock
master_clock
slave_clock
scan_master_clock
scan_slave_clock

high
low
rising_edge
falling_edge
double_edge

other N/A

Table 48—POLARITY in conjunction with SIGNALTYPE (Continued)

fundamental
SIGNALTYPE value

composite
SIGNALTYPE value Applicable POLARITY value
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Example:

PIN ModeSel1 {
DIRECTION = input; SIGNALTYPE = control;
CONTROL_POLARITY { normal=high; scan=low; hold=low; }

}
PIN ModeSel2 {

DIRECTION = input; SIGNALTYPE = control;
CONTROL_POLARITY { scan=high; hold=low; }

}

The control-polarity specification in this example is equivalent to the following truth table.

8.8.10 DATATYPE annotation

A datatype annotation shall be defined as shown in Semantics 32.

The purpose of the datatype annotation is to define the arithmetic representation of a digital signal.

The datatype annotation can take the values shown in Table 50.

The datatype annotation is only relevant for a bus, i.e., a vector pin (see Syntax 49 in 8.6).

8.8.11 INITIAL_VALUE annotation

An initial value annotation shall be defined as shown in Semantics 33.

KEYWORD DATATYPE = single_value_annotation {
CONTEXT { PIN PINGROUP }

}
SEMANTICS DATATYPE {

VALUES { signed unsigned }
}

Semantics 32—DATATYPE annotation

Table 50—DATATYPE annotation values

Annotation value Description

signed Result of arithmetic operation is signed 2’s complement.

unsigned Result of arithmetic operation is unsigned.

ModeSel1 ModeSel2 Mode of operation

0
0
1

0
1
don’t care

hold
scan
normal
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The purpose of the initial value annotation is to provide an initial value of a signal within a simulation model
derived from ALF. A signal shall have the initial value before a simulation event affects the signal. The default
value “U” means “uninitialized” (see 9.10.1, Table 74).

8.8.12 SCAN_POSITION annotation

A scan position annotation shall be defined as shown in Semantics 34.

The purpose of the scan position annotation is to specify the position of the pin in scan chain, starting with 1 for
the primary input. The value 0 (which is the default) indicates that the pin is not on the scan chain.

8.8.13 STUCK annotation

A stuck annotation shall be defined as shown in Semantics 35.

The purpose of the stuck annotation is to specify a static fault model applicable for the pin.

KEYWORD INITIAL_VALUE = single_value_annotation {
CONTEXT { PIN PINGROUP }

}
SEMANTICS INITIAL_VALUE {

VALUETYPE = boolean_value;
DEFAULT = U;

}

Semantics 33—INITIAL_VALUE annotation

KEYWORD SCAN_POSITION = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS SCAN_POSITION {

VALUETYPE = unsigned_integer;
DEFAULT = 0;

}

Semantics 34—SCAN_POSITION annotation

KEYWORD STUCK = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS STUCK {

VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = both;

}

Semantics 35—STUCK annotation
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The STUCK annotation can take the values shown in Table 51.

8.8.14 SUPPLYTYPE annotation

A supplytype annotation shall be defined as shown in Semantics 36.

The supplytype annotation can take the values shown in Table 52.

The purpose of the supplytype annotation is to define a subcategory of pins with pintype value supply (see
Table 41).

8.8.15 SIGNAL_CLASS annotation

A signal-class annotation shall be defined as shown in Semantics 37.

Table 51—STUCK annotation values

Annotation value Description

stuck_at_0 Pin can exhibit a faulty static low state.

stuck_at_1 Pin can exhibit a faulty static high state.

both Pin can exhibit a faulty static high or low state.

none Pin can not exhibit a faulty static state.

KEYWORD SUPPLYTYPE = annotation {
CONTEXT { PIN CLASS }

}
SEMANTICS SUPPLYTYPE {

VALUETYPE = identifier;
VALUES { power ground reference }

}

Semantics 36—SUPPLYTYPE annotation

Table 52—SUPPLYTYPE annotation values

Annotation value Description

power Pin is electrically connected to a power supply, i.e., a constant non-zero
voltage source providing energy for operation of a circuit.

ground Pin is electrically connected to ground, i.e., a zero voltage source providing
the return path for electrical current through a power supply.

reference Pin exhibits a constant voltage level without providing significant energy
for operation of a circuit.
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The value shall be the name of a declared CLASS.

The purpose of the signal-class annotation is to specify which terminals of a cell with are functionally related to
each other. The signal-class annotation applies for a pin with arbitrary signaltype value (see 8.8.6).

Example:

A multiport memory can have a data bus related to an address bus and another data bus related to another address
bus. Note that the term “port” in “multiport” does not relate to the ALF port declaration (see 8.23).

CELL my2PortMemory {
CLASS ReadPort { USAGE = SIGNAL_CLASS; }
CLASS WritePort { USAGE = SIGNAL_CLASS; }
PIN [3:0] addr_A { SIGNALTYPE = address; SIGNAL_CLASS = ReadPort; }
PIN [7:0] data_A { SIGNALTYPE = data; SIGNAL_CLASS = ReadPort; }
PIN [3:0] addr_B { SIGNALTYPE = address; SIGNAL_CLASS = WritePort; }
PIN [7:0] data_B { SIGNALTYPE = data; SIGNAL_CLASS = WritePort; }
PIN write_enable { SIGNALTYPE = enable; SIGNAL_CLASS = WritePort; }

}

8.8.16 SUPPLY_CLASS annotation

A supply-class annotation shall be defined as shown in Semantics 38.

The annotation value shall be the name of a declared class (see 7.12).

The purpose of the supply-class annotation is to specify a relation between a pin and a power supply system, rep-
resented by the referred class.

The supply-class annotation shall apply for a pin with any signaltype value (see 8.8.6) or any supplytype value
(see 8.8.14).

The supply-class annotation shall also apply for a class with usage value connect-class (see 8.8.19). The latter
class shall represent a global net related to a power supply system.

KEYWORD SIGNAL_CLASS = annotation {
CONTEXT { PIN PINGROUP }

}
SEMANTICS SIGNAL_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 37—SIGNAL_CLASS annotation

KEYWORD SUPPLY_CLASS = annotation {
CONTEXT { PIN CLASS POWER ENERGY }

}
SEMANTICS SUPPLY_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 38—SUPPLY_CLASS annotation
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The supply-class annotation shall also apply for the arithmetic models power and energy (see 10.11.15).

Example 1:

A cell supports two power supplies. Each pin is related to at least one power supply.

CLASS supply1 { USAGE = SUPPLY_CLASS; }
CLASS supply2 { USAGE = SUPPLY_CLASS; }
CELL myLevelShifter {

PIN Vdd1 { SUPPLYTYPE = power; SUPPLY_CLASS = supply1; }
PIN Din { SIGNALTYPE = data; SUPPLY_CLASS = supply1; }
PIN Vdd2 { SUPPLYTYPE = power; SUPPLY_CLASS = supply2; }
PIN Dout { SIGNALTYPE = data; SUPPLY_CLASS = supply2; }
PIN Gnd { SUPPLYTYPE = ground; SUPPLY_CLASS { supply1 supply2 } }

}

Example 2:

A library provides two environmental power supplies. A supply pin of a cell has to be connected to a global net
related to an environmental power supply.

CLASS core { USAGE = SUPPLY_CLASS; }
CLASS io { USAGE = SUPPLY_CLASS; }
CLASS Vdd1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=core; }
CLASS Vss1 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=core; }
CLASS Vdd2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=power; SUPPLY_CLASS=io; }
CLASS Vss2 { USAGE=CONNECT_CLASS; SUPPLYTYPE=ground; SUPPLY_CLASS=io; }
CELL myInternalCell {

PIN vdd { CONNECT_CLASS=Vdd1; }
PIN vss { CONNECT_CLASS=Vss1; }

}
CELL myPadCell {

PIN vdd { CONNECT_CLASS=Vdd2; }
PIN vss { CONNECT_CLASS=Vss2; }

}

8.8.17 DRIVETYPE annotation

A drivetype annotation shall be defined as shown in Semantics 39.

KEYWORD DRIVETYPE = single_value_annotation {
CONTEXT { PIN CLASS }

}
SEMANTICS DRIVETYPE {

VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

Semantics 39—DRIVETYPE annotation
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The purpose of the drivetype annotation is to specify a category of electrical characteristics for a pin, which
relate to the system of logic values and drive strengths (see Table 74).

The drivetype annotation can take the values shown in Table 53.

8.8.18 SCOPE annotation

A scope annotation shall be defined as shown in Semantics 40.

Table 53—DRIVETYPE annotation values

Annotation value Description

cmos Standard cmos signal. The logic high level is equal to the power sup-
ply, the logic low level is equal to ground. The drive strength is
strong. No static current flows. Signal is amplified by cmos stage.

nmos Nmos or pseudo nmos signal. The logic high level is equal to the
power supply and its drive strength is resistive. The logic low level
voltage depends on the ratio of pull-up and pull-down transistor.
Static current flows in logic low state.

pmos Pmos or pseudo pmos signal. The logic low level is equal to ground
and its drive strength is resistive. The logic high level voltage
depends on the ratio of pull-up and pull-down transistor. Static cur-
rent flows in logic high state.

nmos_pass Nmos passgate signal. Signal is not amplified by passgate stage.
Logic low voltage level is preserved, logic high voltage level is lim-
ited by nmos threshold voltage.

pmos_pass Pmos passgate signal. Signal is not amplified by passgate stage.
Logic high voltage level is preserved, logic low voltage level is lim-
ited by pmos threshold voltage.

cmos_pass Cmos passgate signal, i.e., a full transmission gate. Signal is not
amplified by passgate stage. Voltage levels are preserved.

ttl TTL signal. Both logic high and logic low voltage levels are load-
dependent, as static current can flow.

open_drain Open drain signal. Logic low level is equal to ground. Logic high
level corresponds to high impedance state.

open_source Open source signal. Logic high level is equal to the power supply.
Logic low level corresponds to high impedance state.

KEYWORD SCOPE = single_value_annotation {
CONTEXT { PIN PINGROUP }

}
SEMANTICS SCOPE {

VALUES { behavior measure both none }
DEFAULT = both;

}

Semantics 40—SCOPE annotation
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The purpose of the scope annotation is to specify a category of modeling usage for a pin. The scope annotation
specifies whether a pin can be involved in a control expression (see 9.12) within a vector declaration (see 8.14) or
within a behavior statement (see 9.4).

The scope annotation can take the values shown in Table 54.

8.8.19 CONNECT_CLASS annotation

A connect-class annotation shall be defined as shown in Semantics 41.

The annotation value shall be the name of a declared class (see 7.12).

The purpose of the connect-class annotation is to specify a relationship between a pin and an environmental rule
for connectivity (see 10.18.1). The connect-class annotation can be used in conjunction with supply-class (see
8.8.16) or in conjunction with connect-rule (see 10.20.1).

8.8.20 SIDE annotation

A side annotation shall be defined as shown in Semantics 42.

The purpose of the side annotation is to define an abstract location of a pin relative to a bounding box of a cell.

Table 54—SCOPE annotation values

Annotation value Description

behavior The pin is used for modeling functional behavior. Pin can be
involved in a control expression within a BEHAVIOR statement.

measure Measurements related to the pin can be described. Pin can be
involved in a control expression within a VECTOR declaration.

both Pin can be involved in a control expression within a BEHAVIOR
statement or within a VECTOR declaration.

none Pin can not be involved in a control expression.

KEYWORD CONNECT_CLASS = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS CONNECT_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 41—CONNECT_CLASS annotation
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The side annotation can take the values shown in Table 55.

8.8.21 ROW and COLUMN annotation

A row annotation and a column annotation shall be defined as shown in Semantics 43.

The purpose of a row and a column annotation is to indicate a location of a pin when a cell is placed within a
placement grid. The count of rows and columns shall start at the lower left corner of the bounding box of the cell,
as shown in Figure 10.

KEYWORD SIDE = single_value_annotation {
CONTEXT { PIN PINGROUP }

}
SEMANTICS SIDE {

VALUETYPE = identifier;
VALUES { left right top bottom inside }

}

Semantics 42—SIDE annotation

Table 55—SIDE annotation values

Annotation value Description

left pin is on the left side of the bounding box.

right pin is on the right side of the bounding box.

top pin is at the top of the bounding box.

bottom pin is at the bottom of the bounding box.

inside pin is inside the bounding box.

KEYWORD ROW = annotation {
CONTEXT { PIN PINGROUP }

}
SEMANTICS ROW {

VALUETYPE = unsigned_integer;
}
KEYWORD COLUMN = annotation {

CONTEXT { PIN PINGROUP }
}
SEMANTICS COLUMN {

VALUETYPE = unsigned_integer;
}

Semantics 43—ROW and COLUMN annotations
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Figure 10—ROW and COLUMN relative to a bounding box of a CELL

The row annotation is applicable for a pin with side value left or right. The column annotation is applicable for a
pin with side value top or bottom. Both row and column annotation are applicable for a pin with side value
inside.

A single-value annotation is applicable for a scalar pin. A multi-value annotation is applicable for a vector pin or
for a vector pingroup. The number of values shall match the number of scalar pins within the vector pin or pin-
group. The order of values shall correspond to the order of scalar pins within the vector pin or pingroup.

8.8.22 ROUTING_TYPE annotation

A routing-type annotation shall be defined as shown in Semantics 44.

The purpose of the routing-type annotation is to specify the physical connection between a pin and a routed wire.

The routing-type annotation can take the values shown in Table 56.

KEYWORD ROUTING_TYPE = single_value_annotation {
CONTEXT { PIN PORT }

}
SEMANTICS ROUTING_TYPE {

VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}

Semantics 44—ROUTING_TYPE annotation

Table 56—ROUTING-TYPE annotation values

Annotation value Description

regular Pin has a via, connection by regular routing to the via

abutment Pin is the end of a wire segment, connection by abutment

0

1

2

3

4

0 1 2 3

bounding box of cell

column

row this region has column=1, row=2
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8.8.23 PULL annotation

A pull annotation shall be defined as shown in Semantics 45.

The purpose of the pull annotation is to specify whether a pullup or a pulldown device is connected to the pin.

The pull annotation can take the values shown in Table 57.

A pullup device ties the pin to a logic high level when no other signal is driving the pin. A pulldown device ties
the pin to a logic low level when no other signal is driving the pin. If both devices are connected, the pin is tied to
an intermediate voltage level, i.e. in-between logic high and logic low, when no other signal is driving the pin.

ring Pin forms a ring around the cell, connection by abutment to any point
of the ring.

feedthrough Pin has two aligned ends of a wire segment, connection by abutment
on both ends

KEYWORD PULL = single_value_annotation {
CONTEXT = PIN;

}
SEMANTICS PULL {

VALUES { up down both none }
DEFAULT = none;

}

Semantics 45—PULL annotation

Table 57—PULL annotation values

Annotation value Description

up Pullup device connected to the pin.

down Pulldown device connected to the pin.

both Both pullup and pulldown device connected to pin.

none No pullup or pulldown device connected to the pin.

Table 56—ROUTING-TYPE annotation values (Continued)

Annotation value Description
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8.8.24 ATTRIBUTE values for a PIN or a PINGROUP

The attribute values shown in Table 58 are applicable for a pin or a pingroup with the following characteristics.

The attribute values shown in Table 59 are applicable for a pin or a pingroup of a cell with celltype value memory
in conjunction with a specific signaltype value.

The attribute values shown in Table 60 are applicable for a pair of signals.

Table 58—Attribute values for a PIN

Attribute item Description

SCHMITT Schmitt trigger signal, i.e., the DC transfer characteristics exhibit a
hysteresis. Applicable for output pin.

TRISTATE Tristate signal, i.e., the signal can be in high impedance mode. Appli-
cable for output pin.

XTAL Crystal/oscillator signal. Applicable for output pin of an oscillator
circuit.

PAD Pin has external,i.e., off-chip connection.

Table 59—Attribute values for a PIN of a CELL with CELLTYPE memory

Attribute item SIGNALTYPE Description

ROW_ADDRESS_STROBE clock Samples the row address of the memory.
Applicable for scalar pin.

COLUMN_ADDRESS_STROBE clock Samples the column address of the memory.
Applicable for scalar pin.

ROW address Selects an addressable row of the memory.
Applicable for pin and pingroup.

COLUMN address Selects an addressable column of the memory.
Applicable for pin and pingroup.

BANK address Selects an addressable bank of the memory.
Applicable for pin and pingroup.

Table 60—Attribute values for a PIN within a pair of signals

Attribute item Description

INVERTED Represents the inverted value within a pair of signals car-
rying complementary values.

NON_INVERTED Represents the non-inverted value within a pair of signals
carrying complementary values.
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In case there is more than one pair of signals related to each other by the attribute values inverted, non-inverted,
or differential, each pair shall be member of a dedicated pingroup.

The following restrictions apply for pairs of signals.

— The PINTYPE, SIGNALTYPE, and DIRECTION of both pins shall be the same.
— One PIN shall have the attribute INVERTED, the other NON_INVERTED.
— Either both pins or none of the pins shall have the attribute DIFFERENTIAL.
— POLARITY, if applicable, shall be complementary as follows:

HIGH is paired with LOW
RISING_EDGE is paired with FALLING_EDGE
DOUBLE_EDGE is paired with DOUBLE_EDGE

The attribute inverted, non-inverted also applies to pins of a cell for which the implementation of a pair of signals
is optional, i.e., one of the signals can be missing. The output pin of a flipflop or a latch is an example. The flip-
flop or the latch can have an output pin with attribute non-inverted and/or another output pin with attribute
inverted.

The attribute values shown in Table 61 shall be defined for memory BIST.

These attributes apply to the virtual pins associated with a BIST wrapper around the memory rather than to the
physical pins of the memory itself. The BIST wrapper can be represented as a test statement (see 9.2).

8.9 PRIMITIVE declaration

A primitive shall be declared as shown in Syntax 51.

DIFFERENTIAL Signal is part of a differential pair, i.e., both the inverted
and non-inverted values are always required for physical
implementation.

Table 61—ATTRIBUTE values for a PIN or a PINGROUP related to memory BIST

Attribute item Description

ROW_INDEX Vector pin or pingroup with a contiguous range of values,
indicating a physical row of a memory.

COLUMN_INDEX Vector pin or pingroup with a contiguous range of values,
indicating a physical column of a memory.

BANK_INDEX Vector pin or pingroup with a contiguous range of values,
indicating a physical bank of a memory.

DATA_INDEX Vector pin or pingroup with a contiguous range of values,
indicating the bit position within a data bus of a memory.

DATA_VALUE Scalar pin, representing a value stored in a physical mem-
ory location.

Table 60—Attribute values for a PIN within a pair of signals (Continued)

Attribute item Description
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The purpose of a primitive is to describe a virtual circuit. The virtual circuit can be functionally equivalent to a
physical electronic circuit represented as a cell (see 8.4). A primitive can be instantiated within a behavior state-
ment (see 9.4).

8.10 WIRE declaration

A wire shall be declared as shown in Syntax 52.

The purpose of a wire declaration is to describe an interconnect model. The interconnect model can be a statisti-
cal wireload model, a description of boundary parasitics within a complex cell, a model for interconnect analysis,
or a specification of a load seen by a driver.

8.11 Annotations related to a WIRE declaration

8.11.1 WIRE reference annotation

A wire reference annotation shall be defined as shown in Semantics 46.

The purpose of a wire reference annotation is to establish an association between a vector and an arithmetic
model (see 10.3).

primitive ::=
PRIMITIVE primitive_identifier { { primitive_item } }

| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

| pin
| pingroup
| function
| test

Syntax 51—PRIMITIVE statement

wire ::=
WIRE wire_identifier { { wire_item } }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_item ::=
all_purpose_item

| node

Syntax 52—WIRE declaration

KEYWORD WIRE = annotation {
CONTEXT = arithmetic_model;

}
SEMANTICS WIRE {

REFERENCETYPE = WIRE;
}

Semantics 46—WIRE reference annotation
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A hierarchical identifier can be used to specify a reference to a wire as a child of a cell or a sublibrary or a library.

8.11.2 WIRETYPE annotation

A wiretype annotation shall be defined as shown in Semantics 47.

The purpose of the wiretype annotation is to define a purpose and a usage model for the wire statement.

The wiretype annotation can take the values shown in Table 62.

An R, L, C component within the context of the wire declaration shall be described as an arithmetic model (see
10.3). A related electrical measurement, e.g., voltage, current, noise, shall also be described as arithmetic model.

8.11.3 SELECT_CLASS annotation

A select-class annotation shall be defined as shown in Semantics 48.

The identifier shall refer to the name of a declared class.

KEYWORD WIRETYPE = single_value_annotation {
CONTEXT = WIRE;

}
SEMANTICS WIRETYPE {

VALUETYPE = identifier;
VALUES { estimated extracted interconnect load }

}

Semantics 47—WIRETYPE annotation

Table 62—WIRETYPE annotation values

Annotation value Description

estimated The wire declaration contains a statistical wireload model, i.e., a
model for estimation of R, L, C values for a net, without a structural
description of a circuit.

extracted The wire declaration contains a structural description of a circuit, i.e.
a netlist, related to the parent object, i.e. a cell. The R, L, C compo-
nents represent extracted parasitics from a physical implementation
of the cell.

interconnect The wire declaration contains a structural description of a circuit,
representing a model for interconnect analysis. A general R, L, C
interconnect network is expected to be reduced to the specified cir-
cuit for analysis purpose.

load The wire declaration contains a structural description of a circuit,
which is to be connected as a load to a device, i.e., a cell, for charac-
terization or test. A wire instantiation (see 9.15) shall be used to
describe such a connection.
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The purpose of the select-class annotation is to provide a mechanism for selecting a set of wire objects by an
application. The user of the application can select a set of related wire objects by specifying the name of a class
rather than specifying the name of each wire object.

The semantics of the select class shall be under the responsibility of the library provider. The library provider can
define a select class based on criteria such as range of wire length, range of die size, accuracy requirements for
delay calculation etc.

The select class annotation is orthogonal to the wiretype annotation, as illustrated in the following example.

Example:

CLASS short_wire { USAGE = SELECT_CLASS ; }
CLASS long_wire { USAGE = SELECT_CLASS ; }
WIRE pre_layout_small {

WIRETYPE = estimated; SELECT_CLASS = short_wire;
// put statistical wireload model here

}
WIRE post_layout_small {

WIRETYPE = interconnect; SELECT_CLASS = short_wire;
// put interconnect analysis model here

}
WIRE pre_layout_large {

WIRETYPE = estimated; SELECT_CLASS = long_wire;
// put statistical wireload model here

}
WIRE post_layout_large {

WIRETYPE = interconnect; SELECT_CLASS = long_wire;
// put interconnect analysis model here

}

8.12 NODE declaration

A node shall be declared as shown in Syntax 53.

KEYWORD SELECT_CLASS = annotation {
CONTEXT = WIRE;

}
SEMANTICS SELECT_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 48—SELECT_CLASS annotation

node ::=
NODE node_identifier ;

| NODE node_identifier { { node_item } }
| node_template_instantiation

node_item ::=
all_purpose_item

Syntax 53—NODE statement
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The purpose of a node declaration is to specify an electrical node in the context of a wire declaration (see 8.10) or
in the context of a cell declaration (see 8.4).

8.13 Annotations related to a NODE declaration

8.13.1 NODE reference annotation

A node reference annotation shall be defined as shown in Semantics 49.

The purpose of a node reference annotation is to establish an association between a pin, a pingroup, a port (see
8.23) or a node (see 8.12) and an arithmetic model (see 10.3). In this context, the pin, pingroup, port or node is
used to specify the connectivity of an electrical component within a structural circuit.

A hierarchical identifier can be used to specify a reference to a pin, a port or a node as a child of a cell, a pin or a
wire.

8.13.2 NODETYPE annotation

A nodetype annotation shall be defined as shown in Semantics 50.

The values shall have the semantic meaning shown in Table 63.

KEYWORD NODE = multi_value_annotation {
CONTEXT = arithmetic_model;

}
SEMANTICS NODE {

REFERENCETYPE { PIN PORT NODE }
}

Semantics 49—NODE reference annotation

KEYWORD NODETYPE = single_value_annotation {
CONTEXT = NODE;

}
SEMANTICS NODETYPE {

VALUETYPE = identifier;
VALUES { power ground source sink

driver receiver interconnect }
DEFAULT = interconnect;

}

Semantics 50—NODETYPE annotation

Table 63—NODETYPE annotation values

Annotation value Description

driver The node is the interface between an output pin of a cell and an
interconnect wire.
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A circuit wherein all nodes are interconnected by either a resistance or an inductance or a voltage source is called
a DC-connected net.

The meaning of the nodetype annotation values in context of a DC-connected net is illustrated in Figure 11.

Figure 11—NODETYPE in context of a DC-connected net

The nodetype annotation specifies a way of separating a DC-connected net into three DC-connected subnets. The
DC-connected subnet between a source node and a driver node is considered a model of an internal interconnect
within a cell. The driver node shall be considered an output pin of the cell. The DC-connected subnet between a
receiver node and a sink node is considered a model of an internal interconnect within another cell. The receiver
node shall be considered an input pin of the cell. The DC-connected subnet between a driver node and a receiver
node is considered a model of the external interconnect between two cells. The association of an interconnect
node with either cell or with the interconnect between the cells is inferred by the connectivity within the DC-con-
nected net. A power or a ground node which is not part of the DC-connected net is considered global.

receiver The node is the interface between an interconnect wire and an
input pin of a cell.

source The node is a virtual start point of signal propagation.
In case of an ideal driver, the source node is collapsed with a
driver node. The collapsed node shall have the nodetype value
driver.

sink The node is a virtual end point of signal propagation.
In case of an ideal receiver, the sink node is collapsed with a
receiver node. The collapsed node shall have the nodetype value
receiver.

power The node supports electrical current for a rising signal at a
source or a driver node and a reference for a logic high signal
at a sink or receiver node.

ground The node supports electrical current for a falling signal at a
source or a driver node and a reference for logic a low signal
at a sink or a receiver node

interconnect The node serves for connecting purpose only.

Table 63—NODETYPE annotation values (Continued)

Annotation value Description

cell cell

driver nodesource node receiver node sink node

DC-connected subnet
DC-connected subnetDC-connected subnet

DC-connected net
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8.13.3 NODE_CLASS annotation

A node-class annotation shall be defined as shown in Semantics 51.

The identifier shall refer to the name of a declared class.

The purpose of the node-class annotation is to associate a node with a cell in the case where an association can
not be inferred by the connectivity within a DC-connected net.

Example:

WIRE CrosstalkAcrossPowerDomains {
CLASS aggressor { USAGE = NODE_CLASS; }
CLASS victim { USAGE = NODE_CLASS; }
NODE vdd1 { NODETYPE = power; NODE_CLASS = aggressor; }
NODE driver1 { NODETYPE = driver; NODE_CLASS = aggressor; }
NODE vdd2 { NODETYPE = power; NODE_CLASS = victim; }
NODE driver2 { NODETYPE = driver; NODE_CLASS = victim; }

// put electrical components here
// put crosstalk model here
}

The node declarations in this example provide a context for a crosstalk model, where the noise magnitude at the
victim’s driver node can depend on the supply voltage at the aggressor’s power node, the supply voltage at the
victim’s power node, the signal characteristics at the aggressor’s driver node and other parameters. The crosstalk
model itself is not shown here.

8.14 VECTOR declaration

A vector shall be declared as shown in Syntax 54.

KEYWORD NODE_CLASS = annotation {
CONTEXT = NODE;

}
SEMANTICS NODE_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 51—NODE_CLASS annotation

vector ::=
VECTOR control_expression ;

| VECTOR control_expression { { vector_item } }
| vector_template_instantiation

vector_item ::=
all_purpose_item

| wire_instantiation

Syntax 54—VECTOR statement
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The purpose of a vector is to provide a context for electrical characterization data or for functional test data. The
control expression (see 9.4) shall specify a stimulus related to characterization or test.

8.15 Annotations related to a VECTOR declaration

8.15.1 VECTOR reference annotation

A vector reference annotation shall be defined as shown in Semantics 52.

The purpose of a vector reference annotation is to establish an association between a vector and an arithmetic
model (see 10.3).

8.15.2 PURPOSE annotation

A purpose annotation shall be defined as shown in Semantics 53.

The purpose of the purpose annotation is to specify a category for the data found in the context of the vector. The
purpose annotation can also be inherited from a class referenced within the context of the vector.

The values shall have the semantic meaning shown in Table 65.

KEYWORD VECTOR = single_value_annotation {
CONTEXT = arithmetic_model;

}
SEMANTICS VECTOR {

VALUETYPE = control_expression;
REFERENCETYPE = VECTOR;

}

Semantics 52—VECTOR reference annotation

KEYWORD PURPOSE = annotation {
CONTEXT { VECTOR CLASS }

}
SEMANTICS PURPOSE {

VALUETYPE = identifier ;
VALUES { bist test timing power noise reliability }

}

Semantics 53—PURPOSE annotation

Table 64—PURPOSE annotation values

Annotation value Description

bist The vector contains data related to built-in self test

test The vector contains data related to test requiring external circuitry.

timing The vector contains an arithmetic model related to timing calculation (see
from 10.11.1 to 10.11.11)
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8.15.3 OPERATION annotation

An operation annotation shall be defined as shown in Semantics 54.

The purpose of the operation annotation is to associate a mode of operation of the electronic circuit with the stim-
ulus specified within the vector declaration. This association can be used by an application for test vector gener-
ation or test vector verification.

The values shall have the semantic meaning shown in Table 65.

power The vector contains an arithmetic model related to power calculation (see
10.11.15)

noise The vector contains an arithmetic model related to noise calculation (see
10.11.14)

reliability The vector contains an arithmetic model related to reliability calculation
(see 10.11.1 and 10.11.2)

KEYWORD OPERATION = single_value_annotation {
CONTEXT = VECTOR;

}
SEMANTICS OPERATION {

VALUETYPE = identifier;
VALUES {

read write read_modify_write refresh load
start end iddq

}
}

Semantics 54—OPERATION annotation

Table 65—OPERATION annotation values

Annotation value Description

read Read operation at one address of a memory.

write Write operation at one address of a memory

read_modify_write Read followed by write of different value at same address of a
memory

start First operation within a sequence of operations required in a
particular mode.

end Last operation within a sequence of operations required in a
particular mode.

Table 64—PURPOSE annotation values (Continued)

Annotation value Description
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8.15.4 LABEL annotation

A label annotation shall be defined as shown in Semantics 55.

The purpose of the label annotation is to enable a cross-reference between a statement within the context of a
vector and a corresponding statement outside the ALF library. For example, a cross-reference between a delay
model in context of a vector (see 10.11.3) and an annotated delay within an SDF file (see IEEE Std 1497-2001)
can be established, since the SDF standard also supports a LABEL statement.

8.15.5 EXISTENCE_CONDITION annotation

An existence-condition annotation shall be defined as shown in Semantics 56.

The purpose of the existence-condition is to define a necessary and sufficient condition for a vector to be relevant
for an application. This condition can also be inherited by the vector from a referenced class. A vector shall be
relevant unless the existence-condition evaluates False.

The set of pin variables involved in the vector declaration and the set of pin variables involved in the existence
condition shall be mutually exclusive.

For dynamic evaluation of the control expression within the vector declaration, the boolean expression within the
existence-condition can be treated as if it were a co-factor of the control expression.

refresh Operation required to maintain the contents of the memory
without modifying it.

load Operation for supplying data to a control register.

iddq Operation for supply current measurements in quiescent state.

KEYWORD LABEL = single_value_annotation {
CONTEXT = VECTOR;

}
SEMANTICS LABEL {

VALUETYPE = string_value;
}

Semantics 55—LABEL annotation

KEYWORD EXISTENCE_CONDITION = single_value_annotation {
CONTEXT { VECTOR CLASS }

}
SEMANTICS EXISTENCE_CONDITION {

VALUETYPE = boolean_expression;
DEFAULT = 1;

}

Semantics 56—EXISTENCE_CONDITION annotation

Table 65—OPERATION annotation values (Continued)

Annotation value Description
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8.15.6 EXISTENCE_CLASS annotation

An existence-class annotation shall be defined as shown in Semantics 57.

The identifier shall be the name of a declared class.

The purpose of the existence-class annotation is to provide a mechanism for selection of a relevant vector by an
application. The user of the application can select a set of relevant vectors by specifying the name of the class.
Another purpose is to share a common existence-condition amongst multiple vectors.

8.15.7 CHARACTERIZATION_CONDITION annotation

A characterization-condition annotation shall be defined as shown in Semantics 58.

The purpose of the characterization-condition annotation is to specify a unique condition under which the data in
the context of the vector were characterized. The characterization condition is only applicable if the vector decla-
ration possibly in conjunction with an existence-condition allows more than one condition.

The set of pin variables involved in the characterization-condition can overlap with the set of pin variables
involved in the vector declaration and/or the existence-condition, as long as the characterization condition is
compatible with the vector declaration and possibly with the existence-condition.

The characterization condition shall not be relevant for evaluation of either the vector declaration or the exist-
ence condition.

8.15.8 CHARACTERIZATION_VECTOR annotation

A characterization-vector annotation shall be defined as shown in Semantics 59.

The purpose of a characterization-vector annotation is to specify a complete stimulus for characterization in the
case where the vector declaration specifies only a partial stimulus.

KEYWORD EXISTENCE_CLASS = annotation {
CONTEXT { VECTOR CLASS }

}
SEMANTICS EXISTENCE_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 57—EXISTENCE_CLASS annotation

KEYWORD
CHARACTERIZATION_CONDITION = single_value_annotation {

CONTEXT { VECTOR CLASS }
}
SEMANTICS CHARACTERIZATION_CONDITION {

VALUETYPE = boolean_expression;
}

Semantics 58—CHARACTERIZATION_CONDITION annotation
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The characterization-vector annotation and the characterization-condition annotation shall be mutually exclusive
within the context of the same vector.

8.15.9 CHARACTERIZATION_CLASS annotation

A characterization-class annotation shall be defined as shown in Semantics 60.

The identifier shall be the name of a declared class.

The purpose of the characterization-class annotation is to provide a mechanism for classification of characteriza-
tion data. Another purpose is to share a common characterization-condition or a common characterization-vector
amongst multiple vectors.

8.15.10 MONITOR annotation

A monitor annotation shall be defined as shown in Semantics 61.

The purpose of the monitor annotation is to specify a set of pin variables (see 9.3) involved in the evaluation of a
vector expression. Events on this set of pin variables need to be monitored for detection of a specified event
sequence (see 9.13.2).

KEYWORD
CHARACTERIZATION_VECTOR = single_value_annotation {

CONTEXT { VECTOR CLASS }
}
SEMANTICS CHARACTERIZATION_VECTOR {

VALUETYPE = control_expression;
}

Semantics 59—CHARACTERIZATION_VECTOR annotation

KEYWORD CHARACTERIZATION_CLASS = annotation {
CONTEXT { VECTOR CLASS }

}
SEMANTICS CHARACTERIZATION_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 60—CHARACTERIZATION_CLASS annotation

KEYWORD MONITOR = annotation {
CONTEXT { VECTOR CLASS }

}
SEMANTICS MONITOR {

VALUETYPE = identifier;
}

Semantics 61—MONITOR annotation
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8.16 LAYER declaration

A layer shall be declared as shown in Syntax 55.

A layer shall describe process technology for fabrication of an integrated electronic circuit and a set of related
physical data and constraints relevant for a design application.

The order of layer declarations within a library or a sublibrary shall reflect the order of physical creation of layers
by a manufacturing process. The layer which is created first shall be declared first. A virtual layer, i.e. a layer that
is not created by a manufacturing process, shall be declared last.

8.17 Annotations related to a LAYER declaration

8.17.1 LAYER reference annotation

A layer reference annotation shall be defined as shown in Semantics 62.

The purpose of a layer reference annotation is to establish an association between a layer and a pattern (see
8.29), an array (see 8.27) or an arithmetic model (see 10.3).

8.17.2 LAYERTYPE annotation

A layertype annotation shall be defined as shown in Semantics 63.

layer ::=
LAYER layer_identifier ;

| LAYER layer_identifier { { layer_item } }
| layer_template_instantiation

layer_item ::=
all_purpose_item

Syntax 55—LAYER declaration

KEYWORD LAYER = annotation {
CONTEXT { arithmetic_model PATTERN ARRAY }

}
SEMANTICS LAYER {

REFERENCETYPE = LAYER;
}

Semantics 62—LAYER reference annotation

KEYWORD LAYERTYPE = single_value_annotation {
CONTEXT = LAYER;

}
SEMANTICS LAYERTYPE

VALUES {
routing cut substrate dielectric reserved abstract

}
}

Semantics 63—LAYERTYPE annotation
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The values shall have the semantic meaning shown in Table 66.

8.17.3 PITCH annotation

A pitch annotation shall be defined as shown in Semantics 64.

The purpose of the pitch annotation is specification of the normative distance between parallel wire segments
within a layer with layertype value routing. This distance is measured between the center of two adjacent parallel
wires.

8.17.4 PREFERENCE annotation

A preference annotation shall be defined as shown in Semantics 65.

The purpose of the preference annotation is to specify the preferred routing direction for a routing segment on a
layer with layertype value routing (see 8.17.2).

Table 66—LAYERTYPE annotation values

Annotation value Description

routing Layer provides electrical connections within a plane.

cut Layer provides electrical connections between planes.

substrate Layer at the bottom.

dielectric Layer provides electrical isolation between planes.

reserved Layer is for proprietary use only.

abstract Layer is virtual, not manufacturable.

KEYWORD PITCH = single_value_annotation {
CONTEXT = LAYER;

}
SEMANTICS PITCH {

VALUETYPE = unsigned_number;
}

Semantics 64—PITCH annotation

KEYWORD PREFERENCE = single_value_annotation {
CONTEXT = LAYER;

}
SEMANTICS PREFERENCE {

VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

Semantics 65—PREFERENCE annotation
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The values shall have the semantic meaning shown in Table 66.

8.18 VIA declaration

A via shall be declared as shown in Syntax 56.

A via shall describe a stack of physical artwork for electrical connection between wire segments on different lay-
ers.

8.19 Annotations related to a VIA declaration

8.19.1 VIA reference annotation

A via reference annotation shall be defined as shown in Semantics 66.

The purpose of a via reference annotation is to establish an association between a via and an arithmetic model
(see 10.3).

Table 67—PREFERENCE annotation values

Annotation value Description

horizontal Preferred routing direction is horizontal, i.e., 0 degrees.

vertical Preferred routing direction is vertical, i.e., 90 degrees.

acute Preferred routing direction is 45 degrees.

obtuse Preferred routing direction is 135 degrees.

via ::=
VIA via_identifier ;

| VIA via_identifier { { via_item } }
| via_template_instantiation

via_item ::=
all_purpose_item

| pattern
| artwork

Syntax 56—VIA declaration

KEYWORD VIA = annotation {
CONTEXT = arithmetic_model;

}
SEMANTICS VIA {

REFERENCETYPE = VIA;
}

Semantics 66—VIA reference annotation
Copyright © 2003 IEEE. All rights reserved. 123
This is an unapproved IEEE Standards Draft, subject to change.



IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

1

5

10

15

20

25

30

35

40

45

50

55
8.19.2 VIATYPE annotation

A viatype annotation shall be defined as shown in Semantics 67.

The values shall have the semantic meaning shown in Table 68.

8.20 RULE declaration

A rule shall be declared as shown in Syntax 57.

A rule declaration shall be used to define electrical or physical constraints involving physical objects. A physical
object shall be described as a pattern (see 8.29), a region (see 8.31), or a via instantiation (see 9.20). The electri-
cal or physical constraint shall be described as arithmetic model (see 10.3).

KEYWORD VIATYPE = single_value_annotation {
CONTEXT = VIA;

}
SEMANTICS VIATYPE {

VALUETYPE = identifier;
VALUES { default non_default partial_stack full_stack }
DEFAULT = default;

}

Semantics 67—VIATYPE annotation

Table 68—VIATYPE annotation values

Annotation value Description

default via can be used per default.

non_default via can only be used if authorized by a RULE.

partial_stack via contains three patterns: the lower and upper routing layer
and the cut layer in-between. This can only be used to build
stacked vias. The bottom of a stack can be a default or a
non_default via.

full_stack via contains 2N+1 patterns (N>1). It describes the full stack
from bottom to top.

rule ::=
RULE rule_identifier ;

| RULE rule_identifier { { rule_item } }
| rule_template_instantiation

rule_item ::=
all_purpose_item

| pattern
| region
| via_instantiation

Syntax 57—RULE statement
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8.21 ANTENNA declaration

An antenna shall be declared as shown in Syntax 58.

An antenna declaration shall be used to define manufacturability constraints involving physical objects or
regions (see 8.31), wherein the regions are created by physical objects. The physical objects shall be associated
with a layer (see 8.16). Within the context of an antenna declaration, arithmetic models for size (see 10.19.1),
area (see 10.19.2), perimeter (see 10.19.3) associated with a layer or with a region can be described. The arith-
metic models can be combined, based on electrical connectivity (see 10.18.1) between the layers.

To evaluate connectivity in the context of an antenna declaration, the order of manufacturing given by the order
of layer declarations shall be considered. An object on a layer shall only be considered electrically connected to
an object on another layer, if the connection already exists when the uppermost layer of both layers is manufac-
tured. This is illustrated in Figure 12.

Figure 12—Connection between layers during manufacturing

The dark objects on layer A and layer C on the left side of Figure 12 are considered connected, because the con-
nection is established through layer B which exists already when layer C is manufactured.

The dark objects on layer A and layer C on the right hand side of Figure 12 are not considered connected,
because the connection involves layer D and E which do not yet exist when layer C is manufactured.

8.22 BLOCKAGE declaration

A blockage shall be declared as shown in Syntax 59.

antenna ::=
ANTENNA antenna_identifier ;

| ANTENNA antenna_identifier { { antenna_item } }
| antenna_template_instantiation

antenna_item ::=
all_purpose_item

| region

Syntax 58—ANTENNA declaration

Layer C

Layer A

Layer B

Layer D

Layer E

connected not
connected
Copyright © 2003 IEEE. All rights reserved. 125
This is an unapproved IEEE Standards Draft, subject to change.



IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

1

5

10

15

20

25

30

35

40

45

50

55
A blockage declaration shall be used in context of a cell (see 8.4) to describe a part of the physical artwork of the
cell. No short circuit shall be created between the physical artwork described by the blockage and a physical art-
work created by an application. Physical or electrical constraints involving a blockage can be described by a rule
(see 8.20). A rule within the context of a blockage shall only be applicable for a physical object within the block-
age in relation to its environment. A physical object within the blockage can also be subjected to a more general
rule, i.e. a rule that is declared outside the context of the blockage.

8.23 PORT declaration

A port shall be declared as shown in Syntax 60.

A port declaration shall be used in context of a scalar pin (see 8.6) to describe a part of the physical artwork of a
cell (see 8.4) provided to establish electrical connection between a pin and its environment. Physical or electrical
constraints involving a port can be described by a rule (see 8.20). A rule within the context of a port shall only be
applicable for a physical object within the port in relation to its environment. A physical object within the port
can also be subjected to a more general rule, i.e. a rule that is declared outside the context of the port.

8.24 Annotations related to a PORT declaration

8.24.1 Reference to a PORT using PIN reference annotation

The pin reference annotation (see 8.8.1) can be used to refer to the hierarchical name of a port.

8.24.2 PORTTYPE annotation

A porttype annotation shall be defined as shown in Semantics 68.

blockage ::=
BLOCKAGE blockage_identifier ;

| BLOCKAGE blockage_identifier { { blockage_item } }
| blockage_template_instantiation

blockage_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

Syntax 59—BLOCKAGE statement

port ::=
PORT port_identifier ;

| PORT port_identifier { { port_item } }
| port_template_instantiation

port_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

Syntax 60—PORT declaration
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The values shall have the semantic meaning shown in Table 69.

8.25 SITE declaration

A site shall be declared as shown in Syntax 61.

A site declaration shall be used to specify a legal placement location for a cell (see 8.4).

8.26 Annotations related to a SITE declaration

8.26.1 SITE reference annotation

A site reference annotation shall be defined as shown in Semantics 69.

The purpose of a site reference annotation is to establish an association between a site and a cell (see 8.4) or an
array (see 8.27). A cell or an array can inherit a site reference annotation from a class (see 7.12).

KEYWORD PORTTYPE = single_value_annotation {
CONTEXT = PORT;

}
SEMANTICS PORTTYPE {

VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

Semantics 68—PORTTYPE annotation

Table 69—PORTTYPE annotation values

Annotation value Description

external A physical port of a block available for external connection

internal A physical port inside a block

site ::=
SITE site_identifier ;

| SITE site_identifier { { site_item } }
| site_template_instantiation

site_item ::=
all_purpose_item

| WIDTH_arithmetic_model
| HEIGHT_arithmetic_model

Syntax 61—SITE declaration
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8.26.2 ORIENTATION_CLASS annotation

An orientation class annotation shall be defined as shown in Semantics 70.

The purpose of the orientation class annotation is to specify a legal placement orientation for a cell (see 8.4) on a
site. The annotation value shall be the name of a declared class (see 7.12). The declared class can contain a geo-
metric transformation statement (see 9.18). The geometric transformation shall indicate a transformation of
coordinates from the cell as a standalone object to the cell placed on a site. The standalone cell is considered as
the original object, whereas the cell placed on a site is the transformed object.

A cell can only be placed on a site, if a matching orientation class annotation value is found within both the cell
declaration and the site declaration.

8.26.3 SYMMETRY_CLASS annotation

A symmetry class annotation shall be defined as shown in Semantics 71.

The purpose of the symmetry class annotation is to specify a symmetry between legal placement orientations of a
cell (see 8.4) on a site.

A legal orientation is specified by the orientation class annotation (see 8.26.2). If there is a set of common legal
orientations for both cell and site with symmetry, the cell can be placed on the site using any orientation within
that set.

KEYWORD SITE = annotation {
CONTEXT { CELL ARRAY CLASS }

}
SEMANTICS SITE {

REFERENCETYPE = SITE;
}

Semantics 69—SITE reference annotation

KEYWORD ORIENTATION_CLASS = annotation {
CONTEXT { SITE CELL }

}
SEMANTICS ORIENTATION_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 70—ORIENTATION_CLASS annotation

KEYWORD SYMMETRY_CLASS = multi_value_annotation {
CONTEXT = SITE;

}
SEMANTICS SYMMETRY_CLASS {

REFERENCETYPE = CLASS;
}

Semantics 71—SYMMETRY_CLASS annotation
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Example

The site has legal orientations A and B. The cell has legal orientations A and B.

Case 1: A and B are not symmetrical.

CLASS A { PURPOSE = ORIENTATION_CLASS; }
CLASS B { PURPOSE = ORIENTATION_CLASS; }
SITE mySite { ORIENTATION_CLASS { A B } }
CELL myCell { ORIENTATION_CLASS { A B } }

When the site appears in orientation A, the cell shall be placed in orientation A. When the site appears in orienta-
tion B, the cell shall be placed in orientation B.

Case 2: A and B are symmetrical.

CLASS A { PURPOSE { ORIENTATION_CLASS SYMMETRY_CLASS } }
CLASS B { PURPOSE { ORIENTATION_CLASS SYMMETRY_CLASS } }
SITE mySite { ORIENTATION_CLASS { A B } SYMMETRY_CLASS { A B } }
CELL myCell { ORIENTATION_CLASS { A B } }

When the site appears in either orientation A or B, the cell can be placed in either orientation A or B.

8.27 ARRAY declaration

An array shall be declared as shown in Syntax 62.

An array declaration shall be used for the purpose to describe a grid for creating physical objects within design.
A geometric transformation (see 9.18) can be used to define a transformation of coordinates from a basic con-
structive element of the array to an element placed within the array. The basic constructive element is considered
the original object, whereas the element placed within the array is the transformed object.

8.28 Annotations related to an ARRAY declaration

8.28.1 ARRAYTYPE annotation

An arraytype annotation shall be defined as shown in Semantics 72.

array ::=
ARRAY array_identifier ;

| ARRAY array_identifier { { array_item } }
| array_template_instantiation

array_item ::=
all_purpose_item

| geometric_transformation

Syntax 62—ARRAY declaration
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The values shall have the semantic meaning shown in Table 70.

8.28.2 LAYER reference annotation for ARRAY

A layer reference annotation in the context of an array shall be defined as shown in Semantics 73.

The layer reference annotation shall be applicable for an array with arraytype value detailed routing (see 8.28.1).
It shall specify a layer (see 8.16) with layertype value routing (see 8.17.2).

8.28.3 SITE reference annotation for ARRAY

A site reference annotation in the context of an array shall be defined as shown in Semantics 74.

The purpose of a site reference annotation in the context of an array is to specify the basic element from which
the array is constructed.

KEYWORD ARRAYTYPE = single_value_annotation {
CONTEXT = ARRAY;

}
SEMANTICS ARRAYTYPE {

VALUETYPE = identifier;
VALUES { floorplan placement

global_routing detailed_routing }
}

Semantics 72—ARRAYTYPE annotation

Table 70—ARRAYTYPE annotation values

Annotation value Description

floorplan The array provides a grid for placing macrocells, i.e., cells with
celltype value can be block or core or memory.
The placement_type value shall be core.

placement The array provides a grid for placing regular cells, i.e., cells with
celltype value buffer, combinational, multiplexor, latch, flipflop
or special.
The placement_type value shall be core.

global_routing The array provides a grid for global routing.

detailed_routing The array provides a grid for detailed routing.

SEMANTICS ARRAY.LAYER = multi_value_annotation;

Semantics 73—LAYER reference annotation for ARRAY

SEMANTICS ARRAY.SITE = single_value_annotation;

Semantics 74—SITE reference annotation for ARRAY
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The site reference annotation is applicable for an array with arraytype value floorplan or placement (see 8.28.1).

8.29 PATTERN declaration

A pattern shall be declared as shown in Syntax 63.

The purpose of a pattern declaration is the description of a geometry formed by a physical object.

8.30 Annotations related to a PATTERN declaration

8.30.1 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in Semantics 75.

The purpose of a pattern reference annotation is to establish an association between a pattern and an arithmetic
model (see 10.3).

8.30.2 SHAPE annotation

A shape annotation shall be defined as shown in Semantics 76.

pattern ::=
PATTERN pattern_identifier ;

| PATTERN pattern_identifier { { pattern_item } }
| pattern_template_instantiation

pattern_item ::=
all_purpose_item

| geometric_model
| geometric_transformation

Syntax 63—PATTERN declaration

KEYWORD PATTERN = annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS PATTERN {

REFERENCETYPE = PATTERN ;
}

Semantics 75—PATTERN reference annotation

KEYWORD SHAPE = single_value_annotation {
CONTEXT = PATTERN;

}
SEMANTICS SHAPE {

VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = line;

}

Semantics 76—SHAPE annotation
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The shape annotation applies for a pattern associated with a layer with layertype value routing (see 8.17.2).

The values shall have the semantic meaning shown in Table 71.

The meaning of the shape annotation values is further illustrated in Figure 13.

Figure 13—SHAPE annotation illustration

The shape annotation specifies whether a pattern is represented by a point or by a line. A pattern with shape
annotation value line or jog is represented by a line. A pattern with shape annotation value tee, cross, corner or
end is represented by a point.

8.30.3 VERTEX annotation

A vertex annotation shall be defined as shown in Semantics 77.

The vertex annotation applies for a pattern in conjunction with shape annotation value tee, cross, corner, or end
(see 8.30.2).

Table 71—SHAPE annotation values

Annotation value Description

line A routing segment in preferred routing direction.
Each end is connected with a via or with another routing segment.

jog A routing segment in non-preferred routing direction.
Each end is connected with a routing segment in preferred routing direc-
tion.

tee An intersection point between two orthogonal routing segments.
One of the routing segments ends at the intersection.

cross An intersection point between two orthogonal routing segments.
Both routing segments continue beyond the intersection.

corner An intersection point between two orthogonal routing segments.
Both routing segments end at the intersection.

end An unconnected point of an open routing segment.

line

tee

cross

jog

corner

end
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The values shall have the semantic meaning shown in Table 72.

The meaning of the vertex annotation values is further illustrated in Figure 14.

Figure 14—VERTEX annotation illustration

8.30.4 ROUTE annotation

A route annotation shall be defined as shown in Semantics 78.

KEYWORD VERTEX = single_value_annotation {
CONTEXT = PATTERN;

}
SEMANTICS VERTEX {

VALUETYPE = identifier;
VALUES { round angular }
DEFAULT = angular;

}

Semantics 77—VERTEX annotation

Table 72—VERTEX annotation values

Annotation value Description

angular The angle between intersecting routing segments shall be preserved.

round The angle between intersecting routing segments shall be rounded.

KEYWORD ROUTE = single_value_annotation {
CONTEXT = PATTERN;

}
SEMANTICS ROUTE {

VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

Semantics 78—ROUTE annotation

VERTEX = angular VERTEX = round
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The route annotation applies for a pattern with shape annotation value line, jog, or tee (see 8.30.2).

The purpose of a route annotation is to specify the actual routing direction for the pattern. This is illustrated in
Figure 15.

.

Figure 15—ROUTE annotation illustration

If the route annotation does not appear and a layer reference annotation (see 8.30.5) appears, the preferred rout-
ing direction specified by the preference annotation (see 8.17.4) within the layer declaration shall apply to infer
the actual routing direction. If both route annotation and layer reference annotation appear, the route annotation
shall take precedence.

8.30.5 LAYER reference annotation for PATTERN

A layer reference annotation in the context of a pattern shall be defined as shown in Semantics 79.

The purpose of a layer reference annotation in the context of a pattern is to establish an association between a
pattern and a layer (see 8.16). The physical object represented by the pattern shall reside on a layer. A pattern
declaration without layer reference annotation shall be considered incomplete.

8.31 REGION declaration

A region object shall be declared as shown in Syntax 64.

The purpose of a region declaration is the description of a geometry. The geometry can be formed by intersection
or union of physical objects. The geometry can also be described in abstract mathematical terms without being
associated with a particular physical object.

The specification of geometries by one or more geometric models (see 9.16) and/or by a boolean annotation (see
8.32.2) shall be additive, i.e., the region shall be considered the union of the specified geometries. If a geometric
transformation (see 9.18) is present, it shall apply to all specified geometries within the region.

SEMANTICS PATTERN.LAYER = single_value_annotation;

Semantics 79—LAYER reference annotation for PATTERN

line tee jogpattern
route

horizontal

vertical
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8.32 Annotations related to a REGION declaration

8.32.1 REGION reference annotation

A region reference annotation shall be defined as shown in Semantics 80.

The purpose of a region reference annotation is to establish an association between a region and an arithmetic
model (see 10.3).

8.32.2 BOOLEAN annotation

A boolean annotation shall be defined as shown in Semantics 81.

The purpose of the boolean annotation is to specify a region by a boolean operation (see 9.11). The name of a
pattern (see 8.29) or the name of another region shall be considered a legal operand. The operators specified in
Table 76 and Table 81 shall be considered legal operators.

region ::=
REGION region_name_identifier ;

| REGION region_name_identifier { { region_item } }
| region_template_instantiation

region_item ::=
all_purpose_item

| geometric_model
| geometric_transformation
| BOOLEAN_single_value_annotation

Syntax 64—REGION declaration

KEYWORD REGION = annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS REGION

REFERENCETYPE = REGION ;
}

Semantics 80—PATTERN reference annotation

KEYWORD BOOLEAN = single_value_annotation {
CONTEXT = REGION ;

}
SEMANTICS BOOLEAN {

VALUETYPE = boolean_expression ;
}

Semantics 81—BOOLEAN annotation
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9. Description of functional and physical implementation

9.1 FUNCTION statement

A function statement shall be defined as shown in Syntax 65.

The purpose of the function statement is to provide a compact specification of a digital electronic circuit imple-
mented by a cell. A cell can contain at most one function statement.

The function statement can contain a behavior statement (see 9.4) or a set of one or more statetable statements
(see 9.6). The purpose of the behavior and statetable statements is to formally specify the logic state space of the
circuit and the change in logic state as a response to a given stimulus.

The function statement can also contain a specification for implementation using the structure statement (see
9.5).

9.2 TEST statement

A test statement shall be defined as shown in Syntax 66.

The purpose of the test statement is to provide a compact specification of a test environment for a digital elec-
tronic circuit implemented by a cell. A cell can contain at most one test statement.

The test statement can contain a behavior statement (see 9.4) or a set of one or more statetable statements (see
9.6). The purpose of the behavior and statetable statements is to formally specify the logic state space of the test
environment and the change in logic state as a response to a given stimulus.

9.3 Definition and usage of a pin variable

9.3.1 Pin variable and pin value

A pin variable and a pin value shall be defined as shown in Syntax 67.

function ::=
FUNCTION { function_item { function_item } }

| function_template_instantiation
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

Syntax 65—FUNCTION statement

test ::=
TEST { test_item { test_item } }

| test_template_instantiation
test_item ::=

all_purpose_item
| behavior
| statetable

Syntax 66—TEST statement
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A pin variable shall represent one of the following:

the name of a declared pin (see 8.6) in conjunction with an optional index (see 6.6),
the name of a declared pingroup (see 8.7) in conjunction with an optional index,
the name of a declared node (see 8.12), or
the hierarchical name of a declared port (see 8.23) as a child of a declared scalar pin.

A pin value shall be either an identifier referring to a pin variable or a boolean value (see 6.10).

A declared pin can be used as a pin variable involved in a test statement (see 9.2) or in a function statement (see
9.1), according to its direction and view annotation value (see 9.3.3, Table 73).

9.3.2 Pin assignment

A pin assignment shall be defined as shown in Syntax 68.

A pin assignment shall represent an association between a pin variable and a pin value. The following rules
define the compatibility between a pin variable and a pin value.

a) The bitwidth of the pin value shall be equal to the bitwidth of the pin variable.
b) A bit literal or a based literal representing a single bit can be assigned to a scalar pin.
c) A based literal or an unsigned integer, representing a binary number can be assigned to a pingroup, to a

vector pin, or to a one-dimensional slice of a matrix pin.

9.3.3 Usage of a pin variable in the context of a FUNCTION or a TEST statement

A declared pin (see 8.6) with pintype annotation value digital (see 8.8.4) or a declared pingroup (see 8.7) can be
used as a pin variable.

A pin variable can be involved in a function statement (see 9.1) or in a test statement (see 9.2), depending on the
annotation values for direction (see 8.8.5) and view (see 8.8.3), according to Table 73.

pin_variable ::=
pin_variable_identifier

pin_value ::=
pin_variable | boolean_value

Syntax 67—Pin variable and pin value

pin_assignment ::=
pin_variable = pin_value ;

Syntax 68—Pin assignment

Table 73—Annotation values for PINs involved in FUNCTION and TEST

Category DIRECTION VIEW

Input for function input functional or both

Output for function output functional or both

Bidirectional for function both functional or both
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An attribute statement (see 7.5) can be used to specify a relationship between a pin variable and a particular test
method. See section 8.8.24, Table 61 for attribute values related to memory BIST.

The relationship between pin variables involved in the test statement and in the function statement and the appli-
cable direction annotation values are illustrated in Figure 16.

Figure 16—Relationship between FUNCTION and TEST

The digital electronic circuit symbolized by the function box communicates with its environment. Part of its
environment is the test environment symbolized by the test box. A test algorithm, i.e., an algorithmically speci-
fied stimulus can be applied to the test environment. The test algorithm controls input variables and observes out-
put variables of the electronic circuit. In addition, the electronic circuit can have other input and output variables
which are not controlled or observed by the test algorithm. The electronic circuit and the test environment can
also have their internal variables which do not communicate with their environment.

NOTE—The direction and view annotations are defined from a circuit-centric perspective from which the test environment is
viewed as a virtual extension of the circuit.

9.4 BEHAVIOR statement

A behavior statement shall be defined as shown in Syntax 69.

Internal for function none none

Input for test input none

Output for test output none

Bidirectional for test both none

Internal for test none none

Table 73—Annotation values for PINs involved in FUNCTION and TEST (Continued)

Category DIRECTION VIEW

FUNCTION
TEST

input output input output

internal

bidirectional

internal

bidirectional

bidirectional

output

input

pin variables not controlled / observed
by the test algorithm

pin variables controlled / observed
by the test algorithm

pin variables subjected
to the test algorithm
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A control statement consists of a primary control statement, optionally followed by one or more alternative con-
trol statements. A primary control statement is identified by the at character followed by a control expression.
An alternative control statement is identified by the colon character followed by a control expression. A control
expression can be either a boolean expression (see 9.9) or a vector expression (see 9.12). The order of alternative
control statements shall specify the order of priority. If the main control statement does not evaluate true, the first
alternative control statement is evaluated. If an alternative control statement does not evaluate true, the next
alternative control statement is evaluated.

A boolean assignment assigns the evaluation result of a boolean expression to a pin variable (see 9.3.1). A bool-
ean assignment with a behavior statement as a parent shall be considered a continuous assignment, i.e. the bool-
ean expression is evaluated continuously.

A boolean assignment with a control statement as parent shall be considered a conditional assignment, i.e., the
boolean expression is only evaluated when the associated control expression evaluates true. When a boolean
expression is not evaluated, a pin variable shall hold its previously assigned value.

If the control expression is a boolean expression, the conditional assignment shall be called level-sensitive or
triggered by state. If the control expression is a vector expression, the conditional assignment shall be called
edge-sensitive or triggered by event.

A behavior item is further subjected to the following rules.

a) An information flow graph involving one or more continuous assignments and/or level-sensitive condi-
tional assignments can not contain a loop. The usage of a pin with direction annotation value both as a
primary input and as a primary output in an information flow graph shall not be considered as a loop.

b) An information flow graph involving one or more edge-sensitive conditional assignments can contain a
loop. The value of a pin variable immediately before the triggering event shall be considered for evalua-
tion of a boolean expression. The evaluation result shall be assigned to a pin variable immediately after
the triggering event.

c) An information flow graph established by boolean assignments can involve an implicitly declared vari-
able, i.e., the LHS of a boolean assignment has not been declared as a pin variable. An implicitly
declared variable can only be used in the context of its parent statement. An implicitly declared variable
involved in a continuous assignment can not be used in the context of a conditional assignment and vice-
versa.

behavior ::=
BEHAVIOR { behavior_item { behavior_item } }

| behavior_template_instantiation
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignment ::=
pin_variable = boolean_expression ;

control_statement ::=
primary_control_statement { alternative_control_statement }

primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }

alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }

primitive_instantiation ::=
primitive_identifier [ identifier ] { pin_value { pin_value } }

| primitive_identifier [ identifier ] { boolean_assignment { boolean_assignment } }

Syntax 69—BEHAVIOR statement
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A primitive instantiation establishes a reference to a predefined function statement within a primitive declaration
(see 8.9). A continuous assignment of a boolean expression to a pin variable can be given by a boolean assign-
ment within the primitive instantiation, wherein the pin variable shall be a declared pin within the primitive dec-
laration. Alternatively, a continuous assignment of a pin value to a pin variable can be given by a set of pin
values, wherein the order of pin values shall correspond to the order of pin declarations within the primitive dec-
laration.

A set of predefined primitive declarations is specified in 9.14.

9.5 STRUCTURE statement and CELL instantiation

A structure statement shall be defined as shown in Syntax 70.

The purpose of a structure statement is to specify a structural implementation of a compound cell, i.e., a netlist. A
complete or a partial netlist can be specified. A component of a netlist can be a cell or a primitive.

NOTE—A structure statement is intended to be complementary to a behavior or a statetable statement. An application that
requires knowledge of the functional behavior of a cell, for example a synthesis application, is expected to comprehend the
behavior statement rather than to infer the functional behavior from the structure statement.

A cell instantiation shall specify the mapping between a cell reference and a cell instance within the structure
statement. The mapping shall be established either by order or by name.

Mapping by order shall be established using a pin value (see 9.3.1) associated with the cell instance. A corre-
sponding pin variable associated with the cell reference shall be inferred by the order of pin declarations within
the cell reference.

Mapping by name shall be established using a pin assignment (see 9.3.2). The left-hand side of the pin assign-
ment shall represent a pin variable associated with the cell reference. The right-hand side of the pin assignment
shall represent a pin value associated with the cell instance.

9.6 STATETABLE statement

A statetable statement shall be defined as shown in Syntax 71.

A statetable shall specify the state of a set of output pin variables dependent on the state of a set of input pin vari-
ables. Sequential behavior, i.e., next state as a function of previous state shall be modeled by a pin variable which
appears both as input and output pin variable within the statetable header. A pin variable with direction annota-
tion value both can also appear as input and output pin variable within the statetable header. However, the state of
the output pin variable does not depend on the state of the corresponding input pin variable, unless there is
sequential behavior.

structure ::=
STRUCTURE { cell_instantiation { cell_instantiation } }

| structure_template_instantiation
cell_instantiation ::=

cell_reference_identifier cell_instance_identifier ;
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_value } }
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_assignment } }
| cell_instantiation_template_instantiation

cell_instance_pin_assignment ::=
cell_reference_pin_variable = cell_instance_pin_value ;

Syntax 70—STRUCTURE statement
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In each statetable row, a statetable control value shall be associated with a particular input pin variable, and a
statetable data value shall be associated with a particular output variable. The association is given by the position
at which the pin variables appear in the header. Each statetable row shall have the same number of items as the
statetable header. The delimiting colon in each statetable row shall be in the same position as in the statetable
header.

A statetable control value shall be compatible with the datatype of the corresponding input pin variable. A
statetable data value shall be compatible with the datatype of the corresponding output pin variable. An input pin
variable enclosed by parentheses shall specify that the value of the input pin variable be assigned to the output
pin variable. Such input pin variable need not appear in the statetable header. A preceding exclamation mark
shall indicate that the logically inverted value be assigned to the output variable. A preceding tilde shall indicate
that the bitwise inverted value be assigned to the output variable.

It shall be the responsibility of the ALF parser to check for a consistent format of the statetable. It shall be the
responsibility of the application to check for complete and consistent contents of the statetable.

9.7 NON_SCAN_CELL statement

A non-scan cell statement shall be defined as shown in Syntax 72.

A non-scan cell statement applies for a scan cell. A scan cell is a cell with extra pins for testing purpose. The
non-scan cell reference within the non-scan cell statement specifies a cell that is functionally equivalent to the

statetable ::=
STATETABLE [ identifier ]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variable { input_pin_variable } : output_pin_variable { output_pin_variable } ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
boolean_value

| symbolic_bit_literal
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
boolean_value

| ( [ ! ] input_pin_variable )
| ( [ ~ ] input_pin_variable )

Syntax 71—STATETABLE statement

non_scan_cell ::=
NON_SCAN_CELL = non_scan_cell_reference

| NON_SCAN_CELL { non_scan_cell_reference { non_scan_cell_reference } }
| non_scan_cell_template_instantiation

non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier } }

| non_scan_cell_identifier { { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }

Syntax 72—NON_SCAN_CELL statement
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scan cell, if the extra pins are not used. The cell without extra pins is referred to as non-scan cell. The name of the
non-scan cell is given by the non-scan cell identifier.

The pin mapping is given either by order or by name. In case of pin mapping by order, the pin values shall refer
to pin names of the scan cell. The order of the pin values corresponds to the pin declarations within the non-scan
cell. In case of pin mapping by name, the pin names of the non-scan cell shall appear at the left-hand side, and the
pin names of the scan cell shall appear at the right-hand side.

Example

// declaration of a non-scan cell
CELL myNonScanFlop {

PIN D { DIRECTION=input; SIGNALTYPE=data; }
PIN C { DIRECTION=input; SIGNALTYPE=clock; POLARITY=rising_edge; }
PIN Q { DIRECTION=output; SIGNALTYPE=data; }

}
// declaration of a scan cell
CELL myScanFlop {

PIN CK { DIRECTION=input; SIGNALTYPE=clock; }
PIN DI { DIRECTION=input; SIGNALTYPE=data; }
PIN SI { DIRECTION=input; SIGNALTYPE=scan_data; }
PIN SE { DIRECTION=input; SIGNALTYPE=scan_enable; POLARITY=high; }
PIN DO { DIRECTION=output; SIGNALTYPE=data; }
// put NON_SCAN_CELL statement here

}

The non-scan cell statement with pin mapping by order looks as follows:

NON_SCAN_CELL { myNonScanFlop { DI CK DO } }
// corresponding pins by order: D C Q

The non-scan cell statement with pin mapping by name looks as follows:

NON_SCAN_CELL { myNonScanFlop { Q=DO; D=DI; C=CK; } }

9.8 RANGE statement

A range statement shall be defined as shown in Syntax 73.

The range statement shall be used to specify a valid address space for elements of a vector pin or a matrix pin
(see 8.6) or a vector pingroup (see 8.7). In case of a matrix pin, the range shall pertain to the second multi-index
(see 8.6, Syntax 49).

If no range statement is specified, the valid address space A is given by the following mathematical relationship:

range ::=
RANGE { index_value : index_value }

Syntax 73—RANGE statement

B
1 iL iR–+ if iL iR>( )
1 iR iL–+ if iL iR≤( )




=0 A 2B 1–≤ ≤
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where

A is an unsigned integer representing the address space within a vector-pin or a matrix-pin,
B is the bitwidth of the vector-pin or the matrix-pin,
iL is the left index within the vector-pin or the matrix-pin,
iR is the right index bit within the vector-pin or the matrix-pin,

in accordance with 6.6.

The index values within a range statement shall be bound by the address space A, otherwise the range statement
shall not be considered valid.

Example

PIN [5:8] myVectorPin { RANGE { 3 : 13 } }

End of example

9.9 Boolean expression

A boolean expression shall be defined as shown in Syntax 74.

The purpose of a boolean expression is to specify a boolean operation (see 9.11). The evaluation result of a bool-
ean expression shall be a boolean value (see 6.10, 9.10).

A legal operand in a boolean expression shall be a boolean value (see 6.10) or an identifier (see 6.13) represent-
ing a boolean value. In case of a comparison operation (see 9.11.6), a legal operand can also be a number (see
6.5) or a string value (see 6.15).

A legal operator in a boolean expression shall be a boolean unary operator, a boolean binary operator, an arith-
metic operator for integer arithmetic operation (see 6.4.1, 9.11.4), a relational operator for comparison opera-

boolean_expression ::=
( boolean_expression )

| boolean_value
| identifier
| boolean_unary_operator boolean_expression
| boolean_expression boolean_binary_operator boolean_expression
| boolean_expression ? boolean_expression : boolean_expression

boolean_unary_operator ::=
! | ~ | & | ~& | | | ~| | ^ | ~^

boolean_binary_operator ::=
& | && | ~& | | | || | ~| | ^ | ~^

| relational_operator
| arithmetic_operator
| shift_operator

Syntax 74—Boolean expression

B 4=

0 A 15≤ ≤

3 A 13≤ ≤

bitwidth:

default address space:

address space defined by range statement:
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tion (see 6.4.3, 9.11.6), a shift operator for shift operation (see 6.4.4, 9.11.5), or a combination of a question
mark and a colon defining a conditional operation (see 9.11.3).

The precedence of operators in a boolean expression shall be from the strongest to the weakest in the following
order:

a) boolean operation enclosed by parentheses, i.e., ( , )
b) bitwise operation using a boolean unary operator, i.e., ~, &, ~&, |, ~|, ^, ~^ (see 9.11.2)
c) logical inversion, i.e., ! (see 9.11.1)
d) shift, i.e., <<, >> (see 9.11.5)
e) comparison, i.e., ==, !=, >, <, >=, <= (see 9.11.6)
f) bitwise xor, xnor using a boolean binary operator, i.e., ^, ~^ (see 9.11.2)
g) multiply, divide, modulus, i.e., *, /, % (see 9.11.4)
h) bitwise and, nand using a boolean binary operator, i.e., &, ~& (see 9.11.2)
i) logical and, i.e., && (see 9.11.1)
j) add, subtract, i.e., +, - (see 9.11.4)
k) bitwise or, nor using a boolean binary operator, i.e., |, ~| (see 9.11.2)
l) logical or, i.e., || (see 9.11.1)
m) delimiter for conditional operation, i.e., ?, : (see 9.11.3)

When operators of the same precedence are subsequently encountered in a boolean expression, the evaluation
shall proceed from the left to the right.

9.10 Boolean value system

9.10.1 Scalar boolean value

A scalar boolean value shall be described by an alphanumerical bit literal (see 6.8). A scalar boolean value shall
represent a logical value and optionally a drive strength. The set of logical values shall be false, true and
unknown. The set of drive strengths shall be strong, weak, and zero. The symbols used for scalar boolean values
and their meaning shall be defined as shown in Table 74.

A boolean expression (see 9.9) can evaluate to a scalar boolean value represented by an alphanumeric bit literal.
For evaluation of a boolean expression, a scalar boolean value shall be reduced to a value 0, 1, or X within a 3-

Table 74—Scalar boolean values

Symbol Logical value Drive strength Symbol for value
in 3-value system Comment

0 false strong 0 Use when logical value is defined and
drive strength is strong or not defined.

1 true strong 1

X or x unknown strong X or x

L or l false weak 0 Use for modeling a bus holder, a pull up
or a pull down device.

H or h true weak 1

W or w unknown weak X or x

Z or z not defined zero X or x Use for high impedance.

U or u not defined not defined X or x Use for uninitialized signal in simulation.
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value system, unless an alphabetic bit literal (L, H, W, Z, U) is explicitly specified as evaluation result in the
boolean expression.

9.10.2 Vectorized boolean value

A vectorized boolean value shall be described either by a based literal (see 6.9) or by an integer (see 6.5). A vec-
torized boolean value can be mapped into a vector of alphanumeric bit literals (see 6.8). The number of bit liter-
als shall be called bitwidth.

An octal digit (see 6.9) can be mapped into a three bit vector of bit literals, by numerically converting a number
in octal base to a number in binary base.

A hexadecimal digit (see 6.9) can be mapped into a four bit vector of bit literals, by numerically converting a
number in hexadecimal base to a number in binary base. The uppercase letters A through F or the corresponding
lowercase letters a through f shall be used to represent the decimal numbers 10 through 15.

An alphabetic bit literal (see 6.8) shall be mapped according to the following rules.

a) An alphabetic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit
literal in binary base.

b) An alphabetic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the
same bit literal in binary base.

Example

'o2xw0u is equivalent to'b010_xxx_www_000_uuu
'hLux is equivalent to'bLLLL_uuuu_xxxx

End of example

An integer can be represented by a vector of bit literals, according to the following mathematical relationship:

where

N is the integer.
B is the bitwidth of the vector of bit literals.
p is the position of a bit within the vector, counted from 0 to B-1.
s(p) is the scalar value (zero or one) of the bit at position p.
s(B-1) is the scalar value (zero or one) of the bit at position B-1.

The bitwidth B of a vectorized boolean variable restricts the range of a corresponding integer N as follows:

N s p( ) 2p⋅
p 0=

B 1–

∑=

N s p( ) 2p⋅
p 0=

B 2–

∑ s B 1–( ) 2B 1–⋅–=

unsigned integer

signed integer

0 N 2B 1–≤ ≤

2B 1–– N 2B 1– 1–≤ ≤

unsigned integer

signed integer
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A vector pin (see 8.6) can be used as a pin variable holding a vectorized boolean value. The position of a bit is
related to an index within the pin declaration as follows:

where

i is the index within a vector pin.
iR is the right-most index within a vector pin. The corresponding position is 0.
iL is the left-most index within a vector pin. The corresponding position is B-1.

Example:

PIN [5:8] pin1;
PIN [7:4] pin2;

End of example

9.10.3 Non-assignable boolean value

A non-assignable boolean value shall be described by a symbolic bit literal (see 6.8), as shown in Table 75.

A symbolic bit literal or a based literal (see 6.9) containing a symbolic bit literal can not be assigned to a pin
variable as a boolean value. A symbolic bit literal can be used within a statetable (see 9.6) as a statetable control
value, but not as a statetable data value.

When being part of a vectorized boolean value, a symbolic bit literal shall be mapped according to the following
rules.

a) A symbolic bit literal in octal base shall be mapped into three subsequent occurrences of the same bit lit-
eral in binary base.

b) A symbolic bit literal in hexadecimal base shall be mapped into four subsequent occurrences of the same
bit literal in binary base.

bit[index] bit[index] position

pin1[5] pin2[7] 3

pin1[6] pin2[6] 2

pin1[7] pin2[5] 1

pin1[8] pin2[4] 0

Table 75—Symbolic boolean values

Symbol Logical value Drive strength Comment

? arbitrary, yet constant arbitrary use for “don’t care”

* subject to random change arbitrary variable is not monitored

p
i iR– if iL iR>( )
iR i– if iL iR≤( )




=
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9.11 Boolean operations and operators

9.11.1 Logical operation

The operators for a logical operation shall be defined as shown in Table 76.

A logical inversion shall be evaluated within the 3-value system according to Table 77.

A logical and or a logical or shall be evaluated within the 3-value system according to Table 78.

Table 76—Logical operations

Operator Description

! logical inversion

&& logical and

|| logical or

Table 77—Evaluation of logical inversion

A ! A

false true

true false

unknown unknown

Table 78—Evaluation of logical AND and logical OR

A B A && B A || B

false false false false

true false false true

unknown false false unknown

false true false true

true true true true

unknown true unknown true

false unknown false unknown

true unknown unknown true

unknown unknown unknown unknown
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If an alphabetic bit literal is used as operand, only the logical value, not the drive strength, shall be considered for
evaluation. An undefined logical value within an operand shall be considered unknown.

9.11.2 Bitwise operation

The operators for a bitwise operation shall be defined as shown in Table 79.

A bit-wise operation is defined as a repeated single-bit operation to all bits of the operand. The operators for bit-
wise operations, except bit-wise inversion, can be used as boolean unary or as boolean binary operators.

A bit-wise inversion operator shall apply a logical inversion (see Table 77) to each bit of a vectorized boolean
value. The result shall be a vectorized boolean value containing the inverted bits.

A bit-wise boolean binary operator for one of the operations and, or, nand, nor, xor, xnor shall apply a single-bit
operation to each corresponding bit of two vectorized boolean values. The operands shall be aligned to the right-
most bit. If the operands have different bitwidths, the missing bits of the operand with smaller bitwidth shall be
not defined, i.e., represented by the symbol ‘U’. If at least one operand is a vectorized boolean value, the result
shall be a vectorized boolean value. If both operands are scalar boolean values, the result shall be a scalar bool-
ean value.

The single-bit operation or and the single-bit operation and, respectively, shall be defined in the same way as the
logical operation or and the logical operation and, respectively (see Table 78).

A & B is equivalent to A && B for single bit operands
A | B is equivalent to A || B for single bit operands

The single-bit operation nor and the single-bit operation nand, respectively, shall be defined by applying a logi-
cal inversion to the result of the logical operation or and the logical operation and, respectively.

A ~& B is equivalent to ! (A && B) for single bit operands
A ~| B is equivalent to ! (A || B) for single bit operands

Table 79—Bitwise operations

Operator Description

~ bit-wise inversion

& bit-wise and

| bit-wise or

^ bit-wise exclusive or (xor)

~& bit-wise and with inversion (nand)

~| bit-wise or with inversion (nor)

~^ bit-wise exclusive or with inversion (xnor)
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The single-bit operations xor and xnor shall be defined according to Table 80.

A boolean unary operator for the operation and, or, xor, respectively, shall reduce a vectorized boolean value to
a scalar boolean value by applying a single-bit operation and, or, xor, respectively, to all bits of the operand com-
bined.

& V[3:1] is equivalent to V[3] && V[2] && V[1]
| V[3:1] is equivalent to V[3] || V[2] || V[1]
^ V[3:1] is equivalent to V[3] ^ V[2] ^ V[1]

A boolean unary operator for the operation nand, nor, xnor, respectively, shall apply a logical inversion to the
result of the operation and, or, xor, respectively.

~& V is equivalent to ! (& V)
~| V is equivalent to ! (| V)
~^ V is equivalent to ! (^ V)

A vectorized boolean value can be used as operand for a logical operation. For this purpose, the vectorized bool-
ean value shall be reduced to a scalar boolean value by applying the bit-wise boolean unary operation or.

! (V) is equivalent to ! (| V)
A && V is equivalent to A && (| V)
V || B is equivalent to (| V) || B

NOTE—A and B stand for scalar boolean values, V stands for a vectorized boolean value.

Table 80—Evaluation of single-bit XOR and XNOR

A B A ^ B A ~^B

false false false true

true false true false

unknown false unknown unknown

false true true false

true true false true

unknown true unknown unknown

false unknown unknown unknown

true unknown unknown unknown

unknown unknown unknown unknown
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9.11.3 Conditional operation

The evaluation of a boolean expression (see 9.9), a vector expression (see 9.12), or an arithmetic expression (see
10.1) involving the symbols shown in Table 81 shall be called a conditional operation.

The boolean expression to the left of the question mark shall be called if-clause. The expression, i.e., a boolean
expression or a vector expression or an arithmetic expression, to the right of the question mark shall be called
then-clause. The expression to the right of the colon shall be called else-clause.

If the if-clause evaluates true, the then-clause shall be evaluated. Otherwise, the else-clause shall be evaluated.

NOTE—The else-clause within a conditional operation can represent a conditional operation in itself. Thus nested condi-
tional operations can be described, wherein the evaluation of clauses proceeds from the left to the right.

9.11.4 Integer arithmetic operation

The operators for an integer arithmetic operation shall be defined as shown in Table 82.

All operations involving the operators in Table 82 shall be integer operations. A legal operand shall be either an
integer or a boolean value that is converted into an integer.

A scalar boolean value (see 9.10.1) represented as a bit literal (see 6.8) shall be converted into an unsigned inte-
ger.

A vectorized boolean value (see 9.10.2) represented as a based literal (see 6.9) shall be converted into an
unsigned integer or into a signed integer. The conversion shall depend on the datatype annotation value (see
8.8.10) of the pin variable associated with the operand.

Table 81—Conditional operation

Symbol Description

? delimiter between if-clause and then-clause

: delimiter between then-clause and else-clause

Table 82—Integer arithmetic operation

Operator Description

+ add

- subtract

* multiply

/ divide

% modulus
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The application shall be responsible for handling exceptions. Exceptions include the following cases:

— integer conversion of a boolean value involving the logical value unknown,
— the operation division and modulus involving a second operand with value zero,
— any evaluation results that do not fit the bitwidth of the pin variable which the result is assigned to, i.e.,

overflow or underflow.

9.11.5 Shift operation

The operators for a shift operation shall be defined as shown in Table 83

A shift operation shall involve two operands. The first operand shall be a vectorized boolean value (see 9.10.2),
represented by an integer (see 6.5), by a based literal (see 6.9), or, as a trivial case, by a bit literal (see 6.8). The
second operand shall be an unsigned integer (see 6.5), specifying the number of positions N by which the bits of
the first operand are to be shifted.

For shift left, N bits of the first operand, starting from the right, shall be replaced with the logical value unknown.
For shift right, N bits of the first operand, starting from the left, shall be replaced with the logical value unknown.

9.11.6 Comparison operation

A comparison operation shall be defined as a numerical comparison, a logical comparison or a string compari-
son. The evaluation result shall be true, false or unknown.

The operators for a numerical comparison shall be defined as shown in Table 84.

Table 83—Shift operation

Operator Description

<< shift left

>> shift right

Table 84—Numerical comparison

Operator Description

== equal

!= not equal

> greater

< lesser

>= greater or equal

<= lesser or equal
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A legal operand for a numerical comparison shall be a number (see 6.5) or a boolean value that can be interpreted
as an integer according to 9.10.2.

The operators for a logical comparison shall be defined as shown in Table 85.

A legal operand for a logical comparison shall be a scalar boolean value (see 9.10.1, Table 74).

The operations equal in logical value and not equal in logical value shall be evaluated as specified for the single-
bit operations xnor and xor in Table 80.

The operations equal in logical value and drive strength and not equal in logical value and drive strength shall
be evaluated according to Table 86.

Example

‘b0 ~^ ‘bL evaluates true
‘b0 == ‘bL evaluates false
‘b1 ~^ ‘bH evaluates true
‘b1 == ‘bH evaluates false
‘bX ~^ ‘bW evaluates unknown
‘bX == ‘bW evaluates false
‘bZ ~^ ‘bZ evaluates unknown
‘bZ == ‘bZ evaluates true

End of example

Table 85—Logical comparison

Operator Description comment

~^ equal in logical value, also called xnor symbols from Table 76 are
overloaded

^ not equal in logical value, also called xor

== equal in logical value and drive strength symbols from Table 84 are
overloaded

!= not equal in logical value and drive strength

Table 86—Evaluation of logical comparison involving drive strength

Logical value of operands A and B
(true, false, unknown, or not defined)

Drive strength of operands A and B
(strong, weak, zero, or not defined)

Result for
A == B

Result for
A != B

Same for both operands. Same for both operands. true false

Same for both operands. Different for each operand. false true

Different for each operand. Any. false true
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The operators for a string comparison shall be defined as shown in Table 87.

A legal operand for a string comparison shall be a string value (see 6.15). If at least one operand is a quoted
string (see 6.14), the comparison shall be case-sensitive. Otherwise, the comparison shall be case-insensitive. If
an operand is an identifier (see 6.13) representing a constant or a variable holding a string value, the comparison
shall apply to the string value rather than to the identifier.

9.12 Vector expression and control expression

A vector expression and a control expression shall be defined as shown in Syntax 75.

The purpose of a control expression is to specify the ALF name of a declared vector (see 8.14), a control state-
ment within a behavior statement (see 9.4), or an annotation with valuetype control expression (see 7.11.1).

The purpose of a vector expression is to specify a pattern of events. A vector expression shall be satisfied when
the pattern of events specified within the vector expression matches an actually realized pattern of events within
an application context.

A legal operand for a vector expression shall be a single event (see 9.13.1) or a vector expression macro (see
6.17).

Table 87—String comparison

Operator Description comment

== string values are equal symbols from Table 84 are
overloaded

!= string values are different

vector_expression ::=
( vector_expression )

| single_event
| vector_expression vector_operator vector_expression
| boolean_expression ? vector_expression : vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro

single_event ::=
edge_literal boolean_expression

vector_operator ::=
event_operator | event_and | event_or

event_and ::=
& | &&

event_or ::=
| | ||

control_and ::=
& | &&

control_expression ::=
( vector_expression )

| ( boolean_expression )

Syntax 75—Vector expression and control expression
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A legal operator for a vector expression shall be an event operator (see 6.4.5), i.e., an event-sequence operator
(see 9.13.2, 9.13.3) or an event-permutation operator (see 9.13.3), an event-and (see 9.13.2), an event-or (see
9.13.3), a control-and (see 9.13.5), or a combination of a question mark and a colon defining a conditional oper-
ation (see 9.11.3).

The precedence of operators involved in a vector expression shall be from the strongest to the weakest in the fol-
lowing order:

a) boolean operation enclosed by parentheses, i.e., ( , )
b) edge literal (see 6.12, 9.13.1)
c) event permutation operators, i.e., <~>, <->, <&> (see 9.13.3)
d) event-and operator and control-and operator, i.e., &, && (see 9.13.2, 9.13.5)
e) event sequence operators, i.e., ~>, ->, &> (see 9.13.2, 9.13.3)
f) event-or operator, i.e., |, || (see 9.13.3)
g) delimiter for conditional operation, i.e., ?, : (see 9.11.3, 9.13.5)

When operators of the same precedence are subsequently encountered in a vector expression, the evaluation shall
proceed from the left to the right.

9.13 Specification of a pattern of events

9.13.1 Specification of a single event

In order to evaluate a vector expression (see 9.12) against an actually realized pattern of events, a set of variables
shall be observed for a temporal change of their value (see 9.13.4). A change of value within one observed vari-
able shall be called a single event. An edge literal (see 6.12) shall be used as unary operator to specify the pattern
of a single event. The operand, i.e., the variable subjected to the change of value, shall be a boolean expression
(see 9.9).

A single event shall be interpreted according to Table 88.

An edge literal consisting of two consecutive alphanumerical bit literals (row 1) can be used for a scalar operand.
An edge literal consisting of two consecutive based literals (row 2) can be used for a scalar operand or for a vec-
torized operand, as long as the bitwidth of the operator is compatible with the bitwidth of the operand. An edge

Table 88—Specification of a single event

Row Edge literal Event on operand

1 first_bit_literal second_bit_literal value changes from first_bit_literal to second_bit_literal

2 first_based_literal second_based_literal value changes from first_based_literal to second_based_literal

3 ?? value before and after the change is arbitrary

4 ?* value is random after the change

5 *? value is random before the change

6 ?! value changes from any value to a different value

7 ?~ every binary digit changes from any value to a different value

8 ?- value does not change
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literal consisting of two consecutive symbolic bit literals (row 3, 4, 5) can be used for either a scalar or a vector-
ized operand. A symbolic edge literal (row 6, 7, 8) can be used for either a scalar or a vectorized operand.

The edge literal in row 8 specifies the same value before and after the event. Such a specification shall be inter-
preted as event by exclusion, i.e., a change of value does not happen on the operand but on another observed
variable.

An arbitrary value in row 3, 6, and 7 shall be comprised within the set of applicable values for the operand, i.e.,
a scalar operand or a binary digit of a vectorized operand can have a value specified by an alphanumerical bit lit-
eral, an operand with datatype unsigned can have an arbitrary unsigned integer value within the range of speci-
fied bitwidth, an operand with datatype signed can have an arbitrary signed integer value within the range of
specified bitwidth.

A random value in row 4 and 5 shall be interpreted as a value subjected to random change. The random change is
not monitored.

The usage of an edge literal for specification of a single event is illustrated by the timing diagram in Figure 17.

Figure 17—Timing diagram for single events

NOTE—The specification of a single event does not imply any transition time. The transition time in Figure 17 is only for the
purpose of illustrating the difference between ?? and ?!.

NOTE—The operator ?? can be called a neutral operator, since a specified single event involving ?? on an arbitrary operand
always matches a single event on any operand. A single event involving the neutral operator can be called a neutral single
event.

9.13.2 Specification of a compound event

A pattern of events involving one or more single events shall be called a compound event. A pattern of events
involving more than one single event shall be called a truly compound event. A pattern of events involving only
one single event shall be called a degenerate compound event.

edge literal corresponding timing diagram

01

‘d5‘d9

??

?*

*?

?!

?-

event occurrence time

value=5 value=9
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The operators in Table 89 shall be used for specification of a truly compound event.

The purpose of said operators is to specify a temporal relation between two single events A and B within a truly
compound event C.

— (A~>B) means that A occurs before B.
— (A->B) means that (A~>B) is satisfied and there exists no single event O that could satisfy both (A~>O)

and (O~>B).
— (A&B) means that both A and B occur, but neither (A~>B) nor (B~>A) is satisfied.

In order to extend the applicability of said operators to compound events, the earliest and latest events are
defined as follows:

— A single event A within C shall be called earliest event within C, if there exists no single event O within
C that could satisfy (O~>A).

— A single event B within C shall be called latest event within C, if there exists no single event O within C
that could satisfy (B~>O).

— Within a degenerate compound event, the single event shall be called both earliest and latest event.

NOTE—A truly compound event can have more than one earliest or latest event, since events can occur at the same time.

Using these definitions, said operators shall specify a temporal relation between two compound events C and D
as follows:

— (C~>D) means that the latest event within C occurs before the earliest event within D.
— (C->D) means that (C~>D) is satisfied and there exists no single event O that could satisfy both (C~>O)

and (O~>D).
— (C&D) means that both C and D are satisfied and the latest events within C and D occur at the same time.

9.13.3 Specification of a compound event with alternatives

A vector expression that satisfies more than one pattern of events shall be called a compound event with alterna-
tives.

The operators in Table 90 shall be used for specification of a compound event with alternatives.

Table 89—Operators for specification of a compound event

Operator Description

~> The event to the left is eventually followed by the event to the right

-> The event to the left is immediately followed by the event to the right

&& or & The event to the left and the event to the right occur at the same time

Table 90—Operators for specification of a compound event with alternatives

Operator Description

|| or | The vector expression is satisfied if the compound event to the left or the compound event to the
right occurs.
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A particular case of a compound event with alternatives is a permutation of compound events, i.e., a vector
expression that is satisfied when the compound events occur in permutable order.

An operator that specifies occurrence of compound events in permutable order shall be called event permutation
operator. In contrast, an operator that specifies occurrence of compound events in a particular order shall be
called event sequence operator.

The operators in Table 91 shall be used for specification of a permutation of compound events.

Permutation of more than two compound events shall be defined as follows:

A vector expression wherein

a) all operands are related to each other by the same event permutation operator, and,
b) each operand is bound by higher precedence than said event permutation operator,

shall be satisfied, if any permutation of the operands, related to each other by the corresponding event sequence
operator, is satisfied.

Example:

(A<&>B<&>C) is equivalent to (A&>B&>C | A&>C&>B | C&>A&>B | B&>A&>C | B&>C&>A | C&>B&>A)

wherein A, B, C denote compound events, and A, B, C do not contain operators of the same or lower precedence
than &>, unless such operators are bound within parentheses.

End of example

9.13.4 Evaluation of a specified pattern of events against a realized pattern of events

A vector expression, i.e., a specified pattern of events, shall be evaluated against an actually realized pattern of
events in an application context. The realized pattern of events shall be established according to the following
rules a) and b):

&> The vector expression (C&>D) is equivalent to (C&D | C->D), wherein C and D are compound
events.

Table 91—Operators for specification of permutations of compound events

Event permutation
operator Description Corresponding event sequence

operator

<~> (C<~>D) is equivalent to (C~>D | D~>C) ~> (see Table 89)

<-> (C<->D) is equivalent to (C->D | D->C) -> (see Table 89)

<&> (C<&>D) is equivalent to (C&>D | D&>C ) &> (see Table 90)

Table 90—Operators for specification of a compound event with alternatives

Operator Description
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a) A primary pattern of events on a set of pin variables (see 9.3) shall be observed. The set of pin variables
shall be specified by the monitor annotation (see 8.15.10) within a vector declaration (see 8.14) or by the
scope annotation (see 8.8.18) within a pin or a pingroup declaration (see 8.6, 8.7). A monitor annotation
shall take precedence over a scope annotation.

b) The primary pattern of events shall be reduced by replacing the events on the pin variables involved in
the vector expression with events on boolean expressions involved in the vector expression. The events
on any pin variables not involved in the vector expression shall be not be replaced.

Example:

The set of pin variables applicable for two vector expressions v1and v2 is A, B, C, D.
The vector expression v1 reads (01 (A&B) -> 10 (B|C)).
The vector expression v2 reads (1? A -> 01 (C & ! D)).

Therefore, the single events on A, B, C and D are observed.
For evaluation of v1, the events on (A&B), (B|C) and D are observed.
For evaluation of v2, the events on A, B and (C & ! D) are observed.

Figure 18 shows a realized pattern of events. The grey circles and bold edges indicate where the realized pattern
of events satisfies the respective vector expression v1 and v2.

Figure 18—Realized pattern of events

End of example

The occurrence time of each single event within a realized pattern of events can be interpreted as a totally
ordered set of real numbers, using the mathematical relation “lesser or equal”. It can be shown that the properties
of a totally ordered set are satisfied. The following notations are used:

A, B denote single events within a realized event pattern
t(A), t(B) denote the occurrence time of respective single events A, B within a realized event pattern

primary pattern of events A

B

C

D

reduced pattern of events
A&B

B|C

D

reduced pattern of events
A

B

C&!D

for evaluation of v1

for evaluation of v2

(01 (A&B) -> 10 (B|C))

(1? A -> 01 (C & ! D))
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For reference, the following properties are required for a totally ordered set:

1) Reflexivity: t(A) < t(A)
2) Weak anti symmetry: t(A) < t(B) and t(B) < t(A) implies t(A) = t(B)
3) Transitivity: t(A) < t(B) and t(B) < t(C) implies t(A) < t(C)
4) Comparability: For any element within the set, either t(A) < t(B) or t(B) < t(A)

A specified pattern of events shall be satisfied, if each relation between single events therein is satisfied by the
realized pattern of events, according to Table 92.

A realized pattern of events can be completely described using the relations A&&B, i.e., the single events A and B
occur at the same time, and A->B, i.e., the single event A is immediately followed by the single event B. In the case
of single events occurring at the same time, a distinction shall be made between at the same time by implication
and at the same time by coincidence.

NOTE—In order to evaluate the vector expression against the realized pattern of events, it is not necessary to record the
actual occurrence time of the single events. It suffices to record the relations pertinent to the ordered set.

The following rules shall apply concerning the relations between single events within a realized pattern of
events:

a) A value change of a boolean expression and a single event on a pin variable causing this value change
shall be interpreted to occur at the same time by implication.

b) A value change of a vectorized pin variable and a corresponding value change of any part of the vector-
ized pin variable shall be interpreted to occur at the same time by implication.

c) If a value change of a pin variable occurs as a consequence of a value change of another pin variable
within the context of a behavior statement (see 9.4), the consequence shall be interpreted to occur imme-
diately followed by the cause.

d) If the elapsed time between single events on mutually independent pin variables is measured zero, said
events can be interpreted to occur at the same time by coincidence.

e) In the context of a declared vector (see 8.14), all pin variables shall be considered mutually independent,
even though a causal dependency between some pin variables can exist in the context of a behavior state-
ment. Therefore events can not occur at the same time by implication within the context of a vector.

NOTE—It is possible that an application can not determine the temporal relation between events occurring at the same time
by coincidence. Instead, the events could be represented in random order with the temporal relation immediately followed by
each other. Therefore it is recommended to use the operator <&> to specify at the same time by coincidence and to use the
operator && to specify at the same time by implication.

Table 92—Satisfaction of a specified relation within a realized pattern of events

Specified relation Condition for satisfaction by realized pattern of events

A&>B (see Table 90) t(A) < t(B)

A~>B (see Table 89) t(A) < t(B), but not t(B) < t(A), i.e., t(A) < t(B)

A->B (see Table 89) t(A) < t(B), and no event O exists with t(A) < t(O) < t(B)

A&&B (seeTable 89) t(A) < t(B) and t(B) < t(A), i.e., t(A) = t(B)
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Example:

A behavior statement contains the boolean assignment Z = A&B.
The single event (01 (A&B)) is caused by the single event (01 A).
The single events (01 (A&B)) and (01 A) are interpreted to occur at the same time by implication.
Within the context of the behavior statement, the single event (01 Z) is interpreted to occur after the single event
(01 (A&B)).
Outside the context of the behavior statement, the variables A and Z are considered independent. The numerical
value of the measured propagation delay from A to Z can be greater than zero, lesser than zero, or zero. There-
fore, the single events (01 A) and (01 Z) can occur at the same time by coincidence.

End of example

9.13.5 Specification of a conditional pattern of events

A pattern of events specified within a vector expression shall be called a conditional pattern of events, if the eval-
uation against the realized pattern of events is made dependent on a condition described as a boolean expression.
A conditional pattern of events shall be evaluated against the realized pattern of events only if the boolean
expression evaluates true in the realized pattern of events.

A conditional pattern of events shall be described using the control-and operator or the if-then-else construct, as
specified in Table 93.

The order of operands within a vector expression involving the control-and operator shall be free, i.e.:

(v & b) shall be equivalent to (b & v)

wherein v denotes a vector expression, and b denotes a boolean expression.

A vector expression involving the if-then-else construct can be transformed into a vector expression involving
the control-and operator, according to the following rule:

(b ? v1 : v2) shall be equivalent to (v1 & b | v2 & ! b)

wherein b denotes a boolean expression representing the if-clause, v1 denotes a vector expression representing
the then-clause, and v2 denotes a vector expression representing the else-clause.

Table 93—Specification a conditional pattern of events

Operator Description Comment

&& or & pattern of events shall be evaluated
while boolean expression is true

control-and uses overloaded symbol, which is also
used for logical and (see Table 76) and bitwise and
(see Table 79).

? and : if-then-else construct, see 9.11.3 If-then-else construct exists for boolean expression
(see Syntax 74), for vector expression (see Syntax 75)
and for arithmetic expression (see Syntax 81).
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9.14 Predefined PRIMITIVE

This section defines the predefined primitive declarations, wherein the prefix “ALF_” is reserved for the name of
such primitives.

9.14.1 Predefined PRIMITIVE ALF_BUF

The primitive ALF_BUF shall be defined as shown in Semantics 82.

9.14.2 Predefined PRIMITIVE ALF_NOT

The primitive ALF_NOT shall be defined as shown in Semantics 83.

9.14.3 Predefined PRIMITIVE ALF_AND

The primitive ALF_AND shall be defined as shown in Semantics 84.

9.14.4 Predefined PRIMITIVE ALF_NAND

The primitive ALF_NAND shall be defined as shown in Semantics 85.

PRIMITIVE ALF_BUF {
PIN in { DIRECTION = input; }
PIN [1:<bitwidth>] out { DIRECTION = output; }
GROUP index { 1 : <bitwidth> }
FUNCTION { BEHAVIOR { out[index] = in ; } }

}

Semantics 82—Predefined PRIMITIVE ALF_BUF

PRIMITIVE ALF_NOT {
PIN in { DIRECTION = input; }
PIN [1:<bitwidth>] out { DIRECTION = output; }
GROUP index { 1 : <bitwidth> }
FUNCTION { BEHAVIOR { out[index] = ! in ; } }

}

Semantics 83—Predefined PRIMITIVE ALF_NOT

PRIMITIVE ALF_AND {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = & in ; } }

}

Semantics 84—Predefined PRIMITIVE ALF_AND
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9.14.5 Predefined PRIMITIVE ALF_OR

The primitive ALF_OR shall be defined as shown in Semantics 86.

9.14.6 Predefined PRIMITIVE ALF_NOR

The primitive ALF_NOR shall be defined as shown in Semantics 87.

9.14.7 Predefined PRIMITIVE ALF_XOR

The primitive ALF_XOR shall be defined as shown in Semantics 88.

9.14.8 Predefined PRIMITIVE ALF_XNOR

The primitive ALF_XNOR shall be defined as shown in Semantics 89.

PRIMITIVE ALF_NAND {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~& in ; } }

}

Semantics 85—Predefined PRIMITIVE ALF_NAND

PRIMITIVE ALF_OR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = | in ; } }

}

Semantics 86—Predefined PRIMITIVE ALF_OR

PRIMITIVE ALF_NOR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~| in ; } }

}

Semantics 87—Predefined PRIMITIVE ALF_NOR

PRIMITIVE ALF_XOR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ^ in ; } }

}

Semantics 88—Predefined PRIMITIVE ALF_XOR
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9.14.9 Predefined PRIMITIVE ALF_BUFIF1

The primitive ALF_BUFIF1 shall be defined as shown in Semantics 90.

9.14.10 Predefined PRIMITIVE ALF_BUFIF0

The primitive ALF_BUFIF0 shall be defined as shown in Semantics 91.

9.14.11 Predefined PRIMITIVE ALF_NOTIF1

The primitive ALF_NOTIF1 shall be defined as shown in Semantics 92.

9.14.12 Predefined PRIMITIVE ALF_NOTFIF0

The primitive ALF_NOTIF0 shall be defined as shown in Semantics 93.

PRIMITIVE ALF_XNOR {
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~^ in ; } }

}

Semantics 89—Predefined PRIMITIVE ALF_XNOR

PRIMITIVE ALF_BUFIF1 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? in : ‘bZ ; } }

}

Semantics 90—Predefined PRIMITIVE ALF_BUFIF1

PRIMITIVE ALF_BUFIF0 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (! enable)? in : ‘bZ ; } }

}

Semantics 91—Predefined PRIMITIVE ALF_BUFIF0

PRIMITIVE ALF_NOTIF1 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? ! in : ‘bZ ; } }

}

Semantics 92—Predefined PRIMITIVE ALF_NOTIF1
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9.14.13 Predefined PRIMITIVE ALF_MUX

The primitive ALF_MUX shall be defined as shown in Semantics 94.

9.14.14 Predefined PRIMITIVE ALF_LATCH

The primitive ALF_LATCH shall be defined as shown in Semantics 95.

9.14.15 Predefined PRIMITIVE ALF_FLIPFLOP

The primitive ALF_FLIPFLOP shall be defined as shown in Semantics 96.

PRIMITIVE ALF_NOTIF0 {
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (! enable)? ! in : ‘bZ ; } }

}

Semantics 93—Predefined PRIMITIVE ALF_NOTIF0

PRIMITIVE ALF_MUX {
PIN Q { DIRECTION = output; }
PIN [1:0] D { DIRECTION = input; }
PIN S { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
Q = ! S & D[0] | S & D[1] | D[0] & D[1] ;

}
}

}

Semantics 94—Predefined PRIMITIVE ALF_MUX
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PRIMITIVE ALF_LATCH {
PIN Q { DIRECTION = output; }
PIN QN { DIRECTION = output; }
PIN D { DIRECTION = input; }
PIN ENABLE { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PIN SET { DIRECTION = input; }
PIN Q_CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
@ ( CLEAR && SET ) {

Q = Q_CONFLICT ; QN = QN_CONFLICT ;
} : ( CLEAR ) {

Q = 0 ; QN = 1 ;
} : ( SET ) {

Q = 1 ; QN = 0 ;
} : ( ENABLE ) {

Q = D ; QN = ! D ;
}

}
}

}

Semantics 95—Predefined PRIMITIVE ALF_LATCH

PRIMITIVE ALF_FLIPFLOP {
PIN Q { DIRECTION = output; }
PIN QN { DIRECTION = output; }
PIN D { DIRECTION = input; }
PIN CLOCK { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PIN SET { DIRECTION = input; }
PIN Q_CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
@ ( CLEAR && SET ) {

Q = Q_CONFLICT ; QN = QN_CONFLICT ;
} : ( CLEAR ) {

Q = 0 ; QN = 1 ;
} : ( SET ) {

Q = 1 ; QN = 0 ;
} : ( 01 CLOCK ) {

Q = D ; QN = ! D ;
}

}
}

}

Semantics 96—Predefined PRIMITIVE ALF_FLIPFLOP
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9.15 WIRE instantiation

A wire instantiation shall be defined as shown in Syntax 76.

The purpose of a wire instantiation is to describe an electrical circuit for characterization or test. A reference of
the electrical circuit shall be given by a wire declaration (see 8.10). A cell, subjected to characterization or test,
can be connected with an instance of the electrical circuit.

The mapping between the wire reference and the wire instance shall be established either by order or by name.

In case of mapping by order, a pin value (see 9.3.1) shall be associated with the wire instance. A corresponding
pin variable associated with the wire reference shall be inferred by the order of node declarations within the wire
reference.

If mapping by order is not possible without ambiguity, mapping shall be established by name, using pin assign-
ment (see 9.3.2). The left-hand side of the pin assignment shall represent the name of a node associated with the
wire reference. The right-hand side of the pin assignment shall represent a pin value associated with the wire
instance.

9.16 Geometric model

A geometric model shall be defined as shown in Syntax 77.

A geometric model shall describe the form of a physical object. A geometric model can appear in the context of
a pattern (see 8.29) or a region (see 8.31).

The numbers in the point statement shall be measured in units of distance (see 10.19.9).

The parent object of the geometric model can contain a geometric transformation (see 9.18) applicable to the
geometric model.

wire_instantiation ::=
wire_reference_identifier wire_instance_identifier ;

| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_value } }
| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_assignment } }
| wire_instantiation_template_instantiation

wire_instance_pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value ;

Syntax 76—WIRE instantiation

geometric_model ::=
nonescaped_identifier [ geometric_model_identifier ]

{ geometric_model_item { geometric_model_item } }
| geometric_model_template_instantiation

geometric_model_item ::=
POINT_TO_POINT_single_value_annotation

| coordinates
coordinates ::=

COORDINATES { point { point } }
point ::=

x_number y_number

Syntax 77—Geometric model
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The keywords for geometric models shown in Semantics 97 shall be predefined.

Table 94 specifies the meaning of predefined geometric model identifiers.

The meaning of predefined geometric model identifiers is further illustrated in Figure 19.

Figure 19—Illustration of geometric models

A point_to_point annotation shall be defined as shown in Semantics 98.

The point-to-point annotation applies for a polyline, a ring or a polygon. The annotation value specifies, how
subsequent points in the coordinates statement are to be connected.

The meaning of the annotation value direct is illustrated in Figure 20. It specifies the shortest possible connection
between points.

KEYWORD DOT = geometric_model;
KEYWORD POLYLINE = geometric_model;
KEYWORD RING = geometric_model;
KEYWORD POLYGON = geometric_model;

Semantics 97—Predefined geometric models

Table 94—Geometric model identifiers

Identifier Description

DOT Describes one point.

POLYLINE Defined by N>1 directly connected points, forming an open object.

RING Defined by N>2 directly connected points, forming a closed object,
i.e., the last point is connected with first point. The object occupies the
boundary of the enclosed space.

POLYGON Defined by N>2 connected points, forming a closed object, i.e., the last
point is connected with first point. The object occupies the entire
enclosed space.

POLYLINE RING POLYGON

.

.
.

.

.

DOT (5 dots)
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Figure 20—Illustration of direct point-to-point connection

The meaning of the annotation value manhattan is illustrated in Figure 21. It specifies a connection between
points by moving in the x-direction first and then moving in the y-direction. This enables a non-redundant speci-
fication of a rectilinear object using N/2 points instead of N points.

KEYWORD POINT_TO_POINT = single_value_annotation {
CONTEXT { POLYLINE RING POLYGON }

}
SEMANTICS POINT_TO_POINT {

VALUES { direct manhattan }
DEFAULT = direct;

}

Semantics 98—POINT_TO_POINT annotation
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Figure 21—Illustration of manhattan point-to-point connection

Example 1

POLYGON {
POINT_TO_POINT = direct;
COORDINATES { -1 5 3 5 3 8 -1 8 }

}

Example 2

POLYGON {
POINT_TO_POINT = manhattan;
COORDINATES { -1 5 3 8 }

}

Both statements describe the same rectangle.

9.17 Predefined geometric models using TEMPLATE

A template declaration (see 7.15) can be used to describe particular geometric models. This section describes
predefined geometric models.

9.17.1 Predefined TEMPLATE RECTANGLE

The template rectangle shall be predefined as shown in Semantics 99.
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9.17.2 Predefined TEMPLATE LINE

The template line shall be predefined as shown in Semantics 100.

9.18 Geometric transformation

A geometric transformation shall be defined as shown in Syntax 78.

A geometric model (see 9.16) shall be subjected to a geometric transformation if both statements appear in the
same context, i.e., they have the same parent.

The following rules shall apply for the geometric transformations shift, rotate and flip.

— A number associated with a geometric transformation shall be measured in units of distance (see
10.19.9).

— A geometric transformation shall apply to the origin of a geometric model. Therefore, the result of subse-
quent transformations is independent of the order in which each individual transformation is applied.

— The direction of the transformation shall be from the geometric model to the actual object.

TEMPLATE RECTANGLE {
POLYGON {

POINT_TO_POINT = manhattan;
COORDINATES { <left> <bottom> <right> <top> }

}
}

Semantics 99—Predefined TEMPLATE RECTANGLE

TEMPLATE LINE {
POLYLINE {

POINT_TO_POINT = direct;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}
}

Semantics 100—Predefined TEMPLATE LINE

geometric_transformation ::=
shift

| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y_number }

rotate ::=
ROTATE = number ;

flip ::=
FLIP = number ;

repeat ::=
REPEAT [ = unsigned_integer ] { geometric_transformation { geometric_transformation } }

Syntax 78—Geometric transformation
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The shift statement shall define the horizontal and vertical offset measured between the coordinates within a
declared geometric model and the actual coordinates of an object.

The rotate statement shall define the angle of rotation in degrees measured between the orientation of a defined
geometric model and the actual orientation of an object. The angle shall be measured in counter-clockwise direc-
tion, specified by a number between 0 and 360.

The flip statement shall define a mirror operation. The number shall represent the angle of the movement of the
object in degrees. By definition, the movement is orthogonal to the mirror axis. Therefore, the number 0 speci-
fies flip in horizontal direction, therefore the axis is vertical, whereas the number 90 specifies flip in vertical
direction, therefore the axis is horizontal.

The geometric transformations flip, rotate, and shift are further illustrated in Figure 22.

Figure 22—Illustration of FLIP, ROTATE, and SHIFT

The repeat statement shall describe the replication of an object. The unsigned integer shall define the total num-
ber of replications, including the original instance. Therefore, the number 1 means that the object appears once.
A repeat statement without unsigned integer shall indicate an arbitrary number of replications.

Examples

The following example replicates an object three times along the horizontal axis in a distance of 7 units.

REPEAT = 3 {
SHIFT { 7 0 }

}

The following example replicates an object five times along a 45-degree axis in a horizontal and a vertical dis-
tance of 4 units each.

REPEAT = 5 {
SHIFT { 4 4 }

}

The following example replicates an object twice along the horizontal axis and four times along the vertical axis
in a horizontal distance of 5 units and a vertical distance of 6 units.

SHIFTROTATEFLIP

legend: origin of the object
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REPEAT = 2 {
SHIFT { 5 0 }
REPEAT = 4 {

SHIFT { 0 6 }
}

}

NOTE—The order of nested REPEAT statements does not matter. The following example gives the same result as the previ-
ous example.

REPEAT = 4 {
SHIFT { 0 6 }
REPEAT = 2 {

SHIFT { 5 0 }
}

}

9.19 ARTWORK statement

An artwork statement shall be defined as shown in Syntax 79.

The purpose of the artwork statement is to create a reference between an artwork described in a physical layout
format, e.g., GDSII, and the cell described in the ALF.

A geometric transformation (see 9.18) can be used to define a transformation of coordinates from the artwork
geometry to the cell geometry. The artwork is considered the original object whereas the cell is the transformed
object.

The artwork statement can also establish a mapping between a pin within the artwork and a pin of the cell. The
name of the artwork pin shall appear on the left-hand side. The name of the cell pin shall appear on the right-hand
side.

Example

CELL my_cell {
PIN A { /* fill in pin items */ }
PIN Z { /* fill in pin items */ }
ARTWORK = \GDS2$!@#$ {

SHIFT { 0 0 }
ROTATE = 0;
\GDS2$!@#$A = A;
\GDS2$!@#$B = B;

artwork ::=
ARTWORK = artwork_identifier ;

| ARTWORK = artwork_reference
| ARTWORK { artwork_reference { artwork_reference } }
| artwork_template_instantiation

artwork_reference ::=
artwork_identifier { { geometric_transformation } { cell_pin_identifier } }

| artwork_identifier
{ { geometric_transformation } { artwork_pin_identifier = cell_pin_identifier ; } }

Syntax 79—ARTWORK statement
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}
}

9.20 VIA instantiation

A via instantiation shall be defined as shown in Syntax 80.

The purpose of a via instantiation is to enable the definition of a design rule (see 8.20), a blockage (see 8.22) or a
port (see 8.23) involving a declared via (see 8.18). A geometric transformation (see 9.18) can be used to describe
a transformation of coordinates from a via declaration to the via instantiation. The declared via is considered the
original object, whereas the instantiated via is the transformed object.

via_instantiation ::=
via_identifier instance_identifier ;

| via_identifier instance_identifier { { geometric_transformation } }

Syntax 80—VIA instantiation
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10. Description of electrical and physical measurements

10.1 Arithmetic expression

An arithmetic expression shall be defined as shown in Syntax 81.

The purpose of an arithmetic expression is the construction of an arithmetic model (see 10.3) or an arithmetic
assignment (see 7.16).

A legal operand in an arithmetic expression shall be an arithmetic value or an identifier (see 6.13) representing an
arithmetic value.

A legal operator in an arithmetic expression shall be a sign (see 6.5, 10.2.1), an arithmetic operator for floating
point arithmetic operation (see 6.4.1, 10.2.2), a macro arithmetic operator (see 10.2.3), or a combination of a
question mark and a colon defining a conditional operation (see 9.11.3).

The precedence of operators in arithmetic expressions shall be from strongest to weakest in the following order:

a) arithmetic operation enclosed by parentheses, i.e., ( , )
b) sign, i.e., +, - (see 10.2.1)
c) power, i.e., ** (see 10.2.2)
d) multiplication, division, modulus, i.e.,*, /, % (see 10.2.2)
e) addition, subtraction, i.e., +, - (see 10.2.2)
f) delimiter for conditional operation, i.e., ?, : (see 9.11.3)

When operators of the same precedence are subsequently encountered in an arithmetic expression, the evaluation
shall proceed from the left to the right.

Examples for arithmetic expressions

1.24
- Vdd
C1 + C2
MAX ( 3.5*C , -Vdd/2 , 0.0 )
(C > 10) ? Vdd**2 : 1/2*Vdd - 0.5*C

End of example

arithmetic_expression ::=
( arithmetic_expression )

| arithmetic_value
| identifier
| boolean_expression ? arithmetic_expression : arithmetic_expression
| sign arithmetic_expression
| arithmetic_expression arithmetic_operator arithmetic_expression
| macro_arithmetic_operator ( arithmetic_expression { , arithmetic_expression } )

macro_arithmetic_operator ::=
abs | exp | log | min | max

Syntax 81—Arithmetic expression
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10.2 Arithmetic operations and operators

10.2.1 Sign inversion

A sign can be used as unary operator in an arithmetic expression.

Table 95 defines the semantics of the sign used as unary operator.

NOTE: The positive sign can be considered as neutral operator.

10.2.2 Floating point arithmetic operation

Table 96 defines the semantics of binary arithmetic operators.

All operations involving the operators in Table 96, including division and modulus, shall be floating point opera-
tions.

The following mathematical restrictions apply:

— The second operand of division can not be zero.
— The second operand of modulus can not be zero.
— The second operand of power shall be a positive value if the first operand is zero.
— The second operand of power shall be an integer value if the first operand is negative.

The application shall be responsible for handling the mathematical restrictions.

Table 95—Sign used as unary arithmetic operator

Operator Description

+ no sign inversion.

- sign inversion.

Table 96—Binary arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Power
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10.2.3 Macro arithmetic operator

Table 97 defines the semantics of macro arithmetic operators.

The following mathematical restrictions shall apply:

— The operand of the natural logarithm shall be a positive value.

The application shall be responsible for handling the mathematical restrictions.

10.3 Arithmetic model

An arithmetic model shall be defined as a trivial arithmetic model, a partial arithmetic model, or a full arithmetic
model, as shown in Syntax 82.

The purpose of an arithmetic model is to specify a measurable or a calculable quantity.

A trivial arithmetic model shall be defined as shown in Syntax 83.

The purpose of a trivial arithmetic model is to specify a constant arithmetic value associated with the arithmetic
model. Therefore, no mathematical operation is necessary to evaluate a trivial arithmetic model. A trivial arith-
metic model can contain a singular or a plural arithmetic model qualifier (see Syntax 87).

Table 97—Macro arithmetic operators

Operator Description number of operands

log Natural logarithm. 1 operand

exp Natural exponential. 1 operand

abs Absolute value. 1 operand

min Minimum. N operands, N > 1

max Maximum. N operands, N > 1

arithmetic_model ::=
trivial_arithmetic_model

| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

Syntax 82—Arithmetic model

trivial_arithmetic_model ::=
arithmetic_model_identifier [ name_identifier ] = arithmetic_value ;

| arithmetic_model_identifier [ name_identifier ] = arithmetic_value
{ { arithmetic_model_qualifier } }

Syntax 83—Trivial arithmetic model
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A partial arithmetic model shall be defined as shown in Syntax 84.

The purpose of a partial arithmetic model is to specify a singular or a plural model qualifier (see Syntax 87), or a
table (see Syntax 91) or a trivial min-max statement (see Syntax 94). The specification contained within a partial
arithmetic model can be inherited by another arithmetic model of the same type, according to the following rules.

a) If the partial arithmetic model has no name, the specification shall be inherited by all arithmetic models
of the same type appearing either within the same parent or within a descendant of the same parent.

b) If the partial arithmetic model has a name, the specification shall only be inherited by an arithmetic
model containing a reference to the name, using the model reference annotation (see 10.9.5).

c) An arithmetic model can override an inherited specification by its own specification.

A partial arithmetic model does not specify a mathematical operation or an arithmetic value. Therefore it can not
be mathematically evaluated.

A full arithmetic model shall be defined as shown in Syntax 85.

The purpose of a full arithmetic model is to specify mathematical data and a mathematical evaluation method
associated with the arithmetic model. This specification resides in the arithmetic model body (see Syntax 86). A
full arithmetic model can also contain a singular or a plural arithmetic model qualifier (see Syntax 87).

The arithmetic model identifier in Syntax 83, Syntax 84 and Syntax 85 shall be declared as a keyword (see 7.9)
and provide specific semantics for the arithmetic model.

An arithmetic model body shall be defined as shown in Syntax 86.

The purpose of the arithmetic model body is to specify mathematical data associated with a full arithmetic
model. The data is represented either by a header-table-equation statement (see 10.4), or by a min-typ-max state-
ment (see 10.5), or by a singular or a plural arithmetic submodel (see 10.7).

An arithmetic model qualifier shall be defined as shown in Syntax 87.

partial_arithmetic_model ::=
arithmetic_model_identifier [ name_identifier ] { { partial_arithmetic_model_item } }

partial_arithmetic_model_item ::=
arithmetic_model_qualifier

| table
| trivial_min-max

Syntax 84—Partial arithmetic model

full_arithmetic_model ::=
arithmetic_model_identifier [ name_identifier ]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

Syntax 85—Full arithmetic model

arithmetic_model_body ::=
header-table-equation [ trivial_min-max ]

| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

Syntax 86—Arithmetic model body
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The purpose of an arithmetic model qualifier is to specify semantics related to an arithmetic model.

An inheritable arithmetic model qualifier, i.e., an annotation (see 7.3), an annotation container (see 7.4) or a
from-to statement (see 10.12) can be inherited by another arithmetic model using a model reference annotation
(see 10.9.5).

A non-inheritable arithmetic model qualifier, i.e., an auxiliary arithmetic model (see 10.6), a violation (see
10.10) or a wire instantiation (see 9.15) shall apply only for the arithmetic model under evaluation.

10.4 HEADER, TABLE, and EQUATION statements

A header-table-equation statement shall be defined as shown in Syntax 88.

The purpose of a header-table-equation statement is to specify the mathematical data and a method for evaluation
of the mathematical data associated with a full arithmetic model (see Syntax 85).

A header statement shall be defined as shown in Syntax 89.

Each header arithmetic model shall represent a dimension of an arithmetic model.

Any arithmetic model (see 10.3) with a header as a parent shall be interpreted as a header arithmetic model. A
declared keyword (see 7.9) for arithmetic model shall apply as identifier.

NOTE — The syntax for header arithmetic model is a true subset of the syntax for arithmetic model.

arithmetic_model_qualifier ::=
inheritable_arithmetic_model_qualifier

| non_inheritable_arithmetic_model_qualifier
inheritable_arithmetic_model_qualifier ::=

annotation
| annotation_container
| from-to

non_inheritable_arithmetic_model_qualifier ::=
auxiliary_arithmetic_model

| violation

Syntax 87—Arithmetic model qualifier

header-table-equation ::=
header table | header equation

Syntax 88—Header table equation

header ::=
HEADER { header_arithmetic_model { header_arithmetic_model } }

header_arithmetic_model ::=
arithmetic_model_identifier [ name_identifier ] { { header_arithmetic_model_item } }

header_arithmetic_model_item ::=
inheritable_arithmetic_model_qualifier

| table
| trivial_min-max

Syntax 89—HEADER statement
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An equation statement shall be defined as shown in Syntax 90.

The arithmetic expression within the equation statement shall represent the mathematical operation for evalua-
tion of the arithmetic model.

Each dimension shall be involved in the arithmetic expression. The arithmetic expression shall refer to a dimen-
sion by name, if a name identifier exists or by type otherwise. Consequently, the type or the name of a dimension
shall be unique.

A table statement shall be defined as shown in Syntax 91.

A table statement within a partial arithmetic model shall define a discrete set of legal and applicable values. A
table statement within a full arithmetic model shall represent a lookup table. If the arithmetic model body con-
tains a table statement, each header arithmetic model shall also contain a table statement. The table statement
within the header arithmetic model shall represent the lookup index for a particular dimension.

The mathematical relation between a lookup table and its lookup indices shall be established as follows:

where

N denotes the number of dimensions
S denotes the size of the lookup table, i.e., the number of arithmetic values within the lookup table
P(p1, ..pi.., pN) denotes the position of an arithmetic value within the lookup table
i denotes the index corresponding to the order of appearance of a dimension within the header statement
S(i) denotes the size of a dimension, i.e., the number of arithmetic values in the table within a dimension
pi denotes the position of an arithmetic value within a dimension

Figure 23 shows an example of a three-dimensional table.

equation ::=
EQUATION { arithmetic_expression }

| equation_template_instantiation

Syntax 90—EQUATION statement

table ::=
TABLE { arithmetic_value { arithmetic value } }

Syntax 91—TABLE statement

S S i( )
i 1=

N

∏=

P p1 ..pi.. pN, ,( ) pi S k( )
k 1=

i 1–

∏
i 1=

N

∑=
0 pi S i( ) 1–≤ ≤

0 P p1 ..pi.. pN, ,( ) S 1–≤ ≤

N 1≥

S i( ) 1≥

S 1≥
180 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.



Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

1

5

10

15

20

25

30

35

40

45

50

55
Figure 23—Example of a three-dimensional table

A dimension can be either discrete or continuous. In the latter case, interpolation and extrapolation of table val-
ues is allowed, and the arithmetic values in this dimension shall appear in strictly monotonic ascending order.

A full arithmetic model or any of its dimensions can inherit a set of legal values from a partial arithmetic model
(see Syntax 84), represented by a table statement. Such a table statement can not substitute a lookup index within
a dimension, and it can not pose a restriction on the evaluation of an arithmetic expression.

Rules and restrictions for the mathematical evaluation of an arithmetic model can only be defined within the
header-table-equation statement. A legal set or a legal range of values defined within an arithmetic model shall
not interfere with the mathematical evaluation of the arithmetic model itself. In particular, an arithmetic expres-
sion shall be evaluated within the domain of its mathematical validity. A lookup table shall be evaluated accord-
ing to the interpolation annotation (see 10.9.3).

10.5 MIN, MAX, and TYP statements

A min-typ-max statement shall be defined as shown in Syntax 92.

The purpose of a min-typ-max statement is to represent one or more possible sets of mathematical data associ-
ated with an arithmetic model, rather than a single actual set.

Data associated with a min statement shall represent the smallest possible evaluation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically greater.

Data associated with a max statement shall represent the greatest possible evaluation result under a given evalua-
tion condition, i.e., actual evaluation results can be numerically smaller.

Data associated with a typ statement shall represent a typical evaluation result under a given evaluation condi-
tion, i.e., actual evaluation results can be numerically greater or smaller.

min-typ-max ::=
min-max | [ min ] typ [ max ]

min-max ::=
min | max | min max

min ::=
trivial_min | non_trivial_min

max ::=
trivial_max | non_trivial_max

typ ::=
trivial_typ | non_trivial_typ

Syntax 92—MIN-TYP-MAX statement

dimension 1: (a0 a1 a2 a3 )
dimension 2: (b0 b1 )
dimension 3: (c0 c1 c2 )

table: x0(a0, b0, c0) x1(a1, b0, c0) x2(a2, b0, c0) x3(a3, b0, c0)

x8(a0, b0, c1) x9(a1, b0, c1) x10(a2, b0, c1) x11(a3, b0, c1)

x16(a0, b0, c2) x17(a1, b0, c2) x18(a2, b0, c2) x19(a3, b0, c2)

x4(a0, b1, c0) x5(a1, b1, c0) x6(a2, b1, c0) x7(a3, b1, c0)

x12(a0, b1, c1) x13(a1, b1, c1) x14(a2, b1, c1) x15(a3, b1, c1)

x20(a0, b1, c2) x21(a1, b1, c2) x22(a2, b1, c2) x23(a3, b1, c2)

S(1) = 4
S(2) = 2
S(3) = 3

S = 24

P(p1, p2, p3) = p1 + 4 p2 + 8 p3
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A non-trivial min or max or typ statement shall be defined as shown in Syntax 93.

By definition, a non-trivial min or max statement is associated with a header-table-equation statement (see
Syntax 88) or a violation statement (see 10.10). A non-trivial typ statement is associated with a header-table-
equation statement.

NOTE — A violation statement is a particular arithmetic model qualifier (see Syntax 87).

A trivial min, max, or typ statement shall be defined as shown in Syntax 94

By definition, a trivial min, max, or typ statement is associated with a constant arithmetic value.

A trivial min-max statement within a partial arithmetic model (see Syntax 84) shall define the legal range of val-
ues for an arithmetic model. The arithmetic value associated with the trivial min statement represent the smallest
legal number. The arithmetic value associated with the trivial max statement represents the greatest legal number.

A trivial min-max statement within a header arithmetic model (see Syntax 89) shall define the range of validity
of a particular dimension. An application tool can evaluate the header-table-equation statement (see Syntax 88)
outside the range of validity, however, the accuracy of the evaluation outside the range of validity is not guaran-
teed.

A trivial min-max statement shall be subjected to the following parsing rules.

a) Within a partial arithmetic model (see Syntax 84), a set of legal values defined by a table statement (see
Syntax 91) shall take precedence over a range of legal values defined by a trivial min-max statement.

b) Within an arithmetic model (see Syntax 82) that can be interpreted as either a partial arithmetic model
(see Syntax 84) or a full arithmetic model (see Syntax 85), the interpretation of a trivial min-max state-
ment as a min-typ-max statement (see Syntax 94) shall take precedence. As a consequence, the interpre-
tation of an arithmetic model as a full arithmetic model takes precedence.

Semantics 101 defines the interpretation of min, max, typ as a particular arithmetic submodel (see 10.7).

non_trivial_min ::=
MIN = arithmetic_value { violation }

| MIN { [ violation ] header-table-equation }
non_trivial_max ::=

MAX = arithmetic_value { violation }
| MAX { [ violation ] header-table-equation }

non_trivial_typ ::=
TYP { header-table-equation }

Syntax 93—Non-trivial MIN, MAX and TYP statements

trivial_min-max ::=
trivial_min | trivial_max | trivial_min trivial_max

trivial_min ::=
MIN = arithmetic_value ;

trivial_max ::=
MAX = arithmetic_value ;

trivial_typ ::=
TYP = arithmetic_value ;

Syntax 94—Trivial MIN, MAX and TYP statements
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This interpretation shall only apply in the context of a semantic rule, without invalidating a more restrictive syn-
tax rule.

NOTE — The syntax rule for min, max, typ (see Syntax 92, Syntax 93, and Syntax 94, respectively) is a true subset of the
syntax rule for arithmetic submodel (see Syntax 96).

10.6 Auxiliary arithmetic model

An auxiliary arithmetic model shall be defined as shown in Syntax 95.

An arithmetic model (see 10.3) with another arithmetic model as a parent shall be called auxiliary arithmetic
model. A declared keyword (see 7.9) for arithmetic model shall apply as identifier. The parent of the auxiliary
arithmetic model shall be called principal arithmetic model.

The purpose of an auxiliary arithmetic model is to serve as a non-inheritable arithmetic model qualifier (see
Syntax 87) for the principal arithmetic model. The auxiliary arithmetic model can be associated with a constant
arithmetic value and with an inheritable arithmetic model qualifier (see Syntax 87).

NOTE — The syntax for auxiliary arithmetic model is a true subset of the syntax for arithmetic model.

A constant arithmetic value associated with an auxiliary arithmetic model shall indicate that an applicable
dimension of the principal arithmetic model shall be evaluated under this constant arithmetic value or that the
principal arithmetic model itself is characterized by this constant arithmetic value.

NOTE — The auxiliary arithmetic model is not a dimension of the principal arithmetic model.

10.7 Arithmetic submodel

An arithmetic submodel shall be defined as shown in Syntax 96.

KEYWORD MIN = arithmetic_submodel {
CONTEXT { arithmetic_model arithmetic_submodel }

}
KEYWORD MAX = arithmetic_submodel {

CONTEXT { arithmetic_model arithmetic_submodel }
}
KEYWORD TYP = arithmetic_submodel {

CONTEXT { arithmetic_model arithmetic_submodel }
}

Semantics 101—Interpretation of MIN, MAX, TYP as arithmetic submodel

auxiliary_arithmetic_model ::=
arithmetic_model_identifier = arithmetic_value ;

| arithmetic_model_identifier [ = arithmetic_value ]
{ inheritable_arithmetic_model_qualifier { inheritable_arithmetic_model_qualifier } }

Syntax 95—Auxiliary arithmetic model
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The purpose of an arithmetic submodel is to serve as arithmetic model body (see Syntax 86), wherein the data
associated with the full arithmetic model (see Syntax 82) is represented as one or more measurement-specific
sets rather than a single set. The arithmetic submodel identifier shall be declared as a keyword (see 7.9) and pro-
vide specific semantics.

10.8 Arithmetic model container

10.8.1 General arithmetic model container

A general arithmetic model container shall be defined as shown in Syntax 97.

The purpose of an arithmetic model container is to provide a context for an arithmetic model. The arithmetic
model container identifier shall be a declared keyword (see 7.9) and provide specific semantics.

10.8.2 Arithmetic model container LIMIT

The arithmetic model container limit shall be defined as shown in Syntax 98.

The purpose of the arithmetic model container limit is to specify one or more quantifiable design limits. The
design limit shall be represented as a min-max statement (see 10.5) in the context of a limit arithmetic model or a
limit arithmetic submodel.

Any arithmetic model (see 10.3) with a limit as a parent shall be interpreted as a limit arithmetic model. A
declared keyword (see 7.9) for arithmetic model shall apply as identifier. Any arithmetic submodel (see 10.7)

arithmetic_submodel ::=
arithmetic_submodel_identifier = arithmetic_value ;

| arithmetic_submodel_identifier { [ violation ] min-max }
| arithmetic_submodel_identifier { header-table-equation [ trivial_min-max ] }
| arithmetic_submodel_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

Syntax 96—Arithmetic submodel

arithmetic_model_container ::=
limit_arithmetic_model_container

| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

Syntax 97—General arithmetic model container

limit_arithmetic_model_container ::=
LIMIT { limit_arithmetic_model { limit_arithmetic_model } }

limit_arithmetic_model ::=
arithmetic_model_identifier [ name_identifier ]
{ { arithmetic_model_qualifier } limit_arithmetic_model_body }

limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

arithmetic_submodel_identifier { [ violation ] min-max }

Syntax 98—Arithmetic model container LIMIT
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with a limit arithmetic model as a parent shall be interpreted as a limit arithmetic submodel. A declared keyword
(see 7.9) for arithmetic submodel shall apply as identifier.

NOTE — The syntax for limit arithmetic model is a true subset of the syntax for arithmetic model. The syntax for limit arith-
metic submodel is a true subset of the syntax for arithmetic submodel.

Semantics 102 defines the interpretation of limit as arithmetic model container.

10.8.3 Arithmetic model container EARLY and LATE

The arithmetic model containers early and late shall be defined as shown in Syntax 99.

The purpose of the arithmetic model containers early and late is to specify an envelope of a timing waveform.
The arithmetic model delay (see 10.11.3), retain (see 10.11.4) or slewrate (see 10.11.5) can be used to specify a
timing waveform. The arithmetic model container early and late shall be associated with the leading and trailing
part of the envelope, respectively. A partial specification of the envelope, i.e., only the leading part or only the
trailing part, is possible.

Semantics 103 defines the interpretation of early and late as arithmetic model container.

The arithmetic model containers early and late shall be children of a declared vector (see 8.14).

10.9 Generally applicable annotations for arithmetic models

10.9.1 UNIT annotation

A unit annotation shall be defined as shown in Semantics 104.

KEYWORD LIMIT = arithmetic_model_container;

Semantics 102—Arithmetic model container LIMIT

early-late_arithmetic_model_container ::=
early_arithmetic_model_container

| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model_container

early_arithmetic_model_container ::=
EARLY { early-late_arithmetic_model { early-late_arithmetic_model } }

late_arithmetic_model_container ::=
LATE { early-late_arithmetic_model { early-late_arithmetic_model } }

early-late_arithmetic_model ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

Syntax 99—Arithmetic model container EARLY and LATE

KEYWORD EARLY = arithmetic_model_container
{ CONTEXT = VECTOR; }

KEYWORD LATE = arithmetic_model_container
{ CONTEXT = VECTOR; }

Semantics 103—Arithmetic model container EARLY and LATE
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The purpose of the unit annotation is to specify a multiplier prefix value (see 6.7) associated with the base unit of
the arithmetic model. The base unit of an arithmetic model shall be specified by the SI-model annotation (see
7.11.6).

If the unit annotation is not present, a locally declared arithmetic model shall inherit the unit annotation of a glo-
bally declared arithmetic model of the same ALF type. If the ALF type of the globally declared arithmetic model
is an SI-model annotation value, a locally declared arithmetic model with the same associated SI-model annota-
tion value shall inherit the unit annotation as well.

NOTE — The multiplier prefix value specification given by the unit annotation applies to an arithmetic model declaration.
Therefore it can be locally changed. The SI-model annotation applies to the keyword declaration (see 7.9) of an arithmetic
model. Therefore it can not be changed.

Example:

The arithmetic model delay (see 10.11.3) has the SI-model annotation value time. Therefore delay can inherit the
unit annotation value of the arithmetic model time (see 10.11.1).

10.9.2 CALCULATION annotation

A calculation annotation shall be defined as shown in Semantics 105.

The meaning of the annotation values is shown in Table 98.

KEYWORD UNIT = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS UNIT {

VALUETYPE = multiplier_prefix_value ;
}

Semantics 104—UNIT annotation

KEYWORD CALCULATION = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS CALCULATION {

CONTEXT = library_specific_object.arithmetic_model ;
VALUES { absolute incremental }
DEFAULT = absolute ;

}

Semantics 105—CALCULATION annotation

Table 98—Calculation annotation

Annotation value Description

absolute The arithmetic model data is complete within itself.

incremental The arithmetic model data shall be combined with other arithmetic model data.
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The following rules for combination of arithmetic model data shall apply.

a) Data shall be combined by adding them together.
b) Data can only be combined, if the respective arithmetic models have the same type.
c) Data can only be combined, if a common semantic interpretation of the respective arithmetic models

within their context exists.

A specific application of rule c) is described in section 10.11.3 for the arithmetic model delay.

10.9.3 INTERPOLATION annotation

A interpolation annotation shall be defined as shown in Semantics 106.

The interpolation annotation shall apply for a dimension of a lookup table with a continuous range of values.
Every dimension in a lookup table can have its own interpolation annotation.

The meaning of the annotation values is shown in Table 99.

The mathematical operations for floor, ceiling, and linear are specified as follows:

where

KEYWORD INTERPOLATION = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS INTERPOLATION {

CONTEXT = HEADER.arithmetic_model ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

Semantics 106—INTERPOLATION annotation

Table 99—Interpolation annotation

Annotation value Evaluation method Handling data out of range

linear Linear interpolation Linear extrapolation

ceiling Select the next greater value in the table Select the largest value in the table

floor Select the next lesser value in the table Select the smallest value in the table

fit Linear or higher-order interpolation Linear extrapolation
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x denotes the value in a dimension subjected to interpolation.
x- and x+ denote two subsequent values in the table associated with that dimension.

x- denotes the value to the left of x, such that x- < x. If no such value exists, x- denotes the smallest value
in the table.
x+ denotes the value to the right of x, such that x < x+. If no such value exists, x+ denotes the largest value
in the table.

y denotes the evaluation result of the arithmetic model.

The mathematical operation for fit can be chosen by the application, as long as the following conditions are satis-
fied:

y(x) is a continuous function of order N>0, i.e., the first N-1 derivatives of y(x) are continuous.
y(x) is bound by y(x-) and y(x+).
In case of monotony, y(x) is also bound by two straight lines in the region between x- and x+.

One line is constructed by linear extrapolation based on x- and its left neighbor.
The other line is constructed by linear extrapolation based on x+ and its right neighbor.

In case of a monotonic derivative, y(x) is also bound by another straight line.
This line is constructed by linear interpolation based on x- and x+.

These conditions are illustrated in Figure 24.

Figure 24—Bounding regions for y(x) with INTERPOLATION=fit

The application shall use a higher-order interpolation only if it provides a tighter bound than linear interpolation.

10.9.4 DEFAULT annotation

A default annotation (see 7.11.3) shall be applicable for an arithmetic model, unless the keyword declaration (see
7.9) for the arithmetic model contains already a default annotation.

The purpose of the default annotation is the specification of an evaluation result for a full arithmetic model (see
Syntax 85) or a header arithmetic model (see Syntax 89) in case the arithmetic model can not be evaluated other-
wise. A default annotation shall not apply for a trivial arithmetic model (see Syntax 83). A default annotation for
a partial arithmetic model (see Syntax 84) shall serve as inheritable arithmetic model qualifier (see Syntax 87),
to be acquired by another full arithmetic model.
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A default annotation value associated with a header arithmetic model or with a partial arithmetic model shall be
an arithmetic value (see 6.11) compatible with the arithmetic model’s valuetype (see 7.11.1). A default annota-
tion value associated with a full arithmetic model shall be either an arithmetic value compatible with its value-
type, or, alternatively, an identifier referring to another arithmetic model or to an arithmetic submodel (see 10.7).

The following rules shall apply for the usage of the default annotation value.

a) If the application provides values for all header arithmetic models, no default annotation value shall be
used for the evaluation of a full arithmetic model.

b) If the application provides values for some, but not all header arithmetic models, and the remaining
header arithmetic models have associated default annotations, those default annotation values shall be
used.

c) If application values for all header arithmetic models are missing and the full arithmetic model has an
associated default annotation, this default annotation value shall be used.

d) If application values for all header arithmetic models are missing and the full arithmetic model has no
associated default annotation, but all header arithmetic models have, those default annotation values
shall be used.

In any other case, the evaluation of the full arithmetic model shall fail and result in an application error.

10.9.5 MODEL reference annotation

A model reference annotation shall be defined as shown in Semantics 107.

The purpose of a model reference annotation is to acquire an inheritable arithmetic model qualifier (see
Syntax 87), an evaluation result (see Syntax 91 and Syntax 90) or both from another arithmetic model. The
model reference annotation value shall be the ALF name of the referenced arithmetic model.

An evaluation result can also be acquired from a referenced arithmetic submodel (see 10.7). In this case, the
model reference annotation value shall be a hierarchical identifier (see 6.13.4) composed of the ALF name of the
parent arithmetic model and the ALF type of the arithmetic submodel.

A calculation graph can be established by using the model reference annotation within a header arithmetic model
(see Syntax 89). In this case, the evaluation of the arithmetic model containing the header arithmetic model
depends on the evaluation of the referenced model. A circular reference shall not be allowed.

The model reference annotation shall further be legal under the following restrictions:

a) Both the referencing and the referenced arithmetic model have the same ALF type,
or, alternatively:

b) the ALF type of either arithmetic model is an SI-model annotation value (see 7.11.6), and both arithmetic
models have the same associated SI-model annotation value.

c) The semantics of any arithmetic model qualifier are compatible with the semantics of any acquired arith-
metic model qualifier.

KEYWORD MODEL = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS MODEL {

REFERENCETYPE { arithmetic_model arithmetic_submodel }
}

Semantics 107—MODEL reference annotation
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Examples:

Rule a): An arithmetic model of ALF type time (see 10.11.1) can refer to the arithmetic model of ALF type time.

Rule b): The arithmetic model delay (see 10.11.3) has the SI-model annotation value time. Therefore an arith-
metic model of ALF type delay can refer to an arithmetic model of ALF type time and vice-versa.

Rule c): If both arithmetic models have an annotation of the same ALF type (e.g. unit annotation, see 10.9.1), the
annotation values shall be the same.

10.10 VIOLATION statement, MESSAGE TYPE and MESSAGE annotation

A violation statement shall be defined as shown in Syntax 100.

The purpose of a violation statement is to specify the consequence of an evaluation of an arithmetic model (see
10.3) that results in a violation of a design constraint or a design limit.

A violation statement shall be subjected to the restriction shown in Semantics 108.

The purpose of the restriction is to specify a legal ancestor of a violation statement. Only an arithmetic model
that serves the purpose of evaluating a design constraint or a design limit can be a legal ancestor of a violation
statement.

A violation statement can contain a message-type annotation, a message annotation, and a behavior statement
(see 9.4). A behavior statement as a child of a violation statement shall only be legal, if its ancestor is a vector
(see 8.14). This rule is formulated in Semantics 109.

In a simulation application, the control expression (see 9.12) associated with the vector shall trigger the behavior
as a consequence of the violation.

violation ::=
VIOLATION { violation_item { violation_item } }

| violation_template_instantiation
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

Syntax 100—VIOLATION statement

SEMANTICS VIOLATION {
CONTEXT {

SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL
NOISE_MARGIN LIMIT..

}
}

Semantics 108—Semantic restriction for VIOLATION statement

SEMANTICS VIOLATION.BEHAVIOR { CONTEXT { VECTOR.. } }

Semantics 109—BEHAVIOR statement within VIOLATION
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Example:

Consider a flip-flop with the following functional behavior:

FUNCTION {
BEHAVIOR {

@ ( 01 clock ) { Q = data; Qbar = ! data; }
}

}

The behavior will change if a setup violation is encountered.

VECTOR ( ?! data -> 01 clock ) {
SETUP = 0.1 { FROM { PIN = data; } TO { PIN = clock; }

VIOLATION {
BEHAVIOR { Q = ‘bX; Qbar = ‘bX; }

}
}

}

End of example

A message type annotation shall be defined as shown in Semantics 110.

The purpose of the message type annotation value is to classify the severity of a violation.

The meaning of the annotation values is shown in Table 100.

A message annotation shall be defined as shown in Semantics 111.

The purpose of the message annotation is to specify verbatim the text of the message issued by the application
tool when a violation is encountered.

KEYWORD MESSAGE_TYPE = single_value_annotation {
CONTEXT = VIOLATION ;

}
SEMANTICS MESSAGE_TYPE {

VALUETYPE = identifier ;
VALUES { information warning error }

}

Semantics 110—MESSAGE_TYPE annotation

Table 100—MESSAGE_TYPE annotation

Annotation value Description

information The application tool shall issue an informative message when the violation is encountered.

warning The application tool shall issue a warning message when the violation is encountered.

error The application tool shall issue an error message when the violation is encountered.
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10.11 Arithmetic models for timing, power and signal integrity

10.11.1 TIME

The arithmetic model time shall be defined as shown in Semantics 112.

The purpose of the arithmetic model time is to specify a time interval in general.

— TIME in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a declared wire
(see 8.10)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87).

— TIME in context of a declared vector (see 8.14)

If the control expression associated with the vector is a vector expression (see 9.12), a from-to statement (see
10.12) shall be used as model qualifier. The arithmetic model shall represent a measured time interval between
two single events (see 9.13.1).

Otherwise, if the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic
model shall represent a time interval during which the boolean expression is true. A from-to statement shall not
be used as model qualifier.

As a child of the arithmetic model container limit (see 10.8.2), the arithmetic model shall specify a design limit
for a time interval. Otherwise, the arithmetic model shall specify a measured time interval.

— TIME as header arithmetic model (see Syntax 89)

KEYWORD MESSAGE = single_value_annotation {
CONTEXT = VIOLATION ;

}
SEMANTICS MESSAGE {

VALUETYPE = quoted_string ;
}

Semantics 111—MESSAGE annotation

KEYWORD TIME = arithmetic_model ;
SEMANTICS TIME {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE VECTOR arithmetic_model
VECTOR.arithmetic_model_container
VECTOR..HEADER LIMIT..HEADER

}
VALUETYPE = number ;
SI_MODEL = TIME ;

}
TIME { UNIT = NanoSeconds ; }

Semantics 112—Arithmetic model TIME
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The header arithmetic model time shall represent a dimension of another arithmetic model. The dimension time
shall generally describe a quantity changing over time, which can be visualized by a timing waveform.

If the ancestor of the header arithmetic model is a vector with an associated vector expression, a from statement
can be used as model qualifier to define a temporal relationship between a single event and the dimension time.

If the ancestor of the header arithmetic model is the arithmetic model container limit, the dimension time shall
describe a dependency between a design limit and the expected lifetime of an electronic circuit, rather than a tim-
ing waveform.

NOTE — By definition, the parent of a header arithmetic model is always a full arithmetic model.

— TIME as auxiliary arithmetic model (see Syntax 95)

The auxiliary arithmetic model time shall be used in conjunction with a measurement annotation (see 10.13.7).
The auxiliary arithmetic model shall specify the time interval during which the measurement is taken.

If the ancestor of the auxiliary arithmetic model is a vector with an associated vector expression, a from-to state-
ment can be used to define a temporal relationship between one or two single events in the vector expression and
the time interval.

10.11.2 FREQUENCY

The arithmetic model frequency shall be defined as shown in Semantics 113.

The purpose of the arithmetic model frequency is to specify a temporal frequency, i.e., a frequency measured in
units of 1/time.

NOTE: If someone desires to specify a spatial frequency, i.e., a frequency measured in units of 1/distance, a different key-
word can be declared (see 7.9).

The arithmetic model frequency can be a child or a grandchild of a declared library or sublibrary (see 8.2), a
declared cell (see 8.4), wire (see 8.10) or vector (see 8.14).

— FREQUENCY in context of a declared vector (see 8.14)

As a descendant of a declared vector with an associated vector expression (see 9.12), the arithmetic model shall
specify a statistical occurrence frequency of the vector.

KEYWORD FREQUENCY = arithmetic_model ;
SEMANTICS FREQUENCY {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE VECTOR arithmetic_model
VECTOR.arithmetic_model_container
VECTOR..HEADER LIMIT..HEADER

}
VALUETYPE = number ;
SI_MODEL = FREQUENCY ;

}
FREQUENCY { UNIT = GigaHertz; MIN = 0; }

Semantics 113—Arithmetic model FREQUENCY
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As a child of the arithmetic model container limit (see 10.8.2), the arithmetic model shall specify a design limit
for an occurrence frequency. Otherwise, the arithmetic model shall specify a measured occurrence frequency.

— FREQUENCY as header arithmetic model (see Syntax 89)

The header arithmetic model frequency shall represent a dimension of another arithmetic model.

If the ancestor of the header arithmetic model is a vector with an associated vector expression, the dimension fre-
quency shall represent the occurrence frequency of the vector.

If the ancestor of the header arithmetic model is not a vector, the frequency dimension shall be represent a spec-
tral dependency of the arithmetic model.

— FREQUENCY as auxiliary arithmetic model (see Syntax 95)

A frequency statement can be a child of an arithmetic model, thus representing an auxiliary arithmetic model.

The auxiliary arithmetic model frequency shall be used in conjunction with a measurement annotation (see
10.13.7). The auxiliary arithmetic model shall specify the repetition frequency of the measurement.

The auxiliary arithmetic models frequency and time (see 10.11.1) can be used interchangeably, unless a from or a
to statement is associated with time. The measurement repetition frequency f and the measurement time interval
t can be equated by f = 1 / t.

10.11.3 DELAY

The arithmetic model delay shall be defined as shown in Semantics 114.

The purpose of the arithmetic model delay is to specify a time interval, implying a causal relationship between
two events. A from-to statement (see 10.12) shall be used as model qualifier.

— DELAY in context of a declared vector (see 8.14)

As a child or a grandchild of a declared vector with an associated vector expression (see 9.12), the arithmetic
model delay shall specify a measured time interval between two single events (see 9.13.1), which are referred to
as from-event and to-event (see 10.12). It shall be implied that the from-event is the cause of the to-event.

If the model qualifier features only a from or only a to statement, the arithmetic model delay shall be interpreted
as a partial time interval specification. The calculation annotation (see 10.9.2) shall be used in conjunction with
a partial time interval specification. If the annotation value is incremental, the partial time interval shall be added
to another time interval. If the annotation value is absolute, the partial time interval shall be used as a default and
otherwise be substituted by a completely specified time interval.

KEYWORD DELAY = arithmetic_model;
SEMANTICS DELAY {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE
VECTOR VECTOR.EARLY VECTOR.LATE

}
SI_MODEL = TIME ;

}

Semantics 114—Arithmetic model DELAY
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— DELAY in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a declared
wire (see 8.10)

As a partial arithmetic model (see Syntax 84), delay can be used for global specification of a model qualifier. In
particular, the arithmetic model threshold (see 10.11.13) within a from-to statement can be globally specified.
The global specification of a model qualifier shall be inherited by the arithmetic models delay, retain (see
10.11.4), setup and hold (see 10.11.6), recovery and removal (see 10.11.7) and skew (see 10.11.12) in the context
of a vector.

10.11.4 RETAIN

The arithmetic model retain shall be defined as shown in Semantics 115.

The purpose of the arithmetic model retain is to specify a time interval, during which a cause has no observable
effect. A from-to statement (see 10.12) shall be used as model qualifier.

As a child or a grandchild of a declared vector with an associated vector expression (see 9.12), the arithmetic
model retain shall specify a measured time interval between two single events (see 9.13.1), which are referred to
as from-event and to-event (see 10.12). It shall be implied that the to-event is the earliest observable effect of the
from-event.

The arithmetic models retain and delay with matching model qualifiers can be jointly used. In this case, retain
shall represent the time interval between a cause (i.e., an input signal) and the earliest effect (i.e., initial change of
an output signal), and delay shall represent the time interval between a cause and the latest effect (i.e., final
change of an output signal). During the time interval between initial and final change, the output signal is consid-
ered unstable.

Retain in conjunction with delay is illustrated in Figure 25.

Figure 25—Illustration of RETAIN and DELAY

KEYWORD RETAIN = arithmetic_model ;
SEMANTICS RETAIN{

CONTEXT {
VECTOR VECTOR.EARLY VECTOR.LATE

}
SI_MODEL = TIME ;

}

Semantics 115—Arithmetic model RETAIN
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10.11.5 SLEWRATE

The arithmetic model slewrate statement shall be defined as shown in Semantics 116.

The purpose of the arithmetic model slewrate is to specify the duration of a transient event, measured between
two reference points. A reference point shall be specified by the arithmetic model threshold (see 10.11.13) within
a from-to statement (see 10.12). No particular waveform shape shall be implied for the transient event.

— SLEWRATE in context of a declared vector (see 8.14)

If slewrate is a descendant of a declared vector with an associated vector expression (see 9.12), a pin reference
annotation, possibly in conjunction with an edge number annotation, shall be used (see 10.13.2) to refer to a sin-
gle event (see 9.13.1).

— SLEWRATE in context of a declared pin (see 8.6)

If slewrate is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see 10.21) can be
used as a substitute for a reference to a single event.

— SLEWRATE in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a
declared wire (see 8.10)

As a partial arithmetic model (see Syntax 84), slewrate can be used for global specification of a model qualifier.
In particular, the arithmetic model threshold (see 10.11.13) within a from-to statement can be globally specified.

The global specification of a model qualifier shall be inherited by the arithmetic model slewrate in the context of
a vector.

— SLEWRATE as header arithmetic model (see Syntax 89)

The header arithmetic model slewrate shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of a vector. A reference to a single event shall be used as model qualifier.

Slewrate is illustrated in Figure 26.

KEYWORD SLEWRATE = arithmetic_model ;
SEMANTICS SLEWRATE {

CONTEXT {
LIBRARY LIBRARY.LIMIT SUBLIBRARY SUBLIBRARY.LIMIT
CELL CELL.LIMIT PIN PIN.LIMIT WIRE WIRE.LIMIT
VECTOR VECTOR.EARLY VECTOR.LATE VECTOR.LIMIT
VECTOR..HEADER

}
SI_MODEL = TIME ;

}
SLEWRATE { MIN = 0; }

Semantics 116—Arithmetic model SLEWRATE
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Figure 26—Illustration of SLEWRATE

10.11.6 SETUP and HOLD

The arithmetic models setup and hold shall be defined as shown in Semantics 117.

The purpose of the arithmetic models setup and hold is to specify timing constraints between a data signal and a
clock signal. Each arithmetic model shall be a child of a declared vector (see 8.14) with an associated vector
expression (see 9.12). A from-to statement (see 10.12) shall be used as model qualifier.

The arithmetic model setup shall represent the minimal required time interval during which a data signal needs to
be stable before activation of a clock signal. This time interval can be positive, zero, or negative. The data signal
shall be referred to within a from statement. The clock signal shall be referred to within a to statement.

The arithmetic model hold shall represent the minimal required time interval during which a data signal needs to
be stable after activation of a clock signal. This time interval can be positive, zero, or negative. The clock signal
shall be referred to within a from statement. The data signal shall be referred to within a to statement.

Co-dependent arithmetic models setup and hold can be described as children of the same vector. A corresponding
timing diagram is illustrated in Figure 27.

KEYWORD SETUP = arithmetic_model ;
SEMANTICS SETUP { CONTEXT = VECTOR ; SI_MODEL = TIME ; }
KEYWORD HOLD = arithmetic_model ;
SEMANTICS HOLD { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

Semantics 117—Arithmetic models SETUP and HOLD

slewrate.rise
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Figure 27—Illustration of SETUP and HOLD

10.11.7 RECOVERY and REMOVAL

The arithmetic models recovery and removal shall be defined as shown in Semantics 118.

The purpose of the arithmetic models recovery and removal is to specify timing constraints between a clock sig-
nal and an asynchronous control signal. Each arithmetic model shall be a child of a declared vector (see 8.14)
with an associated vector expression (see 9.12). A from-to statement (see 10.12) shall be used as model qualifier.

The arithmetic model recovery shall represent the minimal required time interval between de-assertion of an
asynchronous control signal and activation of a clock signal. This time interval can be positive, zero, or negative.
The asynchronous control signal shall be referred to within a from statement. The clock signal shall be referred to
within a to statement.

The arithmetic model removal shall represent the minimal required time interval between a suppressed activation
of a clock signal and de-assertion of an asynchronous control signal. This time interval can be positive, zero, or
negative. The clock signal shall be referred to within a from statement. The asynchronous control signal shall be
referred to within a to statement.

Co-dependent arithmetic models recovery and removal can be described as children of the same vector. A corre-
sponding timing diagram is illustrated in Figure 28.

KEYWORD RECOVERY = arithmetic_model ;
SEMANTICS RECOVERY { CONTEXT = VECTOR; SI_MODEL = TIME; }
KEYWORD REMOVAL = arithmetic_model ;
SEMANTICS REMOVAL { CONTEXT = VECTOR; SI_MODEL = TIME; }

Semantics 118—Arithmetic models RECOVERY and REMOVAL
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Figure 28—RECOVERY and REMOVAL

10.11.8 NOCHANGE and ILLEGAL

The arithmetic models nochange and illegal shall be defined as shown in Semantics 119.

The purpose of the arithmetic models nochange and illegal is to specify requirements for the observation or dura-
tion of an event pattern in the context of a declared vector (see 8.14).

If the control expression associated with the vector is a vector expression (see 9.12), a from-event and a to-event
can be specified, using a from-to statement (see 10.12) as model qualifier.

— NOCHANGE in the context of a declared vector

If the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic model
nochange shall specify a requirement for a minimum time interval during which the boolean expression is true. A
partial arithmetic model nochange shall specify a requirement for the boolean expression to be forever true.

If the control expression associated with the vector is a vector expression (see 9.12), the arithmetic model
nochange shall specify a requirement for a minimum time interval during which the event pattern specified by
the vector expression is observed. If a from-to statement is specified, this requirement shall pertain only to the
event pattern bound by the from-event and the to-event. A partial arithmetic model nochange shall specify a
requirement for the event pattern specified by the vector expression or the event pattern bound by the from-event
and the to-event to be observed without change.

— ILLEGAL in the context of a declared vector

KEYWORD NOCHANGE = arithmetic_model ;
SEMANTICS NOCHANGE { CONTEXT = VECTOR; SI_MODEL = TIME; }
NOCHANGE { MIN = 0; }
KEYWORD ILLEGAL = arithmetic_model ;
SEMANTICS ILLEGAL { CONTEXT = VECTOR; SI_MODEL = TIME; }
ILLEGAL { MIN = 0; }

Semantics 119—Arithmetic models NOCHANGE and ILLEGAL
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If the control expression associated with the vector is a boolean expression (see 9.9), the arithmetic model illegal
shall specify a requirement for a maximum time interval during which the boolean expression is true. A partial
arithmetic model illegal shall specify a requirement for the boolean expression to be never true.

If the control expression associated with the vector is a vector expression (see 9.12), the arithmetic model illegal
shall specify a requirement for a maximum time interval during which the event pattern specified by the vector
expression is observed. If a from-to statement is specified, this requirement shall pertain only to the event pattern
bound by the from-event and the to-event. A partial arithmetic model illegal shall specify a requirement for the
event pattern specified by the vector expression or the event pattern bound by the from-event and the to-event not
to be observed as specified.

Nochange and illegal in the context of a vector expression are illustrated in Figure 29.

Figure 29—Illustration of NOCHANGE and ILLEGAL

A vector expression corresponding to the whole timing diagram (both grey and white parts) is required to trigger
the evaluation of the arithmetic model nochange or illegal.

If a realized sequence of events involving the four signals A, B, C and D matches the beginning and the end of
the timing diagram (underlaid in grey), including the from-and to-events (marked with small arrows), the actual
event sequence in-between the from-and to-events shall be examined.

In the case of nochange, the realized sequence of events is required to match the middle of the timing diagram,
and possibly a minimal time interval between from and to is required.

In the case of illegal, the realized sequence of events is required not to match the middle of the timing diagram,
or possibly a maximum time interval between from and to is allowed.

10.11.9 PULSEWIDTH

The arithmetic model pulsewidth shall be defined as shown in Semantics 120.

The purpose of the arithmetic model pulsewidth is to specify the duration of a pulse, measured between two ref-
erence points. A reference point shall be specified by the arithmetic model threshold (see 10.11.13) within a
from-to statement (see 10.12). No particular waveform shape shall be implied for the sequence of transient
events.

from to
nochange or illegal

A

B

C

D
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For a noise waveform (see 10.11.14), i.e., a waveform that does not reach a constant logic value, pulsewidth shall
be measured between the crossings of 50% magnitude.

— PULSEWIDTH in context of a declared vector (see 8.14)

If pulsewidth is a child or a grandchild of a declared vector with an associated vector expression (see 9.12), a pin
reference annotation, possibly in conjunction with an edge number annotation, shall be used (see 10.13.2) to refer
to a single event (see 9.13.1), representing the leading edge of the pulse.

— PULSEWIDTH in context of a declared pin (see 8.6)

If pulsewidth is a child or a grandchild of a declared pin, the arithmetic submodel rise or fall (see 10.21) can be
used as a substitute for a reference to a single event.

— PULSEWIDTH in context of a declared library or sublibrary (see 8.2), a declared cell (see 8.4), or a
declared wire (see 8.10)

As a partial arithmetic model (see Syntax 84), pulsewidth can be used for global specification of a model quali-
fier. In particular, the arithmetic model threshold (see 10.11.13) within a from-to statement can be globally spec-
ified. The global specification of a model qualifier shall be inherited by the arithmetic model pulsewidth in the
context of a vector.

— PULSEWIDTH as header arithmetic model (see Syntax 89)

The header arithmetic model pulsewidth shall represent a dimension of another arithmetic model. The arithmetic
model shall be in the context of a vector. A reference to a single event shall be used as model qualifier.

Pulsewidth is illustrated in Figure 30.

KEYWORD PULSEWIDTH = arithmetic_model ;
SEMANTICS PULSEWIDTH {

CONTEXT {
LIBRARY LIBRARY.LIMIT SUBLIBRARY SUBLIBRARY.LIMIT
CELL CELL.LIMIT PIN PIN.LIMIT WIRE WIRE.LIMIT
VECTOR VECTOR..HEADER

}
SI_MODEL = TIME;

}
PULSEWIDTH { MIN = 0; }

Semantics 120—Arithmetic model PULSEWIDTH
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Figure 30—Illustration of PULSEWIDTH

10.11.10 PERIOD

The arithmetic model period shall be defined as shown in Semantics 121.

The purpose of the arithmetic model period is to specify a primitive time interval between periodical repetitions
of events.

The arithmetic model period shall be in the context of a declared vector (see 8.14) with an associated vector
expression (see 9.12). The vector expression shall specify an event pattern within the primitive time interval (see
Figure 31).

The header arithmetic model (see Syntax 89) period shall represent a dimension of another arithmetic model,
which shall be in the context of a vector. Period is illustrated in Figure 31.

Figure 31—Illustration of PERIOD

KEYWORD PERIOD = arithmetic_model ;
SEMANTICS PERIOD {

CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER }
SI_MODEL = TIME ;

}
PERIOD { MIN = 0; }

Semantics 121—Arithmetic model PERIOD

pulsewidth.risefrom.threshold.rise to.threshold.fall

pulsewidth.fall

from.threshold.fall to.threshold.rise

event pattern
within primitive

periodical
repetition

A

B

A

B

period period period period
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An event pattern involving two signals A and B is repeated periodically.

10.11.11 JITTER

The arithmetic model jitter shall be defined as shown in Semantics 122.

The purpose of the arithmetic model jitter is to specify the variability of a primitive time interval between period-
ical repetitions of an event pattern. The measurement annotation (see 10.13.7) shall be applicable as model qual-
ifier.

The arithmetic model jitter shall be in the context of a declared vector (see 8.14) with an associated vector
expression (see 9.12). The vector expression shall specify an event pattern within the primitive time interval (see
Figure 32).

A header arithmetic model (see Syntax 89) jitter shall represent a dimension of another arithmetic model, which
shall be in the context of a vector.

Jitter is illustrated in Figure 32.

Figure 32—Illustration of JITTER

An event pattern involving two signals A and B is repeated periodically. A timing diagram with and without jitter
is shown.

KEYWORD JITTER = arithmetic_model ;
SEMANTICS JITTER {

CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER }
SI_MODEL = TIME ;

}
JITTER { MIN = 0; }

Semantics 122—Arithmetic model JITTER

jitter jitter

primitive
event sequence

periodical
repetition
without jitter

periodical
repetition
with jitter

A

B

A

B

A

B
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10.11.12 SKEW

The arithmetic model skew shall be defined as shown in Semantics 123.

The purpose of the arithmetic model skew is to specify a non-negative temporal separation between multiple sig-
nals.

In the context of a declared vector (see 8.14) with an associated vector expression (see 9.12), a pin reference
annotation, possibly in conjunction with a matching edge number annotation, shall be used (see 10.13.5) to refer
to multiple single events (see 9.13.1). The arithmetic model itself shall not specify a temporal order of the events.
The temporal separation between events shall be considered for any order of events allowed by the vector
expression. If the vector expression specifies simultaneously occurring events (see 9.13.2), but the arithmetic
model skew specifies a non-zero temporal separation between these events, the skew shall take precedence, and
the temporal separation shall be considered for an arbitrary permutation of order of occurrence.

The header arithmetic model skew shall represent a dimension of another arithmetic model, which shall be in the
context of a vector. A reference to multiple single events shall be used as model qualifier.

Skew is illustrated in Figure 33.

Figure 33—Illustration of SKEW

The arithmetic model skew involves three signals A, B and C, and the vector expression restricts A and B to
occur before C.

KEYWORD SKEW = arithmetic_model ;
SEMANTICS SKEW {

CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER }
SI_MODEL = TIME ;

}
SKEW { MIN = 0; }

Semantics 123—Arithmetic model SKEW

A

B

C

or

B

A

C

skew

skew
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Restriction by vector expression: A occurs before C, B occurs before C
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10.11.13 THRESHOLD

The arithmetic model threshold shall be defined as shown in Semantics 124.

The purpose of the arithmetic model threshold is to specify a reference point for a timing measurement.

Threshold shall be a normalized quantity, according to the following mathematical definition:

threshold.rise = (vtr - v0) / (v1 - v0)
threshold.fall = (vtf - v0) / (v1 - v0)

where

v0 is the nominal voltage level for the value logic zero,
v1 is the nominal voltage level for the value logic one,
vtr is a specified voltage level crossed during a rising transition,
vtf is a specified voltage level crossed during a falling transition,

subject to the following restrictions:

v0 < v1
v0 < vtr < v1 and v0 < vtf < v1.

Threshold is illustrated in Figure 34.

Figure 34—THRESHOLD measurement definition

The arithmetic model threshold can contain the arithmetic submodels rise and fall (see 10.21). If a timing-related
arithmetic model referring to a single event (see 9.13.1) in the context of a declared vector (see 8.14) inherits a
definition for threshold, the matching arithmetic submodel rise or fall shall apply according to the single event.

NOTE — The arithmetic submodel rise or fall is not necessary, if vtr = vtf.

Threshold can be specified in the context of a from-to statement (see 10.12) or in the context of a declared pin
(see 8.6). As a child of a from-to statement, threshold shall apply to the parent arithmetic model of the from-to

KEYWORD THRESHOLD = arithmetic_model ;
SEMANTICS THRESHOLD {

CONTEXT { PIN FROM TO }
VALUETYPE = number ;

}
THRESHOLD { MIN = 0; MAX = 1; }

Semantics 124—Arithmetic model THRESHOLD

v0vtrv1 v0vtfv1

threshold.rise * (v1 - v0) threshold.fall * (v1 - v0)
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statement. As a child of a declared pin, threshold shall apply to the parent arithmetic model of a from-to state-
ment, if the from-to statement contains a pin reference annotation (see 10.13.2) referring to the declared pin.

NOTE — Threshold in the context of a declared pin does not apply to slewrate (see 10.11.5) or pulsewidth (see 10.11.9),
since a from-to statement in the context of slewrate or pulsewidth can not contain a pin reference annotation.

10.11.14 NOISE and NOISE_MARGIN

The arithmetic models noise and noise margin shall be defined as shown in Semantics 125.

The purpose of the arithmetic model noise is to specify a noise measurement. The purpose of the arithmetic
model noise margin is to specify a tolerance against noise.

Noise shall be a normalized quantity, according to the following mathematical definition:

noise.low = (vn - v0) / (v1 - v0)
noise.high = (v1 - vn) / (v1 - v0)

where

v0 is the nominal voltage level for the value logic zero,
v1 is the nominal voltage level for the value logic one,
vn is a measured voltage level due to noise.

NOTE — Noise on a signal with the logic value zero is positive if vn > v0, and negative if vn < v0.
Noise on a signal with the logic value one is positive if vn < v1, and negative if vn > v1.

Noise is illustrated in Figure 34.

KEYWORD NOISE = arithmetic_model ;
SEMANTICS NOISE {

CONTEXT {
LIBRARY.LIMIT SUBLIBRARY.LIMIT CELL.LIMIT
PIN PIN.LIMIT VECTOR VECTOR.LIMIT VECTOR..HEADER

}
VALUETYPE = number ;

}
KEYWORD NOISE_MARGIN = arithmetic_model ;
SEMANTICS NOISE_MARGIN {

CONTEXT { CLASS LIBRARY SUBLIBRARY CELL PIN VECTOR }
VALUETYPE = number ;

}
NOISE_MARGIN { MIN = 0; }

Semantics 125—Arithmetic models NOISE and NOISE_MARGIN
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Figure 35—NOISE measurement definition

A distinction shall be made between a noise margin and a design limit for noise. A noise margin shall be defined
as a value for noise that ensures that the logic value of a signal is recognizable. A design limit for noise shall be
defined as a value of noise that is tolerable regardless whether the logic value is recognizable or not.

The distinction between a noise margin and a design limit for noise is illustrated in Figure 36.

Figure 36—Definition of NOISE MARGIN and LIMIT for NOISE

Per definition, noise can be positive or negative, noise margin shall be positive, a maximum design limit for
noise shall be positive, and a minimum design limit for noise shall be negative.

— NOISE in context of a declared library or sublibrary (see 8.2) or a declared cell (see 8.4)

The arithmetic model container limit (see 10.8.2) can be used to specify a design limit for noise. An arithmetic
submodel high, low (see 10.21) can optionally be used.

A child shall inherit the design limit specification from its parent, unless a design limit is specified within the
child. In particular, a sublibrary can inherit from a library. A cell can inherit from a sublibrary or from a library.
A pin can inherit from a cell, a sublibrary or a library.

— NOISE in context of a declared pin (see 8.6)

A static noise measurement related to the pin can be described. An arithmetic submodel high, low can optionally
be used.

A design limit for noise can be described in the same way as in the context of a library, a sublibrary or a cell.

v0vnv1 v0vnv1

noise.high * (v1 - v0)

noise.low * (v1 - v0)

v0v1

noise_margin.low * (v1 - v0)

noise_margin.high * (v1 - v0)

v0v1

limit.noise.low.max * (v1 - v0)

limit.noise.low.min * (v1 - v0)

limit.noise.high.max * (v1 - v0)

limit.noise.high.min * (v1 - v0)
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— NOISE in context of a declared vector (see 8.14)

A noise measurement in response to a stimulus provided by the vector can be described. A pin reference annota-
tion shall be used. A static noise measurement can be described using a boolean expression (see 9.9) as a stimu-
lus. A transient noise measurement, i.e., either a waveform for noise or a peak value for noise, can be described
using a vector expression (see 9.12) as stimulus.

A design limit for noise related to the stimulus can be specified using the arithmetic model container limit. A pin
reference annotation shall be used.

— NOISE as header arithmetic model (see Syntax 89)

A noise that acts as a stimulus can be described. A pin reference annotation shall be used.

— NOISE MARGIN in context of a declared class (see 7.12)

A static noise margin can be specified. An arithmetic submodel high, low can optionally be used. A declared pin
can inherit this specification by referring to the class.

— NOISE MARGIN in context of a declared library or sublibrary (see 8.2) or a declared cell (see 8.4) or a
declared pin (see 8.6).

A static noise margin can be specified. The arithmetic submodels high or low can optionally be used.

A child shall inherit the noise margin specification from its parent, unless a noise margin is specified within the
child. In particular, a sublibrary can inherit from a library. A cell can inherit from a sublibrary or from a library.
A pin can inherit from a cell, a sublibrary or a library. Inheritance from a class by a pin shall take precedence
over inheritance from a cell, a sublibrary or a library.

— NOISE MARGIN in the context of a declared vector (see 8.14)

A noise margin in the context of a stimulus given by the vector can be described. A pin reference annotation (see
10.13.6) shall be used.

A state-dependent noise margin can be described using a boolean expression (see 9.9) as stimulus.

A sensitivity window for a noise margin can be described using a vector expression (see 9.12) as stimulus. The
arithmetic model time (see 10.11.1) shall be used as an auxiliary arithmetic model (see 10.6). A from-to state-
ment (see 10.12) shall be associated with time.

A transient noise margin, i.e., a noise margin that depends on the timing characteristics of the stimulus can be
described using a vector expression as stimulus and a timing-related arithmetic model, e.g. pulsewidth (see
10.11.9) or slewrate (see 10.11.5), as a header arithmetic model (see Syntax 89).

10.11.15 POWER and ENERGY

The arithmetic models power and energy shall be defined as shown in Semantics 126.

The purpose of the arithmetic models power and energy is to specify the electrical power consumption of an elec-
tronic circuit.

— POWER in context of a declared class (see 7.12)
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The arithmetic model container limit (see 10.8.2) can be used to specify a design limit for power consumption
associated with a class with usage annotation value supply-class (see 8.8.16). A measurement annotation (see
10.13.7) shall be used.

— POWER in context of a declared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for power.

— POWER in context of a declared cell (see 8.4)

Power consumption of a cell or a design limit for power consumption of a cell can be described. A measurement
annotation shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— POWER in context of a declared vector (see 8.14)

Power consumption related to a stimulus defined by the vector can be described. A measurement annotation shall
be used.

— ENERGY in context of a declared library or sublibrary (see 8.2) or a declared cell (see 8.4)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for energy.

— ENERGY in context of a declared vector (see 8.14)

Energy consumption related to a stimulus defined by the vector can be described. Total energy consumption
associated with different stimuli shall be additive, regardless whether the stimuli are mutually exclusive or not.
Also, energy consumption shall be additive with power consumption, if the measurement annotation value static
is associated with the latter.

KEYWORD POWER = arithmetic_model ;
SEMANTICS POWER {

CONTEXT {
LIBRARY SUBLIBRARY CELL VECTOR
CLASS.LIMIT CELL.LIMIT

}
VALUETYPE = number;

}
POWER { UNIT = MilliWatt; }
KEYWORD ENERGY = arithmetic_model ;
SEMANTICS ENERGY {

CONTEXT { LIBRARY SUBLIBRARY CELL VECTOR }
VALUETYPE = number;

}
ENERGY { UNIT = PicoJoule; }

Semantics 126—Arithmetic models POWER and ENERGY
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10.12 FROM and TO statements

A from-to statement shall be defined as shown in Syntax 101.

The purpose of a from and a to statement is to define the start and end point, respectively, of a timing measure-
ment. The timing measurement shall be applicable for digital signals.

A from and a to statement can contain a pin reference annotation (see 10.13.2), an edge number annotation (see
10.13.1) and a threshold arithmetic model (see 10.11.13).

A reference to a single event (see 9.13.1) is specified by the pin reference annotation in conjunction with the edge
number annotation. The single event referenced within the from and to statement, respectively, shall be called
from-event and to-event, respectively.

The from-and to-statements shall be subjected to the restriction shown in Semantics 127.

10.13 Annotations related to timing, power and signal integrity

10.13.1 EDGE_NUMBER annotation

An edge number annotation shall be defined as shown in Semantics 128.

The edge number annotation shall be a child of an arithmetic model (see 10.3) or a from-to statement (see 10.12).

from-to ::=
from | to | from to

from ::=
FROM { from-to_item { from-to_item } }

to ::=
TO { from-to_item { from-to_item } }

from-to_item ::=
PIN_reference_single_value_annotation

| EDGE_NUMBER_single_value_annotation
| THRESHOLD_arithmetic_model

Syntax 101—FROM and TO statements

SEMANTICS FROM {
CONTEXT {

TIME DELAY RETAIN SLEWRATE PULSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}
SEMANTICS TO {

CONTEXT {
TIME DELAY RETAIN SLEWRATE PULSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}

Semantics 127—Restriction for FROM and TO statements
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The purpose of the edge number annotation is to specify a reference to a single event (see 9.13.1) within a vector
expression. The vector expression shall be the name of a declared vector. The reference shall be established by
using the edge number annotation in conjunction with a pin reference annotation (see 8.8.1). The pin reference
annotation shall point to a pin variable (see 9.3) involved in the vector expression. The edge number annotation
shall point to a single event on the pin variable. Every single event on a pin variable shall be counted in chrono-
logical order, starting with 0.

10.13.2 PIN reference and EDGE_NUMBER annotation for FROM and TO

A pin reference annotation shall be subjected to the restriction shown in Semantics 129.

The purpose of the restriction is to define a reference to a single pin variable in the context of a from-to statement
(see 10.12).

An edge_number annotation shall be subjected to the restriction shown in Semantics 130.

The purpose of the restriction is to define a reference to a single event (see 9.13.1) in the context of a from-to
statement.

KEYWORD EDGE_NUMBER = annotation {
CONTEXT { arithmetic_model FROM TO }

}
SEMANTICS EDGE_NUMBER

CONTEXT { VECTOR.. }
VALUETYPE = unsigned_integer ;
DEFAULT = 0;

}

Semantics 128—EDGE_NUMBER annotation

SEMANTICS FROM.PIN = single_value_annotation {
CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}
SEMANTICS TO.PIN = single_value_annotation {

CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

Semantics 129—Restriction for PIN reference annotation within FROM and TO

SEMANTICS FROM.EDGE_NUMBER = single_value_annotation {
CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}
SEMANTICS TO.EDGE_NUMBER = single_value_annotation {

CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

Semantics 130—Restriction for EDGE_NUMBER annotation within FROM and TO
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Example:

TIME { FROM { PIN=A; EDGE_NUMBER=1; } TO { PIN=B; EDGE_NUMBER=3; } }

Figure 37 illustrates the restriction using a timing diagram.

Figure 37—Illustration of PIN reference and EDGE NUMBER annotation within FROM and TO

A measurement is taken from edge number 1 at pin variable A to edge number 3 at pin variable B.

10.13.3 PIN reference and EDGE_NUMBER annotation for SLEWRATE

A pin reference annotation and an edge_number annotation shall be subjected to the restriction shown in
Semantics 131.

The purpose of the restriction is to define a reference to a single event for which slewrate (see 10.11.5) is mea-
sured.

10.13.4 PIN reference and EDGE_NUMBER annotation for PULSEWIDTH

A pin reference annotation and an edge_number annotation shall be subjected to the restriction shown in
Semantics 132.

The purpose of the restriction is to define a reference to a single event which is the leading edge of a pulse for
which pulsewidth (see 10.11.9) is measured. The trailing edge shall be the following single event on the same
pin.

SEMANTICS SLEWRATE.PIN = single_value_annotation ;
SEMANTICS SLEWRATE.EDGE_NUMBER = single_value_annotation ;

Semantics 131—Restriction for PIN reference and EDGE_NUMBER annotation within SLEWRATE

SEMANTICS PULSEWIDTH.PIN = single_value_annotation;
SEMANTICS PULSEWIDTH.EDGE_NUMBER = single_value_annotation;

Semantics 132—Restriction for PIN reference and EDGE_NUMBER annotation within PULSEWIDTH

0 1 2

0 1 2 3edge number
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10.13.5 PIN reference and EDGE_NUMBER annotation for SKEW

A pin reference annotation and an edge number annotation shall be subjected to the restriction shown in
Semantics 133.

The purpose of the restriction is to define a reference to plural events, for which skew (see 10.11.12) is measured.

The number of annotation values within the pin reference and edge number annotation shall match. Subsequent
annotation values shall correspond to each other. i.e., the first annotation value within the pin reference annota-
tion shall correspond to the first annotation value within the edge number annotation, etc.

10.13.6 PIN reference annotation for NOISE and NOISE_MARGIN

A pin reference annotation shall be subjected to the restriction shown in Semantics 134.

The purpose of the restriction is to define a reference to a pin, for which noise or noise margin (see 10.11.14) is
described.

10.13.7 MEASUREMENT annotation

A measurement annotation shall be defined as shown in Semantics 135.

The purpose of the measurement annotation is to specify the mathematical definition of a temporal measurement.

SEMANTICS SKEW.PIN = multi_value_annotation ;
SEMANTICS SKEW.EDGE_NUMBER = multi_value_annotation ;

Semantics 133—Restriction for PIN reference and EDGE_NUMBER annotation within SKEW

SEMANTICS NOISE.PIN = single_value_annotation ;
SEMANTICS NOISE_MARGIN.PIN = single_value_annotation ;

Semantics 134—Restriction for PIN reference annotation within NOISE and NOISE MARGIN

KEYWORD MEASUREMENT = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS MEASUREMENT {

CONTEXT { ENERGY POWER CURRENT VOLTAGE JITTER }
VALUETYPE = identifier ;
VALUES {

transient static average absolute_average rms peak
}

}

Semantics 135—MEASUREMENT annotation
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The mathematical definition of the annotation values is shown in Table 101.

The arithmetic model time (see 10.11.1) or frequency (see 10.11.2) shall be used as auxiliary arithmetic model
(see 10.6), if the measurement annotation value is average, absolute average, or rms. The auxiliary arithmetic
model time shall be interpreted as the integration time T in Table 101. The auxiliary arithmetic model frequency
shall be interpreted as the repetition frequency f of the measurement, with f=1/T.

The auxiliary arithmetic model time can be used, if the parent arithmetic model is in the context of a declared
vector (see 8.14) and the measurement annotation value is peak. Either a from or a to statement (see 10.12) can be
used to specify the time interval between a single event (see 9.13.1) and the occurrence of the measurement or
vice-versa.

This is illustrated in Figure 38.

Figure 38—Illustration of peak measurement with FROM or TO statement

Table 101—MEASUREMENT annotation

Annotation value Mathematical description

transient measurement = x(t)

static measurement = x, with x constant

average

absolute_average

rms

peak measurement = max(max(x),-min(x)), with x = x(t)

1
T
--- x t( ) td

t 0=

t T=

∫measurement =

1
T
--- x t( ) td

t 0=

t T=

∫measurement =

1
T
--- x2 t( ) td

t 0=

t T=

∫measurement =

from to
time time

single
event

single
event

peak peak
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10.14 Arithmetic models for environmental conditions

10.14.1 PROCESS

The arithmetic model process shall be defined as shown in Semantics 136.

The purpose of the arithmetic model process is to specify a dependency between an arithmetic model and a man-
ufacturing process condition. A partial arithmetic model (see Syntax 84), a header arithmetic model (see
Syntax 89), or an auxiliary arithmetic model (see 10.6) can be used.

The meaning of the predefined arithmetic values for process is explained in Table 102.

10.14.2 DERATE_CASE

The arithmetic model derate case shall be defined as shown in Semantics 137.

The purpose of the arithmetic model derate case is to specify a dependency between an arithmetic model and an
environmental condition. A partial or a full arithmetic model (see Syntax 84 and Syntax 85), a header arithmetic
model (see Syntax 89), or an auxiliary arithmetic model (see 10.6) can be used.

KEYWORD PROCESS = arithmetic_model ;
SEMANTICS PROCESS {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL WIRE HEADER
arithmetic_model

}
VALUETYPE = identifier ;

}
PROCESS { DEFAULT = nom; TABLE { nom snsp snwp wnsp wnwp } }

Semantics 136—Arithmetic model PROCESS

Table 102—Predefined arithmetic values for PROCESS

Value Description

nom NMOS and PMOS transistors with nominal strength

snsp Strong NMOS transistor, strong PMOS transistor.

snwp Strong NMOS transistor, weak PMOS transistor.

wnsp Weak NMOS transistor, strong PMOS transistor.

wnwp Weak NMOS transistor, weak PMOS transistor.
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The meaning of the predefined arithmetic values for derate case is explained in Table 103.

A full arithmetic model can be used to describe the dependency between the condition and its defining parame-
ters (e.g., process, voltage, temperature).

10.14.3 TEMPERATURE

The arithmetic model temperature shall be defined as shown in Semantics 138.

KEYWORD DERATE_CASE = arithmetic_model ;
SEMANTICS DERATE_CASE {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL WIRE HEADER
arithmetic_model

}
VALUETYPE = identifier ;

}
DERATE_CASE { DEFAULT = nom;

TABLE { nom bccom wccom bcind wcind bcmil wcmil }
}

Semantics 137—Arithmetic model DERATE_CASE

Table 103—Predefined arithmetic values for DERATE CASE

Derating case Description

nom Nominal environmental condition

bccom Best case commercial condition

bcind Best case industrial condition

bcmil Best case military condition

wccom Worst case commercial condition

wcind Worst case industrial condition

wcmil Worst case military condition

KEYWORD TEMPERATURE = arithmetic_model ;
SEMANTICS TEMPERATURE {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL WIRE
LIMIT HEADER arithmetic_model

}
VALUETYPE = number ;

}
TEMPERATURE { UNIT = 1DegreeCelsius; MIN = -273; }

Semantics 138—Arithmetic model TEMPERATURE
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The purpose of the arithmetic model temperature is to specify a dependency between an arithmetic model and an
environmental temperature. Temperature shall be measured in degrees Celsius. A partial or a full arithmetic
model (see Syntax 84 and Syntax 85), a header arithmetic model (see Syntax 89), or an auxiliary arithmetic
model (see 10.6) can be used.

10.15 Arithmetic models for electrical circuits

10.15.1 VOLTAGE

The arithmetic model voltage shall be defined as shown in Semantics 139.

The purpose of the arithmetic model voltage is to specify either a measurement of electrical voltage or an electri-
cal component that can be modeled as a voltage source.

— VOLTAGE in context of a declared class (see 7.12)

An environmental voltage can be specified. An arithmetic submodel high, low (see 10.21) can optionally be
used. A pin (see 8.6) can inherit this specification by referring to the class. In particular, a supply class annotation
(see 8.8.16) or a connect class annotation (see 8.8.19) can be used for this purpose.

— VOLTAGE in context of a declared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) or a trivial min-max statement (see Syntax 94) for voltage.

— VOLTAGE in context of a declared cell (see 8.4)

A voltage source that is part of the implementation of a cell can be specified. A node reference annotation (see
10.16.1) shall be used.

A design limit for a voltage related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or a model reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— VOLTAGE in context of a declared pin (see 8.6)

An environmental voltage related to a pin, e.g., a supply voltage, can be described. An arithmetic submodel high,
low can optionally be used.

KEYWORD VOLTAGE = arithmetic_model ;
SEMANTICS VOLTAGE {

CONTEXT {
CLASS LIBRARY SUBLIBRARY CELL PIN WIRE VECTOR HEADER
CLASS.LIMIT CELL.LIMIT PIN.LIMIT VECTOR.LIMIT

}
VALUETYPE = number ;

}
VOLTAGE { UNIT = 1Volt; }

Semantics 139—Arithmetic model VOLTAGE
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A design limit for a voltage that can be applied to the pin can be described using the arithmetic model container
limit.

— VOLTAGE in context of a declared wire (see 8.10)

A voltage source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— VOLTAGE in context of a declared vector (see 8.14)

A voltage measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or a model reference annotation shall be used.

A design limit for a voltage related to the stimulus can be specified using the arithmetic model container limit
(see 10.8.2). Either a pin reference annotation or a model reference annotation shall be used.

— VOLTAGE as header arithmetic model (see Syntax 89)

A voltage that acts as a stimulus can be described. Either a pin reference annotation or a model reference annota-
tion shall be used. In particular, if a wire instantiation (see 9.15) is present, a reference to a voltage source speci-
fied within the declared wire can be established.

10.15.2 CURRENT

The arithmetic model current shall be defined as shown in Semantics 140.

The purpose of the arithmetic model current is to specify either a measurement of electrical current or an electri-
cal component that can be modeled as a current source.

— CURRENT in context of a declared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for current.

— CURRENT in context of a declared cell (see 8.4)

A current source that is part of the implementation of a cell can be specified. A node reference annotation (see
10.16.1) shall be used.

KEYWORD CURRENT = arithmetic_model ;
SEMANTICS CURRENT {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE VECTOR HEADER
CELL.LIMIT VECTOR.LIMIT
LAYER.LIMIT VIA.LIMIT RULE.LIMIT

}
VALUETYPE = number ;

}
CURRENT { UNIT = MilliAmpere; }

Semantics 140—Arithmetic model CURRENT
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A design limit for a current related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or a model reference annotation (see 10.9.5) or a compo-
nent reference annotation (see 10.16.2) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— CURRENT in context of a declared wire (see 8.10)

A current source within an electrically equivalent circuit used for interconnect analysis can be specified. A node
reference annotation shall be used.

— CURRENT in context of a declared layer (see 8.16), a declared via (see 8.18), or a declared rule (see
8.20)

A design limit for current can be specified using the arithmetic model container limit. A measurement annotation
(see 10.13.7) shall be used.

In the context of a layer, the current shall flow through a general layout segment created by that layer. In the con-
text of a via or in the context of a rule, the current shall flow through a particular layout segment in context of
other layout segments described within the via or within the rule. A pattern reference annotation (see 10.20.9)
shall be used.

— CURRENT in context of a declared vector (see 8.14)

A current measurement in response to a stimulus provided by the vector can be described. Either a pin reference
annotation or a model reference annotation or a component reference annotation shall be used.

A design limit for a current related to the stimulus can be specified using the arithmetic model container limit.
Either a pin reference annotation or a model reference annotation or a component reference annotation shall be
used.

— CURRENT as header arithmetic model (see Syntax 89)

A current that acts as a stimulus can be described. Either a pin reference annotation or a model reference annota-
tion or a component reference annotation shall be used. In particular, if a wire instantiation (see 9.15) is present,
a reference to a current source or to a component specified within the declared wire can be established.

10.15.3 CAPACITANCE

The arithmetic model capacitance shall be defined as shown in Semantics 141.

KEYWORD CAPACITANCE = arithmetic_model ;
SEMANTICS CAPACITANCE {

CONTEXT {
LIBRARY SUBLIBRARY CELL CELL.LIMIT PIN PIN.LIMIT
WIRE LAYER RULE VECTOR HEADER

}
VALUETYPE = number ;
SI_MODEL = CAPACITANCE ;

}
CAPACITANCE { UNIT = PicoFarad; MIN = 0; }

Semantics 141—Arithmetic model CAPACITANCE
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The purpose of the arithmetic model capacitance is to describe either a measurement of electrical capacitance or
an electrical component that can be modeled as a capacitor.

— CAPACITANCE in context of a declared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for capacitance.

— CAPACITANCE in context of a declared cell (see 8.4)

A capacitor that is part of the implementation of a cell can be described. A node reference annotation (see
10.16.1) shall be used.

A design limit for a capacitor related to the cell can be specified using the arithmetic model container limit (see
10.8.2). Either a pin reference annotation (see 10.16.3) or a model reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— CAPACITANCE in context of a declared pin (see 8.6)

The self-capacitance of a pin can be described as a child of a pin. An arithmetic submodel rise, fall, high, low
(see 10.21) can optionally be used.

A design limit for a capacitance that can be connected to the pin can be specified using the arithmetic model con-
tainer limit as a child of a pin.

— CAPACITANCE in context of a declared wire (see 8.10)

A capacitance with or without node reference annotation can be described.

A capacitance with node reference annotation shall represent a capacitor within an electrically equivalent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the capacitance shall represent a parasitic capacitor within the
cell. Interconnect analysis shall either use a (lumped) self-capacitance of a pin or a (distributed) parasitic capaci-
tor connected to a pin.

A capacitance without node reference annotation shall represent an estimation model for interconnect capaci-
tance.

— CAPACITANCE in context of a declared layer (see 8.16)

An estimation model for capacitance of a general layout segment can be described. An arithmetic submodel hor-
izontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— CAPACITANCE in context of a declared rule (see 8.20)

An estimation model for capacitance created by a particular layout pattern can be described.

— CAPACITANCE in context of a declared vector (see 8.14)

An effective capacitance can be described. Either a pin reference annotation or a model reference annotation shall
be used. The effective capacitance shall be interpreted as a virtual capacitor, which, under the specific stimulus
provided by the vector, behaves in a similar way as the actual load circuit.
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— CAPACITANCE as header arithmetic model (see Syntax 89)

A capacitance as a dimension of an arithmetic model can be described. Either a pin reference annotation or a
model reference annotation shall be used.

The pin reference annotation shall be used to specify a lumped load capacitance. The self-capacitance of the pin
shall not be included in the load capacitance.

The model reference annotation shall be used to refer to another capacitor. In particular, if a wire instantiation
(see 9.15) is present, a reference to a capacitor described within the declared wire can be established.

10.15.4 RESISTANCE

The arithmetic model resistance shall be defined as shown in Semantics 142.

The purpose of the arithmetic model resistance is to describe either a measurement of electrical resistance or an
electrical component that can be modeled as a resistor.

— RESISTANCE in context of a declared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for resistance.

— RESISTANCE in context of a declared cell (see 8.4)

A resistor that is part of the implementation of a cell can be described. A node reference annotation (see 10.16.1)
shall be used.

A design limit for a resistor related to the cell can be specified using the arithmetic model container limit (see
10.8.2). A model reference annotation (see 10.9.5) shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— RESISTANCE in context of a declared wire (see 8.10)

A resistance with or without node reference annotation can be described.

A resistance with node reference annotation shall represent a resistor within an electrically equivalent circuit
used for interconnect analysis. If the wire is a child of the cell and a permanent connectivity between pins and
nodes of the cell and the nodes of the wire exists, the resistance shall represent a parasitic resistor within the cell.

KEYWORD RESISTANCE = arithmetic_model ;
SEMANTICS RESISTANCE {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE LAYER RULE
CELL.LIMIT VECTOR HEADER

}
VALUETYPE = number ;
SI_MODEL = RESISTANCE ;

}
RESISTANCE { UNIT = KiloOhm; MIN = 0; }

Semantics 142—Arithmetic model RESISTANCE
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A resistance without node reference annotation shall represent an estimation model for interconnect resistance.

— RESISTANCE in context of a declared layer (see 8.16)

An estimation model for resistance of a general layout segment can be described. An arithmetic submodel hori-
zontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— RESISTANCE in context of a declared rule (see 8.20)

An estimation model for resistance created by a particular layout pattern can be described.

— RESISTANCE in context of a declared vector (see 8.14)

A driver resistance can be described. Either a pin reference annotation or a model reference annotation shall be
used. The driver resistance shall be interpreted as part of an electrically equivalent circuit, which, under the spe-
cific stimulus provided by the vector, behaves in a similar way as the actual driver circuit.

— RESISTANCE as header arithmetic model (see Syntax 89)

A resistance as a dimension of an arithmetic model can be described. A model reference annotation shall be used.
In particular, if a wire instantiation (see 9.15) is present, a reference to a resistor described within the declared
wire can be established.

10.15.5 INDUCTANCE

The arithmetic model inductance shall be defined as shown in Semantics 143.

The purpose of the arithmetic model inductance is to describe either a measurement of electro-magnetic induc-
tance or an electro-magnetic component that can be modeled as an inductor (i.e., a component with self-induc-
tance) or a transformer (i.e., a component with mutual inductance).

— INDUCTANCE in context of a declared library or sublibrary (see 8.2)

A partial arithmetic model (see Syntax 84) can be used to globally specify an inheritable arithmetic model qual-
ifier (see Syntax 87) for inductance.

— INDUCTANCE in context of a declared cell (see 8.4)

An inductor or a transformer that is part of the implementation of a cell can be described. A node reference anno-
tation (see 10.16.1) shall be used.

KEYWORD INDUCTANCE = arithmetic_model ;
SEMANTICS INDUCTANCE {

CONTEXT {
LIBRARY SUBLIBRARY CELL WIRE LAYER RULE
CELL.LIMIT VECTOR HEADER

}
VALUETYPE = number ;
SI_MODEL = INDUCTANCE ;

}
INDUCTANCE { UNIT = 1e-6; MIN = 0; }

Semantics 143—Arithmetic model INDUCTANCE
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A design limit for an inductor or for a transformer related to the cell can be specified using the arithmetic model
container limit (see 10.8.2). A pin reference annotation (see 10.16.3) or a model reference annotation (see 10.9.5)
shall be used.

A partial arithmetic model can be used in the same way as in the context of library or sublibrary.

— INDUCTANCE in context of a declared wire (see 8.10)

An inductance with or without node reference annotation can be described.

An inductance with node reference annotation shall represent a self-inductance or a mutual inductance within an
electrically equivalent circuit used for interconnect analysis. If the wire is a child of the cell and a permanent con-
nectivity between pins and nodes of the cell and the nodes of the wire exists, the inductance shall represent a par-
asitic self-inductance or mutual inductance within the cell.

An inductance without node reference annotation shall represent an estimation model for interconnect self-
inductance.

— INDUCTANCE in context of a declared layer (see 8.16)

An estimation model for self-inductance of a general layout segment can be described. An arithmetic submodel
horizontal, vertical, acute, obtuse (see 10.22) can optionally be used.

— INDUCTANCE in context of a declared rule (see 8.20)

An estimation model for inductance created by a particular layout pattern can be described.

— INDUCTANCE in context of a declared vector (see 8.14)

An equivalent inductance can be described. A model reference annotation shall be used. The equivalent induc-
tance shall be interpreted as part of an electrically equivalent circuit, which, under the specific stimulus provided
by the vector, behaves in a similar way as the actual circuit.

— INDUCTANCE as header arithmetic model (see Syntax 89)

An inductance as a dimension of an arithmetic model can be described. A model reference annotation shall be
used. In particular, if a wire instantiation (see 9.15) is present, a reference to a self-inductance or to a mutual
inductance described within the declared wire can be established.

10.16 Annotations for electrical circuits

10.16.1 NODE reference annotation for electrical circuits

The node reference annotation (see 8.13.1) shall be subjected to restrictions defined in Semantics 144.

The purpose of a node reference annotation with these restrictions is to specify the connectivity of an electrical
component within an electrical circuit.
Copyright © 2003 IEEE. All rights reserved. 223
This is an unapproved IEEE Standards Draft, subject to change.



IEEE P1603/D9, July 2003 Advanced Library Format (ALF) Reference Manual

1

5

10

15

20

25

30

35

40

45

50

55
The following restrictions shall further apply:

a) An arithmetic model with a node reference annotation shall always have an ALF name.
b) A node annotation associated with the arithmetic model voltage shall have two values, representing the

terminal nodes of a voltage source. The defined polarity of the first and the second terminal shall be pos-
itive and negative, respectively.

c) A node annotation associated with the arithmetic model current shall have two values, representing the
terminal nodes of a current source. The defined flow of the current shall be from the first to the second
terminal.

d) A node annotation associated with the arithmetic model capacitance shall have two values, representing
the terminal nodes of a capacitor.

e) A node annotation associated with the arithmetic model resistance shall have two values, representing
the terminal nodes of a resistor.

f) A node annotation associated with the arithmetic model inductance shall have either two values or four
values. Two values shall represent the terminal nodes of an inductor. Four values shall represent the ter-
minal nodes of two coupled inductors. The first two values shall represent the terminals across which an
induced voltage is observed. The last two values shall represent the terminals across which a controlling
current flows.

The electrical components and their terminals are illustrated in Figure 39.

Figure 39—Electrical components and their terminals

The numbers in Figure 39 indicate the first, second, third and fourth node annotation values. However, the node
annotation values shall be the ALF names of declared nodes.

10.16.2 COMPONENT reference annotation

A component reference annotation shall be defined as shown in Semantics 145.

SEMANTICS VOLTAGE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS CURRENT.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS CAPACITANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS RESISTANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS INDUCTANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

Semantics 144—Restrictions for NODE reference annotation
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The purpose of the component reference annotation is to relate the arithmetic model current (see 10.15.2), power
or energy (see 10.11.15) to an electrical component.

Electrical current shall flow through an electrical component with two terminals, i.e., a voltage source, a current
source, a capacitor, a resistor, or an inductor. The defined flow of the current shall be from the first terminal to the
second terminal.

Electrical power or energy shall be supplied by a voltage source or by a current source, stored in a capacitor or in
an inductor and dissipated in a resistor. A negative value shall mean that a voltage source or a current source is a
sink of power or energy rather than a source, that a capacitor or an inductor releases energy or power, or that a
resistor virtually supplies power.

NOTE — A resistor that supplies power is physically impossible. However, certain active electronic circuits, for example a
Negative Impedance Convertor, can be modeled using a “negative” resistor. The electrical energy “supplied” by the “nega-
tive” resistor is dissipated in other parts of the electronic circuit.

10.16.3 PIN reference annotation for electrical circuits

The pin reference annotation (see 8.8.1) shall be subjected to restrictions defined in Semantics 146.

The purpose of a pin reference annotation for electrical circuits is to specify an association between an electrical
component with two terminals and a pin variable, i.e., a declared pin, port or node (see 9.3).

a) A pin reference annotation associated with the arithmetic model voltage shall specify a connection
between a pin, port or node and a voltage meter. The terminal with defined positive polarity shall be con-
nected to the pin, port or node. The terminal with defined negative polarity shall be connected to ground.

b) A pin reference annotation associated with the arithmetic model current shall specify a connection
between a pin, port or node and a current meter. The flow of the current shall be defined by the flow
annotation (see 10.16.4).

KEYWORD COMPONENT = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS COMPONENT {

CONTEXT { CURRENT POWER ENERGY }
REFERENCETYPE {

CURRENT VOLTAGE CAPACITANCE RESISTANCE INDUCTANCE
}

}

Semantics 145—COMPONENT annotation

SEMANTICS VOLTAGE.PIN = single_value_annotation {
CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER } }

SEMANTICS CURRENT.PIN = single_value_annotation {
CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER } }

SEMANTICS CAPACITANCE.PIN = single_value_annotation {
CONTEXT { VECTOR VECTOR..HEADER } }

SEMANTICS RESISTANCE.PIN = single_value_annotation {
CONTEXT { VECTOR } }

Semantics 146—PIN reference annotation
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c) A pin reference annotation associated with the arithmetic model capacitance shall specify a connection
between a pin, port or node and one terminal of a capacitor. The other terminal of the capacitor shall be
connected to ground. The capacitor shall represent either a load capacitance or an effective capacitance.

d) A pin reference annotation associated with the arithmetic model resistance shall specify a connection
between a pin and one terminal of a resistor. The other terminal of the resistor shall be connected to a vir-
tual voltage source. The resistor shall represent a driver resistance.

An electrical component can be associated with an input pin or with an output pin.

A node with nodetype annotation value receiver (see 8.13.2), a pin with direction annotation value input (see
8.8.5), a port, or a node connected to such a pin shall be considered an input pin.

The association between electrical components and an input pin involves a model of a stimulus and a model of a
receiver circuit, as illustrated in Figure 40.

Figure 40—Association between electrical components and an input pin

A node with nodetype annotation value driver (see 8.13.2), a pin with direction annotation value output (see
8.8.5), a port, or a node connected to such a pin shall be considered an output pin.

The association between electrical components and an output pin involves a model of a driver circuit and a
model of a load circuit, as illustrated in Figure 41.

Figure 41—Association between electrical components and an output pin

NOTE — In order to describe a more complex model for a stimulus, a load circuit, a driver circuit or a receiver circuit, an
electrical component in context of a declared wire can be used, as described in 10.15.
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10.16.4 FLOW annotation

A flow annotation shall be defined as shown in Semantics 147.

The purpose of the flow annotation is to specify the defined measurement direction of a current in conjunction
with a pin reference annotation (see 10.16.3).

The meaning of the annotation values is shown in Table 104.

NOTE — The flow annotation is not applicable in conjunction with a node reference annotation (see 10.16.1) or a component
reference annotation (see 10.16.2), since the direction of current measurement is already defined by the order of terminals of
the electrical component.

10.17 Miscellaneous arithmetic models

10.17.1 DRIVE STRENGTH

The arithmetic model drive strength shall be defined as shown in Semantics 148.

The purpose of the arithmetic model drive strength is to specify an abstract, unit-less measure for drivability
associated with a primitive circuit or a compound circuit.

KEYWORD FLOW = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS FLOW {

CONTEXT = CURRENT ;
VALUES { in out }
DEFAULT = in;

}

Semantics 147—FLOW annotation

Table 104—FLOW annotation

Annotation value Description

in The defined flow of the current is from outside the cell to inside the cell.

out The defined flow of the current is from inside the cell to outside the cell.

KEYWORD DRIVE_STRENGTH = arithmetic_model ;
SEMANTICS DRIVE_STRENGTH {

CONTEXT { CLASS LIBRARY SUBLIBRARY CELL PIN PINGROUP }
VALUETYPE = unsigned_number ;

}
DRIVE_STRENGTH { MIN = 0; }

Semantics 148—Arithmetic model DRIVE_STRENGTH
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A cell (see 8.4) shall be considered either a primitive circuit or a compound circuit, depending on its celltype
annotation (see 8.5.2). In case of a primitive circuit, drive strength can be a child of a cell. In case of a compound
circuit, drive strength can be a child of a pin (see 8.6) or a pingroup (see 8.7).

A cell with celltype annotation value buffer, combinational, multiplexor, flip-flop, or latch shall be considered a
primitive circuit. A cell with celltype annotation value memory, block, or core shall be considered a compound
circuit.

A partial arithmetic model (see Syntax 84) in the context of a class (see 7.12), a library or a sublibrary (see 8.2)
can be used to globally specify a set of discrete values or a range of values for drive strength, using a table state-
ment (see Syntax 91) or a trivial min-max statement (see Syntax 94), respectively.

10.17.2 SWITCHING_BITS with PIN reference annotation

The arithmetic model switching bits shall be defined as shown in Semantics 149.

The purpose of the arithmetic model switching bits is to specify the number of binary value changes during a sin-
gle event (see 9.13.1) on a vectorized pin (see 8.6) or a pingroup (see 8.7).

Drive strength can be used as header arithmetic model (see Syntax 89) for calculation of power or energy (see
10.11.15) in context of a vector (see 8.14).

The pin reference annotation (see 8.8.1) shall be used.

10.18 Arithmetic models related to structural implementation

10.18.1 CONNECTIVITY

The arithmetic model connectivity shall be defined as shown in Semantics 150.

The purpose of the arithmetic model connectivity is to specify an actual connection or a requirement for a con-
nection between physical objects. Either a table statement (see Syntax 91) or a between annotation (see 10.20.2)
shall be used to establish a relation between physical objects and the arithmetic model connectivity. The interpre-
tation of connectivity as a requirement for a connection shall be specified by the connect-rule annotation (see
10.20.1).

KEYWORD SWITCHING_BITS = arithmetic_model ;
SEMANTICS SWITCHING_BITS {

CONTEXT { VECTOR.POWER.HEADER VECTOR.ENERGY.HEADER }
VALUETYPE = unsigned_integer ;

}
SEMANTICS SWITCHING_BITS.PIN = single_value_annotation;

Semantics 149—Arithmetic model SWITCHING_BITS

KEYWORD CONNECTIVITY = arithmetic_model ;
SEMANTICS CONNECTIVITY {
CONTEXT { LIBRARY SUBLIBRARY CELL RULE ANTENNA HEADER }
VALUES { 1 0 ? }

}

Semantics 150—Arithmetic model CONNECTIVITY
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The arithmetic model connectivity shall evaluate to a bit literal (see 6.8). The interpretation of the bit literal is
specified in Table 105.

NOTE — The bit literal “?” is defined as a non-assignable boolean value (see 9.10.3) and can therefore only be used, if the
connectivity is modeled as a table (see Syntax 91).

10.18.2 DRIVER and RECEIVER

The arithmetic models driver and receiver shall be defined as shown in Semantics 151.

The purpose of the header arithmetic model (see Syntax 89) driver or receiver is to specify a dependency
between connectivity (see 10.18.1) and a declared class (see 7.12) with usage annotation value connect-class (see
7.13.2 and 8.8.19).

The header arithmetic model driver or receiver shall contain a table statement (see Syntax 91). The parent arith-
metic model connectivity shall contain either a one-dimensional lookup table involving either dimension driver
or receiver, or alternatively a two-dimensional lookup table involving both dimensions driver and receiver.

A declared pin (see 8.6) shall be subjected to a connection with another pin, if a connect-class annotation exists
for both pins, and the respective connect-class annotation values are found in a table statement within the header
arithmetic model driver or receiver.

The association of a pin with the dimension driver or receiver shall depend on the direction annotation value (see
8.8.5). A pin with direction annotation value input shall be associated with the dimension receiver. A pin with
direction annotation value output shall be associated with the dimension driver. A pin with direction annotation
value both shall be associated with both dimensions driver and receiver.

Table 105—Interpretation of bit literals for CONNECTIVITY

Bit literal Interpretation as actual connection Interpretation as requirement for a connection

1 Connection exists. Requirement is true.

0 Connection does not exist. Requirement is false.

? Connection is not specified. Requirement is not specified.

KEYWORD DRIVER = arithmetic_model ;
SEMANTICS DRIVER {

CONTEXT = CONNECTIVITY.HEADER;
REFERENCETYPE = CLASS ;

}
KEYWORD RECEIVER = arithmetic_model ;
SEMANTICS RECEIVER {

CONTEXT = CONNECTIVITY.HEADER;
REFERENCETYPE = CLASS ;

}

Semantics 151—Arithmetic models DRIVER and RECEIVER
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Example:

CLASS Normal { USAGE = CONNECT_CLASS; }
CLASS Special { USAGE = CONNECT_CLASS; }
CONNECTIVITY Example1 {

HEADER { DRIVER { Normal Special } }
TABLE { 0 1 }

}
CONNECTIVITY Example2 {

HEADER {
DRIVER { Normal Special } }
RECEIVER { Special Normal } }

}
TABLE { 0 1 1 0 }

}

Example1 specifies the following:

A connection between an output pin and another output pin associated with Normal is false.
A connection between an output pin and another output pin associated with Special is true.

Example2 specified the following:

A connection between an output pin associated with Normal and an input pin associated with Special is false.
A connection between an output pin associated with Special and an input pin associated with Special is true.
A connection between an output pin associated with Normal and an input pin associated with Normal is true.
A connection between an output pin associated with Special and an input pin associated with Normal is false.

10.18.3 FANOUT, FANIN and CONNECTIONS

The arithmetic model fanout shall be defined as shown in Semantics 152.

The purpose of the arithmetic model fanout is to specify the total number of input pins connected to a net.

The arithmetic model fanin shall be defined as shown in Semantics 153.

The purpose of the arithmetic model fanin is to specify the total number of output pins connected to a net.

KEYWORD FANOUT = arithmetic_model ;
SEMANTICS FANOUT {

CONTEXT {
PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
VALUETYPE = unsigned_integer ;

}

Semantics 152—Arithmetic model FANOUT
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The arithmetic model connections shall be defined as shown in Semantics 154.

The purpose of the arithmetic model connections is to specify the total number of pins connected to a net. The
arithmetic value for connections shall equal the sum of arithmetic values for fanout and fanin.

The accounting of a pin shall depend on its direction annotation value (see 8.8.5).

A pin with direction annotation value input shall count for fanout and for connections. A pin with direction anno-
tation value output shall count for fanin and for connections. A pin with direction value both shall count for fanin
and for fanout and twice for connections. A pin without direction annotation or with direction annotation value
none shall not count.

— FANOUT, FANIN, or CONNECTIONS as limit arithmetic model (see 10.8.2) in the context of a pin (see
8.6)

A design limit for the number of pins or nodes connected to a net can be described. The declared pin wherein the
design limit is described shall count, according to its direction annotation value.

— FANOUT, FANIN, or CONNECTIONS as header arithmetic model (see Syntax 89) in the context of a
wire (see 8.10)

The arithmetic value of size (see 10.19.1), capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see
10.15.5) can be calculated.

10.19 Arithmetic models related to layout implementation

10.19.1 SIZE

The arithmetic model size shall be defined as shown in Semantics 155.

KEYWORD FANIN = arithmetic_model ;
SEMANTICS FANIN {

CONTEXT {
PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
VALUETYPE = unsigned_integer ;

}

Semantics 153—Arithmetic model FANIN

KEYWORD CONNECTIONS = arithmetic_model ;
SEMANTICS CONNECTIONS {

CONTEXT {
PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
VALUETYPE = unsigned_integer ;

}

Semantics 154—Arithmetic model CONNECTIONS
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The purpose of the arithmetic model size is to define an abstract, unit-less measure for the space occupied by a
physical object or the magnitude of a physical effect.

— SIZE as arithmetic model in the context of a cell (see 8.4) or a wire (see 8.10)

Size shall represent a measure for the space occupied by a placed cell or by a routed wire. The space occupied by
a design or a subdesign shall be calculated as the sum of the space occupied by each cell instance and each routed
wire. The space allocated for a design or a subdesign can be greater or equal to the space occupied by the design
or subdesign.

— SIZE as header arithmetic model (see Syntax 89) in context of a wire (see 8.10)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) in the
context of a wire can be calculated. The dimension size shall represent a measure for space allocated for a design
or subdesign wherein the wire is routed.

— SIZE as arithmetic model in the context of an antenna (see 8.21)

Size shall represent a measure for the magnitude of the antenna effect. A design limit for the magnitude of the
antenna effect can be given using the arithmetic model container limit (see 10.8.2). The calculated size shall be
compared against the design limit for size given in the context of the same antenna.

— SIZE as arithmetic model in the context of a pin (see 8.6)

Size shall represent a measure for the additive magnitude of an antenna (see 8.21), when the layout created by
the connection between a pin and a routed wire is subjected to an antenna effect. An antenna reference annota-
tion (see 10.20.7) and a target annotation (see 10.20.8) shall be used.

10.19.2 AREA

The arithmetic model area shall be defined as shown in Semantics 156.

The purpose of the arithmetic model area is to define a physical area, according to the International System of
Measurements and Units [reference needed].

KEYWORD SIZE = arithmetic_model ;
SEMANTICS SIZE {

CONTEXT {
CELL ANTENNA ANTENNA.LIMIT PIN WIRE
WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER
WIRE.INDUCTANCE.HEADER

}
VALUETYPE = number ;

}
SIZE { MIN = 0; }

Semantics 155—Arithmetic model SIZE
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— AREA as arithmetic model in the context of a cell (see 8.4) or a wire (see 8.10)

Area shall represent the physical area occupied by a placed cell or a routed wire, respectively. The area shall take
into account the required space between neighboring objects.

The physical area occupied by a design or a subdesign shall be calculated as the sum of the physical area occu-
pied by each cell instance and each routed wire. The physical area allocated for a design or a subdesign can be
greater or equal to the physical area occupied by the design or subdesign.

— AREA as header arithmetic model (see Syntax 89) in context of a wire (see 8.10)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. The dimension area shall represent the physical area allocated for a design or subdesign wherein the
wire is routed.

— AREA as header arithmetic model (see Syntax 89) in context of a layer (see 8.16)

The arithmetic value of capacitance (see 10.15.3) or resistance (see 10.15.4) can be calculated. A design limit
for current (see 10.15.2) can be calculated. The dimension area shall represent the physical area occupied by a
layout segment residing on the layer.

— AREA as header arithmetic model (see Syntax 89) in context of a rule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension area shall represent
the physical area occupied by a pattern or by a region. A pattern reference annotation (see 10.20.9) or a region
reference annotation (see 8.32.1) shall be used.

— AREA as header arithmetic model (see Syntax 89) in context of an antenna (see 8.21)

The arithmetic value of size (see 10.19.1) in the context of an antenna can be calculated. The dimension area
shall represent the physical area occupied by a layout segment residing on a layer (see 8.16). A layer reference
annotation (see 8.17.1) shall be used.

10.19.3 PERIMETER

The arithmetic model perimeter shall be defined as shown in Semantics 157.

KEYWORD AREA = arithmetic_model ;
SEMANTICS AREA {

CONTEXT {
CELL WIRE WIRE..HEADER LAYER..HEADER
RULE..HEADER ANTENNA..HEADER

}
VALUETYPE = unsigned_number ;
SI_MODEL = AREA ;

}
AREA { UNIT = 1e-12; MIN = 0; }

Semantics 156—Arithmetic model AREA
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The purpose of the arithmetic model perimeter is to define the distance (see 10.19.9) measured when surround-
ing the boundaries of a physical object.

— PERIMETER as arithmetic model in the context of a cell (see 8.4) or a wire (see 8.10)

Perimeter shall represent the perimeter surrounding a placed cell or a routed wire. The perimeter shall take into
account the required space between neighboring objects.

— PERIMETER as header arithmetic model (see Syntax 89) in context of a wire (see 8.10)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. The dimension perimeter shall represent the perimeter surrounding a space allocated for a design or
subdesign wherein the wire is routed.

— PERIMETER as header arithmetic model (see Syntax 89) in context of a layer (see 8.16)

The arithmetic value of capacitance (see 10.15.3) or resistance (see 10.15.4) can be calculated. A design limit
for current (see 10.15.2) can be calculated. The dimension perimeter shall represent the perimeter surrounding a
layout segment residing on the layer.

— PERIMETER as header arithmetic model (see Syntax 89) in context of a rule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension perimeter shall repre-
sent the perimeter surrounding a pattern or by a region. A pattern reference annotation (see 10.20.9) or a region
reference annotation (see 8.32.1) shall be used.

— PERIMETER as header arithmetic model (see Syntax 89) in context of an antenna (see 8.21)

The arithmetic value of size (see 10.19.1) in the context of an antenna can be calculated. The dimension perime-
ter shall represent the perimeter surrounding a layout segment residing on a layer (see 8.16). A layer reference
annotation (see 8.17.1) shall be used.

10.19.4 EXTENSION

The arithmetic model extension shall be defined as shown in Semantics 158.

The purpose of the arithmetic model extension is to specify the size of a polygon created by expanding a point
within a geometric model (see Table 94). In the case of two allowed routing directions in an interval of 90
degrees, the expansion shall result in a rectangle. In the case of four allowed routing directions in intervals of 45
degrees, the expansion shall result in a hexagon.

KEYWORD PERIMETER = arithmetic_model ;
SEMANTICS PERIMETER {

CONTEXT {
CELL WIRE WIRE..HEADER LAYER..HEADER
RULE..HEADER ANTENNA..HEADER

}
SI_MODEL = DISTANCE ;

}

Semantics 157—Arithmetic model PERIMETER
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This is illustrated in Figure 42.

Figure 42—Illustration of EXTENSION

The arithmetic submodels horizontal, vertical, acute and obtuse (see 10.22) can be used to specify anisotropic
expansion.

— EXTENSION as arithmetic model in the context of a layer (see 8.16)

Extension shall represent the expansion of an endpoint of a routing segment residing on a layer (see 8.16) with
layertype annotation value routing (see 8.17.2).

— EXTENSION as arithmetic model in the context of a pattern (see 8.29)

Extension shall represent the expansion of a pattern (see 8.29) with an associated shape annotation or with an
associated geometric model (see 9.16). Each reference point shall be subject to expansion.

— EXTENSION as limit arithmetic model (see 10.8.2) in the context of a rule (see 8.20)

Extension shall represent a design limit for expansion of a pattern. Each reference point shall be subject to
expansion. A pattern reference annotation (see 10.20.9) shall be used.

— EXTENSION as header arithmetic model (see Syntax 89) in context of a rule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension extension shall repre-
sent the expansion of a pattern with shape annotation value tee, cross, corner or end (see 8.30.2). A pattern ref-
erence annotation (see 10.20.9) or a model reference annotation (see 10.9.5) shall be used. The model reference
annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic submodel as a
child of extension and a grandchild of pattern.

KEYWORD EXTENSION = arithmetic_model ;
SEMANTICS EXTENSION {

CONTEXT { LAYER PATTERN RULE.LIMIT RULE..HEADER }
SI_MODEL = DISTANCE ;

}

Semantics 158—Arithmetic model EXTENSION
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10.19.5 THICKNESS

The arithmetic model thickness shall be defined as shown in Semantics 159.

The purpose of the arithmetic model thickness is to specify the distance between the bottom and the top of a man-
ufactured layer (see 8.16).

Thickness as header arithmetic model (see Syntax 89) can be used to calculate an arithmetic value of capaci-
tance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) in the context of a rule (see 8.20).

10.19.6 HEIGHT

The arithmetic model height shall be defined as shown in Semantics 160.

The purpose of the arithmetic model height is to specify a vertical distance, i.e., a distance measured in y direc-
tion or in z direction.

— HEIGHT as arithmetic model in the context of a layer (see 8.16)

Height shall represent a distance in z direction measured between the manufacturing substrate and the bottom of
a manufactured layer.

— HEIGHT as arithmetic model in the context of a cell (see 8.4), site (see 8.25) or region (see 8.31)

Height shall represent a distance in y direction measured between the bottom and the top of a rectangular cell,
site, pattern or region.

— HEIGHT as header arithmetic model (see Syntax 89) in context of a wire (see 8.10)

Height shall represent the distance in y direction measured between the bottom and the top of an allocated rectan-
gular space for a design or a subdesign wherein the wire is routed.

10.19.7 WIDTH

The arithmetic model width shall be defined as shown in Semantics 161.

KEYWORD THICKNESS = arithmetic_model ;
SEMANTICS EXTENSION {

CONTEXT { LAYER RULE..HEADER }
SI_MODEL = DISTANCE ;

}

Semantics 159—Arithmetic model THICKNESS

KEYWORD HEIGHT = arithmetic_model ;
SEMANTICS HEIGHT {

CONTEXT { CELL SITE REGION LAYER WIRE..HEADER }
SI_MODEL = DISTANCE ;

}

Semantics 160—Arithmetic model HEIGHT
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The purpose of the arithmetic model width is to specify a distance within an x-y plane.

— WIDTH as arithmetic model in the context of a cell (see 8.4), site (see 8.25) or region (see 8.31)

Width shall represent a distance in x direction measured between the left and the right border of a rectangular
cell, site or region.

— WIDTH as header arithmetic model (see Syntax 89) in context of a wire (see 8.10)

Width shall represent the distance in x direction measured between the left and the right border of an allocated
rectangular space for a design or a subdesign wherein the wire is routed.

— WIDTH as arithmetic model or limit arithmetic model (see 10.8.2) in the context of a layer (see 8.16)

Width shall represent a distance or a design limit for a distance between the borders of a routing segment residing
on a layer with layertype annotation value routing (see 8.17.2). Width shall be measured orthogonal to the rout-
ing direction, i.e., in y (i.e., 90 degree) direction if the routing is in x (i.e., 0 degree) direction and vice-versa, in
135 degree direction if the routing is in 45 degree direction and vice versa.

— WIDTH as arithmetic model in the context of a pattern (see 8.29)

Width shall represent the distance between the borders of a pattern (see 8.29) with an associated shape annota-
tion value line or jog (see 8.30.2) or with an associated geometric model of type polyline or ring (see 9.16).
Width shall be measured orthogonal to the lines of the shape. A line shall be expanded by half the arithmetic
value of width to each side of the line.

— WIDTH as limit arithmetic model (see 10.8.2) in the context of a rule (see 8.20)

Width shall represent a design limit for the distance between the borders of a pattern with an associated shape
annotation value line or jog or with an associated a geometric model of type polyline or ring. A pattern reference
annotation (see 10.20.9) shall be used.

— WIDTH as header arithmetic model (see Syntax 89) in the context of a rule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), length (see 10.19.8), or extension (see 10.19.4) can be calculated. The dimension width shall represent
the distance between the borders of a pattern with shape annotation value line or end (see 8.30.2). A pattern ref-
erence annotation (see 10.20.9) or a model reference annotation (see 10.9.5) shall be used. The model reference
annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic submodel as a
child of extension and a grandchild of pattern.

KEYWORD WIDTH = arithmetic_model ;
SEMANTICS WIDTH {

CONTEXT {
CELL SITE REGION LAYER LAYER.LIMIT
PATTERN RULE.LIMIT RULE..HEADER

}
SI_MODEL = DISTANCE ;

}

Semantics 161—Arithmetic model WIDTH
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10.19.8 LENGTH

The arithmetic model length shall be defined as shown in Semantics 162.

— LENGTH as arithmetic model or limit arithmetic model (see 10.8.2) in the context of a layer (see 8.16)

Length shall represent a distance or a design limit for a distance between the end points of a routing segment
residing on a layer with layertype annotation value routing (see 8.17.2). Length shall be measured parallel to the
routing direction.

— LENGTH as arithmetic model in the context of a pattern (see 8.29)

Length shall represent the distance between the end points of a pattern (see 10.20.9) with an associated shape
annotation value line or jog (see 8.30.2).

— LENGTH as limit arithmetic model (see 10.8.2) in the context of a rule (see 8.20)

Length shall represent a design limit for the distance between the end points of a pattern with an associated
shape annotation value line or jog. A pattern reference annotation (see 10.20.9) shall be used.

— LENGTH as header arithmetic model (see Syntax 89) in the context of a rule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), distance (see 10.19.9), overhang (see 10.19.10), width (see
10.19.7), or extension (see 10.19.4) can be calculated. The dimension length shall represent the distance between
the end points of a pattern with shape annotation value line or end (see 8.30.2). A pattern reference annotation
(see 10.20.9), a model reference annotation (see 10.9.5) or a between annotation (see 10.20.4) shall be used. The
model reference annotation shall refer to an arithmetic model extension as a child of a pattern or to an arithmetic
submodel as a child of extension and a grandchild of pattern. A between annotation shall refer to two patterns
representing two parallel routing segments

10.19.9 DISTANCE

The arithmetic model distance shall be defined as shown in Semantics 163.

The purpose of the arithmetic model distance is to define a space in-between two objects, according to the Inter-
national System of Units (see U.S. National Bureau of Standards, Spec. Pub. 330).

— DISTANCE as arithmetic model or as limit arithmetic model (see 10.8.2) in the context of a rule (see
8.20)

Distance shall represent a measured distance or a design limit for a distance between two patterns in the context
of the rule. A between annotation (see 10.20.4) shall be used.

KEYWORD LENGTH = arithmetic_model ;
SEMANTICS LENGTH {

CONTEXT {
LAYER LAYER.LIMIT PATTERN RULE.LIMIT RULE..HEADER

}
SI_MODEL = DISTANCE ;

}

Semantics 162—Arithmetic model LENGTH
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The arithmetic submodels horizontal, vertical, acute and obtuse (see 10.22) can be used.

— DISTANCE as header arithmetic model (see Syntax 89) in the context of a rule (see 8.20)

The arithmetic value of capacitance (see 10.15.3), resistance (see 10.15.4), or inductance (see 10.15.5) can be
calculated. A design limit for current (see 10.15.2), length (see 10.19.8), overhang (see 10.19.10), width (see
10.19.7), or extension (see 10.19.4) can be calculated. The dimension distance shall represent the measured dis-
tance between two patterns. A between reference annotation (see 10.20.4) or model reference annotation (see
10.9.5) shall be used. The model reference annotation shall refer to an arithmetic model distance as a child of a
rule or to a limit arithmetic model distance as a grandchild of a rule.

10.19.10 OVERHANG

The arithmetic model overhang shall be defined as shown in Semantics 164.

The purpose of the arithmetic model overhang is to define an overlapping space between two objects.

Overhang can be used as arithmetic model or as limit arithmetic model (see 10.8.2) or as header arithmetic
model (see Syntax 89) in the context of a rule (see 8.20), with similar semantic restrictions as distance (see
10.19.9).

Overhang can be interpreted as the distance between the nearest parallel edges in the region of overlap between
two objects.

NOTE: The use of the arithmetic model distance instead of overhang would imply that there is no overlap.

This is illustrated in Figure 43.

KEYWORD DISTANCE = arithmetic_model ;
SEMANTICS DISTANCE {

CONTEXT { RULE RULE.LIMIT RULE..HEADER }
VALUETYPE = number ;
SI_MODEL = DISTANCE ;

}
DISTANCE { UNIT = 10e-6; MIN = 0; }

Semantics 163—Arithmetic model DISTANCE

KEYWORD OVERHANG = arithmetic_model ;
SEMANTICS OVERHANG {

CONTEXT { RULE RULE.LIMIT RULE..HEADER }
SI_MODEL = DISTANCE ;

}

Semantics 164—Arithmetic model OVERHANG
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Figure 43—Illustration of DISTANCE versus OVERHANG

10.19.11 DENSITY

The arithmetic model density shall be defined as shown in Semantics 165.

The purpose of the arithmetic model density is to specify a design limit or a calculation model for metal density.
Metal density shall be defined as the area occupied by all metal segments residing on a layer (see 8.16) with lay-
ertype annotation value routing (see 8.17.2), divided by an allocated area wherein the metal segments are found.

— DENSITY as limit arithmetic model (see 10.8.2) in the context of a layer (see 8.16)

A constant design limit for metal density can be specified.

— DENSITY as arithmetic model or as limit arithmetic model (see 10.8.2) in the context of a rule (see 8.20)

A design limit or a calculation model for metal density can be specified. A region reference annotation (see
8.32.1) can be used to relate the design limit or the calculation model for metal density to a region (see 8.31)
declared in the context of the same rule. A model reference annotation (see 10.9.5) can be used to relate a design
limit to a related calculation model.

10.20 Annotations related to arithmetic models for layout implementation

10.20.1 CONNECT_RULE annotation

A connect-rule annotation shall be defined as shown in Semantics 166.

The purpose of the connect-rule annotation is to specify that the arithmetic model connectivity (see 10.18.1) is to
be interpreted as a requirement for connection rather than an actual connection.

KEYWORD DENSITY = arithmetic_model ;
SEMANTICS DENSITY {

CONTEXT { LAYER.LIMIT RULE RULE.LIMIT }
VALUETYPE = number ;

}
DENSITY { MIN = 0; MAX = 1; }

Semantics 165—Arithmetic model DENSITY

distance overhang
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The meaning of the annotation values is shown in Table 106.

Implications between requirements for a connection are shown in Table 107.

A set of requirements for a connection that can be inferred by implication according to Table 107 is redundant. A
set of requirements contradicting Table 107 shall be a conflict. The application shall be responsible for handling
redundant requirements and conflicts.

10.20.2 BETWEEN annotation

A between annotation shall be defined as shown in Semantics 167.

The purpose of the between annotation is to specify a reference to multiple objects related to an arithmetic model
distance (see 10.19.9), length (see 10.19.8), overhang (see 10.19.10), or connectivity (see 10.18.1).

10.20.3 BETWEEN annotation for CONNECTIVITY

A between annotation shall be subjected to the restriction shown in Semantics 168.

KEYWORD CONNECT_RULE = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS CONNECT_RULE {

CONTEXT = CONNECTIVITY ;
VALUES { must_short can_short cannot_short }

}

Semantics 166—CONNECT_RULE annotation

Table 106—CONNECT_RULE annotation

Annotation value Description

must_short Electrical connection required.

can_short Electrical connection allowed.

cannot_short Electrical connection disallowed.

Table 107—Implications between CONNECT_RULE specifications

specified rule must_short can_short cannot_short

implied rule 1 0 ? 1 0 ? 1 0 ?

must_short 1 0 ? ? 0 ? 0 ? ?

can_ short 1 ? ? 1 0 ? 0 1 ?

cannot_short 0 ? ? 0 1 ? 1 0 ?
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The purpose of the restriction is to allow only a reference to objects which are semantically valid in the context
of connectivity (see 10.18.1).

10.20.4 BETWEEN annotation for DISTANCE, LENGTH, OVERHANG

A between annotation shall be subjected to the restriction shown in Semantics 169.

The purpose of the restriction is to allow only a reference to objects which are semantically valid in the context
of distance (see 10.19.9), length (see 10.19.8), or overhang (see 10.19.10).

Furthermore, the number of annotation values, i.e., the number of referenced objects for distance, length, over-
hang shall be restricted to exactly two objects.

KEYWORD BETWEEN = multi_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS BETWEEN {

CONTEXT { DISTANCE LENGTH OVERHANG CONNECTIVITY }
}

Semantics 167—BETWEEN annotation

SEMANTICS ANTENNA.CONNECTIVITY.BETWEEN {
REFERENCETYPE = LAYER;

}
SEMANTICS HEADER.CONNECTIVITY.BETWEEN {

REFERENCETYPE { PATTERN REGION LAYER }
}
SEMANTICS LIBRARY.CONNECTIVITY.BETWEEN {

REFERENCETYPE = CLASS ;
}
SEMANTICS SUBLIBRARY.CONNECTIVITY.BETWEEN {

REFERENCETYPE = CLASS ;
}
SEMANTICS CELL.CONNECTIVITY.BETWEEN {

REFERENCETYPE { PIN CLASS }
}

Semantics 168—BETWEEN annotation for CONNECTIVITY

SEMANTICS DISTANCE.BETWEEN {
REFERENCETYPE { PATTERN REGION }

}
SEMANTICS LENGTH.BETWEEN {

REFERENCETYPE { PATTERN REGION }
}
SEMANTICS OVERHANG.BETWEEN {

REFERENCETYPE { PATTERN REGION }
}

Semantics 169—BETWEEN annotation for DISTANCE, LENGTH, OVERHANG
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A distance between two objects can be generally defined. An overhang or a length involving two objects can be
defined only between the nearest parallel edges of two objects.

In the case of two objects with nearest parallel edges, distance prescribes an empty space between the objects.
Overhang prescribes an overlapping space between the objects. Length is defined as the distance between the end
points of the intersection formed by projecting the parallel edges onto each other.

This is illustrated in Figure 44.

Figure 44—Illustration of DISTANCE versus OVERHANG versus LENGTH

10.20.5 MEASURE annotation

A measure annotation shall be defined as shown in Semantics 170.

The mathematical description of the annotation values is specified in Table 108.

KEYWORD MEASURE = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS MEASURE {

CONTEXT { DISTANCE LENGTH OVERHANG }
VALUETYPE = identifier ;
VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;

}

Semantics 170—DISTANCE_MEASUREMENT annotation

Table 108—Annotation values for MEASURE

Annotation value Mathematical description

euclidean

manhattan

horizontal

distance overhang
length length

x
2

y
2+measure =

x y+measure =

xmeasure =
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Distance can be measured between two points, between a point and a line, or between two parallel lines. The
shape annotation (see 8.30.2) specifies whether a pattern is represented by a point or by a line.

The specification of x and y for the mathematical definition of the measure annotation values is illustrated in
Figure 45.

Figure 45—Illustration of MEASURE

Figure 45 shows the distance between two points, between a point and a line, and between two parallel lines.

10.20.6 REFERENCE annotation container

A reference annotation container shall be defined as shown in Semantics 171.

The purpose of the reference annotation container is to specify the reference points for a measurement of dis-
tance (see 10.19.9).

vertical

KEYWORD REFERENCE = annotation_container {
CONTEXT = arithmetic_model ;

}
SEMANTICS REFERENCE {

CONTEXT { DISTANCE LENGTH OVERHANG }
REFERENCETYPE { PATTERN REGION }

}
SEMANTICS REFERENCE.identifier = single_value_annotation {

VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

Semantics 171—REFERENCE annotation container

Table 108—Annotation values for MEASURE (Continued)

Annotation value Mathematical description

ymeasure =

x

y y y

x x

point

point linelineline

point
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An annotation within the reference annotation container shall associate a pattern (see 8.29) or a region (see 8.31)
with a reference point specified by an annotation value.

The meaning of the annotation values is specified in Table 109.

The following restrictions shall further apply:

a) The annotation value origin can only apply in the following cases:
1) A shape annotation is associated with the pattern, and the annotation value is tee, cross, corner or

end. The reference point of the shape shall be considered the origin.
2) A geometric model (see 9.16) is associated with the pattern or region. A geometric transformation

(see 9.18) can describe the location of the origin. If no geometric transformation is given, the loca-
tion of the origin shall be the point x=0, y=0.

b) The annotation value center, near edge or far edge can only apply in the following cases:
1) A shape annotation is associated with the pattern, and the annotation value is line or jog. The

straight line connecting the end points shall be considered as center. The border of the line given by
width (see 10.19.7) shall be considered either as near edge or as far edge.

2) A predefined geometric model rectangle (see 9.16) is associated with the pattern or region. The
point of gravity of the rectangle shall be considered as center.

3) A predefined geometric model line (see 9.16) is associated with the pattern or region. The straight
line connecting the end points shall be considered as center.

The meaning of the reference annotation values is further illustrated in Figure 46.

Table 109—Annotation values for REFERENCE

Annotation value Description

origin The reference point is the origin of a pattern or a region.

center The reference point is the center of a pattern or a region

near_edge The reference point is the edge of a pattern or a region
which is nearest to a parallel edge of another pattern or
another region.

far_edge The reference point is the edge of a pattern or a region
which is farthest from a parallel edge of another pattern
or another region.
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Figure 46—Illustration of REFERENCE for DISTANCE

Figure 46 shows euclidean distance between all possible reference points of object1 and object2.

10.20.7 ANTENNA reference annotation

An antenna reference annotation shall be defined as shown in Semantics 172.

An antenna reference annotation shall be used to relate a calculated size (see 10.19.1) or area (see 10.19.2) or
perimeter (see 10.19.3) in the context of the pin with a calculation rule for size in the context of an antenna (see
8.21). A reference to multiple antennas can be made using a multi-value annotation.

10.20.8 TARGET annotation

An target annotation shall be defined as shown in Semantics 173.

KEYWORD ANTENNA = annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS ANTENNA {

CONTEXT { PIN.SIZE PIN.AREA PIN.PERIMETER }
REFERENCETYPE = ANTENNA;

}

Semantics 172—ANTENNA reference annotation

KEYWORD TARGET = annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS TARGET {

VALUETYPE = identifier ;
CONTEXT = PIN.SIZE;
REFERENCETYPE = PIN.PATTERN;

}

Semantics 173—TARGET annotation

center

near edge

far edge
origin

origin

near edge

center

far edge

object2

object1
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The target annotation shall be associated with the arithmetic model size (see 10.19.1) in the context of a pin (see
8.6).

The purpose of the target annotation is to specify a pattern (see 8.29) in the context of the same pin which is the
victim of an antenna effect (see 8.21). The referenced pattern shall have a layer reference annotation (see 8.17.1)
and a trivial or a full arithmetic model (see Syntax 83 and Syntax 85) for area (see 10.19.2) or perimeter (see
10.19.3).

An antenna reference annotation (see 10.20.7) shall also be associated with the arithmetic model size. The
referred antenna (see 8.21) shall also contain an arithmetic model size, used as a calculation rule. The size in the
context of the pin shall be considered additive to the size formulated by the calculation rule. The arithmetic value
for area or perimeter in the referenced pattern shall further be used as evaluation results for the dimension area
or perimeter within the calculation rule.

10.20.9 PATTERN reference annotation

A pattern reference annotation shall be defined as shown in Semantics 174.

The purpose of the pattern reference annotation is to relate an arithmetic model or a header arithmetic model (see
Syntax 89) to a declared pattern (see 8.29).

10.21 Arithmetic submodels for timing and electrical data

The arithmetic submodels shown in Table 110 shall be applicable in the context of electrical modeling.

The arithmetic submodels high and low shall be defined as shown in Semantics 175.

KEYWORD PATTERN = single_value_annotation {
CONTEXT = arithmetic_model ;

}
SEMANTICS PATTERN {

CONTEXT {
LENGTH WIDTH HEIGHT SIZE AREA THICKNESS
PERIMETER EXTENSION

}
REFERENCETYPE = PATTERN ;

}

Semantics 174—PATTERN annotation

Table 110—Overview of arithmetic submodels for timing and electrical data

Keyword Description

HIGH Applicable for electrical data measured at a logic high state of a pin.

LOW Applicable for electrical data measured at a logic low state of a pin.

RISE Applicable for electrical data measured during a logic low to high transition of a pin.

FALL Applicable for electrical data measured during a logic high to low transition of a pin.
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The arithmetic submodels rise and fall shall be defined as shown in Semantics 176.

10.22 Arithmetic submodels for physical data

The arithmetic submodels shown in Table 111 shall be applicable in the context of physical modeling.

The arithmetic submodels horizontal, vertical, acute and obtuse shall be defined as shown in Semantics 177.

KEYWORD HIGH = arithmetic_submodel ;
SEMANTICS HIGH { CONTEXT {

CLASS.VOLTAGE CLASS.LIMIT.VOLTAGE
PIN.VOLTAGE PIN.LIMIT.VOLTAGE PIN.CAPACITANCE
PIN.NOISE PIN.NOISE_MARGIN PIN.LIMIT.NOISE
LIBRARY.NOISE_MARGIN LIBRARY.LIMIT.NOISE

} }
KEYWORD LOW = arithmetic_submodel ;
SEMANTICS LOW { CONTEXT {

CLASS.VOLTAGE CLASS.LIMIT.VOLTAGE
PIN.VOLTAGE PIN.LIMIT.VOLTAGE PIN.CAPACITANCE
PIN.NOISE PIN.NOISE_MARGIN PIN.LIMIT.NOISE
LIBRARY.NOISE_MARGIN LIBRARY.LIMIT.NOISE

} }

Semantics 175—Arithmetic submodels HIGH and LOW

KEYWORD RISE = arithmetic_submodel ;
SEMANTICS RISE { CONTEXT {

FROM.THRESHOLD TO.THRESHOLD PIN.THRESHOLD
PIN.CAPACITANCE PIN.SLEWRATE PIN.LIMIT.SLEWRATE
PIN.PULSEWIDTH PIN.LIMIT.PULSEWIDTH

} }
KEYWORD FALL = arithmetic_submodel ;
SEMANTICS FALL { CONTEXT {

FROM.THRESHOLD TO.THRESHOLD PIN.THRESHOLD
PIN.CAPACITANCE PIN.SLEWRATE PIN.LIMIT.SLEWRATE
PIN.PULSEWIDTH PIN.LIMIT.PULSEWIDTH

} }

Semantics 176—Arithmetic submodels RISE and FALL

Table 111—Overview of arithmetic submodels for physical data

Keyword Description

HORIZONTAL Applicable for layout measurements in 0 degree, i.e., horizontal direction.

VERTICAL Applicable for layout measurements in 90 degree, i.e., vertical direction.

ACUTE Applicable for layout measurements in 45 degree direction.

OBTUSE Applicable for layout measurements in 135 degree direction.
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KEYWORD HORIZONTAL = arithmetic_submodel ;
SEMANTICS HORIZONTAL { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }
KEYWORD VERTICAL = arithmetic_submodel ;
SEMANTICS VERTICAL { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }
KEYWORD ACUTE = arithmetic_submodel ;
SEMANTICS ACUTE { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }
KEYWORD OBTUSE = arithmetic_submodel ;
SEMANTICS OBTUSE { CONTEXT {

WIDTH LENGTH EXTENSION DISTANCE OVERHANG
} }

Semantics 177—Arithmetic submodels HORIZONTAL, VERTICAL, ACUTE and OBTUSE
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Annex A

(informative)

Syntax rule summary

This summary replicates the syntax detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the syntax presented in the clauses shall considered as the normative definition.

The syntax for description of lexical and syntax rules uses the conventions shown in 1.4.

ALF_statement ::= // See Syntax 1 on page 25
ALF_type [ [ index ] ALF_name [ index ] ] [ = ALF_value ] ;

| ALF_type [ [ index ] ALF_name [ index ] ] [ = ALF_value ] { { ALF_value | : | ; } }
| ALF_type [ [ index ] ALF_name [ index ] ] [ = ALF_value ] { { ALF_statement } }

ALF_type ::=
identifier

| @
| :

ALF_name ::=
identifier

| control_expression
ALF_value ::=

number
| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value
| arithmetic_expression
| boolean_expression
| control_expression

ALF_statement_termination ::=
;

| { { ALF_value | : | ; } }
| { { ALF_statement } }

character ::= // See Syntax 2 on page 37
whitespace

| letter
| digit
| special

whitespace ::=
space | horizontal_tab | new_line | vertical_tab | form_feed | carriage_return

letter ::=
uppercase | lowercase

uppercase ::=
A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z
lowercase ::=

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
digit ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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special ::=
& | | | ^ | ~ | + | - | * | / | % | ? | ! | : | ; | , | " | ' | @ | = | \ | . | $ | _ | #

| ( | ) | < | > | [ | ] | { | }
comment ::= // See Syntax 3 on page 39

in_line_comment
| block_comment

in_line_comment ::=
/ /{character} new_line

| / /{character} carriage_return
block_comment ::=

/ *{character}* /
delimiter ::= // See Syntax 4 on page 39

( | ) | [ | ] | { | } | : | ; | ,
operator ::= // See Syntax 5 on page 40

arithmetic_operator
| boolean_operator
| relational_operator
| shift_operator
| event_operator
| meta_operator

arithmetic_operator ::=
+ | - | * | / | % | **

boolean_operator ::=
&& | || | ~& | ~| | ^ | ~^ | ~ | ! | & | |

relational_operator ::=
== | != | >= | <= | > | <

shift_operator ::=
<< | >>

event_operator ::=
-> | ~> | <-> | <~> | &> | <&>

meta_operator ::=
= | ? | @

number ::= // See Syntax 6 on page 43
signed_integer | signed_real | unsigned_integer | unsigned_real

signed_number ::=
signed_integer | signed_real

unsigned_number ::=
unsigned_integer | unsigned_real

integer ::=
signed_integer | unsigned_integer

signed_integer ::=
sign unsigned_integer

unsigned_integer ::=
digit { [ _ ] digit }

real ::=
signed_real | unsigned_real

signed_real ::=
sign unsigned_real

unsigned_real ::=
mantissa [ exponent ]

| unsigned_integer exponent
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sign ::=
+ | -

mantissa ::=
. unsigned_integer

| unsigned_integer . [ unsigned_integer ]
exponent ::=

E [ sign ] unsigned_integer
| e [ sign ] unsigned_integer

index_value ::= // See Syntax 7 on page 43
unsigned_integer | atomic_identifier

index ::= // See Syntax 8 on page 44
single_index | multi_index

single_index ::=
[ index_value ]

multi_index ::=
[ index_value : index_value ]

multiplier_prefix_symbol ::= // See Syntax 9 on page 44
unity { letter } | K { letter } | M E G { letter } | G { letter }

| M { letter } | U { letter } | N { letter } | P { letter } | F { letter }
unity ::=

1
K ::=

K | k
M ::=

M | m
E ::=

E | e
G ::=

G | g
U ::=

U | u
N ::=

N | n
P ::=

P | p
F ::=

F | f
multiplier_prefix_value ::= // See Syntax 10 on page 45

unsigned_number | multiplier_prefix_symbol
bit_literal ::= // See Syntax 11 on page 45

alphanumeric_bit_literal
| symbolic_bit_literal

alphanumeric_bit_literal
numeric_bit_literal

| alphabetic_bit_literal
numeric_bit_literal ::=

0 | 1
alphabetic_bit_literal ::=

X | Z | L | H | U | W
| x | z | l | h | u | w
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symbolic_bit_literal ::=
? | *

based_literal ::= // See Syntax 12 on page 46
binary_based_literal | octal_based_literal | decimal_based_literal | hexadecimal_based_literal

binary_based_literal ::=
binary_base bit_literal { [ _ ] bit_literal }

binary_base ::=
'B | 'b

octal_based_literal ::=
octal_base octal_digit { [ _ ] octal_digit }

octal_base ::=
'O | 'o

octal_digit ::=
bit_literal | 2 | 3 | 4 | 5 | 6 | 7

decimal_based_literal ::=
decimal_base digit { [ _ ] digit }

decimal_base ::=
'D | 'd

hexadecimal_based_literal ::=
hexadecimal_base hexadecimal_digit { [ _ ] hexadecimal_digit }

hexadecimal_base ::=
'H | 'h

hexadecimal_digit ::=
octal_digit | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

boolean_value ::= // See Syntax 13 on page 46
alphanumeric_bit_literal | based_literal | integer

arithmetic_value ::= // See Syntax 14 on page 47
number | identifier | bit_literal | based_literal

edge_literal ::= // See Syntax 15 on page 47
bit_edge_literal

| based_edge_literal
| symbolic_edge_literal

bit_edge_literal ::=
bit_literal bit_literal

based_edge_literal ::=
based_literal based_literal

symbolic_edge_literal ::=
?~ | ?! | ?-

edge_value ::= // See Syntax 16 on page 47
( edge_literal )

identifier ::= // See Syntax 17 on page 47
atomic_identifier | indexed_identifier | hierarchical_identifier | escaped_identifier

atomic_identifier ::=
non_escaped_identifier | placeholder_identifier

hierarchical_identifier ::=
full_hierarchical_identifier | partial_hierarchical_identifier

non_escaped_identifier ::= // See Syntax 18 on page 48
letter { letter | digit | _ | $ | # }
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placeholder_identifier ::= // See Syntax 19 on page 48
< non_escaped_identifier >

indexed_identifier ::= // See Syntax 20 on page 48
atomic_identifier index

full_hierarchical_identifier ::= // See Syntax 21 on page 49
atomic_identifier [ index ] . atomic_identifier [ index ] { . atomic_identifier [index ] }

partial_hierarchical_identifier ::= // See Syntax 22 on page 49
atomic_identifier [ index ] { . atomic_identifier [ index ] } . .
{ atomic_identifier [ index ] { . atomic_identifier [ index ] } . . }
[ atomic_identifier [ index ] { . atomic_identifier [ index ] } ]

escaped_identifier ::= // See Syntax 23 on page 49
\ escapable_character { escapable_character }

escapable_character ::=
letter | digit | special

keyword_identifier ::= // See Syntax 24 on page 50
letter { [ _ ] letter }

quoted_string ::= // See Syntax 25 on page 50
" { character } "

string_value ::= // See Syntax 26 on page 51
quoted_string | identifier

generic_value ::= // See Syntax 27 on page 51
number

| multiplier_prefix_symbol
| identifier
| quoted_string
| bit_literal
| based_literal
| edge_value

vector_expression_macro ::= // See Syntax 28 on page 52
# . non_escaped_identifier

generic_object ::= // See Syntax 29 on page 53
alias_declaration

| constant_declaration
| class_declaration
| keyword_declaration
| semantics_declaration
| group_declaration
| template_declaration

all_purpose_item ::= // See Syntax 30 on page 53
generic_object

| include_statement
| associate_statement
| annotation
| annotation_container
| arithmetic_model
| arithmetic_model_container
| all_purpose_item_template_instantiation

annotation ::= // See Syntax 31 on page 54
single_value_annotation

| multi_value_annotation
single_value_annotation ::=

annotation_identifier = annotation_value ;
multi_value_annotation ::=

annotation_identifier { annotation_value { annotation_value } }
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annotation_value ::=
generic_value

| control_expression
| boolean_expression
| arithmetic_expression

annotation_container ::= // See Syntax 32 on page 54
annotation_container_identifier { annotation { annotation } }

attribute ::= // See Syntax 33 on page 54
ATTRIBUTE { identifier { identifier } }

property ::= // See Syntax 34 on page 55
PROPERTY [ identifier ] { annotation { annotation } }

alias_declaration ::= // See Syntax 35 on page 55
ALIAS alias_identifier = original_identifier ;

| ALIAS vector_expression_macro = ( vector_expression ) ;
constant_declaration ::= // See Syntax 36 on page 56

CONSTANT constant_identifier = constant_value ;
constant_value ::=

number | based_literal
keyword_declaration ::= // See Syntax 37 on page 56

KEYWORD keyword_identifier = syntax_item_identifier ;
| KEYWORD keyword_identifier = syntax_item_identifier { { CONTEXT_annotation } }

semantics_declaration ::= // See Syntax 38 on page 57
SEMANTICS semantics_identifier = syntax_item_identifier ;

| SEMANTICS semantics_identifier [ = syntax_item_identifier ] { { semantics_item } }
semantics_item ::=

CONTEXT_annotation
| VALUETYPE_single_value_annotation
| VALUES_multi_value_annotation
| REFERENCETYPE_annotation
| DEFAULT_single_value_annotation
| SI_MODEL_single_value_annotation

class_declaration ::= // See Syntax 39 on page 65
CLASS class_identifier ;

| CLASS class_identifier { { class_item } }
class_item ::=

all_purpose_item
| geometric_model
| geometric_transformation

group_declaration ::= // See Syntax 40 on page 67
GROUP group_identifier { generic_value { generic_value } }

| GROUP group_identifier { left_index_value : right_index_value }
template_declaration ::= // See Syntax 41 on page 68

TEMPLATE template_identifier { ALF_statement { ALF_statement } }
template_instantiation ::= // See Syntax 42 on page 69

static_template_instantiation
| dynamic_template_instantiation

static_template_instantiation ::=
template_identifier [ = static ] ;

| template_identifier [ = static ] { { generic_value } }
| template_identifier [ = static ] { { annotation } }

dynamic_template_instantiation ::=
template_identifier = dynamic { { dynamic_template_instantiation_item } }
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dynamic_template_instantiation_item ::=
annotation

| arithmetic_model
| arithmetic_assignment

arithmetic_assignment ::=
identifier = arithmetic_expression ;

include ::= // See Syntax 43 on page 72
INCLUDE quoted_string ;

associate ::= // See Syntax 44 on page 72
ASSOCIATE quoted_string ;

| ASSOCIATE quoted_string { FORMAT_single_value_annotation }
revision ::= // See Syntax 45 on page 73

ALF_REVISION string_value
library_specific_object ::= // See Syntax 46 on page 75

library
| sublibrary
| cell
| primitive
| wire
| pin
| pingroup
| vector
| node
| layer
| via
| rule
| antenna
| site
| array
| blockage
| port
| pattern
| region

library ::= // See Syntax 47 on page 76
LIBRARY library_identifier ;

| LIBRARY library_identifier { { library_item } }
| library_template_instantiation

library_item ::=
sublibrary

| sublibrary_item
sublibrary ::=

SUBLIBRARY sublibrary_identifier ;
| SUBLIBRARY sublibrary_identifier { { sublibrary_item } }
| sublibrary_template_instantiation

sublibrary_item ::=
all_purpose_item

| cell
| primitive
| wire
| layer
| via
| rule
| antenna
| array
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| site
| region

cell ::= // See Syntax 48 on page 78
CELL cell_identifier ;

| CELL cell_identifier { { cell_item } }
| cell_template_instantiation

cell_item ::=
all_purpose_item

| pin
| pingroup
| primitive
| function
| non_scan_cell
| test
| vector
| wire
| blockage
| artwork
| pattern
| region

pin ::= // See Syntax 49 on page 88
scalar_pin | vector_pin | matrix_pin

scalar_pin ::=
PIN pin_identifier ;

| PIN pin_identifier { { scalar_pin_item } }
| scalar_pin_template_instantiation

scalar_pin_item ::=
all_purpose_item

| pattern
| port

vector_pin ::=
PIN multi_index pin_identifier ;

| PIN multi_index pin_identifier { { vector_pin_item } }
| vector_pin_template_instantiation

vector_pin_item ::=
all_purpose_item

| range
matrix_pin ::=

PIN first_multi_index pin_identifier second_multi_index ;
| PIN first_multi_index pin_identifier second_multi_index { { matrix_pin_item } }
| matrix_pin_template_instantiation

matrix_pin_item ::=
vector_pin_item

pingroup ::= // See Syntax 50 on page 89
simple_pingroup | vector_pingroup

simple_pingroup ::=
PINGROUP pingroup_identifier
{ MEMBERS_multi_value_annotation { all_purpose_item } }

| simple_pingroup_template_instantiation
vector_pingroup ::=

| PINGROUP multi_index pingroup_identifier
{ MEMBERS_multi_value_annotation { vector_pingroup_item } }

| vector_pingroup_template_instantiation
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vector_pingroup_item ::=
all_purpose_item

| range
primitive ::= // See Syntax 51 on page 110

PRIMITIVE primitive_identifier { { primitive_item } }
| PRIMITIVE primitive_identifier ;
| primitive_template_instantiation

primitive_item ::=
all_purpose_item

| pin
| pingroup
| function
| test

wire ::= // See Syntax 52 on page 110
WIRE wire_identifier { { wire_item } }

| WIRE wire_identifier ;
| wire_template_instantiation

wire_item ::=
all_purpose_item

| node
node ::= // See Syntax 53 on page 112

NODE node_identifier ;
| NODE node_identifier { { node_item } }
| node_template_instantiation

node_item ::=
all_purpose_item

vector ::= // See Syntax 54 on page 115
VECTOR control_expression ;

| VECTOR control_expression { { vector_item } }
| vector_template_instantiation

vector_item ::=
all_purpose_item

| wire_instantiation
layer ::= // See Syntax 55 on page 121

LAYER layer_identifier ;
| LAYER layer_identifier { { layer_item } }
| layer_template_instantiation

layer_item ::=
all_purpose_item

via ::= // See Syntax 56 on page 123
VIA via_identifier ;

| VIA via_identifier { { via_item } }
| via_template_instantiation

via_item ::=
all_purpose_item

| pattern
| artwork

rule ::= // See Syntax 57 on page 124
RULE rule_identifier ;

| RULE rule_identifier { { rule_item } }
| rule_template_instantiation
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rule_item ::=
all_purpose_item

| pattern
| region
| via_instantiation

antenna ::= // See Syntax 58 on page 125
ANTENNA antenna_identifier ;

| ANTENNA antenna_identifier { { antenna_item } }
| antenna_template_instantiation

antenna_item ::=
all_purpose_item

| region
blockage ::= // See Syntax 59 on page 126

BLOCKAGE blockage_identifier ;
| BLOCKAGE blockage_identifier { { blockage_item } }
| blockage_template_instantiation

blockage_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

port ::= // See Syntax 60 on page 126
PORT port_identifier ;{ { port_item } }

| PORT port_identifier ;
| port_template_instantiation

port_item ::=
all_purpose_item

| pattern
| region
| rule
| via_instantiation

site ::= // See Syntax 61 on page 127
SITE site_identifier ;

| SITE site_identifier { { site_item } }
| site_template_instantiation

site_item ::=
all_purpose_item

| WIDTH_arithmetic_model
| HEIGHT_arithmetic_model

array ::= // See Syntax 62 on page 129
ARRAY array_identifier ;

| ARRAY array_identifier { { array_item } }
| array_template_instantiation

array_item ::=
all_purpose_item

| geometric_transformation
pattern ::= // See Syntax 63 on page 131

PATTERN pattern_identifier ;
| PATTERN pattern_identifier { { pattern_item } }
| pattern_template_instantiation
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pattern_item ::=
all_purpose_item

| geometric_model
| geometric_transformation

region ::= // See Syntax 64 on page 135
REGION region_name_identifier ;

| REGION region_name_identifier { { region_item } }
| region_template_instantiation

region_item ::=
all_purpose_item

| geometric_model
| geometric_transformation
| BOOLEAN_single_value_annotation

function ::= // See Syntax 65 on page 137
FUNCTION { function_item { function_item } }

| function_template_instantiation
function_item ::=

all_purpose_item
| behavior
| structure
| statetable

test ::= // See Syntax 66 on page 137
TEST { test_item { test_item } }

| test_template_instantiation
test_item ::=

all_purpose_item
| behavior
| statetable

pin_variable ::= // See Syntax 67 on page 138
pin_variable_identifier

pin_value ::=
pin_variable | boolean_value

pin_assignment ::= // See Syntax 68 on page 138
pin_variable = pin_value ;

behavior ::= // See Syntax 69 on page 140
BEHAVIOR { behavior_item { behavior_item } }

| behavior_template_instantiation
behavior_item ::=

boolean_assignment
| control_statement
| primitive_instantiation
| behavior_item_template_instantiation

boolean_assignment ::=
pin_variable = boolean_expression ;

control_statement ::=
primary_control_statement { alternative_control_statement }

primary_control_statement ::=
@ control_expression { boolean_assignment { boolean_assignment } }

alternative_control_statement ::=
: control_expression { boolean_assignment { boolean_assignment } }

primitive_instantiation ::=
primitive_identifier [ identifier ] { pin_value { pin_value } }

| primitive_identifier [ identifier ] { boolean_assignment { boolean_assignment } }
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structure ::= // See Syntax 70 on page 141
STRUCTURE { cell_instantiation { cell_instantiation } }

| structure_template_instantiation
cell_instantiation ::=

cell_reference_identifier cell_instance_identifier ;
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_value } }
| cell_reference_identifier cell_instance_identifier { { cell_instance_pin_assignment } }
| cell_instantiation_template_instantiation

cell_instance_pin_assignment ::=
cell_reference_pin_variable = cell_instance_pin_value ;

statetable ::= // See Syntax 71 on page 142
STATETABLE [ identifier ]

{ statetable_header statetable_row { statetable_row } }
| statetable_template_instantiation

statetable_header ::=
input_pin_variable { input_pin_variable } : output_pin_variable { output_pin_variable } ;

statetable_row ::=
statetable_control_values : statetable_data_values ;

statetable_control_values ::=
statetable_control_value { statetable_control_value }

statetable_control_value ::=
boolean_value

| symbolic_bit_literal
| edge_value

statetable_data_values ::=
statetable_data_value { statetable_data_value }

statetable_data_value ::=
boolean_value

| ( [ ! ] input_pin_variable )
| ( [ ~ ] input_pin_variable )

non_scan_cell ::= // See Syntax 72 on page 142
NON_SCAN_CELL = non_scan_cell_reference

| NON_SCAN_CELL { non_scan_cell_reference { non_scan_cell_reference } }
| non_scan_cell_template_instantiation

non_scan_cell_reference ::=
non_scan_cell_identifier { { scan_cell_pin_identifier } }

| non_scan_cell_identifier { { non_scan_cell_pin_identifier = scan_cell_pin_identifier ; } }
range ::= // See Syntax 73 on page 143

RANGE { index_value : index_value }
boolean_expression ::= // See Syntax 74 on page 144

( boolean_expression )
| boolean_value
| identifier
| boolean_unary_operator boolean_expression
| boolean_expression boolean_binary_operator boolean_expression
| boolean_expression ? boolean_expression : boolean_expression

boolean_unary_operator ::=
! | ~ | & | ~& | | | ~| | ^ | ~^

boolean_binary_operator ::=
& | && | ~& | | | || | ~| | ^ | ~^

| relational_operator
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| arithmetic_operator
| shift_operator

vector_expression ::= // See Syntax 75 on page 154
( vector_expression )

| single_event
| vector_expression vector_operator vector_expression
| boolean_expression ? vector_expression : vector_expression
| boolean_expression control_and vector_expression
| vector_expression control_and boolean_expression
| vector_expression_macro

single_event ::=
edge_literal boolean_expression

vector_operator ::=
event_operator | event_and | event_or

event_and ::=
& | &&

event_or ::=
| | ||

control_and ::=
& | &&

control_expression ::=
( vector_expression )

| ( boolean_expression )
wire_instantiation ::= // See Syntax 76 on page 167

wire_reference_identifier wire_instance_identifier ;
| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_value } }
| wire_reference_identifier wire_instance_identifier { { wire_instance_pin_assignment } }
| wire_instantiation_template_instantiation

wire_instance_pin_assignment ::=
wire_reference_pin_variable = wire_instance_pin_value ;

geometric_model ::= // See Syntax 77 on page 167
nonescaped_identifier [ geometric_model_identifier ]

{ geometric_model_item { geometric_model_item } }
| geometric_model_template_instantiation

geometric_model_item ::=
POINT_TO_POINT_single_value_annotation

| coordinates
coordinates ::=

COORDINATES { point { point } }
point ::=

x_number y_number
geometric_transformation ::= // See Syntax 78 on page 171

shift
| rotate
| flip
| repeat

shift ::=
SHIFT { x_number y_number }

rotate ::=
ROTATE = number ;

flip ::=
FLIP = number ;
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repeat ::=
REPEAT [ = unsigned_integer ] { geometric_transformation { geometric_transformation } }

artwork ::= // See Syntax 79 on page 173
ARTWORK = artwork_identifier ;

| ARTWORK = artwork_reference
| ARTWORK { artwork_reference { artwork_reference } }
| artwork_template_instantiation

artwork_reference ::=
artwork_identifier { { geometric_transformation } { cell_pin_identifier } }

| artwork_identifier
{ { geometric_transformation } { artwork_pin_identifier = cell_pin_identifier ; } }

via_instantiation ::= // See Syntax 80 on page 174
via_identifier instance_identifier ;

| via_identifier instance_identifier { { geometric_transformation } }
arithmetic_expression ::= // See Syntax 81 on page 175

( arithmetic_expression )
| arithmetic_value
| identifier
| boolean_expression ? arithmetic_expression : arithmetic_expression
| sign arithmetic_expression
| arithmetic_expression arithmetic_operator arithmetic_expression
| macro_arithmetic_operator ( arithmetic_expression { , arithmetic_expression } )

macro_arithmetic_operator ::=
abs | exp | log | min | max

arithmetic_model ::= // See Syntax 82 on page 177
trivial_arithmetic_model

| partial_arithmetic_model
| full_arithmetic_model
| arithmetic_model_template_instantiation

trivial_arithmetic_model ::= // See Syntax 83 on page 177
arithmetic_model_identifier [ name_identifier ] = arithmetic_value ;

| arithmetic_model_identifier [ name_identifier ] = arithmetic_value
{ { arithmetic_model_qualifier } }

partial_arithmetic_model ::= // See Syntax 84 on page 178
arithmetic_model_identifier [ name_identifier ] { { partial_arithmetic_model_item } }

partial_arithmetic_model_item ::=
arithmetic_model_qualifier

| table
| trivial_min-max

full_arithmetic_model ::= // See Syntax 85 on page 178
arithmetic_model_identifier [ name_identifier ]
{ { arithmetic_model_qualifier } arithmetic_model_body { arithmetic_model_qualifier } }

arithmetic_model_body ::= // See Syntax 86 on page 178
header-table-equation [ trivial_min-max ]

| min-typ-max
| arithmetic_submodel { arithmetic_submodel }

arithmetic_model_qualifier ::= // See Syntax 87 on page 179
inheritable_arithmetic_model_qualifier

| non_inheritable_arithmetic_model_qualifier
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inheritable_arithmetic_model_qualifier ::=
annotation

| annotation_container
| from-to

non_inheritable_arithmetic_model_qualifier ::=
auxiliary_arithmetic_model

| violation
header-table-equation ::= // See Syntax 88 on page 179

header table | header equation
header ::= // See Syntax 89 on page 179

HEADER { header_arithmetic_model { header_arithmetic_model } }
header_arithmetic_model ::=

arithmetic_model_identifier [ name_identifier ] { { header_arithmetic_model_item } }
header_arithmetic_model_item ::=

inheritable_arithmetic_model_qualifier
| table
| trivial_min-max

equation ::= // See Syntax 90 on page 180
EQUATION { arithmetic_expression }

| equation_template_instantiation
table ::= // See Syntax 91 on page 180

TABLE { arithmetic_value { arithmetic value } }
min-typ-max ::= // See Syntax 92 on page 181

min-max | [ min ] typ [ max ]
min-max ::=

min | max | min max
min ::=

trivial_min | non_trivial_min
max ::=

trivial_max | non_trivial_max
typ ::=

trivial_typ | non_trivial_typ
non_trivial_min ::= // See Syntax 93 on page 182

MIN = arithmetic_value { violation }
| MIN { [ violation ] header-table-equation }

non_trivial_max ::=
MAX = arithmetic_value { violation }

| MAX { [ violation ] header-table-equation }
non_trivial_typ ::=

TYP { header-table-equation }
trivial_min-max ::= // See Syntax 94 on page 182

trivial_min | trivial_max | trivial_min trivial_max
trivial_min ::=

MIN = arithmetic_value ;
trivial_max ::=

MAX = arithmetic_value ;
trivial_typ ::=

TYP = arithmetic_value ;
auxiliary_arithmetic_model ::= // See Syntax 95 on page 183

arithmetic_model_identifier = arithmetic_value ;
| arithmetic_model_identifier [ = arithmetic_value ]
{ inheritable_arithmetic_model_qualifier { inheritable_arithmetic_model_qualifier } }
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arithmetic_submodel ::= // See Syntax 96 on page 184
arithmetic_submodel_identifier = arithmetic_value ;

| arithmetic_submodel_identifier { [ violation ] min-max }
| arithmetic_submodel_identifier { header-table-equation [ trivial_min-max ] }
| arithmetic_submodel_identifier { min-typ-max }
| arithmetic_submodel_template_instantiation

arithmetic_model_container ::= // See Syntax 97 on page 184
limit_arithmetic_model_container

| early-late_arithmetic_model_container
| arithmetic_model_container_identifier { arithmetic_model { arithmetic_model } }

limit_arithmetic_model_container ::= // See Syntax 98 on page 184
LIMIT { limit_arithmetic_model { limit_arithmetic_model } }

limit_arithmetic_model ::=
arithmetic_model_identifier [ name_identifier ]
{ { arithmetic_model_qualifier } limit_arithmetic_model_body }

limit_arithmetic_model_body ::=
limit_arithmetic_submodel { limit_arithmetic_submodel }

| min-max
limit_arithmetic_submodel ::=

arithmetic_submodel_identifier { [ violation ] min-max }
early-late_arithmetic_model_container ::= // See Syntax 99 on page 185

early_arithmetic_model_container
| late_arithmetic_model_container
| early_arithmetic_model_container late_arithmetic_model_container

early_arithmetic_model_container ::=
EARLY { early-late_arithmetic_model { early-late_arithmetic_model } }

late_arithmetic_model_container ::=
LATE { early-late_arithmetic_model { early-late_arithmetic_model } }

early-late_arithmetic_model ::=
DELAY_arithmetic_model

| RETAIN_arithmetic_model
| SLEWRATE_arithmetic_model

violation ::= // See Syntax 100 on page 190
VIOLATION { violation_item { violation_item } }

| violation_template_instantiation
violation_item ::=

MESSAGE_TYPE_single_value_annotation
| MESSAGE_single_value_annotation
| behavior

from-to ::= // See Syntax 101 on page 210
from | to | from to

from ::=
FROM { from-to_item { from-to_item } }

to ::=
TO { from-to_item { from-to_item } }

from-to_item ::=
PIN_reference_single_value_annotation

| EDGE_NUMBER_single_value_annotation
| THRESHOLD_arithmetic_model
266 Copyright © 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.



Advanced Library Format (ALF) Reference Manual IEEE P1603/D9, July 2003

1

5

10

15

20

25

30

35

40

45

50

55
Annex B

(informative)

Semantics rule summary

This summary replicates the semantics detailed in the preceding clauses. If there is any conflict, in detail or com-
pleteness, the semantics presented in the clauses shall considered as the normative definition.

KEYWORD VALUETYPE = single_value_annotation { // See Semantics 1 on page 59
CONTEXT = SEMANTICS;

}

SEMANTICS VALUETYPE {
VALUES {

number signed_integer unsigned_integer
multiplier_prefix_value
identifier quoted_string string_value
bit_literal based_literal boolean_value edge_value
control_expression boolean_expression
arithmetic_expression

}
}

KEYWORD VALUES = multi_value_annotation { // See Semantics 2 on page 60
CONTEXT = SEMANTICS;

}

KEYWORD DEFAULT = single_value_annotation { // See Semantics 3 on page 61
CONTEXT { SEMANTICS arithmetic_model }

}

KEYWORD CONTEXT = annotation; // See Semantics 4 on page 61

SEMANTICS CONTEXT {
CONTEXT { KEYWORD SEMANTICS }
VALUETYPE = identifier;

}

KEYWORD REFERENCETYPE = annotation { // See Semantics 5 on page 62
CONTEXT = SEMANTICS;

}

SEMANTICS REFERENCETYPE {
VALUES { CLASS LIBRARY SUBLIBRARY CELL PIN PINGROUP

PRIMITIVE WIRE NODE VECTOR LAYER VIA RULE ANTENNA
BLOCKAGE PORT SITE ARRAY PATTERN REGION
arithmetic_model arithmetic_submodel }

}

KEYWORD SI_MODEL = single_value_annotation { // See Semantics 6 on page 63
CONTEXT = SEMANTICS;

}

SEMANTICS SI_MODEL {
VALUES {

TIME FREQUENCY CURRENT VOLTAGE POWER ENERGY
RESISTANCE CAPACITANCE INDUCTANCE
DISTANCE AREA
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}
}

KEYWORD CLASS = annotation { // See Semantics 7 on page 65
CONTEXT { library_specific_object arithmetic_model }

}

SEMANTICS CLASS { REFERENCETYPE = CLASS; }

KEYWORD USAGE = annotation { CONTEXT = CLASS; } // See Semantics 8 on page 66

SEMANTICS USAGE {
VALUETYPE = identifier;
VALUES {

SWAP_CLASS RESTRICT_CLASS
SIGNAL_CLASS SUPPLY_CLASS CONNECT_CLASS
SELECT_CLASS NODE_CLASS
EXISTENCE_CLASS CHARACTERIZATION_CLASS
ORIENTATION_CLASS SYMMETRY_CLASS

}
}

KEYWORD FORMAT = single_value_annotation { // See Semantics 9 on page 73
CONTEXT = ASSOCIATE;

}

SEMANTICS FORMAT {
VALUETYPE = identifier;
VALUES { vhdl verilog c \c++ alf }
DEFAULT = alf;

}

KEYWORD LIBRARY = annotation { // See Semantics 10 on page 76
CONTEXT = arithmetic_model;

}

SEMANTICS LIBRARY {
REFERENCETYPE { LIBRARY SUBLIBRARY }

}

KEYWORD INFORMATION = annotation_container { // See Semantics 11 on page 77
CONTEXT { LIBRARY SUBLIBRARY CELL WIRE PRIMITIVE }

}

KEYWORD PRODUCT = single_value_annotation {
CONTEXT = INFORMATION;

}

SEMANTICS PRODUCT {
VALUETYPE = string_value; DEFAULT = "";

}

KEYWORD TITLE = single_value_annotation {
CONTEXT = INFORMATION;

}

SEMANTICS TITLE {
VALUETYPE = string_value; DEFAULT = "";

}

KEYWORD VERSION = single_value_annotation {
CONTEXT = INFORMATION;

}
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SEMANTICS VERSION {
VALUETYPE = string_value; DEFAULT = "";

}

KEYWORD AUTHOR = single_value_annotation {
CONTEXT = INFORMATION;

}

SEMANTICS AUTHOR {
VALUETYPE = string_value; DEFAULT = "";

}

KEYWORD DATETIME = single_value_annotation {
CONTEXT = INFORMATION;

}

SEMANTICS DATETIME {
VALUETYPE = string_value; DEFAULT = "";

}

KEYWORD CELL = annotation { CONTEXT = arithmetic_model; }

SEMANTICS CELL { REFERENCETYPE = CELL; } // See Semantics 12 on page 78

KEYWORD CELLTYPE = single_value_annotation { // See Semantics 13 on page 79
CONTEXT = CELL;

}

SEMANTICS CELLTYPE {
VALUETYPE = identifier;
VALUES {

buffer combinational multiplexor flipflop latch
memory block core special

}
}

KEYWORD RESTRICT_CLASS = annotation { // See Semantics 14 on page 80
CONTEXT { CELL CLASS }

}

SEMANTICS RESTRICT_CLASS {
REFERENCETYPE = CLASS;

}

CLASS synthesis { USAGE = RESTRICT_CLASS ; }
CLASS scan { USAGE = RESTRICT_CLASS ; }
CLASS datapath { USAGE = RESTRICT_CLASS ; }
CLASS clock { USAGE = RESTRICT_CLASS ; }
CLASS layout { USAGE = RESTRICT_CLASS ; }

KEYWORD SWAP_CLASS = annotation { // See Semantics 15 on page 81
CONTEXT = CELL;

}

SEMANTICS SWAP_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD SCAN_TYPE = single_value_annotation { // See Semantics 16 on page 82
CONTEXT = CELL;

}

SEMANTICS SCAN_TYPE {
VALUETYPE = identifier;
VALUES { muxscan clocked lssd control_0 control_1 }

}
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KEYWORD SCAN_USAGE = single_value_annotation { // See Semantics 17 on page 83
CONTEXT = CELL;

}

SEMANTICS SCAN_USAGE {
VALUETYPE = identifier;
VALUES { input output hold }

}

KEYWORD BUFFERTYPE = single_value_annotation { // See Semantics 18 on page 83
CONTEXT = CELL;

}

SEMANTICS BUFFERTYPE {
VALUETYPE = identifier;
VALUES { input output inout internal }
DEFAULT = internal;

}

KEYWORD DRIVERTYPE = single_value_annotation { // See Semantics 19 on page 84
CONTEXT = CELL;

}

SEMANTICS DRIVERTYPE {
VALUETYPE = identifier;
VALUES { predriver slotdriver both }

}

KEYWORD PARALLEL_DRIVE = single_value_annotation { // See Semantics 20 on page 85
CONTEXT = CELL;

}

SEMANTICS PARALLEL_DRIVE {
VALUETYPE = unsigned_integer;
DEFAULT = 1;

}

KEYWORD PLACEMENT_TYPE = single_value_annotation { // See Semantics 21 on page 85
CONTEXT = CELL;

}

SEMANTICS PLACEMENT_TYPE {
VALUETYPE = identifier;
VALUES { pad core ring block connector }
DEFAULT = core;

}

SEMANTICS CELL.SITE = single_value_annotation; // See Semantics 22 on page 86

KEYWORD PIN = annotation { // See Semantics 23 on page 90
CONTEXT { arithmetic_model FROM TO }

}

SEMANTICS PIN {
REFERENCETYPE { PIN PINGROUP PORT NODE }

}

KEYWORD MEMBERS = multi_value_annotation { // See Semantics 24 on page 90
CONTEXT = PINGROUP;

}

SEMANTICS MEMBERS {
REFERENCETYPE = PIN;

}
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KEYWORD VIEW = single_value_annotation { // See Semantics 25 on page 90
CONTEXT { PIN PINGROUP }

}

SEMANTICS VIEW {
VALUES { functional physical both none }
DEFAULT = both;

}

KEYWORD PINTYPE = single_value_annotation { // See Semantics 26 on page 91
CONTEXT = PIN;

}

SEMANTICS PINTYPE {
VALUETYPE = identifier;
VALUES { digital analog supply }
DEFAULT = digital;

}

KEYWORD DIRECTION = single_value_annotation { // See Semantics 27 on page 92
CONTEXT = PIN;

}

SEMANTICS DIRECTION {
VALUES { input output both none }

}

KEYWORD SIGNALTYPE = single_value_annotation { // See Semantics 28 on page 93
CONTEXT = PIN;

}

SEMANTICS SIGNALTYPE {
VALUETYPE = identifier;
VALUES {

data scan_data address control select tie clear set
enable out_enable scan_enable scan_out_enable
clock master_clock slave_clock
scan_master_clock scan_slave_clock

}
DEFAULT = data;

}

KEYWORD ACTION = single_value_annotation { // See Semantics 29 on page 95
CONTEXT = PIN;

}

SEMANTICS ACTION {
VALUES { asynchronous synchronous }

}

KEYWORD POLARITY = single_value_annotation { // See Semantics 30 on page 96
CONTEXT = PIN;

}

SEMANTICS POLARITY {
VALUES { high low rising_edge falling_edge double_edge }

}

KEYWORD CONTROL_POLARITY = annotation_container { // See Semantics 31 on page 97
CONTEXT = PIN ;

}
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SEMANTICS
CONTROL_POLARITY.identifier = single_value_annotation {

VALUES { high low rising_edge falling_edge double_edge }
}

KEYWORD DATATYPE = single_value_annotation { // See Semantics 32 on page 98
CONTEXT { PIN PINGROUP }

}

SEMANTICS DATATYPE {
VALUES { signed unsigned }

}

KEYWORD INITIAL_VALUE = single_value_annotation { // See Semantics 33 on page 99
CONTEXT { PIN PINGROUP }

}

SEMANTICS INITIAL_VALUE {
VALUETYPE = boolean_value;
DEFAULT = U;

}

KEYWORD SCAN_POSITION = single_value_annotation { // See Semantics 34 on page 99
CONTEXT = PIN;

}

SEMANTICS SCAN_POSITION {
VALUETYPE = unsigned_integer;
DEFAULT = 0;

}

KEYWORD STUCK = single_value_annotation { // See Semantics 35 on page 99
CONTEXT = PIN;

}

SEMANTICS STUCK {
VALUES { stuck_at_0 stuck_at_1 both none }
DEFAULT = both;

}

KEYWORD SUPPLYTYPE = annotation { // See Semantics 36 on page 100
CONTEXT { PIN CLASS }

}

SEMANTICS SUPPLYTYPE {
VALUETYPE = identifier;
VALUES { power ground reference }

}

KEYWORD SIGNAL_CLASS = annotation { // See Semantics 37 on page 101
CONTEXT { PIN PINGROUP }

}

SEMANTICS SIGNAL_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD SUPPLY_CLASS = annotation { // See Semantics 38 on page 101
CONTEXT { PIN CLASS POWER ENERGY }

}

SEMANTICS SUPPLY_CLASS {
REFERENCETYPE = CLASS;

}
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KEYWORD DRIVETYPE = single_value_annotation { // See Semantics 39 on page 102
CONTEXT { PIN CLASS }

}

SEMANTICS DRIVETYPE {
VALUETYPE = identifier;
VALUES {

cmos nmos pmos cmos_pass nmos_pass pmos_pass
ttl open_drain open_source

}
DEFAULT = cmos;

}

KEYWORD SCOPE = single_value_annotation { // See Semantics 40 on page 103
CONTEXT { PIN PINGROUP }

}

SEMANTICS SCOPE {
VALUES { behavior measure both none }
DEFAULT = both;

}

KEYWORD CONNECT_CLASS = single_value_annotation { // See Semantics 41 on page 104
CONTEXT = PIN;

}

SEMANTICS CONNECT_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD SIDE = single_value_annotation { // See Semantics 42 on page 105
CONTEXT { PIN PINGROUP }

}

SEMANTICS SIDE {
VALUETYPE = identifier;
VALUES { left right top bottom inside }

}

KEYWORD ROW = annotation { // See Semantics 43 on page 105
CONTEXT { PIN PINGROUP }

}

SEMANTICS ROW {
VALUETYPE = unsigned_integer;

}
KEYWORD COLUMN = annotation {

CONTEXT { PIN PINGROUP }
}

SEMANTICS COLUMN {
VALUETYPE = unsigned_integer;

}

KEYWORD ROUTING_TYPE = single_value_annotation { // See Semantics 44 on page 106
CONTEXT { PIN PORT }

}

SEMANTICS ROUTING_TYPE {
VALUETYPE = identifier;
VALUES { regular abutment ring feedthrough }
DEFAULT = regular;

}
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KEYWORD PULL = single_value_annotation { // See Semantics 45 on page 107
CONTEXT = PIN;

}

SEMANTICS PULL {
VALUES { up down both none }
DEFAULT = none;

}

KEYWORD WIRE = annotation { // See Semantics 46 on page 110
CONTEXT = arithmetic_model;

}

SEMANTICS WIRE {
REFERENCETYPE = WIRE;

}

KEYWORD WIRETYPE = single_value_annotation { // See Semantics 47 on page 111
CONTEXT = WIRE;

}

SEMANTICS WIRETYPE {
VALUETYPE = identifier;
VALUES { estimated extracted interconnect load }

}

KEYWORD SELECT_CLASS = annotation { // See Semantics 48 on page 112
CONTEXT = WIRE;

}

SEMANTICS SELECT_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD NODE = multi_value_annotation { // See Semantics 49 on page 113
CONTEXT = arithmetic_model;

}

SEMANTICS NODE {
REFERENCETYPE { PIN PORT NODE }

}

KEYWORD NODETYPE = single_value_annotation { // See Semantics 50 on page 113
CONTEXT = NODE;

}

SEMANTICS NODETYPE {
VALUETYPE = identifier;
VALUES { power ground source sink

driver receiver interconnect }
DEFAULT = interconnect;

}

KEYWORD NODE_CLASS = annotation { // See Semantics 51 on page 115
CONTEXT = NODE;

}

SEMANTICS NODE_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD VECTOR = single_value_annotation { // See Semantics 52 on page 116
CONTEXT = arithmetic_model;

}
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SEMANTICS VECTOR {
VALUETYPE = control_expression;
REFERENCETYPE = VECTOR;

}

KEYWORD PURPOSE = annotation { // See Semantics 53 on page 116
CONTEXT { VECTOR CLASS }

}

SEMANTICS PURPOSE {
VALUETYPE = identifier ;
VALUES { bist test timing power noise reliability }

}

KEYWORD OPERATION = single_value_annotation { // See Semantics 54 on page 117
CONTEXT = VECTOR;

}

SEMANTICS OPERATION {
VALUETYPE = identifier;
VALUES {

read write read_modify_write refresh load
start end iddq

}
}

KEYWORD LABEL = single_value_annotation { // See Semantics 55 on page 118
CONTEXT = VECTOR;

}

SEMANTICS LABEL {
VALUETYPE = string_value;

}

KEYWORD EXISTENCE_CONDITION = single_value_annotation {
CONTEXT { VECTOR CLASS } // See Semantics 56 on page 118

}

SEMANTICS EXISTENCE_CONDITION {
VALUETYPE = boolean_expression;
DEFAULT = 1;

}

KEYWORD EXISTENCE_CLASS = annotation { // See Semantics 57 on page 119
CONTEXT { VECTOR CLASS }

}

SEMANTICS EXISTENCE_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD // See Semantics 58 on page 119
CHARACTERIZATION_CONDITION = single_value_annotation {

CONTEXT { VECTOR CLASS }
}

SEMANTICS CHARACTERIZATION_CONDITION {
VALUETYPE = boolean_expression;

}

KEYWORD CHARACTERIZATION_VECTOR = single_value_annotation {
CONTEXT { VECTOR CLASS } // See Semantics 59 on page 120

}
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SEMANTICS CHARACTERIZATION_VECTOR {
VALUETYPE = control_expression;

}

KEYWORD CHARACTERIZATION_CLASS = annotation { // See Semantics 60 on page 120
CONTEXT { VECTOR CLASS }

}

SEMANTICS CHARACTERIZATION_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD MONITOR = annotation { // See Semantics 61 on page 120
CONTEXT { VECTOR CLASS }

}

SEMANTICS MONITOR {
VALUETYPE = identifier;

}

KEYWORD LAYER = annotation { // See Semantics 62 on page 121
CONTEXT { arithmetic_model PATTERN ARRAY }

}

SEMANTICS LAYER {
REFERENCETYPE = LAYER;

}

KEYWORD LAYERTYPE = single_value_annotation { // See Semantics 63 on page 121
CONTEXT = LAYER;

}

SEMANTICS LAYERTYPE {
VALUETYPE = identifier;
VALUES { routing cut substrate dielectric reserved abstract }

}

KEYWORD PITCH = single_value_annotation { // See Semantics 64 on page 122
CONTEXT = LAYER;

}

SEMANTICS PITCH {
VALUETYPE = unsigned_number;

}

KEYWORD PREFERENCE = single_value_annotation { // See Semantics 65 on page 122
CONTEXT = LAYER;

}

SEMANTICS PREFERENCE {
VALUETYPE = identifier;
VALUES { horizontal vertical acute obtuse }

}

KEYWORD VIA = annotation { // See Semantics 66 on page 123
CONTEXT = arithmetic_model;

}

SEMANTICS VIA {
REFERENCETYPE = VIA;

}

KEYWORD VIATYPE = single_value_annotation { // See Semantics 67 on page 124
CONTEXT = VIA;

}
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SEMANTICS VIATYPE {
VALUETYPE = identifier;
VALUES { default non_default partial_stack full_stack }
DEFAULT = default;

}

KEYWORD PORTTYPE = single_value_annotation { // See Semantics 68 on page 127
CONTEXT = PORT;

}

SEMANTICS PORTTYPE {
VALUETYPE = identifier;
VALUES { external internal }
DEFAULT = external;

}

KEYWORD SITE = annotation { // See Semantics 69 on page 128
CONTEXT { CELL ARRAY CLASS }

}

SEMANTICS SITE {
REFERENCETYPE = SITE;

}

KEYWORD ORIENTATION_CLASS = annotation { // See Semantics 70 on page 128
CONTEXT { SITE CELL }

}

SEMANTICS ORIENTATION_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD SYMMETRY_CLASS = multi_value_annotation { // See Semantics 71 on page 128
CONTEXT = SITE;

}

SEMANTICS SYMMETRY_CLASS {
REFERENCETYPE = CLASS;

}

KEYWORD ARRAYTYPE = single_value_annotation { // See Semantics 72 on page 130
CONTEXT = ARRAY;

}

SEMANTICS ARRAYTYPE {
VALUETYPE = identifier;
VALUES { floorplan placement

global_routing detailed_routing }
}

SEMANTICS ARRAY.LAYER = multi_value_annotation; // See Semantics 73 on page 130

SEMANTICS ARRAY.SITE = single_value_annotation; // See Semantics 74 on page 130

KEYWORD PATTERN = annotation { // See Semantics 75 on page 131
CONTEXT = arithmetic_model ;

}

SEMANTICS PATTERN {
REFERENCETYPE = PATTERN ;

}

KEYWORD SHAPE = single_value_annotation { // See Semantics 76 on page 131
CONTEXT = PATTERN;

}
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SEMANTICS SHAPE {
VALUETYPE = identifier;
VALUES { line tee cross jog corner end }
DEFAULT = line;

}

KEYWORD VERTEX = single_value_annotation { // See Semantics 77 on page 133
CONTEXT = PATTERN;

}

SEMANTICS VERTEX {
VALUETYPE = identifier;
VALUES { round angular }
DEFAULT = angular;

}

KEYWORD ROUTE = single_value_annotation { // See Semantics 78 on page 133
CONTEXT = PATTERN;

}

SEMANTICS ROUTE {
VALUETYPE = identifier;
VALUES { horizontal acute vertical obtuse }

}

SEMANTICS PATTERN.LAYER = single_value_annotation; // See Semantics 79 on page 134

KEYWORD REGION = annotation { // See Semantics 80 on page 135
CONTEXT = arithmetic_model ;

}

SEMANTICS REGION {
REFERENCETYPE = REGION ;

}

KEYWORD BOOLEAN = single_value_annotation { // See Semantics 81 on page 135
CONTEXT = REGION ;

}

SEMANTICS BOOLEAN {
VALUETYPE = boolean_expression ;

}

PRIMITIVE ALF_BUF { // See Semantics 82 on page 162
PIN in { DIRECTION = input; }
PIN [1:<bitwidth>] out { DIRECTION = output; }
GROUP index { 1 : <bitwidth> }
FUNCTION { BEHAVIOR { out[index] = in ; } }

}

PRIMITIVE ALF_NOT { // See Semantics 83 on page 162
PIN in { DIRECTION = input; }
PIN [1:<bitwidth>] out { DIRECTION = output; }
GROUP index { 1 : <bitwidth> }
FUNCTION { BEHAVIOR { out[index] = ! in ; } }

}

PRIMITIVE ALF_AND { // See Semantics 84 on page 162
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = & in ; } }

}
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PRIMITIVE ALF_NAND { // See Semantics 85 on page 163
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~& in ; } }

}

PRIMITIVE ALF_OR { // See Semantics 86 on page 163
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = | in ; } }

}

PRIMITIVE ALF_NOR { // See Semantics 87 on page 163
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~| in ; } }

}

PRIMITIVE ALF_XOR { // See Semantics 88 on page 163
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ^ in ; } }

}

PRIMITIVE ALF_XNOR { // See Semantics 89 on page 164
PIN out { DIRECTION = output; }
PIN [1:<bitwidth>] in { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = ~^ in ; } }

}

PRIMITIVE ALF_BUFIF1 { // See Semantics 90 on page 164
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? in : ‘bZ ; } }

}

PRIMITIVE ALF_BUFIF0 { // See Semantics 91 on page 164
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (! enable)? in : ‘bZ ; } }

}

PRIMITIVE ALF_NOTIF1 { // See Semantics 92 on page 164
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (enable)? ! in : ‘bZ ; } }

}

PRIMITIVE ALF_NOTIF0 { // See Semantics 93 on page 165
PIN out { DIRECTION = output; }
PIN in { DIRECTION = input; }
PIN enable { DIRECTION = input; }
FUNCTION { BEHAVIOR { out = (! enable)? ! in : ‘bZ ; } }

}

PRIMITIVE ALF_MUX { // See Semantics 94 on page 165
PIN Q { DIRECTION = output; }
PIN [1:0] D { DIRECTION = input; }
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PIN S { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
Q = ! S & D[0] | S & D[1] | D[0] & D[1] ;

}
}

}

PRIMITIVE ALF_LATCH { // See Semantics 95 on page 166
PIN Q { DIRECTION = output; }
PIN QN { DIRECTION = output; }
PIN D { DIRECTION = input; }
PIN ENABLE { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PIN SET { DIRECTION = input; }
PIN Q_CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
@ ( CLEAR && SET ) {

Q = Q_CONFLICT ; QN = QN_CONFLICT ;
} : ( CLEAR ) {

Q = 0 ; QN = 1 ;
} : ( SET ) {

Q = 1 ; QN = 0 ;
} : ( ENABLE ) {

Q = D ; QN = ! D ;
}

}
}

}

PRIMITIVE ALF_FLIPFLOP { // See Semantics 96 on page 166
PIN Q { DIRECTION = output; }
PIN QN { DIRECTION = output; }
PIN D { DIRECTION = input; }
PIN CLOCK { DIRECTION = input; }
PIN CLEAR { DIRECTION = input; }
PIN SET { DIRECTION = input; }
PIN Q_CONFLICT { DIRECTION = input; }
PIN QN_CONFLICT { DIRECTION = input; }
FUNCTION {

BEHAVIOR {
@ ( CLEAR && SET ) {

Q = Q_CONFLICT ; QN = QN_CONFLICT ;
} : ( CLEAR ) {

Q = 0 ; QN = 1 ;
} : ( SET ) {

Q = 1 ; QN = 0 ;
} : ( 01 CLOCK ) {

Q = D ; QN = ! D ;
}

}
}

}
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KEYWORD DOT = geometric_model; // See Semantics 97 on page 168

KEYWORD POLYLINE = geometric_model;

KEYWORD RING = geometric_model;

KEYWORD POLYGON = geometric_model;

KEYWORD POINT_TO_POINT = single_value_annotation { // See Semantics 98 on page 169
CONTEXT { POLYLINE RING POLYGON }

}

SEMANTICS POINT_TO_POINT {
VALUES { direct manhattan }
DEFAULT = direct;

}

TEMPLATE RECTANGLE { // See Semantics 99 on page 171
POLYGON {

POINT_TO_POINT = manhattan;
COORDINATES { <left> <bottom> <right> <top> }

}
}

TEMPLATE LINE { // See Semantics 100 on page 171
POLYLINE {

POINT_TO_POINT = direct;
COORDINATES { <x_start> <y_start> <x_end> <y_end> }

}
}

KEYWORD MIN = arithmetic_submodel { // See Semantics 101 on page 183
CONTEXT { arithmetic_model arithmetic_submodel }

}

KEYWORD MAX = arithmetic_submodel {
CONTEXT { arithmetic_model arithmetic_submodel }

}

KEYWORD TYP = arithmetic_submodel {
CONTEXT { arithmetic_model arithmetic_submodel }

}

KEYWORD LIMIT = arithmetic_model_container; // See Semantics 102 on page 185

KEYWORD EARLY = arithmetic_model_container // See Semantics 103 on page 185
{ CONTEXT = VECTOR; }

KEYWORD LATE = arithmetic_model_container
{ CONTEXT = VECTOR; }

KEYWORD UNIT = single_value_annotation { // See Semantics 104 on page 186
CONTEXT = arithmetic_model ;

}

SEMANTICS UNIT {
VALUETYPE = multiplier_prefix_value ;

}

KEYWORD CALCULATION = single_value_annotation { // See Semantics 105 on page 186
CONTEXT = arithmetic_model ;

}

SEMANTICS CALCULATION {
CONTEXT = library_specific_object.arithmetic_model ;
VALUES { absolute incremental }
DEFAULT = absolute ;

}
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KEYWORD INTERPOLATION = single_value_annotation { // See Semantics 106 on page 187
CONTEXT = arithmetic_model ;

}

SEMANTICS INTERPOLATION {
CONTEXT = HEADER.arithmetic_model ;
VALUES { linear fit ceiling floor }
DEFAULT = fit ;

}

KEYWORD MODEL = single_value_annotation { // See Semantics 107 on page 189
CONTEXT = arithmetic_model ;

}

SEMANTICS MODEL {
REFERENCETYPE { arithmetic_model arithmetic_submodel }

}

SEMANTICS VIOLATION { // See Semantics 108 on page 190
CONTEXT {

SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL
NOISE_MARGIN LIMIT..

}
}

SEMANTICS VIOLATION.BEHAVIOR { CONTEXT { VECTOR.. }// See Semantics 109 on page 190
KEYWORD MESSAGE_TYPE = single_value_annotation { // See Semantics 110 on page 191

CONTEXT = VIOLATION ;
}

SEMANTICS MESSAGE_TYPE {
VALUETYPE = identifier ;
VALUES { information warning error }

}

KEYWORD MESSAGE = single_value_annotation { // See Semantics 111 on page 192
CONTEXT = VIOLATION ;

}

SEMANTICS MESSAGE {
VALUETYPE = quoted_string ;

}

KEYWORD TIME = arithmetic_model ; // See Semantics 112 on page 192

SEMANTICS TIME {
CONTEXT {

LIBRARY SUBLIBRARY CELL WIRE VECTOR arithmetic_model
VECTOR.arithmetic_model_container
VECTOR..HEADER LIMIT..HEADER

}
VALUETYPE = number ;
SI_MODEL = TIME ;

}

TIME { UNIT = NanoSeconds ; }

KEYWORD FREQUENCY = arithmetic_model ; // See Semantics 113 on page 193

SEMANTICS FREQUENCY {
CONTEXT {

LIBRARY SUBLIBRARY CELL WIRE VECTOR arithmetic_model
VECTOR.arithmetic_model_container
VECTOR..HEADER LIMIT..HEADER

}
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VALUETYPE = number ;
SI_MODEL = FREQUENCY ;

}

FREQUENCY { UNIT = GigaHertz; MIN = 0; }

KEYWORD DELAY = arithmetic_model ; // See Semantics 114 on page 194

SEMANTICS DELAY {
CONTEXT {

LIBRARY SUBLIBRARY CELL WIRE
VECTOR VECTOR.EARLY VECTOR.LATE

}
SI_MODEL = TIME ;

}

KEYWORD RETAIN = arithmetic_model ; // See Semantics 115 on page 195

SEMANTICS RETAIN{
CONTEXT {

VECTOR VECTOR.EARLY VECTOR.LATE
}
SI_MODEL = TIME ;

}

KEYWORD SLEWRATE = arithmetic_model ; // See Semantics 116 on page 196

SEMANTICS SLEWRATE {
CONTEXT {

LIBRARY LIBRARY.LIMIT SUBLIBRARY SUBLIBRARY.LIMIT
CELL CELL.LIMIT PIN PIN.LIMIT WIRE WIRE.LIMIT
VECTOR VECTOR.EARLY VECTOR.LATE VECTOR.LIMIT
VECTOR..HEADER

}
SI_MODEL = TIME ;

}

SLEWRATE { MIN = 0; }

KEYWORD SETUP = arithmetic_model ; // See Semantics 117 on page 197

SEMANTICS SETUP { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

KEYWORD HOLD = arithmetic_model ;

SEMANTICS HOLD { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

KEYWORD RECOVERY = arithmetic_model ; // See Semantics 118 on page 198
SEMANTICS RECOVERY { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

KEYWORD REMOVAL = arithmetic_model ;

SEMANTICS REMOVAL { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

KEYWORD NOCHANGE = arithmetic_model ; // See Semantics 119 on page 199

SEMANTICS NOCHANGE { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

NOCHANGE { MIN = 0; }

KEYWORD ILLEGAL = arithmetic_model ;

SEMANTICS ILLEGAL { CONTEXT = VECTOR ; SI_MODEL = TIME ; }

ILLEGAL { MIN = 0; }

KEYWORD PULSEWIDTH=arithmetic_model ; // See Semantics 120 on page 201

SEMANTICS PULSEWIDTH {
CONTEXT {

LIBRARY LIBRARY.LIMIT SUBLIBRARY SUBLIBRARY.LIMIT
CELL CELL.LIMIT PIN PIN.LIMIT WIRE WIRE.LIMIT
VECTOR VECTOR..HEADER
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}
SI_MODEL = TIME ;

}

PULSEWIDTH { MIN = 0; }

KEYWORD PERIOD = arithmetic_model ; // See Semantics 121 on page 202

SEMANTICS PERIOD {
CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER }
SI_MODEL = TIME ;

}

PERIOD { MIN = 0; }

KEYWORD JITTER = arithmetic_model ; // See Semantics 122 on page 203

SEMANTICS JITTER {
CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER }
SI_MODEL = TIME ;

}

JITTER { MIN = 0; }

KEYWORD SKEW = arithmetic_model ; // See Semantics 123 on page 204

SEMANTICS SKEW {
CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER }
SI_MODEL = TIME ;

}

SKEW { MIN = 0; }

KEYWORD THRESHOLD = arithmetic_model ; // See Semantics 124 on page 205

SEMANTICS THRESHOLD {
CONTEXT { PIN FROM TO }
VALUETYPE = number ;

}

THRESHOLD { MIN = 0; MAX = 1; }

KEYWORD NOISE = arithmetic_model ; // See Semantics 125 on page 206

SEMANTICS NOISE {
CONTEXT {

LIBRARY.LIMIT SUBLIBRARY.LIMIT CELL.LIMIT
PIN PIN.LIMIT VECTOR VECTOR.LIMIT VECTOR..HEADER

}
VALUETYPE = number ;

}

KEYWORD NOISE_MARGIN = arithmetic_model ;

SEMANTICS NOISE_MARGIN {
CONTEXT { CLASS LIBRARY SUBLIBRARY CELL PIN VECTOR }
VALUETYPE = number ;

}

NOISE_MARGIN { MIN = 0; }

KEYWORD POWER = arithmetic_model ; // See Semantics 126 on page 209

SEMANTICS POWER {
CONTEXT {

LIBRARY SUBLIBRARY CELL VECTOR
CLASS.LIMIT CELL.LIMIT

}
VALUETYPE = number ;

}
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POWER { UNIT = MilliWatt; }

KEYWORD ENERGY = arithmetic_model { VALUETYPE = number; }

SEMANTICS ENERGY {
CONTEXT { LIBRARY SUBLIBRARY CELL VECTOR }
VALUETYPE = number ;

}

ENERGY { UNIT = PicoJoule; }

SEMANTICS FROM { // See Semantics 127 on page 210
CONTEXT {

TIME DELAY RETAIN SLEWRATE PULSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}

SEMANTICS TO {
CONTEXT {

TIME DELAY RETAIN SLEWRATE PULSEWIDTH
SETUP HOLD RECOVERY REMOVAL NOCHANGE ILLEGAL SKEW

}
}

KEYWORD EDGE_NUMBER = annotation { // See Semantics 128 on page 211
CONTEXT { arithmetic_model FROM TO }

}

SEMANTICS EDGE_NUMBER {
CONTEXT { VECTOR.. }
VALUETYPE = unsigned_integer ;
DEFAULT = 0;

}

SEMANTICS FROM.PIN = single_value_annotation { // See Semantics 129 on page 211
CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

SEMANTICS TO.PIN = single_value_annotation {
CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

SEMANTICS FROM.EDGE_NUMBER = single_value_annotation {
CONTEXT { TIME DELAY RETAIN SETUP HOLD // See Semantics 130 on page 211
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

SEMANTICS TO.EDGE_NUMBER = single_value_annotation {
CONTEXT { TIME DELAY RETAIN SETUP HOLD
RECOVERY REMOVAL NOCHANGE ILLEGAL }

}

SEMANTICS SLEWRATE.PIN = single_value_annotation ;// See Semantics 131 on page 212

SEMANTICS SLEWRATE.EDGE_NUMBER = single_value_annotation ;

SEMANTICS PULSEWIDTH.PIN = single_value_annotation;// See Semantics 132 on page 212

SEMANTICS PULSEWIDTH.EDGE_NUMBER = single_value_annotation;

SEMANTICS SKEW.PIN = multi_value_annotation ; // See Semantics 133 on page 213

SEMANTICS SKEW.EDGE_NUMBER = multi_value_annotation ;

SEMANTICS NOISE.PIN = single_value_annotation ; // See Semantics 134 on page 213

SEMANTICS NOISE_MARGIN.PIN = single_value_annotation ;
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KEYWORD MEASUREMENT = single_value_annotation { // See Semantics 135 on page 213
CONTEXT = arithmetic_model ;

}

SEMANTICS MEASUREMENT {

CONTEXT { ENERGY POWER CURRENT VOLTAGE JITTER }
VALUETYPE = identifier ;
VALUES { transient static average absolute_average rms peak }

}

KEYWORD PROCESS = arithmetic_model ; // See Semantics 136 on page 215

SEMANTICS PROCESS {
CONTEXT {

CLASS LIBRARY SUBLIBRARY CELL WIRE HEADER
arithmetic_model

}
VALUETYPE = identifier ;

}

PROCESS { DEFAULT = nom; TABLE { nom snsp snwp wnsp wnwp } }

KEYWORD DERATE_CASE = arithmetic_model ; // See Semantics 137 on page 216

SEMANTICS DERATE_CASE {
CONTEXT {

CLASS LIBRARY SUBLIBRARY CELL WIRE HEADER
arithmetic_model

}
VALUETYPE = identifier ;

}

DERATE_CASE { DEFAULT = nom;
TABLE { nom bccom wccom bcind wcind bcmil wcmil }

}

KEYWORD TEMPERATURE = arithmetic_model { // See Semantics 138 on page 216
}

SEMANTICS TEMPERATURE {
CONTEXT {

CLASS LIBRARY SUBLIBRARY CELL WIRE
LIMIT HEADER arithmetic_model

}
VALUETYPE = number ;

}

TEMPERATURE { UNIT = 1DegreeCelsius; MIN = -273; }

KEYWORD VOLTAGE = arithmetic_model ; // See Semantics 139 on page 217

SEMANTICS VOLTAGE {
CONTEXT {

CLASS LIBRARY SUBLIBRARY CELL PIN WIRE VECTOR HEADER
CLASS.LIMIT CELL.LIMIT PIN.LIMIT VECTOR.LIMIT

}
VALUETYPE = number ;

}

VOLTAGE { UNIT = 1Volt; }
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KEYWORD CURRENT = arithmetic_model ; // See Semantics 140 on page 218

SEMANTICS CURRENT {
CONTEXT {

LIBRARY SUBLIBRARY CELL WIRE VECTOR HEADER
CELL.LIMIT VECTOR.LIMIT
LAYER.LIMIT VIA.LIMIT RULE.LIMIT

}
VALUETYPE = number ;

}

CURRENT { UNIT = MilliAmpere; }

KEYWORD CAPACITANCE = arithmetic_model ; // See Semantics 141 on page 219

SEMANTICS CAPACITANCE {
CONTEXT {

LIBRARY SUBLIBRARY CELL CELL.LIMIT PIN PIN.LIMIT
WIRE LAYER RULE VECTOR HEADER

}
VALUETYPE = number ;
SI_MODEL = CAPACITANCE ;

}

CAPACITANCE { UNIT = PicoFarad; MIN = 0; }

KEYWORD RESISTANCE = arithmetic_model ; // See Semantics 142 on page 221

SEMANTICS RESISTANCE {
CONTEXT {

LIBRARY SUBLIBRARY CELL WIRE LAYER RULE
CELL.LIMIT VECTOR HEADER

}
VALUETYPE = number ;
SI_MODEL = RESISTANCE ;

}

RESISTANCE { UNIT = KiloOhm; MIN = 0; }

KEYWORD INDUCTANCE = arithmetic_model ; // See Semantics 143 on page 222

SEMANTICS INDUCTANCE {
CONTEXT {

LIBRARY SUBLIBRARY CELL WIRE LAYER RULE
CELL.LIMIT VECTOR HEADER

}
VALUETYPE = number ;
SI_MODEL = INDUCTANCE ;

}

INDUCTANCE { UNIT = 1e-6; MIN = 0; }

SEMANTICS VOLTAGE.NODE = multi_value_annotation { // See Semantics 144 on page 224
CONTEXT { CELL WIRE } }

SEMANTICS CURRENT.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS CAPACITANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS RESISTANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }

SEMANTICS INDUCTANCE.NODE = multi_value_annotation {
CONTEXT { CELL WIRE } }
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KEYWORD COMPONENT = single_value_annotation { // See Semantics 145 on page 225
CONTEXT = arithmetic_model ;

}

SEMANTICS COMPONENT {
CONTEXT { CURRENT POWER ENERGY }
REFERENCETYPE {

CURRENT VOLTAGE CAPACITANCE RESISTANCE INDUCTANCE
}

}

SEMANTICS VOLTAGE.PIN = single_value_annotation { // See Semantics 146 on page 225
CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER } }

SEMANTICS CURRENT.PIN = single_value_annotation {
CONTEXT { VECTOR VECTOR.LIMIT VECTOR..HEADER } }

SEMANTICS CAPACITANCE.PIN = single_value_annotation {
CONTEXT { VECTOR VECTOR..HEADER } }

SEMANTICS RESISTANCE.PIN = single_value_annotation {
CONTEXT { VECTOR } }

KEYWORD FLOW = single_value_annotation { // See Semantics 147 on page 227
CONTEXT = arithmetic_model ;

}

SEMANTICS FLOW {
CONTEXT = CURRENT;
VALUES { in out }
DEFAULT = in;

}

KEYWORD DRIVE_STRENGTH = arithmetic_model ; // See Semantics 148 on page 227

SEMANTICS DRIVE_STRENGTH {
CONTEXT { CLASS LIBRARY SUBLIBRARY CELL PIN PINGROUP }
VALUETYPE = number ;

}

DRIVE_STRENGTH { MIN = 0; }

KEYWORD SWITCHING_BITS = arithmetic_model ; // See Semantics 149 on page 228

SEMANTICS SWITCHING_BITS {
CONTEXT { VECTOR.POWER.HEADER VECTOR.ENERGY.HEADER }
VALUETYPE = unsigned_integer ;

}

SEMANTICS SWITCHING_BITS.PIN = single_value_annotation;

KEYWORD CONNECTIVITY = arithmetic_model ; // See Semantics 150 on page 228

SEMANTICS CONNECTIVITY {
CONTEXT { LIBRARY SUBLIBRARY CELL RULE ANTENNA HEADER }
VALUES { 1 0 ? }

}

KEYWORD DRIVER = arithmetic_model { // See Semantics 151 on page 229

SEMANTICS DRIVER {
CONTEXT = CONNECTIVITY.HEADER;
REFERENCETYPE = CLASS ;

}

KEYWORD RECEIVER = arithmetic_model ;
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SEMANTICS RECEIVER {
CONTEXT = CONNECTIVITY.HEADER;
REFERENCETYPE = CLASS ;

}

KEYWORD FANOUT = arithmetic_model ; // See Semantics 152 on page 230

SEMANTICS FANOUT {
CONTEXT {

PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
VALUETYPE = unsigned_integer ;

}

KEYWORD FANIN = arithmetic_model ; // See Semantics 153 on page 231

SEMANTICS FANIN {
CONTEXT {

PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
VALUETYPE = unsigned_integer ;

}

KEYWORD CONNECTIONS = arithmetic_model ; // See Semantics 154 on page 231

SEMANTICS CONNECTIONS {
CONTEXT {

PIN.LIMIT WIRE.SIZE.HEADER WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER WIRE.INDUCTANCE.HEADER

}
VALUETYPE = unsigned_integer ;

}

KEYWORD SIZE = arithmetic_model ; // See Semantics 155 on page 232

SEMANTICS SIZE {
CONTEXT {

CELL ANTENNA ANTENNA.LIMIT PIN WIRE
WIRE.CAPACITANCE.HEADER
WIRE.RESISTANCE.HEADER
WIRE.INDUCTANCE.HEADER

}
VALUETYPE = number ;

}

SIZE { MIN = 0; }

KEYWORD AREA = arithmetic_model ; // See Semantics 156 on page 233

SEMANTICS AREA {
CONTEXT {

CELL WIRE WIRE..HEADER LAYER..HEADER
RULE..HEADER ANTENNA..HEADER

}
VALUETYPE = number ;
SI_MODEL = AREA ;

}

AREA { UNIT = 1e-12; MIN = 0; }
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KEYWORD PERIMETER = arithmetic_model ; // See Semantics 157 on page 234

SEMANTICS PERIMETER {
CONTEXT {

CELL WIRE WIRE..HEADER LAYER..HEADER
RULE..HEADER ANTENNA..HEADER

}
SI_MODEL = DISTANCE ;

}

KEYWORD EXTENSION = arithmetic_model ; // See Semantics 158 on page 235

SEMANTICS EXTENSION {
CONTEXT { LAYER PATTERN RULE.LIMIT RULE..HEADER }
SI_MODEL = DISTANCE ;

}

KEYWORD THICKNESS = arithmetic_model ; // See Semantics 159 on page 236

SEMANTICS EXTENSION {
CONTEXT { LAYER RULE..HEADER }
SI_MODEL = DISTANCE ;

}

KEYWORD HEIGHT = arithmetic_model ; // See Semantics 160 on page 236

SEMANTICS HEIGHT {
CONTEXT { CELL SITE REGION LAYER WIRE..HEADER }
SI_MODEL = DISTANCE ;

}

KEYWORD WIDTH = arithmetic_model ; // See Semantics 161 on page 237

SEMANTICS WIDTH {
CONTEXT {

CELL SITE REGION LAYER LAYER.LIMIT
PATTERN RULE.LIMIT RULE..HEADER

}
SI_MODEL = DISTANCE ;

}

KEYWORD LENGTH = arithmetic_model ; // See Semantics 162 on page 238

SEMANTICS LENGTH {
CONTEXT {

LAYER LAYER.LIMIT PATTERN RULE.LIMIT RULE..HEADER
}
SI_MODEL = DISTANCE ;

}

KEYWORD DISTANCE = arithmetic_model ; // See Semantics 163 on page 239

SEMANTICS DISTANCE {
CONTEXT { RULE RULE.LIMIT RULE..HEADER }
VALUETYPE = number ;
SI_MODEL = DISTANCE ;

}

DISTANCE { UNIT = 10e-6; MIN = 0; }

KEYWORD OVERHANG = arithmetic_model ; // See Semantics 164 on page 239

SEMANTICS OVERHANG {
CONTEXT { RULE RULE.LIMIT RULE..HEADER }
SI_MODEL = DISTANCE ;

}
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KEYWORD DENSITY = arithmetic_model ; // See Semantics 165 on page 240

SEMANTICS DENSITY {
CONTEXT { LAYER.LIMIT RULE RULE.LIMIT }
VALUETYPE = number ;

}

DENSITY { MIN = 0; MAX = 1; }

KEYWORD CONNECT_RULE = single_value_annotation { // See Semantics 166 on page 241
CONTEXT = arithmetic_model ;

}

SEMANTICS CONNECT_RULE {
CONTEXT = CONNECTIVITY ;
VALUES { must_short can_short cannot_short }

}

KEYWORD BETWEEN = multi_value_annotation { // See Semantics 167 on page 242
CONTEXT = arithmetic_model ;

}

SEMANTICS BETWEEN {
CONTEXT { DISTANCE LENGTH OVERHANG CONNECTIVITY }

}

SEMANTICS ANTENNA.CONNECTIVITY.BETWEEN { // See Semantics 168 on page 242
REFERENCETYPE = LAYER;

}

SEMANTICS HEADER.CONNECTIVITY.BETWEEN {
REFERENCETYPE { PATTERN REGION LAYER }

}

SEMANTICS LIBRARY.CONNECTIVITY.BETWEEN {
REFERENCETYPE = CLASS ;

}

SEMANTICS SUBLIBRARY.CONNECTIVITY.BETWEEN {
REFERENCETYPE = CLASS ;

}

SEMANTICS CELL.CONNECTIVITY.BETWEEN {
REFERENCETYPE { PIN CLASS }

}

SEMANTICS DISTANCE.BETWEEN { // See Semantics 169 on page 242
REFERENCETYPE { PATTERN REGION }

}

SEMANTICS LENGTH.BETWEEN {
REFERENCETYPE { PATTERN REGION }

}

SEMANTICS OVERHANG.BETWEEN {
REFERENCETYPE { PATTERN REGION }

}

KEYWORD MEASURE = single_value_annotation { // See Semantics 170 on page 243
CONTEXT = arithmetic_model ;

}

SEMANTICS MEASURE {
CONTEXT { DISTANCE LENGTH OVERHANG }
VALUETYPE = identifier ;
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VALUES { euclidean horizontal vertical manhattan }
DEFAULT = euclidean ;

}

KEYWORD REFERENCE = annotation_container { // See Semantics 171 on page 244
CONTEXT = arithmetic_model ;

}

SEMANTICS REFERENCE {
CONTEXT { DISTANCE LENGTH OVERHANG }
REFERENCETYPE { PATTERN REGION }

}

SEMANTICS REFERENCE.identifier = single_value_annotation {
VALUETYPE = identifier ;
VALUES { center origin near_edge far_edge }
DEFAULT = origin ;

}

KEYWORD ANTENNA = annotation { // See Semantics 172 on page 246
CONTEXT = arithmetic_model ;

}

SEMANTICS ANTENNA
CONTEXT { PIN.SIZE PIN.AREA PIN.PERIMETER }
REFERENCETYPE = ANTENNA;

}

KEYWORD TARGET = annotation { // See Semantics 173 on page 246
CONTEXT = arithmetic_model ;

}

SEMANTICS TARGET {
CONTEXT = PIN.SIZE;
REFERENCETYPE = PIN.PATTERN;

}

KEYWORD PATTERN = single_value_annotation {{ // See Semantics 174 on page 247
CONTEXT = arithmetic_model ;

}

SEMANTICS PATTERN {
CONTEXT {

LENGTH WIDTH HEIGHT SIZE AREA THICKNESS
PERIMETER EXTENSION

}
REFERENCETYPE = PATTERN ;

}

KEYWORD HIGH = arithmetic_submodel ; // See Semantics 175 on page 248

SEMANTICS HIGH { CONTEXT {
CLASS.VOLTAGE CLASS.LIMIT.VOLTAGE
PIN.VOLTAGE PIN.LIMIT.VOLTAGE PIN.CAPACITANCE
PIN.NOISE PIN.NOISE_MARGIN PIN.LIMIT.NOISE
LIBRARY.NOISE_MARGIN LIBRARY.LIMIT.NOISE

} }

KEYWORD LOW = arithmetic_submodel ;

SEMANTICS LOW { CONTEXT {
CLASS.VOLTAGE CLASS.LIMIT.VOLTAGE
PIN.VOLTAGE PIN.LIMIT.VOLTAGE PIN.CAPACITANCE
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PIN.NOISE PIN.NOISE_MARGIN PIN.LIMIT.NOISE
LIBRARY.NOISE_MARGIN LIBRARY.LIMIT.NOISE

} }

KEYWORD RISE = arithmetic_submodel ; // See Semantics 176 on page 248

SEMANTICS RISE { CONTEXT {
FROM.THRESHOLD TO.THRESHOLD PIN.THRESHOLD
PIN.CAPACITANCE PIN.SLEWRATE PIN.LIMIT.SLEWRATE
PIN.PULSEWIDTH PIN.LIMIT.PULSEWIDTH

} }

KEYWORD FALL = arithmetic_submodel ;

SEMANTICS FALL { CONTEXT {
FROM.THRESHOLD TO.THRESHOLD PIN.THRESHOLD
PIN.CAPACITANCE PIN.SLEWRATE PIN.LIMIT.SLEWRATE
PIN.PULSEWIDTH PIN.LIMIT.PULSEWIDTH

} }

KEYWORD HORIZONTAL = arithmetic_submodel ; // See Semantics 177 on page 249

SEMANTICS HORIZONTAL { CONTEXT {
WIDTH LENGTH EXTENSION DISTANCE OVERHANG

} }

KEYWORD VERTICAL = arithmetic_submodel ;

SEMANTICS VERTICAL { CONTEXT {
WIDTH LENGTH EXTENSION DISTANCE OVERHANG

} }

KEYWORD ACUTE = arithmetic_submodel ;

SEMANTICS ACUTE { CONTEXT {
WIDTH LENGTH EXTENSION DISTANCE OVERHANG

} }

KEYWORD OBTUSE = arithmetic_submodel ;

SEMANTICS OBTUSE { CONTEXT {
WIDTH LENGTH EXTENSION DISTANCE OVERHANG

} }
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Annex C

(informative)

ALF library example

This annex shows a sample ALF library.

ALF_REVISION "IEEE 1603-2003"

LIBRARY sampleLibrary {

// global units for physical measurements

TIME { UNIT = 1e-9; }
FREQUENCY { UNIT = 1e6; }
DISTANCE { UNIT = 1e-6; }
AREA { UNIT = 1e-12; }
VOLTAGE { UNIT = 1; }
CURRENT { UNIT = 1e-3; }
ENERGY { UNIT = 1e-12; }
POWER { UNIT = 1e-3; }
CAPACITANCE { UNIT = 1e-12; }
RESISTANCE { UNIT = 1e3; }
INDUCTANCE { UNIT = 1e-9; }

// global definitions for PVT

PROCESS {
TABLE { nom snsp snwp wnsp wnwp }
DEFAULT = nom;

}
DERATE_CASE {

TABLE { nom bccom wccom bcind wcind bcmil wcmil }
DEFAULT = nom;

}
VOLTAGE VDD {

HEADER {
DERATE_CASE {

TABLE { nom bccom wccom bcind wcind bcmil wcmil }
}

}
TABLE { 1.5 1.7 1.3 1.6 1.4 1.9 1.1 }
DEFAULT = 1.5;

}
TEMPERATURE { MIN = -40; MAX = 125; DEFAULT = 25; }

// global thresholds for timing measurements

DELAY {
FROM { THRESHOLD = 0.5; }
TO { THRESHOLD = 0.5; }
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}
SLEWRATE {

FROM { THRESHOLD { RISE = 0.3; FALL = 0.7; } }
TO { THRESHOLD { RISE = 0.6; FALL = 0.4; } }

}

// templates for cell characterization

TEMPLATE DelayPowerArc {
DELAY {

FROM { PIN = <FromPin>; }
TO { PIN = <ToPin>; }
HEADER {

CAPACITANCE { PIN = <ToPin>; TABLE { 0 0.5 1 } }
SLEWRATE { PIN = <FromPin>; TABLE { 0.1 1 } }

} TABLE { <DelayTable> }
}
SLEWRATE {

PIN = <ToPin>;
HEADER {

CAPACITANCE { PIN = <ToPin>; TABLE { 0 0.5 1 } }
SLEWRATE { PIN = <FromPin>; TABLE { 0.1 1 } }

} TABLE { <SlewTable> }
}
RESISTANCE = <Rdriver> {

PIN = <ToPin>;
}
ENERGY {

HEADER {
CAPACITANCE { PIN = <ToPin>; TABLE { 0 0.5 1 } }
SLEWRATE { PIN = <FromPin>; TABLE { 0.1 1 } }

} TABLE { <PowerTable> }
}

}
TEMPLATE NoisePropagation {

NOISE {
PIN = <ToPin>;
HEADER {

NOISE H { PIN = <FromPin>; }
PULSEWIDTH W { PIN = <FromPin>; }
CAPACITANCE C { PIN = <ToPin>; }

} EQUATION { <NoiseHight> }
}
PULSEWIDTH {

PIN = <ToPin>;
HEADER {

NOISE H { PIN = <FromPin>; }
PULSEWIDTH W { PIN = <FromPin>; }
CAPACITANCE C { PIN = <ToPin>; }

} EQUATION { <NoiseWidth> }
}
DELAY {

FROM { PIN = <FromPin>; }
TO { PIN = <ToPin>; }
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HEADER {
NOISE H { PIN = <FromPin>; }
PULSEWIDTH W { PIN = <FromPin>; }
CAPACITANCE C { PIN = <ToPin>; }

} EQUATION { <NoiseDelay> }
}

}
TEMPLATE SetupHold {

SETUP {
FROM { PIN = <DataPin>; EDGE_NUMBER = 0; }
TO { PIN = <ClockPin>; }
HEADER {
SLEWRATE s1 { PIN = <DataPin>; EDGE_NUMBER = 0; TABLE { 0.1 1 } }
SLEWRATE s2 { PIN = <ClockPin>; TABLE { 0.1 0.2 0.3 } }

} TABLE { <SetupTable> }
}
HOLD {

TO { PIN = <ClockPin>; }
FROM { PIN = <DataPin>; EDGE_NUMBER = 1; }
HEADER {
SLEWRATE s1 { PIN = <DataPin>; EDGE_NUMBER = 1; TABLE { 0.1 1 } }
SLEWRATE s2 { PIN = <ClockPin>; TABLE { 0.1 0.2 0.3 } }

} TABLE { <HoldTable> }
}
NOISE_MARGIN = <DataNoiseMargin> {

PIN = <DataPin>;
TIME {

FROM { PIN = <DataPin>; EDGE_NUMBER = 0; }
TO { PIN = <DataPin>; EDGE_NUMBER = 1; }

}
}

}

// example of combinatorial circuit

CELL sampleNand2 {
CELLTYPE = combinational;
PIN A { DIRECTION = input; CAPACITANCE = 0.01; }
PIN B { DIRECTION = input; CAPACITANCE = 0.01; }
PIN Y { DIRECTION = output; LIMIT { CAPACITANCE { MAX = 1.0; } } }
FUNCTION {

BEHAVIOR { Y = ! ( A & B ); }
}
GROUP AnyInput { A B }
VECTOR ( 01 AnyInput -> 10 Y ) {

DelayPowerArc {
FromPin = AnyInput;
ToPin = Y;
Rdriver = 1;
DelayTable { 0 0.5 1 0 0.5 1 }
SlewTable { 0 0.5 1 0 0.5 1 }
PowerTable { 1 1 1 1 1 1 }

}
}
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VECTOR ( 10 AnyInput -> 01 Y ) {
DelayPowerArc {

FromPin = AnyInput;
ToPin = Y;
Rdriver = 1;
DelayTable { 0 0.5 1 0 0.5 1 }
SlewTable { 0 0.5 1 0 0.5 1 }
PowerTable { 1 1 1 1 1 1 }

}
}
VECTOR ( 1* AnyInput -> *1 AnyInput <&> 0* Y -> *0 Y ) {

NoisePropagation = dynamic {
FromPin = AnyInput;
ToPin = Y;
NoiseHeight = 0.5*H / (C*(W + 1));
NoiseWidth = 0.5*H*W / (C + 1);
NoiseDelay = 0.5*C ;

}
}
VECTOR ( 0* AnyInput -> *0 AnyInput <&> 1* Y -> *1 Y ) {

NoisePropagation = dynamic {
FromPin = AnyInput;
ToPin = Y;
NoiseHeight = 0.5*H / (C*(W + 1));
NoiseWidth = 0.5*H*W / (C + 1);
NoiseDelay = 0.5*C ;

}
}

} // end CELL sampleNand2

// example of sequential circuit

CELL sampleDFlipFlop {
CELLTYPE = flipflop;
PIN D {

DIRECTION = input;
SIGNALTYPE = data;
CAPACITANCE = 0.01;

}
PIN C {

DIRECTION = input;
SIGNALTYPE = clock;
POLARITY = rising_edge;
CAPACITANCE = 0.01;
NOISE_MARGIN { LOW = 0.1; HIGH = 0.2; }
LIMIT { SLEWRATE { MAX = 0.3; } }

}
PIN Q {

DIRECTION = output;
SIGNALTYPE = data;
LIMIT { CAPACITANCE { MAX = 1.0; } }

}
FUNCTION {

BEHAVIOR {
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@ ( 01 C ) { Q = D; }
}

}
VECTOR ( 01 C -> ?! Q ) {

DelayPowerArc {
FromPin = C;
ToPin = Q;
Rdriver = 1;
DelayTable { 0 0.5 1 0 0.5 1 }
SlewTable { 0 0.5 1 0 0.5 1 }
PowerTable { 1 1 1 1 1 1 }

}
}
VECTOR ( ?! D -> 01 C -> ?! D ) {

SetupHold {
DataPin = D;
ClockPin = C;
DataNoiseMargin = 0.2;
SetupTable { 1 1 1 1 1 1 }
HoldTable { 0 0 0 0 0 0 }

}
}

} // end CELL sampleDFlipFlop

// template for parametrized megacell

TEMPLATE \1PortAsyncRAM {
CELL <RAMInstance> {

CELLTYPE = memory;
GROUP Addr { <AddrPins> }
GROUP Din { <DataInputs> }
GROUP Dout { <DataOutputs> }
PIN Addr { DIRECTION=input; SIGNALTYPE=address; VIEW=physical; }
PIN Din { DIRECTION=input; SIGNALTYPE=data; VIEW=physical; }
PIN Dout { DIRECTION=output; SIGNALTYPE=data; VIEW=physical; }
PIN WE { DIRECTION=input; SIGNALTYPE=enable; POLARITY = high; }
PIN [<DataHigh>:<DataLow>] DataArray [<Rows>:1] {

DIRECTION=none; VIEW = none;
}
PINGROUP [<AddrHigh>:<AddrLow>] AddrBus {

MEMBERS { <AddrPins> } VIEW = functional;
}
PINGROUP [<DataHigh>:<DataLow>] DinBus {

MEMBERS { <DataInputs> } VIEW = functional;
}
PINGROUP [<DataHigh>:<DataLow>] DoutBus {

MEMBERS { <DataOutputs> } VIEW = functional;
}
FUNCTION {

BEHAVIOR {
DoutBus = DataArray[AddrBus];
@ ( WE ) { DataArray[AddrBus] = DinBus; }

}
}
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GROUP AddrIndex { <AddrLow> : <AddrHigh> }
GROUP DataIndex { <DataLow> : <DataHigh> }
VECTOR ( 01 AddrBus[AddrIndex] -> ?? DoutBus[DataIndex] ) {

DELAY {
FROM { PIN = AddrBus[AddrIndex]; }
TO { PIN = DoutBus[DataIndex]; }
HEADER {
CAPACITANCE { PIN = DoutBus[DataIndex]; }

} EQUATION { <Doe0> + <Doe1> * CAPACITANCE }
}

}
VECTOR ( ?! DinBus[DataIndex] -> ?! DoutBus[DataIndex] ) {

EXISTENCE_CONDITION = WE;
DELAY {

FROM { PIN = DinBus[DataIndex]; }
TO { PIN = DoutBus[DataIndex]; }
HEADER {
CAPACITANCE { PIN = DoutBus[DataIndex]; }

} EQUATION { <Dio0> + <Dio1> * CAPACITANCE }
}

}
VECTOR ( *? AddrBus[AddrIndex] -> 01 WE
-> 10 WE -> ?* AddrBus[AddrIndex] ) {

SETUP = <AddrSetup> {
FROM { PIN = AddrBus[AddrIndex]; EDGE_NUMBER = 0; }
TO { PIN = WE; EDGE_NUMBER = 0; }

}
HOLD = <AddrHold> {

FROM { PIN = WE; EDGE_NUMBER = 1; }
TO { PIN = AddrBus[AddrIndex]; EDGE_NUMBER = 1; }

}
}

}
} // end TEMPLATE \1PortAsyncRAM

// instance of parametrized megacell

\1PortAsyncRAM {
RAMInstance = \1PortAsyncRAM64X8 ;
AddrPins { Addr5 Addr4 Addr3 Addr2 Addr1 Addr0 }
DataInputs { Din7 Din6 Din5 Din4 Din3 Din2 Din1 Din0 }
DataOutputs { Dout7 Dout6 Dout5 Dout4 Dout3 Dout2 Dout1 Dout0 }
AddrHigh = 5; AddrLow = 0;
DataHigh = 7; DataLow = 0;
Rows = 64;
Doe0 = 1; Doe1 = 1;
Dio0 = 1; Dio1 = 1;
AddrSetup = 1;
AddrHold = 1;

}

}
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