
Ontology Harmonization v. 0.5 2004-06-29 1

Library Harmonization Project

Use of an Ontology Editor for Library
Harmonization

by John Michael Williams

Introduction
An ontology is a way of describing the way things are, in some sense.

Specifically, if we have a use for such a description, an ontology can help us
recognize and improve the way our understanding of some domain of knowledge
represents the objective reality underlying this knowledge.

The greatest enemy of understanding is inconsistency; so, especially for large or
complex bodies of knowledge, an ontology which can represent inconsistencies and
isolate them for correction can be an important tool in science or engineering.

If consistent, an ontology can support logical deduction and other forms of
inference leading to new insight in the domain of knowledge covered. Consistency
makes learning and development of skill easier. Furthermore, consistency of
meaning with terminology makes it possible to design software programs ("agents")
capable of searching an ontology database interactively and drawing conclusions
from its contents.

[to do: explanation of hierarchy & inheritance here; sets or classes vs attributes]

Ontology Software
In recent years, there has been work done in developing software tools to describe

an ontology and to isolate deficiencies, including inconsistencies, in that ontology.
The tool we shall discuss here consists of a generic user interface called Protégé, a
representation system called OWL (Web Ontology Language), and a consistency
checker called Racer. Recommended reading, tutorials, and example ontologies
may be found at the Protégé site below; we especially recommend Horridge (2004).

All these programs are open-source freeware and may be obtained at the
following locations: Protégé at http://protege.stanford.edu/ , OWL at a
subdirectory in the Protégé web site, and Racer at http://www.sts.tu-

harburg.de/~r.f.moeller/racer/ . There are precompiled binaries available for
various operating systems including Windows, MacOS, Linux, and several Unix
flavors. A full install may exceed 100 megabytes. For reference of the reader, the
versions in use for this presentation were equal to or later than the following:
Precompiled Protégé v. 2.1 (build 200), OWL v. 1.1 (build 128), and Racer v. 1.7.18,

Ontology Harmonization v. 0.5 2004-06-29 2

running on a Windows 2000, 32-bit machine. Racer should be started before
attempting a consistency check; it runs in background and is invoked through
Protégé by system interprocess communication. Development of these programs
currently (June 2004) is very active, with new Protégé builds about weekly.

Application to the ALF Standard
A fundamental and limiting characteristic of Protégé or OWL ontology as a

representation of reality is that it depends on classification and class membership;
this kind of ontology can not be applied where categories are not applicable, not
known, or are not defined unambiguously. In library development, and in
engineering in general, all class members or properties are artifacts, so this
limitation is of no importance.

Classes in an ALF Ontology
To see how an ontology might be useful in library specification and development,

we start with a simple example. Racer and Protégé (with OWL plugin) were
started, and the Table of Contents for sections 7 and 8 of the ALF specification
(IEEE Std 1603-2003) were copied over to define classes for three different ALF
constructs: ALF Generic Objects (statements or declarations), ALF Library Objects
(declarations only), and ALF Annotations.

The ontology "class" in OWL is not related to the "class" object in ALF; an OWL
ontology "class" is closer to a set in mathematics. Following Knublauch, et al
(2004), we shall use Courier typeface whenever we write the name of an OWL
class.

Looking only at the Library classes, the Protégé OWL class structure that
resulted is shown in Fig. 1:

Ontology Harmonization v. 0.5 2004-06-29 3

Figure 1. Entry of part of the IEEE Std 1603 Table of Contents into an
OWL ontology.

The comments and annotations displayed are nonfunctional. Because all OWL
classes are subclasses of Thing , the Thing class is displayed as necessary for the
ALF_Library class shown selected. In other words, anything in OWL necessarily
is a Thing . The ontology at this point is just a first-pass, literal copy from the ALF
standard, and none of the underlying ALF relationships among the ALF_Library
classes have been entered, or even thought out, at this point.

So far, an ontology appears to be nothing more than an outlining representation.
Now let's see how some very basic constraints on the knowledge represented can
help keep the design of the ALF specification consistent.

The classes under ALF_Library in Fig. 1 include a Wire and a Blockage . In
actual cell design, wires and blockages are mutually exclusive objects. Protégé
allows this relationship to be entered as a logical disjunction (mutual exclusion) on
the classes of which they are members. Selecting the Wire class and entering
"Blockage" in the Disjoints box shown in the lower right of Fig. 1 makes Wire and
Blockage mutually exclusive, meaning that no subclass or instance in the ontology
may be a joint member of both. If Blockage were selected now, "Wire"
automatically would show up in the Blockage Disjoints box.

Assuming that Antenna and Blockage also are mutually exclusive, we enter
"Blockage" in the Antenna Disjoints box. The result, with Blockage selected, is

Ontology Harmonization v. 0.5 2004-06-29 4

shown in Fig. 2. Protégé keeps the disjunctions consistent across all affected
classes, even though nothing ever was changed or editted in Blockage by the user.

Figure 2. The Blockage class shows disjunctions consistent with edits
made for other classes.

Notice in Fig. 2 that Blockage , which is a subclass of ALF_Library , reports that
ALF_Library is necessary to it: This just means that any element of Blockage
necessarily is in ALF_Library , too.

The above class structure is logically consistent, as may be tested by invoking
Racer using the green [?>] button in the middle of the Protégé tool bar near the top
of the figures above.

Let us now create an inconsistent class and test it for consistency, just to see how
it works. Our new class will be a kind of a cell.

We select the Cell class and create a subclass called BlockWire . Then, by
using the Asserted Conditions window in the middle of the figures above, we assert
that both Blockage and Wire are necessary to BlockWire ; this is the same as
saying that BlockWire has multiple memberships and does not occupy a position in
a hierarchical tree of classes. Multiple membership is not necessarily an error; but,
in this case, we already have made Blockage and Wire mutually exclusive. If we
now run Racer, we find that our new class BlockWire is inconsistent in the present
ontology. The Racer report is shown in Fig. 3.

Ontology Harmonization v. 0.5 2004-06-29 5

Figure 3. BlockWire is inconsistent because of a Disjoint entered
previously for Wire , as revealed by a red outline and a Racer

messagebox.

Properties in an ALF Ontology

Fixing the Meaning of our ALF_Library .

When we created the erroneous BlockWire in the example above, we said it
would be a kind of cell, so we correctly made it a kind of Cell by adding it as a class
under Cell . However, thinking about it, Cell isn't a kind of ALF_Library , so
why is Cell under ALF_Library ? Likewise, none of the classes under
ALF_Library in Fig. 1, except possibly SubLibrary , is a kind of library.
Something is wrong here; so, we should make a correction.

We certainly want to keep the representation in correspondence with the Std
1603 table of contents, so we shall retain three major subclasses of Thing in our
ALF ontology. The easiest correction is to change ALF_Library to something
different. Everything under ALF_Library in Fig. 1 is a kind of object in an ALF
library; so, we decide to correct the terminology by renaming ALF_Library to
ALF_LibraryObject . As a result, our naming convention becomes consistent with
our ontology. This kind of consistency isn't required by Protégé, but it will help us
to avoid future conceptual errors which may lead to entry errors or logical
inconsistencies.

Ontology Harmonization v. 0.5 2004-06-29 6

Adding Properties
The error we just have corrected was equivalent to the ontological error of

representing the object classes shown as properties in the real world of an
ALF_Library ; whereas, these classes should have been representing real-world
subclasses of a class, originally misnamed ALF_Library .

A property is a characteristic of a class other than composition of, or membership
in, that class. A property represents a relationship among individuals (instances)
which are members of different classes. A property may be shared by several
classes; however, removing a property from a class or a class member has no effect
on the identity, or count, of instances or subclasses which are members of that class.
In Protégé, properties are called slots for obscure reasons; we shall use only the
term property here.

Further clarification of this idea of a property may be in order: In making the
correction above, renaming ALF_Library to ALF_LibraryObject , we decided to
ignore libraries or kinds of them in our ontology, and to work with library objects or
kinds of them, instead.

Before the correction, in the real world represented by the ontology, addition of a
BlockWire had no effect on membership in ALF libraries: No matter how many of
these libraries were in existence, our inconsistent BlockWire was only a new
property of an ALF library.

Now, after the correction, if we added a BlockWire , we would be saying that, in
the real world, we recognized an increase by one in the number of ALF library object
subclasses in existence. In a different sense, BlockWire is special, though: We
can not change the number of instances of ALF library objects by adding
BlockWire , because, logically, BlockWire can not contain an instance, being
inconsistent. Racer, not Protégé, forbids this.

Properties may be represented for any instance in a class, even if the class does
not happen to include instances when the property is assigned. Properties are
assigned as properties, not as classes. Protégé requires that a class and a property
not have the same name. We shall adopt here the convention of naming properties
by prepending "has" to the corresponding class name. Thus, when Pin is used to
describe a property, it is called the hasPin property. We shall indicate the name of
a property by underlining.

Returning to the corrected ALF ontology from Fig. 1, it now consists of three
classes of Thing : ALF_GenericObject , ALF_LibraryObject , and Annotation .
The BlockWire has been removed.

A class under ALF_LibraryObject may be assciated with another class under
ALF_LibraryObject to represent a property. For example, Pin may be assigned
to Cell as a hasPin property. The hasPin property then may be viewed as mapping
an instance in Cell to one in Pin . Likewise, Group , from ALF_GenericObject ,
may be assigned as hasGroup; cells typically include ALF vectors and ports, so these

Ontology Harmonization v. 0.5 2004-06-29 7

properties also may be added. The assignments of the property names may be
made in Protégé in the At Class window, as shown on the lower right of Fig. 4, above
the Disjoints window.

Figure 4. Some properties of Cell are added in the At Class window.

The new properties in Fig. 4 have no logical function, and Protégé does not
automatically associate by root name (Pin and hasPin are not automatically
associated), so they mean very little in the ontology at this point.

After adding the properties in Fig. 4, a form not shown here (double-click on the
property) may be invoked to set the domain class for each new property to Cell and
the range instance class to the corresponding root-named class. For example, the
domain class of hasGroup is set to Cell , and its range instance class is set to
Group . Group is a subclass of ALF_GenericObject and has not been made visible
in the figures shown so far. This mapping of domain to range is how OWL
properties define relationships among instances in classes. This mapping gives the
properties logical function.

Ontology Harmonization v. 0.5 2004-06-29 8

A Library Cell Instance in an ALF Ontology
Now, let us see how a simple ALF cell model can be represented in our ontology.

The cell model, which includes only the many-to-many pin timing arc for a digital
device of some kind, is as follows:

CELL ManyMany1
 {
 GROUP AddressBit { 0 : 2 }
 GROUP DataBit { 1 : 4 }
 //
 PIN [2:0] Abus { DIRECTION = input; }
 PIN [1:4] Dbus { DIRECTION = output; }
 //
 VECTOR (01 Abus[AddressBit] -> 01 Dbus[DataBit])
 {
 DELAY = 1.0
 {
 FROM { PIN = Abus[AddressBit]; }
 TO { PIN = Dbus[DataBit]; }
 }
 }
 }

Model 1. ALF model of a many-to-many pin timing arc for a library cell
of type ManyMany1. The cell layout and functionality are omitted.

The OWL plugin to Protégé has many configurable tabs (window arrangements);
the previous figures showed only the OWL Classes tab; the slightly different Classes
and Instances tab adds a window near the center of the screen for manipulating
instances in an ontology. We shall use the Classes and Instances tab in subsequent
figures.

Generic Instantiation of ManyMany1

We shall create an instance in an ontology of a completely nonfunctional cell
model, just to show how it is done. The ALF constructs GROUP, PIN, and
VECTOR already have been assigned as properties hasGroup, hasPin, and
hasVector of a Cell in our preceding ontology, so all we need do is add a
ManyMany1 subclass to Cell ; the new class will inherit these properties. To
instantiate a ManyMany1 type of cell, we then create a Direct Instance for each one,
as shown in Fig. 5. This example shows two instances. The parenthesized "(2)" in
the middle window indicates that there exist 2 instances of ManyMany1 in the
ontology. The user has named these instances ManyMany1_01 and
ManyMany1_02, following typical instance-naming practice in an register-transfer
level (RTL) netlist. We shall use boldfaced typeface to indicate instances.

Ontology Harmonization v. 0.5 2004-06-29 9

Figure 5. Creation of two instances of the cell class ManyMany1. The
instances have been named, ManyMany1_01 and ManyMany1_02.

All At Class properties shown in Fig. 5 are inherited and thus are displayed by
Protégé uncolored. The class ManyMany1 represents almost nothing of the content
visible in Model 1, so we must do some more work to represent timing in our
ontology; whatever we do to the class, also will be done to any instance of it.

Complete Ontology for the ManyMany1 Library Model

Studying Model 1, and recognizing that the current ALF ontology includes Group ,
Pin , and Vector , we shall proceed by deriving subclasses of these classes specific to
ManyMany1 and then making the derived classes necessary to ManyMany1.

First, we go for the first time to ALF_GenericObject . We know that every ALF
GROUP must have a domain, so we add an integer, multiple-value property,
hasDomain, to the Group class there. We then create a subclass of Group called
ManyMany1_Group , which will be specific to our cell. Because the Model 1 model
contains two ALF GROUPs, each with different parameters, we'll further derive two
classes of ManyMany1_Group , ManyMany1_AddressBit_Group and
ManyMany1_DataBit_Group . By assigning Model 1 hasDomain values in these
latter classes, we can instantiate them as the GROUPs AddressBit and DataBit in
our cell.

The hasDomain properties will be integer types, allowed to take on multiple
values, in this case, one for the left, and the other for the right, index number.
After assigning the values from Model 1, the result is shown in Fig. 6.

Ontology Harmonization v. 0.5 2004-06-29 10

Figure 6. Subclasses and properties of ManyMany1_Group are created
for the Group contribution to the timing-arc ontology of ManyMany1.

The symbol used in the Asserted Conditions expressions is from the Protégé help
menu as shown in Fig. 7.

Figure 7. A Protégé help menu lists the logical operators allowed when
relating OWL properties to classes.

Having completed the Group properties, we may return to ALF_LibraryObject
and similarly extend Pin . Every pin should have a direction, so we add a
corresponding property to our Pin class. There happens to be an ALF_Annotation
class Direction , so we shall use that class as a property range for hasDirection; we
create for Direction only two instances, input and output, because that is all
Model 1 requires. We can extend Direction to meet the ALF standard later, if
necessary. We also add a hasPinSlice property to represent the bus indices, if any,
for a pin.

Ontology Harmonization v. 0.5 2004-06-29 11

With the At Class properties of a Pin defined, we create a new subclass called
ManyMany1_Pin , for our model; then, for this class, we create two other subclasses,
ManyMany1_Abus_Pin and ManyMany1_Dbus_Pin , to represent the two kinds of
pin appearing in Model 1. We then can instantiate Abus and Dbus to denote the
Model 1 pins. After associating the various property values, the result is shown in
Fig. 8.

Figure 8. Subclasses and properties of ManyMany1_Pin for the the
timing arc ontology for Model 1. The M superscript is because those
classes have multiple necessary classes, in this case, ManyMany1_Pin

and Direction .

There remains the most complicated statement in Model 1, the VECTOR. Our
ontology only represents a timing arc, so we begin by creating just one subclass of
Vector named TimingVector . The delay statement and the vector expression
edge types seem to be the only unique things in Model 1, so we create the following
datatype properties At Class TimingVector : hasDelay, hasToEdgeType, and
hasFromEdgeType. The edgetype alternatives will be enumerations allowing just
one of two strings, "01" or "10", for present purposes. We can use class references
for the ramainder, so we create the following object properties At Class
TimingVector : hasToPin, hasFromPin, hasToPinGroup, and hasFromPinGroup.

The VECTOR in Model 1 is not named, and we do not instantiate it. The result
is shown in Fig. 9.

Ontology Harmonization v. 0.5 2004-06-29 12

Figure 9. Subclasses and properties to add ManyMany1_TimingVector .

Finally, to associate ManyMany1_TimingVector with ManyMany1, we make
ManyMany1_TimingVector a necessary condition of it. We do the same with each
class above that contains an instance or property necessary to define the timing arc.

.

Figure 10. The completed ManyMany1 ontology.

Ontology Harmonization v. 0.5 2004-06-29 13

 Our final ontology is shown in Fig. 10. The form used to make the hasGroup
instance range assignment also is shown. Notice that Protégé has copied
ManyMany1 as a subclass of its various necessary classes automatically.

Closing Note
The software currently available is beta-test quality, and its features are

incompletely implemented at this writing. In general, there are limitations in
quantifying class properties (quantification in the arithmetical, not formal-logical,
sense) and in ordinal relations such as greater-than. Presumably, this kind of
limitation will be lifted in coming months, and Protégé-based OWL will be usable in
representing an EDA library.

References
(Available at http://protege.stanford.edu/plugins/owl/documentation.html)

Knublauth, Holger, Dameron, Olivier, and Musen, Mark A. "Weaving the
Biomedical Semantic Web with the Protégé OWL Plugin".

Horridge, Matthew. A Practical Guide To Building OWL Ontologies With The
Protege-OWL Plugin (v. 1.0).

