
Library Harmonization Project Timing modeling
Library Harmonization for Timing

Template for liberty/ALF xref examples

1.0 Basic description of timing arcs

1.1 Overview

Timing arcs are defined not only by standalone statements but also by the context in which
the statements appear. This is shown in Figure 1 on page 2.

Version Date

0.0 11/17/03

0.1 12/12/03

/* liberty */ /* ALF */
Accellera December 12, 2003 1

Library Harmonization Project Timing modeling
FIGURE 1. Basic timing arc description in liberty and ALF

In both liberty and ALF, a timing arc is defined in the context of a CELL identified by a
CellName. A declaration of each PIN involved in the timing arc is required, refered herein
as the FromPin and the ToPin.

In liberty, the timing model is further defined inside the declaration of the ToPin. In ALF,
the timing model is defined by the declaration of a VECTOR, separate from the declara-
tion of each PIN.

The occuring edge combinations are defined in liberty by timing_type and timing_sense.
In ALF, the edge combinations are defined by a vector_expression.

In ALF, there is no dependency between the vector_expression and the
ALF_TimingModel. In liberty, there is a dependency between the timing_type and the
lib_TimingModel, as shown below.

TABLE 1. Mapping between timing keywords in liberty and ALF

Liberty keyword ALF keyword

timing_type lib_TimingModel ALF_TimingModel

combinational cell_rise, cell_fall DELAY

rise_transition, fall_transition SLEWRATE

three_state_enable cell_rise, cell_fall ? DELAY

three_state_disable cell_rise, cell_fall ? DELAY

rising_edge cell_rise, cell_fall DELAY

rise_transition, fall_transition SLEWRATE

falling_edge cell_rise, cell_fall DELAY

rise_transition, fall_transition SLEWRATE

preset cell_rise DELAY

rise_transition SLEWRATE

/* liberty */
cell (CellName) {

pin(FromPin) {
direction : input;

}
pin(ToPin) {

direction : output;
timing() {

timing_type : timing_type;
timing_sense : timing_sense;
related_pin : "FromPin";
lib_TimingModel

}
}

/* ALF */
CELL CellName {

PIN FromPin {
DIRECTION = input;

}
PIN ToPin {

DIRECTION = output;
}
VECTOR (vector_expression) {

ALF_TimingModel
}

}

Accellera December 12, 2003 2

Library Harmonization Project Timing modeling
In liberty, the timing model declaration can be qualified by a timing_type. The combina-
tion of edges is defined by the combination of timing_sense, DelayKeyword and SlewKey-
word. The mapping of these liberty constructs into a vector_expression in ALF is shown
in Table 2 on page 3.

clear cell_fall DELAY

fall_transition SLEWRATE

setup_rising rise_constraint, fall_constraint SETUP

setup_falling rise_constraint, fall_constraint SETUP

hold_rising rise_constraint, fall_constraint HOLD

hold_falling rise_constraint, fall_constraint HOLD

recovery_rising intrinsic_rise, intrinsic_fall RECOVERY

recovery_falling intrinsic_rise, intrinsic_fall RECOVERY

removal_rising intrinsic_rise, intrinsic_fall REMOVAL

removal_falling intrinsic_rise, intrinsic_fall REMOVAL

skew_rising intrinsic_rise, intrinsic_fall LIMIT.SKEW.MAX

skew_falling intrinsic_rise, intrinsic_fall LIMIT.SKEW.MAX

non_seq_setup_rising intrinsic_rise, intrinsic_fall SETUP

non_seq_setup_falling intrinsic_rise, intrinsic_fall SETUP

non_seq_hold_rising intrinsic_rise, intrinsic_fall HOLD

non_seq_hold_falling intrinsic_rise, intrinsic_fall HOLD

nochange_high_high rise_constraint SETUP

fall_constraint HOLD

nochange_high_low rise_constraint SETUP

fall_constraint HOLD

nochange_low_high rise_constraint SETUP

fall_constraint HOLD

nochange_low_low rise_constraint SETUP

fall_constraint HOLD

TABLE 2. Mapping of liberty and ALF constructs for timing

liberty construct ALF construct

timing_type timing_sense Delay Slew vector_expression

combinational positive_unate cell_rise rise_transition 01 FromPin -> 01 ToPin

cell_fall fall_transition 10 FromPin -> 10 ToPin

TABLE 1. Mapping between timing keywords in liberty and ALF

Liberty keyword ALF keyword

timing_type lib_TimingModel ALF_TimingModel
Accellera December 12, 2003 3

Library Harmonization Project Timing modeling
negative_unate cell_rise rise_transition 10 FromPin -> 01 ToPin

cell_fall fall_transition 01 FromPin -> 10 ToPin

non_unate cell_rise rise_transition ?! FromPin -> 01 ToPin

cell_fall fall_transition ?! FromPin -> 10 ToPin

three_state_enable positive_unate? cell_rise ? 01 FromPin -> Z1 ToPin

cell_fall ? 01 FromPin -> Z0 ToPin

negative_unate? cell_rise ? 10 FromPin -> Z1 ToPin

cell_fall ? 10 FromPin -> Z0 ToPin

three_state_disable positive_unate? cell_rise ? 01 FromPin -> 0Z ToPin

cell_fall ? 01 FromPin -> 1Z ToPin

negative_unate? cell_rise ? 10 FromPin -> 0Z ToPin

cell_fall ? 10 FromPin -> 1Z ToPin

rising_edge ? cell_rise rise_transition 01 FromPin -> 01 ToPin

? cell_fall fall_transition 01 FromPin -> 10 ToPin

falling_edge ? cell_rise rise_transition 10 FromPin -> 01 ToPin

? cell_fall fall_transition 10 FromPin -> 10 ToPin

preset positive_unate cell_rise rise_transition 01 CtrlPin -> 01 DataPin

negative_unate cell_rise rise_transition 10 CtrlPin -> 01 DataPin

clear positive_unate cell_fall fall_transition 01 CtrlPin -> 10 DataPin

negative_unate cell_fall fall_transition 10 CtrlPin -> 10 DataPin

setup_rising ? rise_constraint 01 DataPin -> 01 ClkPin

fall_constraint 10 DataPin -> 01 ClkPin

setup_falling ? rise_constraint 01 DataPin -> 10 ClkPin

fall_constraint 10 DataPin -> 10 ClkPin

hold_rising ? rise_constraint 01 ClkPin -> 01 DataPin

fall_constraint 01 ClkPin -> 10 DataPin

hold_falling ? rise_constraint 10 ClkPin -> 01 DataPin

fall_constraint 10 ClkPin -> 10 DataPin

recovery_rising ? intrinsic_rise 01 CtrlPin -> 01 ClkPin

intrinsic_fall 10 CtrlPin -> 01 ClkPin

recovery_falling ? intrinsic_rise 01 CtrlPin -> 10 ClkPin

intrinsic_fall 10 CtrlPin -> 10 ClkPin

removal_rising ? intrinsic_rise 01 ClkPin -> 01 CtrlPin

intrinsic_fall 01 ClkPin -> 10 CtrlPin

removal_falling ? intrinsic_rise 10 ClkPin -> 01 CtrlPin

intrinsic_fall 10 ClkPin -> 10 CtrlPin

TABLE 2. Mapping of liberty and ALF constructs for timing

liberty construct ALF construct

timing_type timing_sense Delay Slew vector_expression
Accellera December 12, 2003 4

Library Harmonization Project Timing modeling
Note: The representation of the actual calculation data in liberty (lib_CalcType,
lib_CalcData) and ALF (ALF_CalcData) is independent of the physical nature of the
data, i.e., timing data or power data or other data. The mapping between those liberty and
ALF constructs is shown [insert reference].

1.2 Threshold definitions

The thresholds for delay and slew measurements in liberty are normalized values between
0 and 100, to be interpreted as percentage values. The corresponding thresholds in ALF
are normalized values between 0 and 1.

skew_rising ? intrinsic_rise 01 FromPin -> 01 ToPin

intrinsic_fall 01 FromPin -> 10 ToPin

skew_falling ? intrinsic_rise 10 FromPin -> 01 ToPin

intrinsic_fall 10 FromPin -> 10 ToPin

non_seq_setup_rising intrinsic_rise 01 DataPin -> 01 EnbPin

intrinsic_fall 10 DataPin -> 01 EnbPin

non_seq_setup_falling intrinsic_rise 01 DataPin -> 10 EnbPin

intrinsic_fall 10 DataPin -> 10 EnbPin

non_seq_hold_rising intrinsic_rise 01 EnbPin -> 01 DataPin

intrinsic_fall 01 EnbPin -> 10 DataPin

non_seq_hold_falling intrinsic_rise 10 EnbPin -> 01 DataPin

intrinsic_fall 10 EnbPin -> 10 DataPin

nochange_high_high rise_constraint 01 CtrlPin -> 01 ClkPin
-> 10 ClkPin -> 10 CtrlPin

fall_constraint 10 DataPin -> 01 ClkPin

TABLE 2. Mapping of liberty and ALF constructs for timing

liberty construct ALF construct

timing_type timing_sense Delay Slew vector_expression
Accellera December 12, 2003 5

Library Harmonization Project Timing modeling
FIGURE 2. ALF template for liberty threshold definitions

1.3 Conditional timing arcs

The existence condition for a timing arc is the necessary and sufficient condition for a tim-
ing arc to be activated. A value condition is a sufficient condition.

Mathematically, the existence condition can be expressed as a boolean expression in a
sum-of-product form.

For example, a timing arc from input A to output Y can be activated, if the existence condi-
tion (E1|E2) is satisfied, where E1 and E2 are side inputs. The sum-of-product form of the
existence condition reads as follows:

E1 | E2 = E1 & E2 | E1 & !E2 | !E1 & E2

The delay from A to Y depends possibly on the state of E1 and E2. The value condition is a
particular state for which a particular value applies. It can be either (E1&E2) or (E1&!E2) or
(!E1&E2).

DELAY {
FROM {

THRESHOLD {
RISE = input_threshold_pct_rise ;
FALL = input_threshold_pct_fall ;

}
}
TO {

THRESHOLD {
RISE = output_threshold_pct_rise ;
FALL = output_threshold_pct_fall ;

}
}

}
SLEWRATE {

FROM {
THRESHOLD {

RISE = slew_lower_threshold_pct_rise ;
FALL = slew_upper_threshold_pct_fall ;

}
}
TO {

THRESHOLD {
RISE = slew_upper_threshold_pct_rise ;
FALL = slew_lower_threshold_pct_fall ;

}
}

}

Accellera December 12, 2003 6

Library Harmonization Project Timing modeling
In liberty, the value condition is expressed in a “when” statement. In ALF, the value con-
dition is expressed as a co-factor within the vector expression.

In liberty, the existence condition can not be described explicitely. However, the existence
condition can be infered either by evaluation of the “function” statement or by combining
all the “when” statements of all timing groups with same pin, same related pin, same
timing_type and same timing_sense. The same inference can be applied to ALF. However,
ALF supports also an explicit statement for existence condition.

FIGURE 3. Conditional timing and existence condition example in liberty and ALF

A “when_start” and a “when_end” statement in liberty means that the condition is
checked at the time of the FromPin event and the ToPin event, respectively.

In ALF, these conditions are described as co-factors in the vector expression.

/* liberty */
pin(Y) {

timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when : "E1&E2";
cell_rise ...
rise_transition ...

}
timing() {

timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when : "E1&!E2";
cell_rise ...
rise_transition ...

}
timing() {

timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when : "!E1&E2";
cell_rise ...
rise_transition ...

}
}
/* infered existence condition:

E1&E2 | E1&!E2 | !E1&E2 */

/* ALF */

VECTOR ((01 A -> 01 Y)&(E1&E2)) {
EXISTENCE_CONDITION
= E1&E2 | E1&!E2 | !E1&E2 ;

DELAY ...
SLEWRATE ...

}

VECTOR ((01 A -> 01 Y)&(E1&!E2)) {
EXISTENCE_CONDITION
= E1&E2 | E1&!E2 | !E1&E2 ;

DELAY ...
SLEWRATE ...

}

VECTOR ((01 A -> 01 Y)&(!E1&E2)) {
EXISTENCE_CONDITION
= E1&E2 | E1&!E2 | !E1&E2 ;

DELAY ...
SLEWRATE ...

}

Accellera December 12, 2003 7

Library Harmonization Project Timing modeling
FIGURE 4. Timing with start and end condition in liberty and ALF

2.0 Interoperability with SDF

TABLE 3. Mapping between SDF, liberty, and ALF constructs

SDF keyword set of liberty keywords ALF keyword

IOPATH combinational cell_rise,

cell_fall

DELAY in context of CELL
statement

INTERCONNECT N/A N/A DELAY in context of WIRE
statement

PATHPULSE ? ? PULSEWIDTH.MIN in con-
text of two VECTOR state-
ments

RETAIN RETAIN

PORT DELAY without FROM
statement

SETUP setup_rising,

setup_falling

rise_constraint,

fall_constraint

SETUP

HOLD hold_rising,

hold_falling

rise_constraint,

fall_constraint

HOLD

SETUPHOLD N/A N/A SETUP and HOLD in context
of same VECTOR statement

RECOVERY recovery_rising,

recovery_falling

RECOVERY

REMOVAL removal_rising,

removal_falling

REMOVAL

/* liberty */
pin(Y) {

timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when_start : "E1";
when_end : "E2";
cell_rise ...
rise_transition ...

}
}

/* ALF */

VECTOR
((01 A) & E1 ~> (01 Y) & E2) {

DELAY ...
SLEWRATE ...

}

Accellera December 12, 2003 8

Library Harmonization Project Timing modeling
Conditions in SDF are expressed in Verilog syntax, which is different from Liberty syntax.
Therefore, liberty provides “SDF_cond”, “SDF_cond_start”, “SDF_cond_end” state-
ments, which are basically “when”, “when_start”, “when_end” statements translated into
Verilog syntax.

The ALF syntax for conditions closely matches the Verilog syntax. Therefore,
“SDF_cond”, “SDF_cond_start”, “SDF_cond_end” are not provided as standard annota-
tions in ALF. However, if desired, they can be defined as library-specific annotations in
the following way:

KEYWORD SDF_cond = single_value_annotation {
VALUETYPE = quoted_string;
CONTEXT = VECTOR;

}
KEYWORD SDF_cond_start = single_value_annotation {

VALUETYPE = quoted_string;
CONTEXT = VECTOR;

}
KEYWORD SDF_cond_end = single_value_annotation {

VALUETYPE = quoted_string;
CONTEXT = VECTOR;

}

RECREM N/A N/A RECOVERY and
REMOVAL in context of
same VECTOR statement

SKEW skew_rising,

skew_falling

LIMIT.SKEW.MAX

WIDTH LIMIT.PULSEWIDTH.MIN

PERIOD LIMIT.PERIOD.MIN

NOCHANGE nochange_high_high,

nochange_high_low,

nochange_low_high,

nochange_low_low

SETUP and HOLD in context
of same VECTOR statement,
possibly in conjunction with
LIMIT.PULSEWIDTH.MIN

TABLE 3. Mapping between SDF, liberty, and ALF constructs

SDF keyword set of liberty keywords ALF keyword
Accellera December 12, 2003 9

	1.0 Basic description of timing arcs
	1.1 Overview
	1.2 Threshold definitions
	1.3 Conditional timing arcs

	2.0 Interoperability with SDF

