
Library Harmonization Project Timing modeling
Library Harmonization for Timing

Template for Liberty/ALF xref examples

Version Date
0.0 2003/11/17
0.1 2003/12/12
0.2 2004/01/19
0.3 2004/02/23
0.4 2004/03/22
0.5 2004/05/01

/* Liberty */ /* ALF */
Accellera May 3, 2004 1

Library Harmonization Project Timing modeling
Table of contents
1.0 Basic description of timing arcs...3

1.1 Timing measurement overview..3
1.2 Delay and slew...4
1.3 Delay and slew with retain...6
1.4 Setup and hold ...8
1.5 Recovery and removal ...10
1.6 Co-dependent setup and hold...11
1.7 Co-dependent recovery and removal ...12
1.8 Setup and hold with nochange ...13
1.9 Maximum skew constraint...15
1.10 Minimum period and minimum pulsewidth constraints ..16
1.11 Threshold definitions ...18
1.12 Conditional timing arcs..20
1.13 Timing arcs involving bus pins..22

2.0 Interoperability with SDF ..27
2.1 SDF cross-reference overview...27
2.2 Conditions in SDF ...28
Accellera May 3, 2004 2

Library Harmonization Project Timing modeling
1.0 Basic description of timing arcs

1.1 Timing measurement overview

Timing arcs are defined not only by standalone statements but also by the context in which
the statements appear. In both Liberty and ALF, a timing arc is defined in the context of a
CELL identified by a Cell Name. A declaration of each PIN involved in the timing arc is
required, referred herein as the Pin Name and the Related Pin Name.

In Liberty, the timing model is further defined inside the declaration of the Pin Name. The
occurring edge combinations are defined by Timing Type and Timing Sense.

Some timing data in Liberty appear as timing model, others appear as a timing attribute. A
timing attribute supports only a scalar value, whereas a timing model supports a mathe-
matical calculation model. A timing arc description in Liberty is shown in Figure 1 on
page 3.

FIGURE 1. Timing arc description in Liberty

In ALF, pins and timing arcs are declared separately. A timing arc is established by the
declaration of a VECTOR, separate from the declaration of each PIN involved in the tim-
ing arc. The edge combinations are defined by a Vector Expression. A timing arc descrip-
tion in ALF is shown on Figure 2 on page 4.

/* Liberty */
cell (CellName) {

pin(RelatedPinName) {
direction : RelatedPinDirection;

}
pin(PinName) {

direction : PinDirection;
timing() {
timing_type : TimingType;
timing_sense : TimingSense;
related_pin : "RelatedPinName";
/* lib_TimingModel */
ModelKeyword (CalculationType) { values (/* lib_Data */); }

}
/* lib_TimingAttribute */

AttributeKeyword : AttributeValue ;
}

}

Accellera May 3, 2004 3

Library Harmonization Project Timing modeling
FIGURE 2. Timing arc description in ALF

The ALF description of a timing model and its mapping to a Liberty construct depends on
the nature of the timing measurement. The following table shows an overview of measure-
ment and the pointer to the corresponding ALF description and the Liberty to ALF map-
ping table.

1.2 Delay and slew

TABLE 1. Overview of timing measurements

Measurement Comment
delay, slew see Section 1.2 on page 4
delay, retain, slew see Section 1.3 on page 6
independent setup, hold see Section 1.4 on page 8
independent recovery, removal see Section 1.5 on page 10
co-dependent setup, hold see Section 1.6 on page 11
co-dependent recovery, removal see Section 1.7 on page 12
setup, hold with nochange constraint see Section 1.8 on page 13
maximum skew constraint see Section 1.9 on page 15
minimum period and minimum pulsewidth constraint see Section 1.10 on page 16

/* ALF */
CELL CellName {

PIN RelatedPinName {
DIRECTION = RelatedPinDirection;

}
PIN PinName {

DIRECTION = PinDirection;
}
VECTOR (VectorExpression) {

/* ALF_TimingModel */
// see Figure 4 on page 6 through Figure 21 on page 17

}
}

Accellera May 3, 2004 4

Library Harmonization Project Timing modeling
FIGURE 3. Delay and slew measurements

TABLE 2. Mapping of Liberty and ALF constructs for delay and slew measurements

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
combinational positive_unate cell_rise DELAY 01 RPN -> 01 PN

rise_transition SLEWRATE

cell_fall DELAY 10 RPN -> 10 PN

fall_transition SLEWRATE

negative_unate cell_rise DELAY 10 RPN -> 01 PN

rise_transition SLEWRATE

cell_fall DELAY 01 RPN -> 10 PN

fall_transition SLEWRATE

non_unate cell_rise DELAY ?! RPN -> 01 PN

rise_transition SLEWRATE

cell_fall DELAY ?! RPN -> 10 PN

fall_transition SLEWRATE

three_state_enable positive_unate cell_rise ? DELAY 01 RPN -> Z1 PN

cell_fall ? 01 RPN -> Z0 PN

negative_unate cell_rise ? 10 RPN -> Z1 PN

cell_fall ? 10 RPN -> Z0 PN

three_state_disable positive_unate cell_rise ? DELAY 01 RPN -> 0Z PN

cell_fall ? 01 RPN -> 1Z PN

negative_unate cell_rise ? 10 RPN -> 0Z PN

cell_fall ? 10 RPN -> 1Z PN

rising_edge N/A cell_rise DELAY 01 RPN -> 01 PN

rise_transition SLEWRATE

cell_fall DELAY 01 RPN -> 10 PN

fall_transition SLEWRATE

slew

delay

input signal

output signal
Accellera May 3, 2004 5

Library Harmonization Project Timing modeling
FIGURE 4. Description of delay and slew measurements in ALF

1.3 Delay and slew with retain

falling_edge N/A cell_rise DELAY 10 RPN -> 01 PN

rise_transition SLEWRATE

cell_fall DELAY 10 RPN -> 10 PN

fall_transition SLEWRATE

preset positive_unate cell_rise DELAY 01 RPN -> 01 PN

rise_transition SLEWRATE

negative_unate cell_rise DELAY 10 RPN -> 01 PN

rise_transition SLEWRATE

clear positive_unate cell_fall DELAY 10 RPN -> 10 PN

fall_transition SLEWRATE

negative_unate cell_fall DELAY 01 RPN -> 10 PN

fall_transition SLEWRATE

TABLE 2. Mapping of Liberty and ALF constructs for delay and slew measurements

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression

VECTOR (VectorExpression) {
/* ALF_TimingModel */

DELAY {
FROM { PIN = RelatedPinName ; }
TO { PIN = PinName ; }
/* ALF_data */

}
SLEWRATE {

PIN = PinName ;
/* ALF_data */

}
}

Accellera May 3, 2004 6

Library Harmonization Project Timing modeling
FIGURE 5. Retain, delay, and slew measurements

TABLE 3. Mapping of Liberty and ALF constructs for retain, delay, and slew measurements

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
combinational positive_unate retaining_rise RETAIN 01 RPN

-> 0* PN -> *1 PNretain_rise_slew SLEWRATE

cell_rise DELAY

rise_transition SLEWRATE

retaining_fall RETAIN 10 RPN
-> 1* PN -> *0 PNretain_fall_slew SLEWRATE

cell_fall RETAIN

fall_transition SLEWRATE

negative_unate retaining_rise RETAIN 10 RPN
-> 0* PN -> *1 PNretain_rise_slew SLEWRATE

cell_rise DELAY

rise_transition SLEWRATE

retaining_fall RETAIN 01 RPN
-> 1* PN -> *0 PNretain_fall_slew SLEWRATE

cell_fall DELAY

fall_transition SLEWRATE

non_unate retaining_rise RETAIN ?! RPN
-> 0* PN -> *1 PNretain_rise_slew SLEWRATE

cell_rise DELAY

rise_transition SLEWRATE

retaining_fall RETAIN ?! RPN
-> 1* PN -> *0 PNretain_fall_slew SLEWRATE

cell_fall DELAY

fall_transition SLEWRATE

slew slew

delay

retain

input signal

output signal
Accellera May 3, 2004 7

Library Harmonization Project Timing modeling
FIGURE 6. Description of retain, delay, and slew measurements in ALF

1.4 Setup and hold

FIGURE 7. Setup and hold measurements

VECTOR (VectorExpression) {
/* ALF_TimingModel */

RETAIN {
FROM { PIN = RelatedPinName ; }
TO { PIN = PinName ; EDGE_NUMBER = 0 ; }
/* ALF_data */

}
SLEWRATE SlewForEdgeNumber0 {

PIN = PinName ; EDGE_NUMBER = 0 ;
/* ALF_data */

}
DELAY {

FROM { PIN = RelatedPinName ; }
TO { PIN = PinName ; EDGE_NUMBER = 1 ; }
/* ALF_data */

}
SLEWRATE SlewForEdgeNumber1 {

PIN = PinName ; EDGE_NUMBER = 1 ;
/* ALF_data */

}
}

holdsetup

data signal

clock signal
Accellera May 3, 2004 8

Library Harmonization Project Timing modeling
FIGURE 8. Description of independent setup and hold in ALF

TABLE 4. Mapping of Liberty and ALF constructs for independent setup, hold

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
setup_rising N/A rise_constraint SETUP 01 PN -> 01 RPN

fall_constraint 10 PN -> 01 RPN

setup_falling N/A rise_constraint 01 PN -> 10 RPN

fall_constraint 10 PN -> 10 RPN

hold_rising N/A rise_constraint HOLD 01 RPN -> 01 PN

fall_constraint 01 RPN -> 10 PN

hold_falling N/A rise_constraint 10 RPN -> 01 PN

fall_constraint 10 RPN -> 10 PN

non_seq_setup_rising rise_constraint SETUP 01 PN -> 01 RPN

fall_constraint 10 PN -> 01 RPN

non_seq_setup_falling rise_constraint 01 PN -> 10 RPN

fall_constraint 10 PN -> 10 RPN

non_seq_hold_rising rise_constraint HOLD 01 RPN -> 01 PN

fall_constraint 01 RPN -> 10 PN

non_seq_hold_falling rise_constraint 10 RPN -> 01 PN

fall_constraint 10 RPN -> 10 PN

VECTOR (VectorExpression) {
/* ALF_TimingModel */

SETUP {
FROM { PIN = PinName ; }
TO { PIN = RelatedPinName ; }
/* ALF_data */

}
}
VECTOR (VectorExpression) {
/* ALF_TimingModel */

HOLD {
FROM { PIN = RelatedPinName ; }
TO { PIN = PinName ; }
/* ALF_data */

}
}

Accellera May 3, 2004 9

Library Harmonization Project Timing modeling
1.5 Recovery and removal

FIGURE 9. Recovery and removal measurements

TABLE 5. Mapping of Liberty and ALF constructs for independent recovery, removal

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
recovery_rising N/A rise_constraint RECOVERY 01 PN -> 01 RPN

fall_constraint 10 PN -> 01 RPN

recovery_falling N/A rise_constraint 01 PN -> 10 RPN

fall_constraint 10 PN -> 10 RPN

removal_rising N/A rise_constraint REMOVAL 01 RPN -> 01 PN

fall_constraint 01 RPN -> 10 PN

removal_falling N/A rise_constraint 10 RPN -> 01 PN

fall_constraint 10 RPN -> 10 PN

removalrecovery
asynchronous signal

clock signal

active inactive active inactive
Accellera May 3, 2004 10

Library Harmonization Project Timing modeling
FIGURE 10. Description of independent recovery and removal in ALF

1.6 Co-dependent setup and hold

FIGURE 11. Co-dependent setup and hold measurements

TABLE 6. Mapping of Liberty and ALF for co-dependent setup, hold

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
setup_rising N/A rise_constraint SETUP 01 PN -> 01 RPN ->

10 PNhold_rising N/A fall_constraint HOLD

setup_rising N/A fall_constraint SETUP 10 PN -> 01 RPN ->
01 PNhold_rising N/A rise_constraint HOLD

VECTOR (VectorExpression) {
/* ALF_TimingModel */

RECOVERY {
FROM { PIN = PinName ; }
TO { PIN = RelatedPinName ; }
/* ALF_data */

}
}
VECTOR (VectorExpression) {
/* ALF_TimingModel */

REMOVAL {
FROM { PIN = RelatedPinName ; }
TO { PIN = PinName ; }
/* ALF_data */

}
}

hold
setup

data signal

clock signal
Accellera May 3, 2004 11

Library Harmonization Project Timing modeling
FIGURE 12. Description of co-dependent setup and hold in ALF

1.7 Co-dependent recovery and removal

FIGURE 13. Co-dependent recovery and removal measurements

setup_falling N/A rise_constraint SETUP 01 PN -> 10 RPN ->
10 PNhold_falling N/A fall_constraint HOLD

setup_falling N/A fall_constraint SETUP 10 PN -> 10 RPN ->
01 PNhold_falling N/A rise_constraint HOLD

TABLE 6. Mapping of Liberty and ALF for co-dependent setup, hold

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression

VECTOR (VectorExpression) {
/* ALF_TimingModel */

SETUP {
FROM { PIN = PinName ; EDGE_NUMBER = 0 ; }
TO { PIN = RelatedPinName ; }
/* ALF_data */

}
HOLD {

FROM { PIN = RelatedPinName ; }
TO { PIN = PinName ; EDGE_NUMBER = 1 ; }
/* ALF_data */

}
}

recovery

asynchronous signal

clock signal

removal

active

inactive
Accellera May 3, 2004 12

Library Harmonization Project Timing modeling
FIGURE 14. Description of co-dependent recovery and removal in ALF

1.8 Setup and hold with nochange

TABLE 7. Mapping of Liberty and ALF for co-dependent recovery, and removal

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
recovery_rising N/A rise_constraint RECOVERY 01 PN <&> 01 RPN

removal_rising N/A rise_constraint REMOVAL

recovery_rising N/A fall_constraint RECOVERY 10 PN <&> 01 RPN

removal_rising N/A fall_constraint REMOVAL

recovery_falling N/A rise_constraint RECOVERY 01PN <&> 10 RPN

removal_falling N/A rise_constraint REMOVAL

recovery_falling N/A fall_constraint RECOVERY 10 PN <&> 10 RPN

removal_falling N/A fall_constraint REMOVAL

VECTOR (VectorExpression) {
/* ALF_TimingModel */

RECOVERY {
FROM { PIN = PinName ; }
TO { PIN = RelatedPinName ; }
/* ALF_data */

}
REMOVAL {

FROM { PIN = RelatedPinName ; }
TO { PIN = PinName ; }
/* ALF_data */

}
}

Accellera May 3, 2004 13

Library Harmonization Project Timing modeling
FIGURE 15. Setup and hold measurements with nochange constraint

TABLE 8. Mapping of Liberty and ALF for setup and hold with nochange constraint

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
nochange_high_high rise_constraint SETUP 01 PN -> 01 RPN

-> 10 RPN -> 10 PNfall_constraint HOLD

nochange_high_low rise_constraint SETUP 01 PN -> 10 RPN
-> 01 RPN -> 10 PNfall_constraint HOLD

nochange_low_high fall_constraint SETUP 10 PN -> 01 RPN
-> 10 RPN -> 01 PNrise_constraint HOLD

nochange_low_low fall_constraint SETUP 10 PN ->10 RPN
-> 01 RPN -> 01 PNrise_constraint HOLD

holdsetup

data signal

clock signal

nochange time window
Accellera May 3, 2004 14

Library Harmonization Project Timing modeling
FIGURE 16. Description of setup and hold with nochange constraint in ALF

1.9 Maximum skew constraint

FIGURE 17. Maximum skew constraint

VECTOR (VectorExpression) {
/* ALF_TimingModel */

SETUP {
FROM { PIN = PinName ; EDGE_NUMBER = 0 ; }
TO { PIN = RelatedPinName ; EDGE_NUMBER = 0 ; }
/* ALF_data */

}
HOLD {

FROM { PIN = RelatedPinName ; EDGE_NUMBER = 1 ; }
TO { PIN = PinName ; EDGE_NUMBER = 1 ; }
/* ALF_data */

}
NOCHANGE {

FROM { PIN = RelatedPinName ; EDGE_NUMBER = 0 ; }
TO { PIN = RelatedPinName ; EDGE_NUMBER = 1 ; }

}
}

maximum skew

related clock signal

clock signal
Accellera May 3, 2004 15

Library Harmonization Project Timing modeling
FIGURE 18. Description of maximum skew constraint in ALF

1.10 Minimum period and minimum pulsewidth constraints

FIGURE 19. Minimum period and minimum pulsewidth constraints

TABLE 9. Mapping of Liberty and ALF constructs for maximum skew constraint

Liberty construct
ALF construct

PN = Pin Name, RPN = Related Pin Name

Timing Type Timing Sense Model Keyword Keyword Vector Expression
skew_rising N/A rise_constraint SKEW 01 RPN -> 01 PN

fall_constraint 01 RPN -> 10 PN

skew_falling N/A rise_constraint 10 RPN -> 01 PN

fall_constraint 10 RPN -> 10 PN

VECTOR (VectorExpression) {
/* ALF_TimingModel */

LIMIT {
SKEW {
PIN { PinName RelatedPinName } // pin order is irrelevant here
MAX {

/* ALF_data */
}

}
}

}

minimum pulsewidth

clock signal

minimum pulsewidth

minimum period

high

low
Accellera May 3, 2004 16

Library Harmonization Project Timing modeling
FIGURE 20. Description of minimum period constraint in ALF

FIGURE 21. Description of minimum pulsewidth constraint in ALF

TABLE 10. Mapping of Liberty and ALF constructs for minimum period and minimum
pulsewidth constraints

Liberty construct
(pin-based)

alternative Liberty construct
(arc-based)

ALF construct
PN = Pin Name, RPN = Related Pin

Name

Attribute Keyword Timing Type
Model
Keyword Keyword

Vector
Expression

min_period minimum_period constraint PERIOD 01 PNa

a. for positive-edge triggered clock

10 PNb

b. for negative-edge triggered clock

min_pulse_width_high min_pulse_width constraint_high PULSEWIDTH 01 PN -> 10 PN

min_pulse_width_low min_pulse_width constraint_low 10 PN -> 01 PN

VECTOR (VectorExpression) {
/* ALF_TimingModel */

LIMIT {
PERIOD {
MIN { /* ALF_data */ }

}
}

}

VECTOR (VectorExpression) {
/* ALF_TimingModel */

LIMIT {
PULSEWIDTH {
PIN = PinName ;
MIN { /* ALF_data */ }

}
}

}

Accellera May 3, 2004 17

Library Harmonization Project Timing modeling
1.11 Threshold definitions

The purpose of threshold definitions is to preserve the reference measurement points for
delay and slew measurements in the presence of non-linear waveforms. Especially in long
interconnect, a relatively linear shape of a waveform at a driver output degrades to an
almost exponential shae at a receiving input.

FIGURE 22. Threshold definitions for delay and slew

The applicable threshold values (input or output) depend on the direction of a pin.

The thresholds for delay and slew measurements in Liberty are normalized values
between 0 and 100, to be interpreted as percentage values. The corresponding thresholds
in ALF are normalized values between 0 and 1. Therefore, the conversion involves either
dividing Liberty data by 100 or multiplying ALF data by 100.

Per default, the slew data in the library are understood to be the measured values accord-
ing to the slew threshold definitions. However, the slew data might be represented in a
normalized way, for example scaled from rail-to-rail. In order to allow for such a normal-
ized representation, a scaling factor can be defined. The slew data multiplied with the scal-
ing factor is then understood to be the measured values according to the slew threshold
definitions. In Liberty, the keyword slew_derate_from_library defines the scaling factor.
The scaling factor multiplied with the base unit defines the absolute slew data. In ALF, the
UNIT annotation defines the multiplier, i.e., the product of scaling factor and base unit.

To make the differences between Liberty and ALF clearer, numerical values are shown in
the following Figure 23 on page 19 and Figure 24 on page 20.

slew

delay

input signal

output signal

slew threshold (low)

slew threshold (high)

output threshold

input threshold
Accellera May 3, 2004 18

Library Harmonization Project Timing modeling
FIGURE 23. Liberty description of library threshold definitions

The following restriction applies for slew thresholds:
slew_upper_threshold_pct_rise - slew_lower_threshold_pct_rise

= slew_upper_threshold_pct_fall - slew_lower_threshold_pct_fall

In this example, 50 - 30 = 70 - 50 = 20.

/* Liberty */
library (LibraryName) {

time_unit : "1ns" ;
input_threshold_pct_rise : 45 ;
input_threshold_pct_fall : 55 ;
output_threshold_pct_rise : 35 ;
output_threshold_pct_fall : 65 ;
slew_lower_threshold_pct_rise : 30 ;
slew_upper_threshold_pct_rise : 50 ;
slew_upper_threshold_pct_fall : 70 ;
slew_lower_threshold_pct_fall : 50 ;
slew_derate_from_library : 0.2 ;

}

Accellera May 3, 2004 19

Library Harmonization Project Timing modeling
FIGURE 24. ALF description of library threshold definitions

According to this example, a numerical slew value of “1” really means 0.2ns, measured
from 30% to 50% for rising transition and from 70% to 50% for falling transition, respec-
tively.

1.12 Conditional timing arcs

The existence condition for a timing arc is the necessary and sufficient condition for a tim-
ing arc to be activated. A value condition is a sufficient condition.

Mathematically, the existence condition can be expressed as a boolean expression in a
sum-of-product form.

For example, a timing arc from input A to output Y can be activated, if the existence condi-
tion (E1|E2) is satisfied, where E1 and E2 are side inputs. The sum-of-product form of the
existence condition reads as follows:

/* ALF */
LIBRARY LibraryName {

TIME { UNIT = 1e-9 ; }
DELAY {

FROM {
THRESHOLD {

RISE = 0.45 ;
FALL = 0.55 ;

}
}
TO {
THRESHOLD {

RISE = 0.35 ;
FALL = 0.65 ;

}
}

}
SLEWRATE {

UNIT = 0.2e-9 ;
FROM {
THRESHOLD {

RISE = 0.3 ;
FALL = 0.7 ;

}
}
TO {
THRESHOLD {

RISE = 0.5 ;
FALL = 0.5 ;

}
}

}
}

Accellera May 3, 2004 20

Library Harmonization Project Timing modeling
E1 | E2 = E1 & E2 | E1 & !E2 | !E1 & E2

The delay from A to Y depends possibly on the state of E1 and E2. The value condition is a
particular state for which a particular value applies. It can be either (E1&E2) or (E1&!E2) or
(!E1&E2).

In Liberty, the value condition is expressed in a “when” statement. In ALF, the value con-
dition is expressed as a co-factor within the vector expression.

In Liberty, the existence condition can not be described explicitly. However, the existence
condition can be inferred either by evaluation of the “function” statement or by combining
all the “when” statements of all timing groups with same pin, same related pin, same
timing_type and same timing_sense. The same inference can be applied to ALF. However,
ALF supports also an explicit statement for existence condition.

FIGURE 25. Conditional timing and existence condition example in Liberty and ALF

A “when_start” and a “when_end” statement in Liberty means that the condition is
checked at the time of the FromPin event and the ToPin event, respectively.

In ALF, these conditions are described as co-factors in the vector expression.

/* Liberty */
pin(Y) {

timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when : "E1&E2";
cell_rise ...
rise_transition ...

}
timing() {

timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when : "E1&!E2";
cell_rise ...
rise_transition ...

}
timing() {

timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when : "!E1&E2";
cell_rise ...
rise_transition ...

}
}
/* inferred existence condition:

E1&E2 | E1&!E2 | !E1&E2 */

/* ALF */

VECTOR ((01 A -> 01 Y)&(E1&E2)) {
EXISTENCE_CONDITION
= E1&E2 | E1&!E2 | !E1&E2 ;

DELAY ...
SLEWRATE ...

}

VECTOR ((01 A -> 01 Y)&(E1&!E2)) {
EXISTENCE_CONDITION
= E1&E2 | E1&!E2 | !E1&E2 ;

DELAY ...
SLEWRATE ...

}

VECTOR ((01 A -> 01 Y)&(!E1&E2)) {
EXISTENCE_CONDITION
= E1&E2 | E1&!E2 | !E1&E2 ;

DELAY ...
SLEWRATE ...

}

Accellera May 3, 2004 21

Library Harmonization Project Timing modeling
FIGURE 26. Timing with start and end condition in Liberty and ALF

Could not find the Liberty documentation about default condition. Is it just a timing
statement without when, or is there a specific default keyword?

A default value condition in ALF is specified by a timing model with CALCULATION anno-
tation value absolute in the context of an ALF vector without boolean co-factor1.

The default condition shall apply in the following situations:

• None of the specified value conditions evaluates true

• The application context (e.g. a set of timing constraints) does not provide enough infor-
mation to decide whether one, and only one, specified value condition evaluates true

• The application tool does not support evaluation of a value condition

1.13 Timing arcs involving bus pins

Timing arcs involving a bus can be described in a compact way without enumerating the
timing arc for each bit.

Timing arcs between two buses where there is a one-to-one correspondence between bits
of each bus, shall be extended bitwise, i.e., a timing arc exists between every bit of one bus
and the corresponding bit of the related bus.

The usage of the type statement in Liberty is a prerequisite for defining a bus. If a timing
statement within a bus defines a related pin of the same bus type, the timing arc shall be
expanded bitwise.

1. If the value of the CALCULATION annotation is absolute, then the timing data shall not be combined with
any other timing data. If the value of the CALCULATION annotation is incremental, then the timing data
can be combined with other timing data.

/* Liberty */
pin(Y) {

timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when_start : "E1";
when_end : "E2";
cell_rise ...
rise_transition ...

}
}

/* ALF */

VECTOR
((01 A) & E1 ~> (01 Y) & E2) {

DELAY ...
SLEWRATE ...

}

Accellera May 3, 2004 22

Library Harmonization Project Timing modeling
FIGURE 27. Timing arc on a bus with bit-to-bit extension in Liberty

The usage of a GROUP statement in ALF is a prerequisite for defining an expandable tim-
ing arc. A timing VECTOR containing the same GROUP identifier for the FROM and the
TO pin shall be expanded bitwise.

FIGURE 28. Timing arc on a bus with bit-to-bit extension in ALF

Assumption: The following rule is supported.

If a Liberty timing statement within a bus defines a related pin [of a different bus type,]
using the keyword related_bus_pins rather than related_pin, the timing arc shall be
expanded by permutation from every bit to every bit.

cell(CellName) {
type(DataBit) {

base_type : array ;
data_type : bit ;
bit_width : 8 ;
bit_from : 1 ;
bit_to : 8 ;
downto : false ;

}
bus(DataBusIn) {

direction : input ;
bus_type : DataBit ;

}
bus(DataBusOut) {

direction : output ;
bus_type : DataBit ;
timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "DataBusIn";
cell_rise (scalar) { values (”1.0”); }

}
}

}

CELL CellName {
GROUP DataBit { 1 : 8 }
PIN [1:8] DataBusIn { DIRECTION = input ; }
PIN [1:8] DataBusOut { DIRECTION = output ; }
VECTOR (01 DataBusIn[DataBit] -> 01 DataBusOut[DataBit]) {

DELAY = 1.0 {
FROM { PIN = DataBusIn[DataBit] ; }
TO { PIN = DataBusOut[DataBit] ; }

}
}

}

Accellera May 3, 2004 23

Library Harmonization Project Timing modeling
FIGURE 29. Timing arc on a bus with all-to-all extension in Liberty

If the assumption was false, the following style should work:

cell(CellName) {
type(AddressBit) {

base_type : array ;
data_type : bit ;
bit_width : 4 ;
bit_from : 3 ;
bit_to : 0 ;
downto : true ;

}
type(DataBit) {

base_type : array ;
data_type : bit ;
bit_width : 8 ;
bit_from : 1 ;
bit_to : 8 ;
downto : false ;

}
bus(AddressBus) {

direction : input ;
bus_type : AddressBit ;

}
bus(DataBusOut) {

direction : input ;
bus_type : DataBit ;
timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_bus_pins : "AddressBus";
cell_rise (scalar) { values (”1.0”); }

}
}

}

Accellera May 3, 2004 24

Library Harmonization Project Timing modeling
Questions:

When declaring a vector pin within a bus (e.g. Addr[3:0] within AddressBus), can
one chose another name for the pin (e.g. Addr) or must one use the same name as for
the bus (e.g. AddressBus)?

Is it necessary to declare a vector pin also in the reference bus (e.g. DataBusOut)?

Are relationships involving bundles (see power relationships) also supported for tim-
ing?

A timing VECTOR containing two different GROUP identifiers for the FROM and the
TO pin shall be expanded by permutation from every bit to every bit.

cell(CellName) {
type(AddressBit) {

base_type : array ;
data_type : bit ;
bit_width : 4 ;
bit_from : 3 ;
bit_to : 0 ;
downto : true ;

}
type(DataBit) {

base_type : array ;
data_type : bit ;
bit_width : 8 ;
bit_from : 1 ;
bit_to : 8 ;
downto : false ;

}
bus(AddressBus) {

direction : input ;
bus_type : AddressBit ;
pin(Addr[3:0]) {
}

}
bus(DataBusOut) {

direction : input ;
bus_type : DataBit ;
timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "Addr[0] Addr[1] Addr[2] Addr[3]";
cell_rise (scalar) { values (”1.0”); }

}

Accellera May 3, 2004 25

Library Harmonization Project Timing modeling
FIGURE 30. Timing arc on a bus with all-to-all extension in ALF

CELL CellName {
GROUP AddressBit { 0 : 3 }
GROUP DataBit { 1 : 8 }
PIN [3:0] AddressBus { DIRECTION = input ; }
PIN [1:8] DataBusOut { DIRECTION = output ; }
VECTOR (01 AddressBus[AddressBit] -> 01 DataBusOut[DataBit]) {

DELAY = 1.0 {
FROM { PIN = AddressBus[AddressBit] ; }
TO { PIN = DataBusOut[DataBit] ; }

}
}

}

Accellera May 3, 2004 26

Library Harmonization Project Timing modeling
2.0 Interoperability with SDF

2.1 SDF cross-reference overview

TABLE 11. Cross-reference between library constructs and SDF constructs

SDF construct Comment
PATHPULSE N/A
PATHPULSEPERCENT N/A
ABSOLUTE N/A
INCREMENT N/A
IOPATH delay measurement, see Table 2 on page 5, Figure 4 on page 6
RETAIN see Table 3 on page 7, Figure 6 on page 8
COND see Section 1.12 on page 20, Section 2.2 on page 28
CONDELSE N/A
PORT N/A
INTERCONNECT see note a

a. No library construct for interconnect, but other library constructs, such as threshold (see
“Threshold definitions” on page 18) influence the result of interconnect delay calculation.

NETDELAY N/A
DEVICE N/A
SETUP see Table 4 on page 9, Figure 10 on page 11
HOLD see Table 4 on page 9, Figure 10 on page 11
SETUPHOLD see Table 6 on page 11, Figure 12 on page 12
RECOVERY see Table 4 on page 9, Figure 10 on page 11
REMOVAL see Table 4 on page 9, Figure 10 on page 11
RECREM see Table 6 on page 11, Figure 12 on page 12
SKEW see Table 9 on page 16, Figure 18 on page 16
BIDIRECTSKEW see Section 1.9 on page 15
WIDTH see Table 10 on page 17, Figure 21 on page 17
PERIOD see Table 10 on page 17, Figure 20 on page 17
NOCHANGE see Table 8 on page 14, Figure 16 on page 15
SCOND see Section 2.2 on page 28
CCOND see Section 2.2 on page 28
LABEL TBD
Accellera May 3, 2004 27

Library Harmonization Project Timing modeling
2.2 Conditions in SDF

Conditions in SDF are expressed in Verilog syntax, which is different from Liberty syntax.
Therefore, Liberty provides “SDF_cond”, “SDF_cond_start”, “SDF_cond_end” state-
ments, which are basically “when”, “when_start”, “when_end” statements translated into
Verilog syntax.

The ALF syntax for conditions closely matches the Verilog syntax. Therefore,
“SDF_cond”, “SDF_cond_start”, “SDF_cond_end” are not provided as standard annota-
tions in ALF. However, if desired, they can be defined as library-specific annotations in
the following way:
KEYWORD SDF_cond = single_value_annotation {

VALUETYPE = quoted_string;
CONTEXT = VECTOR;

}
KEYWORD SDF_cond_start = single_value_annotation {

VALUETYPE = quoted_string;
CONTEXT = VECTOR;

}
KEYWORD SDF_cond_end = single_value_annotation {

VALUETYPE = quoted_string;
CONTEXT = VECTOR;

}

FIGURE 31. SDF condition example in Liberty and ALF

TABLE 12. Cross reference between SDF and Liberty keywords related to conditions

SDF keyword Liberty keyword Liberty native keyword
COND SDF_cond when
SCOND SDF_cond_start when_start
CCOND SDF_cond_end when_end

/* Liberty */
pin(Y) {

timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when : "E1&E2";
SDF_cond : "E1==1’b1&&E2==1’b1";
cell_rise ...
rise_transition ...

}
}

/* ALF */

VECTOR ((01 A -> 01 Y)&(E1&E2)) {
SDF_cond = "E1==1’b1&& E2==1’b1";
DELAY ...
SLEWRATE ...

}

Accellera May 3, 2004 28

Library Harmonization Project Timing modeling
FIGURE 32. SDF start and end condition in Liberty and ALF

/* Liberty */
pin(Y) {

timing() {
timing_type : combinational;
timing_sense : positive_unate;
related_pin : "A";
when_start : "E1";
when_end : "E2";
SDF_cond_start : "E1==1’b1";
SDF_cond_end : "E2==1’b1";
cell_rise ...
rise_transition ...

}
}

/* ALF */

VECTOR
((01 A) & E1 ~> (01 Y) & E2) {

SDF_cond_start = "E1==1’b1" ;
SDF_cond_end = "E2==1’b1" ;
DELAY ...
SLEWRATE ...

}

Accellera May 3, 2004 29

	1.0 Basic description of timing arcs
	1.1 Timing measurement overview
	1.2 Delay and slew
	1.3 Delay and slew with retain
	1.4 Setup and hold
	1.5 Recovery and removal
	1.6 Co-dependent setup and hold
	1.7 Co-dependent recovery and removal
	1.8 Setup and hold with nochange
	1.9 Maximum skew constraint
	1.10 Minimum period and minimum pulsewidth constraints
	1.11 Threshold definitions
	1.12 Conditional timing arcs
	1.13 Timing arcs involving bus pins

	2.0 Interoperability with SDF
	2.1 SDF cross-reference overview
	2.2 Conditions in SDF

