
Industry Council PTAB
-

System Level Design Committee
Requirements Capture

Working Group
Steve Grout
Jean Mermet
Ron Waxman

April 9-10, 1997

Requirements and Requirements Capture (R&RC)
• Who is the consumer?

– System Engineer (Large complex projects)

Type of Target Systems for R&RC
• Real Time Systems
• Imbedded systems
• Systems on a chip
• Large complex systems
• Mixed systems: A/D, MEMS, Sensors, Actuators, DSP
• Leading edge complex products
• SLDL
• Reactive systems

R&RC - What we have today
• Tools

– SPW, Statecharts, Simulation, Synthesis, Layout, RDD-100, EXPRESS

• Languages
– Ada, VHDL, C/C++, SDL, Esterel, Mathlab, SpecCharts, JAVA, VDL, EXPRESS

• Libraries
– ALF, “IP” Reuse, VITAL, Component, ECIX, OMI Libraries

• Methodologies and approaches
– IDEF, Entity relationship diagram, SADT, OOXX, RDD-100, SDRTS or RTSA, JSD, SREM, OOA, SDL, ECS, VDM, LOTOS,

MCSE, ISPME

R&RC - Current Capability
• How good/bad is it?

– Back of envelope
– WEB document w/hypertext
– no/few metrics to measure adequacy of requirements
– Not integrated, loosely coupled
– Narrow focus
– Lack of interfaces between subset requirements
– No guarantee all requirements were captured/accurate
– No/little reuse of requirements
– Requirements discovered as design proceeds
– Many tools and methods - but no complete integrated system/methodology

R&RC - What is needed
• Process to capture all requirements

– domain dependent/independent
– Electronic, machine readable, processable, unambiguous capture of each aspect of the requirements

• Process to validate all requirements
• Executable requirements (models)
• A friendly interface to requirements

– providers, brokers, domain experts

• Process to decompose/track requirements

R&RC - What is needed (continued)
• A knowledge base for captured requirements
• Process to validate the use or application of requirements
• Process to validate the the use of the requirements against previous experience



• An integrated system to capture, use, apply, track, validate requirements
• Tools to assess requirements against regulations, standards, and lower level designs

R&RC - What is needed (continued)
Process to capture static, dynamic, temporal, deterministic, nondeterministic, consistent, coupled, context dependent requirements
• A means to identify business impact (e.g. cost) of captured requirements
• Templates to help capture temporal, space, cost, power, weight, etc. requirements
• A set of template formulas to use to derive and/or apply and/or validate requirements
• Automation to create domain sentences from captured requirements for domain expert validation
• Human interfaces between tools/requirements data base, for validation

R&RC - Action items to develop language structure and content
• Define all types (classes) of requirements: Requirements Dictionary (and glossary)

– Minimum/main (RD top) categories, 80%+ import existing RD - orthogonal groupings
– Define actions and attributes

• Define meaning of “friendly interface”
• Define alternatives for knowledge base mechanisms
• Define alternatives for validation mechanisms
• Determine constraints for language: impact of regulations and other standards
• Define business impacts expected
Develop first pass list of static, dynamic, temporal, deterministic, nondeterministic, consistent, coupled, context dependent
requirements

R&RC - Action items to develop language structure and content
• Capture categories (exhaustive) from domain experts

– Identify experts on requirements content and on requirements process
– Electrical, electrotechnical, electronic systems domain
– Sample some different domains
– Extract requirements from examples and interviews
– Review specification documents from existing international standards
– Scan reports of DoD, EU programs

Define Requirement Types/Classes
• Composition Elements - cells, designs, design reuse, macros, cell libs, circuits, elements
• Hierarchy - definition, instance, occurrence, configuration,
• Design management - identification, versioning, alternatives, configuration, definitions,

interface,
• Test - test plan, test requirements, test H/S, vectors (observe/control), test

bench/stimulus
• Topology - logical, structural, syntaxPhysical - area utilization
• Cost - material, labor, design, mfg, support, redesign, schedule
• Domains - digital, analog, mechanical, acoustic, light, mixed
• Decision - (don't) care
• General - definition, internal composition, interface (semantics, syntax)
• Deterministic - non..., (un)bound,
• Environment
• Signals - information, energy, material flow, token, protocol, channel/band,
• life cycle - cost, schedule, ...
• Power - control & consumption, distribution, flow
• Process - activation (when), guard, transformation, constraints, interaction, decision,

flow control,
• Architecture - Control, dataflow, memory
• Reliability, quality, quality assurance, availability, design intent
• temporal - sequence/sequential, clock, state machine, process, state (dynamic),

coherent, (a)synch, concurrent,
• functional organization - hierarchy
• Allocation, partitioning, decomposition
• Support for simulation, analysis, regression,
• implementation approach
• architecture approach
• 



Define Associated Requirements Actions / Attributes
• Static, dynamic, temporal, (non)deterministic, consistent, coupled, context-sensitive
• Semantic consistency
• Granularity, templates, macros, models, views, policy, category, set/collection,
• bound, intent, association, interpretation, assignment, map
• continuous, contiguous, (re)allocation, incremental, parallel, distributed, heterogeous,

tracking
• Attribute - property, condition, constraints, specification, requirement
Aggregation - queue, table, index, taxonomy, composite, parts, primitive, encapsulation, scope, refinement,
inheritance, formal, executable, orthoganility, reusability
• cost, schedule, plan, milestone, declarative, decomposition
• Expression, generality, simplicity, compilable, synthesis, verifiable, model of

computation
• prototyping - conception, virtual, HW, SW, H/S, modeling
• decision making
• constraint generation
• Requirements capture
• View to integrated definition
• How to use models without knowing how they work
• primary, derived requirements
• User interface - GUI / graphics,
• Multilevel, multidomain
• validation - (by) construction, verification, simulation, testing, intuition, assertion
• heterogeous - homogeous


