Draft 0.3.7

Draft Standard for the

Design Constraints Description
Language

(DCDL)

Sponsor

Accellera

Last modified: 7/25/00

Copyright © 1999-2000 Accellera. All rights reserved.

This is an unapproved draft of a proposed standard, subject to change. Permission is hereby
granted for standards committee participants to reproduce this document for purposes of
standardization activities. Use of information contained in this draft is at your own risk.

Accellera

0.3.7 (7/25/00)

DRAFT STANDARD DCDL

Version History

Version Details

0.1.0 Initial draft

0.1.1 Version history added, changes to “Basic Language Featopes’ating * commands, &
derived_waveformMerging ofoperating_variationinformation intooperating * com-
mands.

0.1.2 Alphabetized commands and changes due to review of the introduction and basic|lan-
guage features.

0.1.3 Changes due to review of basic language features & addition of information for script
integrators and implementors. Change of syntax for commands using {} for quoting to
use “ and added subsection on strings as arguments.

0.1.4 Changes to design object and command value discussions in basic language featpres.
Changedhame_spaceo design_name_space

0.1.5 Changes due to the constraint value discussions and changes to syntax due to new key-
words for defaults and reset/unset. Added placeholder section on basic terminolagy in
the introduction section.

0.1.6 Addition of precedence rules and comment incorporation for constraint value material.

0.1.7 Addition of rule about comments and \, review comment incorporation for inheritarjce,
unset and reset, added constraint scoping info., and cleaned upextension lang. sec.

0.1.8 Created a new annex to house rejected functionality and review comment incorpofation
for serveral universal commands and features (including BNF adjustments).

0.1.9 Changes to thacludeanddesign_name_spao®mmands (& changes to BNF annex),
additional script writers issues added, added section on messaging.

0.2.0 Modifications tancludeanddesign_name_spacemmands (& changes to BNF annex)),
additional script writers issues added, and information about file scope added.

0.2.1 Modifications to the design_name_space command (& changes to BNF), additiona] infor-
mation about escapes in the strings section, and a reference to POSIX in the biblio.

0.2.2 Adjustments to reserved character section, changes to design_name_space, unitg, & ver-
sion commands, & moved tool_domain to rejected annex.

0.2.3 Changes to thdisablecommandgcurrent_instanceindcurrent_moduldecame
current_scopéwith other changes), and the addition of thactional_mode&ommand.

0.2.4 Additional information oourrent_scopgchanges téalse_pathclock disable
design_name_spacé& waveform and added information on pathnames.

0.2.5 Changes toperating_rangecurrent_scopgfunctional_mode& design_name_space
added material to OLA interaction section, added OLA mapping table annex, created
scoping theory section.

0.2.6 Additions to OLA annex; added new commaperating_pointadjustments to operating
condition commands; changesmailti_cycle pathclock,anddisable;added mode
semantics; moved any notes out of one-line descriptions.

Table 1: Version History

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Design Constraints Description Language

0.3.7 (7/25/00)

\ersion

Details

0.2.7

Additions to the scoping theory material ands command; minor syntax changes to
most operating condition commands; started adding operating condition theory irj
mation; changed theower_regimeommand tooltage_regimpadditions to the OLA
annex

for-

0.2.8

Additions due to selective inheritance, operating condition precedence and inherit
new timing domain theory outline, changddegget_based_uncertainty

ance,

0.2.9

Changed thiastance,pin_, port_, andcell_identifierconstructs to list, changedcell
and instanceto cellsand instanceqas appropriate); changed the syntariséble
clock_arrival_timewaveform anddriver_specificationmoved tags discussion to the
rejected annex for now.

0.3.0

Modifiedclock_arrival_time clock_delayclock_mode, disabjenulti_cycle_path
driver_specificationvas changed tdriver_cell& the syntax was altere@xternal_load
was changed tport_capacitance the syntax was altered.

03.1

Change from OVI to Accellera; changesltiwer_cell clock delayclock_mode
port_capacitanceommandsexternal_load_limitenamed tgort_capacitance_limit

0.3.2

Added status convention for commands; changesrtocapacitancewaveform
derived_wavefornrclock_mode& clock_required_timeThe “Constraint Inheritance”
section was changed to a more general concept of selected inheritance.

0.3.3

Changes to theaveformderived_wavefornrclock _arrival_timefunctional_mode
clock_required_timeadded introduction material on terminology - constraint vs as
tion vs annotation vs directive.

ser-

034

Deleted thderived_clockand added this abilility to th@dock command; changes to
clock clock_uncertaintyderived_waveforprclock_arrival_time &
clock_required_time

0.3.5

Changes tslew_timeclock clock _delay& clock skewclock _slewwas eliminated - the
functionality added telew_time The syntax of the following commands was altere
due to adding the object type to keywordsck modedisable false path
multi_cycle_pathcommon_insertion_dela§ tree_delay

0.3.6

Added default values taveformandderived_waveformptions; changes tialse_path
multi_cycle_pathwaveformtarget _uncertaintycommon_insertion_delagliminated
clock_domaircommand - functionality covered waveform changed
target_based_uncertaintg target_uncertainty

0.3.7

Changederived_waveforitarget _uncertaintydata_arrival_timefalse_path
multi_cycle_pathmovedtree _delayandtree_modeo the timing exception section.

Table 1: Version History

All changes between 2 consecutive versions are indicated with change bars in the left margin (with the
exception of global changes, such as header and footer dates and versions). All specification source docu-
ments are archived for comparison purposes.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Design Constraints Description Language 0.3.7 (7/25/00)

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. iv

1

10

15

20

25

30

35

40

45

50

Acronyms and Abbreviations

This section lists the acronyms and abbreviations used in this standard.

API
ASIC
BNF
CAE
DCDL
DCL
DC-WG
DEF
EDA
FPGA
HDL

SDF
SLDL
SPEF
SPF
SPICE
Tcl
VHDL
VHSIC
VI
VITAL
VLSI
VSIA

Application Programming Interface (see also PI)
Application Specific Integrated Circuit
Backus-Naur Form
Computer-Aided Engineering (the term EDA is preferred)
Design Constraints Description Language
Delay Calculation Language
Design Constraints-Working Group
Design Exchange Format
Electronic Design Automation
Field Programmable Gate Array
Hardware Description Language
Integrated Circuit
Intellectual Property
Library Exchange Format
Multi Chip Module
Open Library API
Open Verilog International
Printed Circuit Board
Physical Design Exchange Format
Procedural Interface
Process/\Voltage/Temperature
Resistance multiplied by Capacitance
Standard Delay Format
System Level Design Language
Standard Parasitic Exchange Format
Standard Parasitic Format
Simulation Program with Integrated Circuit Emphasis
Tool command language
VHSIC Hardware Description Language
Very High Speed Integrated Circuit
VHDL International
VHDL Initiative Towards ASIC Libraries
Very Large Scale Integration
Virtual Socket Interface Alliance

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Accellera
0.3.7 (7/25/00)

Vi

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

SECTION PAGE

1.

2.

4.

INtrOdUCHION . . . o e ——— 21
Language Documentation CoONVeNtioNSttt e 25
2.1 Language CoNVENLIONS.ottt e e e e e e e e 25
2.2 StALUS . . oo e 26
2.3 Specification Organization. e 26
Basic Language Features. i 27
3.1 Command StrUCIUIEo e 27
3.2 Lexical Elements and Rules. 27
3.21 Character Seto 27
3.2.2 CaSe SeNSItiVILYt 27
3.2.3 WhItESPACE. . . . ot 27
3.24 Command Termination 28
3.25 LineContinuation e 28
326 COMMENES 28
3.2.7 Reserved Words and Characterst 28
3.3 General Language FeatUresot 29
3.3.1 Command Shorthand. 29
3.3.2 ddentifiers. 29
3.3.3 LiStSAaS ArgUMENTS . . . oottt i 29
3.3.4 StriNgS @S ArgUMENTS.ttt e 29
3.3 Design References31
3.3.5. 1 0bjeCt TYPES . .. it 31
3.3.5.1.1 Logical Design Object Types.
3.3.5.1.2 Constraint Object Types. oo
3.3.5.1.3 Physical Design Object Types,
3.3.5.2Design Name Spaceso it 31
3.3.5.3 Design Object Identifiers. 32
3.3.54BitRepresentation 32
335 5Wildcards. 32
3.3.6 Command Ordering.t 33
3.3.6.1 Command Ordering Examples 33
3.3.7 ConstraintValues. 34
3.3.7.1 Undefined Constraint Values. i ... 34
3.3.7.2 Default Constraint Values 35
3.3.7.3 Unsetting and Resetting Constraint Values. 36
3.3.74 Constraint Value SIots. 36
3.3.7.4.1 Value Slot Placeholders
3.3.8 Precedence RUlES. 37
3.3.8.1 Precedence Rule Examples i 38
3.3.9 Constraint SCOPING. .+« « vttt e e 38
3.3.10 Constraint Inheritance 38
3.3.11 Command Name ColliSions.t 38
3.3.12 Message Handling 39
3.4 DCDL and EXtension LanguUages. o v vttt i e e e 40
3.4.1 Tcl Interoperability for Script Writers. 40
3.4.2 Tcl Interoperability for Application Developers. 40
Universal Commands and Features i e 41

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. vii

Accellera

0.3.7 (7/25/00)

viii

4.1

4.2

4.3

4.4

4.5

4.6

4.7

CONSIANT . ..o e e e e 42

4.1 USAOE . . ittt 42
4.1.2 Required KEYWOIrdSot e 42
4.1.3 Optional KEYyWOrds 42
4.1.4 Positional Parameters. 42
4.1.5 EXamMpIes . .. 42
O Semantics42
4.1.7 Related Commands 42
design_NamMe_SPACEottt it e 3..... 4
4.2, 0 USAQE . . ittt 43
4.2.2 Required KEYWOIrdSottt 43
4.2.3 Optional KEYWOrdS 46
4.2.4 Positional Parameters. e 46
425 EXAmMpPIeS . .. a7
4.2.6 SEMANtCS. i 47
427 Related Commands 48
extend _dcdl ... 49 ..
4.3, 1 USAQE . .ttt 49
4.3.2 Required KEYWOIrdSo e 49
4.3.3 Optional KEyWOrdso 49
4.3.4 Positional Parameters. 49
4.3.5 EXampIes . .. 49
4.3.6 SEMANtCS. 49
437 Related Commands 50
functional_mode. 51...
441 USAQE . . ittt 51
4.4.2 Required KEYWOIrdSottt 51
4.4.3 Optional KEYWOrdS 51
4.4.4 Positional Parameters. 51
445 EXAmMPIeS . .. 51
446 SEMANtCS. i 52
447 Related Commands 53
NIStOrY. . . 54

4.5, 1 USAQE . .ttt e 54
452 Required KEYWOIrdSot e 54
453 Optional KEYyWOrds 54
4.5.4 Positional Parameters. 54
455 EXamMpIes . .. 54
45.6 SeMaNtiCS. 54
457 Related Commands 54
INCIUdE . .. e 55

4.6.1 USA0E . ..ottt e 55
4.6.2 Required KEYWOIrdSottt 55
4.6.3 Optional KEyWOrds 55
4.6.4 Positional Parameters. 55
4.6.5 EXAmMpIesS . .. 55
4.6.6 SEMANtCS. 55
4.6.7 Related Commands 56
UNIES Lo e 57

47,0 USAQE . . ittt 57
4.7.2 Required KEYWOIrdSot e 57
4.7.3 Optional KEYyWOrds 57
4.7.4 Positional Parameters. 58
475 EXamMpIes . .. 58

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Accellera

Design Constraints Description Language 0.3.7 (7/25/00)

47.6 SEMANTCS. . . ottt 58
4.7.7 Related Commands 58

4.8 VEISION & ot 59
4.8.1 USA0E . . ittt 59
4.8.2 Required KeYWOrds.ot 59
4.8.3 Optional KEyWOords 59
4.8.4 Positional Parameters. 59
4.8.5 EXAmMpIeS . .. 59
4.8.6 SEMANtCS. . .. i 59
4.8.7 Related Commands i e 59

5. Scoping ComMMANASot e e 61

5.1 ScopiNg TheOrY e 61...

5.2 Lo | =] o1 0] o= 63. ..
5.2 USAQE . . oo 63
5.2.2 Required KEYWOrdS oo oo e 63
5.2.3 Optional Keywords e 63
5.2.4 Positional Parameters. 63
5.25 EXamples e 63
5.2.6 SeMaNntiCS. . ..o e 64
5,27 Related Commands e 64

6. Operating ConditioNS.ttt e 65

6.1 Operating Conditions TheOrY. e 65
6.1.1 Correlation and Operating Conditions. 65
B.1.2 REOIMES . ..ttt 65
6.1.3 Operating Condition Command Precedence............... 66
6.1.4 Operating Condition Command Inheritance 66
6.1.5 Operating Condition Precedence and Inheritance Interactions............. 67

6.2 operating_pPoint 68 ..
B.2.1 USAQE . . .ottt 68
6.2.2 Required KEYWOIdSttt 68
6.2.3 Optional KEywordst 68
6.2.4 Positional Parameters. e 68
6.2.5 EXAMPIeS . ..o 69
B.2.6 SEMANICS. . ..ot e 69
6.2.7 Related Commands e 69

6.3 OPEratiNg_PrOCESS. . . o v v it e et e e e e e e 70. ...
6.3.1 USAQE . . . ottt 70
6.3.2 Required KEYWOISttt 70
6.3.3 Optional KEywWordst 70
6.3.4 Positional Parameters. e 70
6.3.5 EXAMPIES . . oo 70
B.3.6 SeMANtCS. e 70
6.3.7 Related Commands e 70

6.4 OPErating_raNQE . . o .ttt e e 72. ..
B6.4.1 USAQEottt 72
6.4.2 Required KEYWOIdSttt 72
6.4.3 Optional KEywWOrdst 72
6.4.4 Positional Parameters. e 72
6.4.5 EXaMPIES . . oo 72
B6.4.6 SeMaANICS. . ..ot e e 72

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. ix

Accellera
0.3.7 (7/25/00)

DRAFT STANDARD FOR DCDL

6.4.7 Related Commands 72
6.5 operating_temperature e 74
B.5.1 USAQEot e e 74
6.5.2 Required KEYWOrdsSo 74
6.5.3 Optional Keywords 74
6.5.4 Positional Parameters. 74
6.5.5 Examples e 75
B.5.6 Semantics75
6.5.7 Related Commands 75
6.6 operating_voltage. 76 ...
B.6.1 USAQE . ..ot e e 76
6.6.2 Required KEYWOrdSo e 76
6.6.3 Optional Keywords 76
6.6.4 Positional Parameters. 76
6.6.5 Examples 77
B.6.6 L Semantics77
6.6.7 Related Commands 77
6.7 temperature_regime 8..... 7
B.7. 1 USAQE . . .ot e e e e 78
6.7.2 Required KEYWOrdS oo e 78
6.7.3 Optional Keywords 78
6.7.4 Positional Parameters. 78
6.7.5 EXamples 78
B6.7.6 SeMANtiCS.o e 78
6.7.7 Related Commands 78
6.8 Voltage _Fregime. e 8a..
B.8. 1 USAQE . . .ot e 80
6.8.2 Required KEYWOrdsS.o o e 80
6.8.3 Optional Keywords 80
6.8.4 Positional Parameters. 81
6.8.5 EXamples 81
6.8.6 SeMANtiCS. 81
6.8.7 Related Commands 81
7. The TIMING DOMaiN e e e 83
7.1 Clock (Synchronous) Theory. e e 83
7.1.1 Clock DOMains o e 83
7.1.2 Clock Roots and Networks e 83
7.1.2.1 Clock and Data Conversion.ttt 83
7.1.22Clock Gatingo oo 83
7.1.3 Ideal Versus Propagated Clocks 83
7.1.3.1 Insertion Delay Model. 83
7.1.4 TimeRelativeto Clock EAges. i e 83
7.1.5 Default Cycle Accounting 83
7.1.6 Clock Uncertainties e 83
7. LB L JIter . . 84
7.1.6.2 Inter-Clock Uncertainty e 84
7.1.6.3 Intra-Clock Tree Skew. 84
7.1.6.4 Target-Based Uncertainty, 84
7.2 Timing Boundary Theory. e 84
7.3 Timing EXCeption TheOoryo e 84
7.3.1 FalsePathsandDisables 84
7.3.2 Latching.o 84

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Accellera

Design Constraints Description Language 0.3.7 (7/25/00)
7.4 Timing Domain INteractions e 84
7.5 Common Timing Command Conventions.t 84
7.6 Clock Commands. 5....8
7.6.1 CloCK. . .o 86
7.6. L. L USAge . . o vttt e 86
7.6.1.2 Required Keywords.ot 86
7.6.1.3 Optional Keywords e 86
7.6.1.4 Positional Parameters. 86
7.6. 1.5 Examples 86
7.6.1.6 SEMANLICS. oo 86
7.6.1.7Related Commands 87
7.6.2 clock arrival_time. 88
7.6.2. L USAge . . ottt e 88
7.6.2.2 Required Keywords.t 88
7.6.2.3 Optional Keywords 88
7.6.2.4 Positional Parameters. 89
7.6.25 EXxamples 89
7.6.2.6 SEMANLICS. oo 89
7.6.2.7Related Commands i 89
7.6.3 clock delay e 90
7.6.3. L USA0e . . .ottt e 90
7.6.3.2 Required Keywords. 90
7.6.3.3 0ptional Keywords 90
7.6.3.4 Positional Parameters. 90
7.6.3. 5 Examples 91
7.6.3.6 SEMANLICS. 91
7.6.3.7Related Commands 91
7.6.4 clock mode e 92
7.6.4. L USAge . . oot it e 92
7.6.4.2 Required Keywords.ot 92
7.6.4.3 Optional Keywords 92
7.6.4.4 Positional Parameters. 92
7645 Examples 92
7.6.4.6 SEMANLICS. . . .o oo e 92
7.6.4.7 Related Commands 93
7.6.5 clock_required_time 94
7.6.5. L USage . . oot it 94
7.6.5.2 Required Keywords. 94
7.6.5.3 Optional Keywords 94
7.6.5.4 Positional Parameters. 95
7.6.5. 5 Examples 95
7.6.5.6 SEMANtiCS. 95
7.6.5.7Related Commands 95
7.6.6 clock skew e 96
7.6.6. 1 USAge . . .ottt e 96
7.6.6.2 Required Keywords. 96
7.6.6.3 Optional Keywords 96
7.6.6.4 Positional Parameters. 96
7.6.6.5 Examples 96
7.6.6.6 SEMANLICS.o 97
7.6.6.7 Related Commandst 97
7.6.7 clock uncertainty. 98
7.6.7. L USAge . . ottt e 98
7.6.7.2 Required Keywords. 98

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. Xi

Accellera

Design Constraints Description Language 0.3.7 (7/25/00)
7.6.7.3 Optional Keywords e 98
7.6.7.4 Positional Parameters. e 99
7.6. 7.5 Examples 99
7.6.7.6 SEMANTICS.t e 99
7.6.7.7RelatedCommands 99
7.6.8 common_insertion_delay. 100
7.6.8. 1 USa0e . . .ottt 100
7.6.8.2 Required Keywords. 100
7.6.8.3 Optional Keywords 100
7.6.8.4 Positional Parameters. 100
7.6.8.5 Examples 100
7.6.8.6 .o ea...S
B . o o e e 101
7.6.87RelatedCommands 101
7.6.9 derived_waveform. 102
7.6.9. L USage . . .ttt e 102
7.6.9.2 Required Keywords. 102
7.6.9.3 Optional Keywords 102
7.6.9.4 Positional Parameters. e 103
7.6.9. 5 Examples 103
7.6.9.6 SEMANTICS.t 103
7.6.9.7RelatedCommands 104
7.6.10 target uncertainty 105
7.6.00. 1 USage . . .o ot e 105
7.6.10.2 Required Keywordsttt 105
7.6.10.3 Optional Keywords 105
7.6.10.4 Positional Parameters. 105
7.6.10.5 Examples 106
7.6.10.6 SEMANTICS.\t 106
7.6.10.7Related Commands 106
7.6.11 waveform. 107
7.6. 10, USage . . ot ittt e 107
7.6.11.2 Required Keywordsttt 107
7.6.11.3 Optional Keywords e 107
7.6.11.4 Positional Parameters. 108
7.6. 115 Examples 108
7.6.11.6 SEMANTICS. . ..\ttt 108
7.6.11.7Related Commands 108
7.7 Timing Boundary Commandsttt 110
7.7.1 data_arrival_time. 111
7. L L USAge . o ottt e 111
7.7.1.2 Required Keywords.ot 111
7.7.1.3 Optional Keywords e 111
7.7.1.4 Positional Parameters. 112
7.7 15 EXampleso 112
7.7.0.6 SEMANICS. . ..ot e 112
7.7.1.7RelatedCommands 112
7.7.2 data_required_time 113
.7 2. L USAge . . ottt 113
7.7.2.2 Required Keywords.ot 113
7.7.2.3 Optional Keywords 113
7.7.2.4 Positional Parameters. 114
7725 EXxampleso 114
T7.7.2.6 SEMANICS. . ..ot e 114

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. Xii

Design Constraints Description Language

Accellera
0.3.7 (7/25/00)

7.7.2.7Related Commands 115
7.7.3 departure_time. e 116
7.3, L USage . . ottt 116
7.7.3.2 Required Keywords. 116
7.7.3.30ptional Keywords 116
7.7.3.4 Positional Parameters. 116
7735 Examples 117
7.7.3.6 SEMANLICS. . . .o oo 117
7.7.3.7Related Commands 117
7.7.4 external_delay 118
T 7 A L USage . . ottt e 118
7.7.4.2 Required Keywords.ot 118
7.7.4.3 Optional Keywords 118
7.7.4.4 Positional Parameters. 118
T 7 A5 EXampleso 119
T.7.4.6 SEMANTICS. . . o oo 119
7.7.4.7 Related Commands 119
775 slew limit ... 120
. 7.5, L USage . . ot e 120
7.7.5.2 Required Keywords.ot 120
7.7.5.3 0ptional Keywords 120
7.7.5.4 Positional Parameters. 120
7755 EXamples 120
T7.7.5.6 SEMANTICS.o 120
7.75.7Related Commands 121
T.7.6 sSlew time. e 122
. 7.6, L USage . . oot 122
7.7.6.2 Required Keywords.ot 122
7.7.6.3 Optional Keywords 122
7.7.6.4 Positional Parameters. 122
T.7.6.5 Examples 122
T7.7.6.6 SEMANTICS.o 123
7.7.6.7Related Commands 123
7.8 Timing Exception Commandsot e 124
7.8.1 borrow limit 125
7.8, L. L USAge . . ottt e 125
7.8.1.2 Required Keywords.t 125
7.8.1.3 Optional Keywords e 125
7.8.1.4 Positional Parameters. 125
7.8 L5 EXamples 125
7.8.1.6 SEMANtICS. oo 126
7.8.1.7Related Commands 126
7.8.2 disable 127
7.8.2. L USage . . o vttt e 127
7.8.2.2 Required Keywords.o 127
7.8.2.3 Optional Keywords e 127
7.8.2.4 -Positional Parameters. 128
7.8 25 Examples 128
7.8.2.6 SEMANLICS. oo 128
7.8.27Related Commands i 128
7.8.3 false_path. 129
7.8.3. L USa0e . . ottt e 129
7.8.3.2 Required Keywords. 129
7.8.3.30ptional Keywords 129

Copyright © 1999-2000 Accellera. All rights reserved.

This is an unapproved standards draft, subject to change.

xiii

Accellera

0.3.7 (7/25/00)

Xiv

DRAFT STANDARD FOR DCDL

7.8.3.4 Positional Parameters. e 130
7.8 3.5 Examples 130
7.8.3.6 SEMANLICS. . ..ottt 130
7.83.7Related Commands i 130
7.8.4 multi_cycle path 131
.8 4. L USAge . . o vttt e 131
7.8.4.2 Required Keywords.o 131
7.8.4.3 Optional Keywords e 132
7.8.4.4 Positional Parameters. e 132
7.8 A5 EXamples 132
7.8.4.6 SEMANTICS. . ..ottt 133
7.8.47Related Commands 133
7.85 tree_delay....... ... e 134
7.8 5. L USage . . ottt e 134
7.8.5.2 Required Keywords. 134
7.8.5.3 0ptional Keywords 134
7.8.5.4 Positional Parameters. e 135
7.8.5. 5 Examples 135
7.8.5.6 SEMANLICS. . ..ottt 135
7.85.7Related Commands i 135
7.8.6 tree_MoOde e 136
7.8.6. 1 USage . . .ottt e 136
7.8.6.2 Required Keywords. 136
7.8.6.3 Optional Keywords e 136
7.8.6.4 Positional Parameters. e 136
7.8.6.5 Examples 136
7.8.6.6 SEMANLICS. . ..ottt 136
7.8.6.7Related Commands e 136
7.9 SDF Mapping. .« o oo e 137. ..
The Parasitic Boundary DOMain.ttt e 39..1
8.1 Parasitic Boundary Theory. 140
8.2 driver_cell ... 141
8.2.1 USA0E . - o e e 141
8.2.2 Required KEYyWOrdso o 141
8.2.3 Optional Keywords e 141
8.2.4 Positional Parameters. e 142
8.25 Examples 142
8.2.6 SEMANICS.ttt e 143
8.2.7 Related Commandst e 143
8.3 driver resistanCe i 144. . .
8.3 USAge. . .o 144
8.3.2 Required KeyWords.o 144
8.3.3 Optional Keywords 144
8.3.4 Positional Parameters. e 144
8.3.5 Examples 144
8.3.6 SEMANCS. it e 144
8.3.7 Related Commands e 144
8.4 external_SinKS. e 146 .
841 USAQe. . .o 146
8.4.2 Required KEYWOrdso o e 146
8.4.3 Optional Keywords 146
8.4.4 Positional Parameters. e 146

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Design Constraints Description Language

Accellera
0.3.7 (7/25/00)

8.45 Examples 146
8.4.6 SEMaANtCS. ottt 146
8.4.7 Related Commands i 146
8.5 eXternal_SOUICES. 147.
8. 5.l USAgE . . . it e e 147
8.5.2 Required KeyWords. e 147
8.5.3 Optional Keywords e 147
8.5.4 Positional Parameters. 147
8.5.5 Examples 147
8.5.6 SeMaANtiCS. 147
8.5.7 Related Commands i 147
8.6 fanout_load. 148.
8.6. L USAQE . .. i e e 148
8.6.2 Required KeyWords.o 148
8.6.3 Optional Keywords 148
8.6.4 Positional Parameters. 148
8.6.5 Examples 148
8.6.6 SeMaANtiCS.o 148
8.6.7 Related Commands 148
8.7 fanout_load limit. 149.
8.7 L USAQE . . .ot 149
8.7.2 Required KEYWOrdso 149
8.7.3 Optional Keywords e 149
8.7.4 Positional Parameters. 149
8.7.5 Examples 149
8.7.6 SeMaANtiCS. oot 149
8.7.7 Related Commands 149
8.8 POrt_CapPAaCITANCE.ttt s 150.
8.8 .l USAgE . . . i e 150
8.8.2 Required KeyWords. 150
8.8.3 Optional Keywords e 150
8.8.4 Positional Parameters. 150
8.85 Examples 150
8.8.6 SeMaANtiCS. 151
8.8.7 Related Commands i 151
8.9 port_capacitance_limit. e 152
8.0. L USAQE . . . it 152
8.9.2 Required KEYyWOrds.o 152
8.9.3 Optional Keywords 152
8.9.4 Positional Parameters. 152
8.95 Examples 152
8.9.6 SeMaANtiCS. i 152
8.9.7 Related Commands 152
8.10 port_wire_load. 153.
8.10. 1 USAQE . . .ttt e 153
8.10.2 Required Keywords.t 153
8.10.3 Optional Keywordso e 153
8.10.4 Positional Parameters. 153
8.10.5 EXampleso 153
8.10.6 SeMaANtiCS.ttt 153
8.10.7 Related Commands it 153
8.11 wire_load_model 154 . ..
8 ALl USAQE . . ottt e 154
8.11.2 Required Keywords. 154
Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. XV

Accellera

0.3.7 (7/25/00)

10.

XVi

9.

B.

C.

D.

DRAFT STANDARD FOR DCDL

8.11.3 Optional KeyWordso e 154
8.11.4 Positional Parameters. e 154
8.11.5 EXampleso 154
8.11.6 SeMANICS. e 154
8.11.7 Related Commands 154
Standard ComplianCe. e 157
GlOSSaIY . 159
BN . e 165
A.1.1 General Structure BNF 165
A.1l.2 Shared BNF CONStIUCESottt 167
A.1.3 Universal Commands BNF i 168
Al4 Scoping CommandS.ot 169
A.1.5 Operating Conditions BNF 169
A.1.6 Clock Commands BNF i 170
A.1.7 Timing Boundary Commands BNF. 171
A.1.8 Timing Exception Commands BNF 171
A.1.9 Parasitics Commands BNF 172
Bibliography 173
Analyzed and Rejected Functionality. e 175
DCDL Relationship to OLA e 177.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

List of Figures

FIGURE

1-1
1-2
1-3
3-1
3-2
3-3
3-4
3-5
3-6

PAGE
Design Standards it e e wa. 21.
DD SCOPE ..ottt 21
DC-WG Creation ProCESS . ..o vttt e e e e e 22. ..
Command SITUCLUIEo e e e 27. .
General DCDL Scoping CoNCePtttt e e e
File Scopesand Includes. i e 62. .
Operating Condition Value Slots and Precedence,
Example of Operating Condition Inheritance
Derived Edges COoNCept.o oo e e e e e, 104. ..

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. Xvii

Accellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
Xviii This is an unapproved standards draft, subject to change.

List of Tables

TABLE PAGE
1 Version Historyo e e e ii

4-1 Verilog Name Space OVeIVIEW vttt ittt e e et e e e 43

4-2 VHDL Name Space OVEIVIEW oottt e et e e e e e e e e e e e e 44

4-3 EDIF Name Space OVEIVIEW oot e et e e e e e e e 44

4-4 Related DCDL and OLA Commands

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. Xix

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
XX This is an unapproved standards draft, subject to change.

1. Introduction
[Informative]

The objective of the Design Constraints Description Language (DCDL) is to make it possible for designers
to consistentlyspecify, apply, and reuse constraint descriptions in order to describe design intent for EDA
tools. This objective is accomplished by specifying a command syntax, appropriate semantic descriptions,
and related conceptual material.

Background

Libraries and design descriptions are currently addressed using IEEE, emerging, and de-facto standards.
Figure 1-1 shows a simple example of the standards world in the context of a high-level design to physical
implementation design flow.

. Libraries

SIDL b |OLA Verilog VITAL LEF HSPICE-‘
VHDL '
\éeEr;log Design High-Level Gate-Level Physical

Specification Design Design Design
PDEF : : , ,
SPEF
GDsSlI

Design Intent -‘

Figure 1-1 Design Standards

However, a standard method for specifying and reusing design intent is considered by many to be one of the
last, major missing pieces required to support an interoperable design flow.

In March 1998, Open Verilog International (OVI) chartered the Design Constraints Working Group

(DC-WG) to specify a standard means to express design intent and to work with other standards groups to
promote its use within the design community. The key deliverable of the DC-WG is this specification.

Scope

DCDL is intended for use in any EDA tool flow and it covers all major constraint domains, as Figure 1-2
shows.

Environment
Operating Points

k Analog/Mixed Signal /

Figure 1-2 DCDL Scope

/ Constraint Domains \
System Level I i
Trming Design Flows
Power
Signal Integrity [i(s)lg
Area FPGA
Logic Architecture PCB/MCM
Physical IC

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 21

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

This document serves “users” of DCDL, such as designers and intellectual property (IP) providers and inte-
grators; and “implementors” such as EDA vendors and silicon vendors.

Usage Models

The usage models for DCDL include the following:

a) Initial constraint entry Initial design intent is specified by using pure DCDL or by embedding
DCDL in tool scripts.

b) Constraint interchangeA very important facet of interoperability is the ability to pass DCDL con-
straint files between tools after initial constraint entry. This usage model requires constraint-based
tools that read and write DCDL.

c) IP authoring Soft and firm IP products require a means to express intent and to guarantee that the
block will operate under a range of constraints. This usage model can be similar to initial constraint
entry or the author could export DCDL from a trusted design tool (constraint interchange).

Standards Organization

The DC-WG is sponsored by Accellera (formerly OVI and VI) and endorsed by the Virtual Socket Interface
Alliance (VSIA).

The DC-WG is responsible for specifying DCDL, working with related standards groups, moving the speci-
fication through the standards process, analyzing and resolving issues, and teaming with Accellera to pro-
mote the use of the standard (via vehicles such as conferences, press releases, meetings, etc.).

The DC-WG defines one constraint domain at a time, by collecting input from members, creating a taxon-
omy (generic functional specification) and then mapping the taxonomy into the syntax and semantics

described in this specification. The specification is then voted on and the next domain is addressed.
Figure 1-3 shows the DC-WG creation process.

D \@/ DC-WG
In%ut
D D (Specification)

N/

Constraint
Domain

Figure 1-3 DC-WG Creation Process

The DC-WG consists of volunteers representing designers, silicon vendors, standard groups, industry con-
sortiums, and EDA vendors. Details about DC-WG activities can be found at:

http://www.eda.org/dcwg

Copyright © 1999-2000 Accellera. All rights reserved.
22 This is an unapproved standards draft, subject to change.

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

Standards Interaction

DCDL makes a clear distinction between library-related standards and design-related standards. DCDL is a
design standard. However, in order for DCDL to co-exist in any design flow and to ensure that duplicate
work is not being performed, the DC-WG interacts with related standards groups. Based on where the DC-
WG is in the creation process and which constraint domain is being addressed, this interaction is always
changing. The following subsections provide an overview of such standards interactions at the time of the
writing of version 0.3.7 of this specification.

SLDL Interaction

A joint working group between DC-WG and the System Level Design Language (SLDL) group ensures that
DCDL is syntactically compatible with SLDL. The SLDL effort is sponsored by Accellera.

*** Add other appropriate details here. ***

OLA and the Delay and Power Calculation WG Interaction

When appropriate, DCDL commands strive for compatibility with the Open Library APl (OLA) standard
effort and the related Delay and Power Calculation standard IEEE 1481. Appropriate commands are those
that allow the designer to choose from options defined within the library. For example, choosing from a set
of defined operating conditions or modes.

An informative annex contains a table showing DCDL commands and the related OLA API functions (refer
to page 177).

Basic Terminology

Thoughout the industry, there are many terms that are associated with design intent. For the purposes of this
specification, the following terms are defined:

Constraint: a desired characteristic that a tool must enforce or satisfy.

Assertion: a statement of truth about a design object that a tool accepts as fact during analysis.
Directive: a statement that directs a tool to implement a specific characteristic.

Annotation: characterized data attached to a design object that is based on the design
implementation.

In terms of DCDL, this specification documents commands that can be used as constraints, assertions, and
directives. Commands supporting annotations are not part of DCDL.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 23

Acellera

0.3.7 (7/25/00)

Participants

DRAFT STANDARD FOR DCDL

The Design Constraints Description Language Working Group contributors include:

24

Tim Baldwin
David Barton
Paul Bonnel
Simon Butler
Joe Daniels
Dan Devries
Tom Dewey
Bob Dilly

Jim Engel

Ibna Faruque
Vassilios Gerousis
Steve Grout
Hemlata Gupta
Jeff Handong
Kareem Lafala

Ambit
Cadence
Exemplar
Fujitsu

IBM
Infineon
Intermetrics
LSI Logic
Lucent
Mentor Graphics
Motorola
Sematech
Symbios
Synopsys
Toshiba

Mark Hahn, Chair

Enrico Malavasi
Ed Martinage
Dan Moritz
John Paul
Gregory Schulte
Vikas Sharma
Jin-sheng Shyr
Alex Suess

Jim Swift
Andres Teene

Corporate Participation

Xilinx

r

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

2. Language Documentation Conventions

This section describes the language conventions used to document DCDL and provides an overview of the
document contents.

2.1 Language Conventions

The formal syntax of DCDL is described using Backus-Naur Form (BNF). The textual cues (such as fonts
and symbols) used to document are:

a)

b)

<)

d)

f)

a)

h)

Lowercase words, some containing embedded underscores, are used to denote syntactic constructs
(terminals and non-terminals). For example:

port_list

Boldface words are used to denote reserved keywords, operators, and punctuation marks as a
required part of the syntax. For example:

-ports { in1 in2 in3}
indicates thatportsand the braces are required.

The::= operator separates the two parts of a BNF syntax definition. The syntax category appears to
the left of this operator and the syntax description appears to the right of the operator. For example:

text ::= character_set
A vertical bar separates alternative items (use one only). For example:
integer_digit ::=0|1[2|3|4|5|6]7|8]9

Square brackets enclose optional elements, unless the brackets are part of the syntax (in which case
they would appear in bold). For example:

exponent ::=E | e[sign]
indicatessignis an optional syntax item.

Braces enclose a repeated item, unless the braces are part of the syntax (in which case they would
appear in bold). The item may appear zero or more times and the repetitions occur from left to right.
For example:

unsigned_number ::= integer_digit { integer_digit }

Parentheses enclose items within a group, unless the parentheses are part of the syntax (in which
case they would appear in bold). For example:

-waveform waveformidentifier | (oot port_identifier | pin_identifier)
the parentheses group theot keyword and its two keyword value choices.
A hyphen (-) is used to denote a range. For example:

identifier_first_letter ::=a-z | A-Z

indicates the first letter of the identifier can be a lowercase letter (from a to z) or an uppercase letter
(from Ato 2).

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 25

10

15

20

25

30

35

40

45

50

Acellera

| 0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

i)

If the name of any element starts with an italicized part, it is equivalent to the construct name with-
out the italicized part. The italicized part is intended to convey some semantic information. For
example:

-keywords keyword identifier

indicates that thieeyword identifier is equivalent to the identifier construct.

The text of this document uséalicizedfont when a literal identifier is being used (typed exactly as it is pre-
sented) or to reference a construct name.

Themonospace font is used for examples.

2.2 Status

[To be removed at ballot]

This specification is a “living” document that changes based on input through the DC-WG. The status of
each command is indicated by a symbol following the command name on the reference pages:

e represents a reviewed and approved command. This command description is stable.

» represents a command that is currently being reviewed and further refined. This command descrip-
tion could change.

O represents the initial draft description of a command. This command description is very likely to
change.

2.3 Specification Organization

Beyond the introduction section and this conventions section, this standard is organized into the following

sections:

a) Basic language featurethe building blocks and general rules of the language.

b) Universal commands and featureesmmands and features that can apply to all constraint domains.

c) Scoping commandsommands that indicate where in a design the constraint commands should be
applied.

d) Operating conditionscommands that specify design operating conditions.

e) Timing domaincommands that specify timing constraints - clocking, timing boundaries, and timing
exceptions.

f) Parasitic domaincommands that specify parasitic boundary conditions.

g) Standard compliancevhat it means for a tool or DCDL file to be in compliance with this standard.

h) Glossary definitions of some of the key terms used in this specification.

i) Annex A - BNFthe complete syntax of DCDL using Backus-Naur Form (BNF).

) Annex B - Bibliographya listing of documents referenced during the creation of DCDL.

k) Annex G- Analyzed and rejected functionalitpformation about features discussed but rejected for
this version of the specification.

) Annex D- DCDL relationships to OLAa mapping of DCDL features to the appropriate Open
Library API standard.

m) Index page references for key topics.

Copyright © 1999-2000 Accellera. All rights reserved.
26 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

3. Basic Language Features

This section provides a fundamental overview of the DCDL command structure, lexical elements, and gen-
eral language features.

3.1 Command Structure

DCDL consists of a set of commands. Commands consist of one or more words. Words are formed from a
character set. The first word is the command name and additional words are arguments to the command.
Arguments consist of required and/or optional keywords (paired with keyword values if required) and zero
or one positional parameter value. Keywords are indicated by a leading - (dash) and the dash is part of the
keyword. A positional parameter is a value or identifier that is not associated with a particular keyword.
Figure 3-1 shows the structure of a typical DCDL command:

Command Name Positional Parameter

Keyword Pair Keyword Pair
r — — - - - — A r — — - - - — 1
(data_arrival_timg | (-waveform) (‘Mstr)| (-lead) \(-ports ({in1in2})| (2.11063
/K'___ — — L___/!__J
Keyword Keyword Value Keywords Keyword Value
| |
Arguments

Figure 3-1 Command Structure

3.2 Lexical Elements and Rules

Lexical elements define the building blocks of DCDL. The language is built using the lexical elements and
the rules that govern them.

3.2.1 Character Set

DCDL command words are formed using characters. Characters are comprised of three types: whitespace,
reserved, and non-reserved characters. Whitespace characters include the space and tab characters.
Reserved characters are those used as punctuation in the command syntax. Non-reserved characters repre-
sent all the other characters. For more information about the character types, refer to page 167.

3.2.2 Case Sensitivity

DCDL command names and keywords are case-sensitive. Case for keyword values and positional parame-
ters are governed by tldesign_name_spa@®mmand (refer to page 43).

3.2.3 Whitespace

Commands begin with the first non-whitespace character in a line. Command words are separated by one or
more spaces or tabs. These spaces and tabs are not considered part of the command words.

Items in lists must be separated by one or more spaces or tabs (refer to page 29 for information about lists).

*** \We need to say something about whitespace (or lack thereof) between punctuation: ;,{},\, [], etc. For
example, {a b} or{ab } or addr[1] or addr [1]. ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 27

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

3.2.4 Command Termination

DCDL commands terminate with a newline or optionally with a semicolon. Use of the semicolon allows
placing multiple commands on a single line and it allows the use of comments to the right of a terminated
command.

3.2.5 Line Continuation

For readability, commands can be split between lines in a file by using the continuation character \ (back-
slash). For example, the following command is split into 6 lines:

data_arrival_time \
-waveform master_clk -lead -ports \
{ MemData[0] MemData[1] MemData[2] MemData[3] \
MemData[4] MemData[5] MemData[6] MemData[7] \
MemData[8] } \
{6.07.06.57.5}

3.2.6 Comments

Comments are indicated by the # (hash) character. All the characters between the # and the newline are con-
sidered comments, and shall be ignored. Comments can appear at the termination of a command if the
optional semicolon is used. Comment examples:

#Comment on a line by itself

clock_mode -ideal; #Set the mode to ideal
clock_mode -ideal; tree_mode -ideal; #Set both modes
#clock_mode -actual

Continuation characters are honored in comments. For example:

clock_mode -ideal; #Set the clock mode for \
project pilot

In the preceding example, the comment extends to the next line to include fhrejenittpilot
3.2.7 Reserved Words and Characters

DCDL does not define any reserved words. Command names must appear as the firstitem in a line and key-
words are denoted by words that begin with the - (dash) character, so reserved words are not necessary.

The following characters are reserved:

The # (hash) character is reserved to indicate a comment (refer to page 28).

The semicolon is reserved as an optional method to terminate commands (refer to page 28).
The {} (brace) characters are reserved to indicate lists (refer to page 29).

The “ (double quotes) are reserved to indicate strings or single characters (refer to page 29).

The ? (question mark) and * (asterisk) characters are reserved for wildcarding and for placeholding
constraint value slots (refer to page 32).

The \ (backslash) is reserved to indicate line continuation - escaping the newline - (refer to page 28)
and escaping characters in strings (refer to page 29).

Copyright © 1999-2000 Accellera. All rights reserved.
28 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

The particular name space employed in the design flow using DCDL can impose reserved characters and
words. Refer to thdesign_name_spao®mmand for details (page 43).

3.3 General Language Features
This section defines the language features that can apply to each DCDL command.
3.3.1 Command Shorthand

DCDL does not provide a convention for specifying command or command argument abbreviation. How-
ever, DCDL readers or interactive constraint entry tools can provide support for DCDL shorthand. DCDL
writers shall write DCDL as specified in this standard (no shorthand).

3.3.2 Identifiers

DCDL commands often require identifying an item by name. ldentifiers can specify design objects (refer to
page 31) or arbitrary names provided by the user. Identifier rules are definedlbgigme name_space
command (refer to page 43). Refer to page 167 for the syntax for identifiers.

3.3.3 Lists as Arguments

Some DCDL keyword values and/or positional parameters allow lists as values. Lists are represented by
enclosing the values in { } (left and right braces). The values within the list are separated by one or more
spaces or tabs. For example:

data_arrival_time \
-waveform master_clk -lead -ports \
{ MemData[0] MemData[1] MemData[2] MemData[3] \
MemData[4] MemData[5] MemData[6] MemData[7] \
MemData[8] } \
{6.07.06.57.5}

The preceding example shows a listdris keyword values and a list of data arrival times.
The basic rules for lists are that they are only one level (embedded lists do not exist in DCDL commands)
and that any keyword value or positional parameter that expects a list, must use the {} characters. The {}
characters must be used, even if a list contains only one element. For example:

-ports {pina}

3.3.4 Strings as Arguments

Several keyword values or positional parameters allow text strings or single characters as values. Text strings
and single characters must be enclosed within double quotes. For example:

history “File created on 1/10/2000 by dcdl_writer”
version “1.0”
extend_dcdl my_command -arguments “-ports {inl in2} 0.23”

DCDL supports an escaping mechanism for strings by using the \ character and defines a set of escapes for

characters that are not typically visible in ASCII text.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 29

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

In general, any character used in a string that can be interpreted as part of the syntax of the DCDL command,
must be escaped. For example, to retain the double quotes within the following string, they must be preceded

by the escape character:

history “File created by \"dcdl_writer\
DCDL supports the following pre-defined escapes also:

\n to indicate a newline
\r to indicate a carriage return
\t to indicate a tab

\v to indicate a vertical tab

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

30

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

3.3.5 Design References

Many DCDL commands reference design objects through keywords, keyword values, and positional param-
eters. This section describes referencing design objects.

3.3.5.1 Object Types

The DCDL commands that are associated with design objects, require that the type of these objects be iden-
tified. There exists logical, constraint, and physical object types.

3.3.5.1.1 Logical Design Object Types
Logical design objects are identified by the use keywords that specify the following:

pin: representing terminal point(s) where an interconnect structure makes electrical contact with the
fixed structures of a cell instance; or the conceptual point(s) where a net connects to a lower level in
the design hierarchy.

port: representing conceptual point(s) at which a cell or a hierarchical design unit makes its inter-
face available to higher levels in the design hierarchy.

net representing an electrical connection between pins or ports in a design.
cell: representing functional design unit(s) (typically found in a library).
instance or instancegepresenting reference(s) to a cell(s) within a design.

library: representing a collection of circuit functions (typically cells), implemented in a particular
technology, that are used to create a design.

Some EDA tools do not differentiate pins from ports and may combine those two types into one.

*** \We probably need to add direction options for ports and pins (in, out, inout). This will make wildcard-
ing stronger and make embedded scripts useful. ***

3.3.5.1.2 Constraint Object Types
Constraint objects are identified by the use of the following keyword within DCDL commands:

-waveform representing an ideal waveform that is used as a reference point for other commands.
Constraint objects are elements that do not appear in the design.
3.3.5.1.3 Physical Design Object Types
No physical object types are specified at this time. However, it is predicted that these object types will be
necessary for future constraint domains. For example, providing the distinction between physical and logi-
cal ports might be necessary.
3.3.5.2 Design Name Spaces
DCDL is designed to operate within any design flow. However, design object names usually must adhere to
the name space rules for particular design flows. For example, a Verilog design flow requires that design

objects follow the Verilog name space rules. Particular tools within a design flow might also restrict the
design name space.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 31

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

DCDL accommodates name spaces by providinglgsgn_name_spacemmand (refer to page 43). This
command provides builtin support for VHDL and Verilog name spaces. In additiodetign_name_space
command provides the means to specify custom name space rules.

3.3.5.3 Design Object Identifiers
The design object identifiers used as keyword values can take several forms:

Lists: one or more design objects surrounded by braces (refer to page 29). For example:
-ports {reset set}

Wildcards: shorthand, character matching technique (refer to the following sections). For example:
-pins {out* bus1[*]}

Pathnames fully qualified or relative pathnames. For example:
-pins {*/top/ul/*” “u12/in1"}

Fully qualified pathnames must use a leading hierarchy separator as specified by the
design_name_spao@ammand (or the default if this command is not used). In the preceding exam-
ple, the leading hierarchy character is /.

Relative pathnames are specified with respect to the current scope of the design as specified using
thecurrent_scopeommand (refer to page 63). In the preceding examydl2must be in the current
scope. If referencing a design object in a higher-level scope, a fully qualified pathname must be
specified.

All pathnames must be surrounded by double quotes.
3.3.5.4 Bit Representation

Thedesign_name_spacemmand can be used to change bit and bit range characters. By default the [] (left
and right square brackets) are used to indicate individual bits of bundled pin, ports, or nets. For example:

MemData[8]
By default, a colon is used to indicate a bit range. For example:
MemData[5:31]

If a bus name is provided without a bit or bit range indication, the command applies to the entire bus. For
example, the following command specifies an external load value for all the bits of Merbata

pin_capacitance -ports {MemData} 0.01
3.3.5.5 Wildcards

In order to provide shorthand access to multiple logical design objects, DCDL provides limited wildcarding
using the * (asterisk) and ? (question mark) characters. Wildcarding can only be used to reference design
objects and only in the following manner:

Character sequence matchingwildcarding zero or more characters. For example:

pin_capacitance -ports {in*} 0.01
pin_capacitance -ports {*_out*} 0.02
pin_capacitance -ports {*} 0.002

Copyright © 1999-2000 Accellera. All rights reserved.
32 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

In the preceding examples, thert_capacitanceommand is applied in three ways: all ports whose
name starts witin, all ports whose name containsut, and all ports (represented by the wildcard
alone).

If the * wildcard characters match a base bus name, all the bits of the bus are matched. If the bus is
namedbus_1thenbus_1*orbus_1[*] match all bits of the busbus_1[7:*] is not allowed.

Next character matching Wildcarding exactly one character. For example:
pin_capacitance in? 0.110

In the preceding exampl®? would matchin and one other character (for examiplg in2, in3).
But, there would be no match foritself orin and 2 or more characters (for exampl0, in11,
in12).

Many DCDL commands only operate on certain design objects or objects at certain design levels. For these
commands, wildcarding only matches the appropriate design objects and either silently ignores any other
matches or issues an appropriate message. For exammlataheequired_timeommand only applies to

output or bi-directional ports or pins. Therefore, any input ports or pins that match a wildcard would be
ignored. Thalriver_cellcommand can only be applied to top-level ports, so any attempt to set this con-
straint at a lower level port causes an error.

Wildcarding does not match through hierarchy. The hierarchy delimiter stops the matching process.
When a wildcard is encountered it is expanded at that point and applied to the constraints at that time.
*** Might need to allow bus bit matching for IP parameterization. For example addr[5:*] ***

3.3.6 Command Ordering

Commands can appear in any order in an ASCII file, any number of times. However, DCDL uses a “describe
before using” model - meaning that any command that depends on or is affected by another command
implies an order of appearance. For example, in order to use a waveform description in a command, that
waveform must be defined first.

The ordering of keywords, keyword values, and positional parameters is not pre-defined. While keywords,
keyword values, and positional parameters are documented in a certain order in this specification, their posi-
tions are interchangeable. However, the command name must always appear first and keywords and associ-
ated keyword values must be paired. For example, it is not legal to place a positional parameter after a
keyword that expects a keyword value.

Precedence rules can impose command ordering effects (refer to page 37).
3.3.6.1 Command Ordering Examples
The following examples show correct and incorrect ordering of command words.
constant 0 -ports {grnd};#Correct. Positional argument first.
constant -ports {grnd} O;#Correct. Positional argument last.
constant -ports O;#Incorrect. No keyword value for -ports

clock -waveform -rise mstr -ports {in1};#Incorrect. -waveform mstr
#is incorrectly placed after -ports

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 33

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

3.3.7 Constraint Values

DCDL commands specify constraint values using keyword values and/or positional parameters. Constraint
values can be comprised of characters, strings, positive/negative real and integer numbers, and identifiers - or
lists of those elements. These values are either explicitly expressed in a command, left undefined, assigned
default values, or are implicitly assigned via precedence rules. The precedence rules govern how commands
interact.

Constraint values are explicitly assigned by the use of commands. Some of these commands allow unset-
ting, or resetting existing constraint values, merging multiple constraint values, and the specification of one
or multiple values for the constraint (value slots).

The following subsections discuss each of the preceding aspects of constraint values.

3.3.7.1 Undefined Constraint Values

All constraints are undefined until a value is provided. After an application reads in all the specified DCDL
commands, some constraints can still be left undefined. Particular DCDL commands assign a value to con-

straints that are left undefined. These assignments are documented within the appropriate command descrip-
tion.

Copyright © 1999-2000 Accellera. All rights reserved.
34 This is an unapproved standards draft, subject to change.

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

3.3.7.2 Default Constraint Values

Default constraint values are assigned by the following methods:

10

15

20

25

30

35

40

45

50

Keyword defaults. Many DCDL commands apply keyword and/or keyword value defaults for

optional arguments that are not specified. These assignments are documented within the appropriate
command description. The defaults cannot be changed by the designer, except by explicitly specify-
ing the desired keyword and keyword value pairs.

For example, in thdata_arrival_timecommand there exists several optional keyword=arly,
-late, -rise, fall, -lead,and-trail. Without these options, the command could look like the follow-
ing:

data_arrival_time -waveform sys_clk -ports {inl in2} 5.0

Without the options, DCDL assumes both early and late analysis and both rise and fall transitions.
The leading edge is also assumdddg). If this was not the desired effect, the designer must specify
the keywords to change this behavior.

Positional parameter defaults The designer can set default values for positional parameters in
DCDL commands that contain the optiondg¢faultkeyword. These default values apply to each
matching command in the DCDL input until an explicit value is applied.

A default can only be assigned to a particular command - not a specific design object. Therefore, if
-defaultis used, no design objects can be referenced in that command. For commands that allow
specification of multiple design object types, thefaultoption allows the specification of one

object type. This means that there must be separate commands for each object type.

For example, the following command allows default specification of a constraint value on both pins
and ports. In order to specify default values for both pins and ports, two commands are required:

slew_limit -pins 1.34
slew_limit -ports 1.68

For a discussion about design object types, refer to page 31.

Explicit defaults are persistent - they are applied unless unset or explicitly changed. This allows
defaults to be preserved throughout a design flow.

Meta defaults. DCDL does define a few commands that assume default values if none are specified

- meta defaults. These types of commands are equivalent to setting the default for the command
using default without explicitly specifying the command. These commands require default values

to perform analysis correctly and are clearly noted in the appropriate command reference documen-
tation.

*** Default causes some syntax havoc, because now the reqpwed and/or pinsare no longer
required. Also, the default value could be a list. Error? ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 35

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

3.3.7.3 Unsetting and Resetting Constraint Values

Unsetting and resetting actions are necessary to override any explicit defaults. Unsetting and resetting
actions are not declarative (like the rest of DCDL) - but are included in this standard out of practicality. It is

recognized that most tools supporting DCDL will need to unset and reset values and thus a standard mecha-

nism for accomplishing that task is desirable.

A subset of DCDL commands allow their values to be unset or reset. This is accomplished by the use of
optional unsetand resetkeywords. Unsetting explicitly returns a particular command value to undefined.
Resetting explicitly returns a particular command value to its default values (if it had any). A command can
either be unset or reset, but not both.

For example, this command unsets its value:

slew_limit -ports {inA inB} -unset
The preceding command specifies that the slew limit on patandinB are undefined.
This command resets its value:

slew_limit -pins {int1 int2} -reset

The preceding command specifies that the slew limit on pins intl and int2 are *** infinite? *** and that the
optional keyword values (not specified in this example) should be applied.

*** These options cause syntax trouble, because the required positional parameter (always required) is no
longer required and potentially required keywords lii@rtor {in are not required either. So, you could
have something likelew_limit -reset? In this case, we need to object type argument,di&iault?***

*** The DC-WG is evaluating whether or not to include unset and reset. Therefore, the command reference
pages do reflect this ability at this time. ***

3.3.7.4 Constraint Value Slots
Several DCDL commands contain value slots. Value slots allow the specification of multiple values for a

constraint. For example, tliata_arrival_timehas four value slots:

the early rise time
the late rise time
the early fall time
the late fall time

Another example, theulti_cycle_pattcommand has two value slots:
the early cycle offset value
the late cycle offset value

Commands that utilize value slots allow the specification of individual slot values or the specification of one
value that applies to all the slots.

Copyright © 1999-2000 Accellera. All rights reserved.
36 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

3.3.7.4.1 Value Slot Placeholders

Commands that utilize value slots can hold the place of one or more of the existing values by using a place-
holder represented by * (an asterisk). For example, commands that allow the specificatioly, cate,
-rise, and fall can specify placeholders for 1 to 4 of the values:

data_arrival_time \
-waveform master_clk -lead -ports \
restart { 6.0 7.0 * *}

In the preceding example, the early rise and late rise values are specified as 6.0 and 7.0. The early fall and
late fall values are represented with placeholders, meaning that these values should use the previous values
assigned (if any).

Placeholders are only allowed in value slots. For example, a placeholder cannot be used for a command that
expects a single value:

borrow_limit *; #Incorrect
3.3.8 Precedence Rules

The precedence rules provide information about the relationship between explicitly defined constraints,
defaults, resetting and unsetting constraints, and value slot placeholders.

The general DCDL precedence rules are the following:

1) Matchingl explicit commands the last command read overrides the preceding command.

2) Matching default commands the last default command read overrides the preceding com-
mand.

3) Reset matches explicit command will eliminate the effect of the explicit command but not
the effect of any matching default command. This action occurs when the reset command is
read, so any matching command after the reset is not affected.

4) Unset matches explicit command will eliminate the effect of the expliciand default com-
mand. This action occurs when the unset command is read, so any matching command after the
unset is not affected. However, any matching default command that is read after this unset will
not take affect.

5) Placeholders are not affected by the precedence rules, as they indicated that nothing is speci-
fied for a particular value slot.

6) Value slots the preceding precedence rules apply independently to each value slot.

7) Meta defaults: for the few commands for which DCDL implies values, unset commands that
match explicit commands return the commands to the DCDL default value instead of setting
the value to undefined. Refer to page 35 for more information about meta defaults.

The preceding rules are considered universal to DCDL. In addition to these general types of rules, there are
constraint-domain-specific precedence rules. The domain-specific precedence rules arbitrate between simi-
lar constraints that have the same purpose (such as driver cell type, driver strength, and input slew), or
between constraints that overlap in their effect (such as a default slew for all internal pins and a default slew
specific to the leaf pins in a particular clock tree). These concepts are discussed in the domain theory por-
tions of this document.

IMatching means that the command name, keyword values, and design objects (if any) are exactly the same

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 37

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

3.3.8.1 Precedence Rule Examples
*** An example of how each rule works will be included here. ***
3.3.9 Constraint Scoping

DCDL commands apply to default or explicit scopes within the design. Some commands assume a default
scope, such as the top level of the design. These defaults are discussed in the command reference page. The
scope can be explicitly set using therent_scopeommand (refer to page 63).

There exists a small set of commands whose values remain in affect (and could therefore affect other com-
mands) for the entire DCDL file (and potentially any included file) until another matching command is

found. These types of command are called file scope commands. If a command is a file scope command, it
will be indicated as such in the command reference page.

For a general overview of scoping theory, refer to page 61.
3.3.10 Constraint Inheritance

DCDL does not providgenerallanguage rules for inheritance. Therefore, constraints set at one level of a
hierarchy do not automatically apply to lower levels of the design. There are exceptions to this however:

Specific commandsCommands that apply to specific cells or instances within a design often can
impose inherited constraint values on lower-levels of the cell or instance hierarchy (unless a lower
level command applies a more specific value for the constraint). Several operating condition com-
mands fall into this category. Also, some commands allow inheritance because of efficiency reasons.
Commands that allow inheritance are discussed in their particular domain theory and specific com-
mand page sections.

The following commands allow inheritance:

clock_mode
operating_point
operating_process
operating_range
operating_temperature
operating_voltage
temperature_regime
voltage_regime

Emulated inheritance. DCDL does provide a set of commands that do allow emulation of inherit-
ance if that behavior is desiredhclude current_scopédrefer to section&Jniversal Commands and
FeaturesandScoping Commandsr information about these commands) and wildcarding (refer to
page 32).

In addition, the preceding DCDL commands can be coupled with tool-specific commands (such as
those that return design objects) and extension languages to further automate constraint inheritance
(refer to page 40).

3.3.11 Command Name Collisions
Because DCDL commands were created based on a common taxonomy of present and future constraint

domains, the potential exists for DCDL command names colliding with proprietary command names in
EDA tools.

Copyright © 1999-2000 Accellera. All rights reserved.
38 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

It is the responsibility of the EDA tool vendor that supports DCDL to handle naming collisions between the
language and the tool command language.

3.3.12 Message Handling
DCDL defines several syntactic and semantic conditions that are to be noted as an error or warning. It is the
responsibility of the EDA tool vendor to define levels of messaging severity and the behavior of the tool

when these messages assert.

*** The golden parser can be used to check syntax of a file. ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 39

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

3.4 DCDL and Extension Languages
[Informative]

*** A high-level discussion of pure, mixed, and interspersed (ie variables in DCDL) models and a brief
overview of parsing & interpreter concepts will be added here. ***

3.4.1 Tcl Interoperability for Script Writers
If DCDL is to be embedded into a Tcl environment, there are several potential interoperability issues:

Comments Tcl parses some comments and can return errors if comment characters are located in
places that Tcl does not consider as the starting character of a command. For example, this code
causes an error in Tcl:

if {0==01}{
#if{0==1}{
puts mistake

}

DCDL follows more straight-forward rules (refer to page 28) and the preceding example would not
create an error.

Wildcarding . DCDL greatly limits the definition of wildcards in order to provide a useful balance
between simplicity and efficiency (refer to page 32). Tcl has a much broader wildcarding ability.
Therefore, scripts should limit wildcarding to the DCDL subset.

Include versus sourceDCDL defines amcludecommand that is similar to the Tszurcecom-
mand with a few exceptions. If thimline option is used, the behavioriatludematchesource
Refer to page 55 for details.

Escapes For thedesign_name_spa@®mmand, DCDL provides an escape character and the
escaped tab and newline charactdrar(ti\n). Refer to page 43 for details.

Spaces in pathnames DCDL double quotes specifications of pathnames in commands such as
include When such commands appear within Tcl scripts, the double quotes might not be present.

3.4.2 Tcl Interoperability for Application Developers

Application developers that work within a Tcl environment, need to understand interactions with DCDL.
These interactions include accounting for:

Command namespaceApplications need to account for the DCDL command names in order to
prevent naming collisions. For example, Tcl 8.0 (and later versions) provigsiaspaceonstruct
to prevent collisions.

Lists. DCDL strictly defines lists as arguments (refer to page 29) by using braces {}, even when a
list contains only one item. A Tcl list is a major element of that language. Therefore the concepts
and usage of lists are much more complex in Tcl versus DCDL.

Copyright © 1999-2000 Accellera. All rights reserved.
40 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

4. Universal Commands and Features
This section describes commands and features that can be applied within all the constraint domains.

It is a good practice to specify a set of universal commands for application within a DCDL file and for indi-
vidual blocks of a design. These commands are typically placed at the top of a DCDL file, for convenient
access.

The universal commands follow the general rule within DCDL that states that for any command that
depends on or is affected by another command - that other command must be specified first (refer to
page 33). However, the majority of the universal command are not dependent on nor do they affect other
commands.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 41

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

4.1 constant
°

The constantcommand specifies a continuous value for an input, output, or inout pin or port.
4.1.1 Usage
constant
(-ports port_list | pins pin_list)0| 1
4.1.2 Required Keywords
-ports port_list

The portskeyword specifies the port or ports to which the constant applies. Hithis er pins
(or both) must be specified.

-pins pin_list

The pinskeyword specifies the pin or pins to which the constant applies. Efghgser ins
(or both) must be specified.

4.1.3 Optional Keywords
None.
4.1.4 Positional Parameters
0]1
The constant value can be a one or a zero. Any other value will result in an error.
4.1.5 Examples

constant -ports {grnd} O
constant -pins {vcc pwrl pwr2} 1

4.1.6 Semantics

4.1.7 Related Commands

The following commands are related to tomstantcommand:

Copyright © 1999-2000 Accellera. All rights reserved.
42 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

4.2 design_name_space

Thedesign_name_spa@®mmand either specifies a predefined name space for design objects or a custom

name space.
4.2.1 Usage

design_name_space

-verilog (“1995” |*2000*)| vhdl (* 1987 *|* 1993 *|“2000") |

-edif (200 |“300“|“400")|
-custom(-characters “ [character_sgt” |“[character_rangé” |
“[character_set character_rarjge
“[character_range character_Fét)

(-case_sensitive | -case_insensitiye

(-character_escape “escapecharactet |

-string_escape_start “escapecharactef [-string_escape_end ‘escapecharactef])

(-escape_type include | excludp

(-bus_range_separator_up ‘index charactef |“ index identifier”)
(-bus_range_separator_down ‘index charactef |“ index identifier”)

(-bus_bit_left* bit_charactet)
(-bus_bit right “ bit_charactet)
(-hierarchy_delimiter “ delimiter_charactef)

4.2.2 Required Keywords

One of the following keywords shall be specified:

-verilog (1995| 2000)

Acellera
0.3.7 (7/25/00)

The verilog keyword indicates that identifiers in the DCDL file adhere to the name space rules for
Verilog, as defined by IEEE 1364. The IEEE version (year of approval) of must be specified in case
there are any naming differences in future standards. As of version 0.3.7 of the DCDL standard,
there were no such naming differences between Verilog versions.

Table 4-1 describes the main elements of the Verilog name space.

Rule Definition

Legal characters

a-z,A-Z,0-9, %, and _

Case Case-sensitive

Escape Yes with \ (backslash) - whitespace terminates the escape
Bus index : (colon)

Bus bit [1 (square brackets)

Hierarchy delimiter

. (period)

Table 4-1—Verilog Name Space Overview

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 43

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

-vhdl (1987 | 1993 2000)

DRAFT STANDARD FOR DCDL

The vhdl keyword indicates that the identifiers in the DCDL file adhere to the name space rules for
VHDL, as defined by IEEE 1076. The IEEE version (year of approval) of must be specified. There
are naming differences between the 1987 and 1993 versions and there could be naming changes in
future versions of VHDL.

Table 4-2 describes the main elements of the VHDL name space.

Rule

Definition

Legal characters

a-z, A-Z,0-9,and _

Case Case-insensitive (unless the name is escamdyin VHDL93.
Escape Yes with enclosing \ \ (backslash backslashly-in VHDL93
Bus index to or downto

Bus bit () (parentheses)

Hierarchy delimiter

: (colon) returned string from ‘PATH_NAME

Table 4-2—VHDL Name Space Overview

-edif (“200*|“300“|“400")

The edif keyword indicates that the identifiers in the DCDL file adhere to the name space rules for
EDIF, as defined by IEC and EN 61690. The EDIF version must be specified in case there are any
naming differences in future standards.

Table 4-3 describes the main elements of the EDIF name space.

Rule

Definition

Legal characters

a-z, A-Z, 0-9 (first character must be alpha - if not use &)

Case Case-insensitive
Escape None
Bus index None
Bus bit None
Hierarchy delimiter None

Table 4-3—EDIF Name Space Overview

-custom(-characters “ [character_sdt” |“[character_rangé” |“[character_set character_rafjde

44

“[character_range character_E&t)

(-case_sensitive | -case_insensitive

(-character_escape ‘escapecharactef |
-string_escape_start “escapecharactef [-string_escape_end ‘escapecharactef |)
(-escape_type include | exclude
(-bus_index “index charactef |* index identifier”)
(-bus_bit_left “ bit_character')

Copyright © 1999-2000 Accellera. All rights reserved.

This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

(-bus_bit right “ bit_charactet)
(-hierarchy_delimiter “ delimiter_charactef)

The customkeyword defines the custom name space rules. This keyword allows for a programatic
solution to custom design flows with respect to name spaces.

Required keywords foicustom

-characters “ [character_sdt” |“[character_rangé” |“[character_set character_rarjge
“[character_range character_Fét

The characterskeyword specifies one or more characters that are allowed in identifiers. A range of
characters can be specified as well as multiple character sets. Any combination of ranges and charac-

ter sets (a character set can contain 1 character) can be specified. For example, to specify all charac-
ters of the alphabet, some special characters (_ and @), and numbers:

-characters “[a-zA-Z_@0-9]”
-case_sensitivé¢-case_insensitive

The case_sensitiver -case_insensitivkeywords specify whether the identifiers are differentiated
by case ¢ensitivg or whether identifiers are case insensitinednsitive.

-character_escape ‘escapecharactef

The character_escapkeyword specifies the method of specifying an escape character to escape the
character that follows. The escaping ends after the first character that follows the escape character.

-string_escape_start “escapecharactef [-string_escape_end ‘escapecharactet]

The string_escape_stadnd-string_escape_enkdeywords specify a beginning and an optional end
character to indicate that the identifier string between these characters should be escaped.

-escape_type includ¢exclude

The -escape_typkeyword specifies whether the escape character is included as part of the identifier
(include or not excludé.

-bus_range_separator_up ‘index charactef |“ index identifier”
-bus_range_separator_down ‘index _charactef |“ index identifier”

The bus_range_separator_tgnd-bus_range_separator_dovikeywords define the character or
identifier that separates the bus MSB and LSB values. For example, a colon is the bus index for:
bus_a[0:31] . The identifierdo anddowntoare the bus indices fobus_b(0 to 7)

bus_c(7 downto 0) . If the separator character or identifier is the same for up and down, that
character or identifier is specified for both of the keywords. For example, if colon is used for both up
and down:

-bus_range_separator_up “:
-bus_range_separator_down “:”

-bus_bit_left “ bit_charactef)
-bus_bit_right“ bit_charactef)

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 45

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

The bus_bit_leftand-bus_bit_rightkeywords specify the pair of characters that delimit single or
multiple bus bits. These characters separate the bus identifier and the bits. For example, left and right
brackets surround the bus bit 1:

bus_b[1]
-hierarchy_delimiter “ delimiter_charactef

The -hierarchy_delimitekeyword specifies the character that separates levels of hierarchy within
pathnames.

4.2.3 Optional Keywords
None.
4.2.4 Positional Parameters

None.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 46

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

4.2.5 Examples

design_name_space -custom -characters “[a-zA-Z0-9]” -case_sensitive \
-character_escape “\\" -bus_range_separator_up “:" \
-bus_range_separator_down “” -bus_bit_left “[* -bus_bit_right “]” \
-hierarchy_delimiter “/”

The preceding example shows the design name space rules that match SDF. The escape character must be
escaped (see page 29).

design_name_space -vhdl “1993”
design_name_space -verilog “2000”

The preceding examples show the specification of the VHDL 1993 and Verilog 2000 name spaces.
4.2.6 Semantics

Thedesign_name_spa@®mmand specifies what naming rules were followed for DCDL design object
identifiers. Refer to page 31 for information about DCDL design objects. If a particular tool chooses to not
support any of the predefined name spaces (Verilog, VHDL, and EDIF), the tool shall report an error if these
keywords are encountered.

If no design_name_spa@®mmand exists in the DCDL file, the Verilog name space, version 1995 is
assumed.

Thedesign_name_spackfinition applies to all design object identifiers in a DCDL file from the point that
the command exists in the file until anotdesign_name_spa@®mmand appears (known as a file scope
command - refer to page 38).

If new versions of the VHDL and Verilog standards exist before they are supported as keyword values in
DCDL, the user must work with the tool vendor for support or usextesd_dcdtommand. If the tool
does not support the version indicated, it shall report an error.

For custom design name space definitions, if a particular rule does not apply, the keyword value is left blank
(two double quotes without whitespace). For example, if the name space does not support an escaping mech-
anism:

-character_escape

The characterskeyword allows a small subset of regular expressions as defined by the POSIX 1003.2 stan-
dard. The eharacterkeyword can specify a range of characters that evaluate to single characters of a design
object string. This keyword does not express a pattern of characters to match, rather the set of characters
allowed in a design object identifier. The keyword value(s) that folbbvaractersmust be double quoted

and surrounded by square braces [] with no space separation between the ranges and/or characters. The
DCDL escape characters can be used in the keyword values (refer to page 29). In addition, the regular
expression notation of using the circumflex ” is also alloweccf@racters to indicate a set of characters

that are not allowed in a design object identifier. Here are some examples:

To specify a range of letters allowed:

-characters “[A-Za-z]"

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 47

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

To specify that all characters except the % and $ characters are allowed, the circumflex notation is used:
-characters “["%$]”

To specify a set of characters that include those that must be escaped:
-characters “[A-Za-z\]]"

In the preceding example, the right brace character must be escaped because it is also used to denote the reg-
ular expression (part of the command syntax).

For each keyword value that is a string (double quoted), the rules of DCDL strings apply (refer to page 29).
For example, if theescape_string_stakeyword value i, that character must be escaped also because it is
a reserved character. If tab is a keyword valuescape_string_endhe\t must be used:

design_name_space -custom -characters “[a-zA-Z0-9_]\
-case_sensitive -string_escape_start “\\” -string_escape_end “\t" \
-bus_range_separator_up “:” -bus_range_separator_down *“:" \

-bus_bit_left “(* -bus_bit_right)" -hierarchy_delimiter *“.
4.2.7 Related Commands
The following commands are related to tfesign_name_spao®mmand:

extend_dcdl
include

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 48

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

4.3 extend_dcdl
°

Theextend_dcdtommand provides a method to call non-standard DCDL commands.
4.3.1 Usage
extend_dcdl
commandidentifier [arguments “ argument text” |
4.3.2 Required Keywords
None.
4.3.3 Optional Keywords
-arguments “ argument text*

The -argumentskeyword specifies all the arguments to the extended command, surrounded by
required double quotes.

4.3.4 Positional Parameters
commandidentifier

Thecommand_identifigparameter provides a name for the extended command. A DCDL command
name can be used for this identifier.

The suffixDCDL__is reserved for use by the DC-WG within théend_dcdtommand. The
designer cannot use this suffix in t@mmand_identifieparameter.

4.3.5 Examples
extend_dcdl custom_cmd -arguments “-ports {p11 p14} 1.1063"

The preceding example shows a call to a non-standard commandccaliech_cmdhat associates the
valuel1.1063to thepllandpl4 ports.

extend_dcdl acme_include -arguments “/net/fish/includes/rf.txt”
The preceding example shows the use of a corporate aoffig_to call a custonmcludecommand.
4.3.6 Semantics
The main use for thextend_dcdtommand is to prototype new DCDL commands that might be included in
the next version of the specification. Secondarily, DCDL can be extended in order to support company-spe-
cific design flows or specific tools. This allows the designer to pass tool-specific commands to the tools that
understand them within the DCDL file.
The designer uses tlextend_dcdtommand at his or her own risk. There is the potential that downstream
tools will not understand the command or that the command will be included (not necessarily using the same

syntax or semantics) in future versions of the specification.

If a the tool that processes the DCDL file does not recognize the extended command, it shall be ignored.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 49

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

The extend_dcdtommand is persistent only to the scope in which it appears. This means that when the
designer writes out a DCDL file from an application, theéend_dcdtommand will appear within the file at

the location of the original module or instance, if that scope still exists. If the scope no longer exists, the
extend_dcdtommand will not appear in the output file. The actual location in the output file is not defined

by the standard, other than that defined by the preceding scope rules. For more information about scope,
refer to page 61.

*** Did not emulate theextensiorcommand from GCF in terms of including data, as that can be done with
the include command. This makedend_dcdtleaner. ***

4.3.7 Related Commands
The following commands are related to éxtend_dcdtommand:

include

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 50

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

4.4 functional_mode
°

Thefunctional_modeommand selects the state-dependent effects (or mode) for analysis of instances.
4.4.1 Usage
functional_mode
([-group_namegroup_identifier] /mode_namemode identifier) | (all | -default) instance_list
4.4.2 Required Keywords
Either:
-mode_namemode identifier

The mode_namé&eyword specifies the name of a mode as defined by the library. The optional
group name can also be specified to indicate a mode within a group.

Or:
-all

The all keyword specifies that all the modes in all the mode groups should be used for analysis.
-default

The defaultkeyword specifies that the default mode (as specified in the library) should be used for
analysis.

4.4.3 Optional Keywords
-group_namegroup_identifier

The group_nameeyword specifies a name for the group of modes specified either within a design
tool or a library. Grouping is a convenient method for activating and de-activating sets of modes.

4.4.4 Positional Parameters
instance_list

Theinstance_listspecifies a list of one or more instance names to which the active mode or modes
apply.

4.4.5 Examples

functional_mode -all {instl inst2}

The preceding example would make active all the modes in all mode groups defined for instéhard
inst2

functional_mode -group mode_grl {ul}

Copyright © 1999-2000 Accellera. All rights reserved.
51 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

The preceding example would make active all the modes in the grodg_grifor instanceul.
functional_mode -group mode_gr2 -mode_name write {ram1}

The preceding example would make activewh#e mode within the groupnode_grZor instancaaml All
the other modes imode_gr2avould become inactive unless anotharctional_mode&ommand explicitly
activated them.

4.4.6 Semantics

The behavior of complex blocks in a design will often be highly state-dependent. For example, the internal
operations performed by microprocessors and DSP cores can be radically different depending on the instruc-
tions they execute. Even a simple RAM will have different behavior depending on whether data is being
read or written.

Modes are a way to simplify the process of defining state-dependency by assigning a mnemonic label to
each of the states of a block, and using that label to specify valid combinations of states involving several
blocks. Each combination of states can have a label as well (a mode group), so that it is possible to define all
of the combinations up front within a cell library, and then perform an analysis for a particular combination
by simply setting the design mode usingfilnectional_modeommand.

While the library controls the legal values of thactional_modeommand, DCDL does define several
aspects of mode semantics:

Once a mode is set, it remains set from the point that the command exists in the file, until another
value for that mode appears in the file (known as a file scope command - refer to page 38)

Individual mode names, mode group names, and the names within mode groups must be unique.
However, two or more mode groups can contain alike mode names.

Modes can be unconditional or conditional. Conditional modes use conditional expressions. Condi-
tional and unconditional modes can be combined within mode groups.

Unconditional modes If thefunctional_modeommand is not used, all unconditional modes are
assumed to be active. If the unconditional mode is set in a mode group, all other unconditional
modes in the group become inactive. Setting the mode in one mode group has no affect on any other
mode groups.

Conditional modes If the functional_mode&ommand is not used, all conditional modes are

assumed active. The conditional mode is set if explicitly specified Byrkhtonal_modeom-

mand. If not explicitly set, the mode is set if the conditional expression associated with the mode
evaluates to true. Once one conditional mode in a mode group is set, all other modes in the group are
disabled. Setting the mode in one mode group has no affect on any other mode groups.

If a timing arc is governed by both an unconditional mode and a conditional mode, the arc is enabled
only if the mode is set and the conditional expression evaluates to true.

If a timing arc is controlled by multiple modes within a mode group, the arc is enabled if any one of
the modes is active. Timing arcs controlled by multiple mode groups must be enabled by a mode in
every one of those mode groups. For example, iRiWemode group contained modesd and

write and the second mode gro@#IP_ENABLEcontained modesn andoff, an arc that depended
onreadandonwould not be enabled if the active mode@IP_ENABLEwasoff.

*** Need to discuss the effect of ordering on mode interpretation. Also, need to add a methodology for case
analysis (design mode) - when in a mode - certain constraints apply. Can do this with another cmd, by scop-
ing of functional_modgor by adding options to the appropriate cmds. ***

Copyright © 1999-2000 Accellera. All rights reserved.
52 This is an unapproved standards draft, subject to change.

1

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

4.4.7 Related Commands

The following commands are related to thectional_modeommand:

operating_process

operating_range

operating_temperature
operating_voltage

units
voltage_regime

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

53

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

4.5 history
°

Thehistorycommand provides a placeholder for comments about the lineage of the DCDL file.
4.5.1 Usage
history
“ history_text”
4.5.2 Required Keywords
None.
4.5.3 Optional Keywords
None.
4.5.4 Positional Parameters
“ history text”

Thehistory_texican contain any non-reserved characters to indicate history information. The double
quotes are required.

4.5.5 Examples
history “Updated clock tree values on 12/25 by writer dcdl_write”
4.5.6 Semantics
The history command provides a means to document creation, changes, and any other relevant information

about the DCDL file. DCDL readers can parse the file and interpret the text dfitkmy command as
needed.

The historycommand is persistent only to the scope in which it appears. This means that when the designer
writes out a DCDL file from an application, threstory command will appear within the file at the location

of the original module or instance, if that scope still exists. If the scope no longer exististbe com-

mand will not appear in the output file. The actual location in the output file is not defined by the standard,
other than that defined by the preceding scope rules. Typicallfisterycommand will appear at the top of

the scope. For more information about scope, refer to page 61.

4.5.7 Related Commands
The following commands are related to thgtory command:

include
version

Copyright © 1999-2000 Accellera. All rights reserved.
54 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

4.6 include
°

Theincludecommand inserts DCDL commands from another file.
4.6.1 Usage
include
[-inline] * pathnameidentifier”
4.6.2 Required Keywords
None.
4.6.3 Optional Keywords
-inline

The 4nline keyword indicates that any file scope command (refer to page 38) in the included file
will be in affect for the parent file, until another file scope command is encountered.

For exampleunitsis a file scope command that applies to an entire DCDL file until anatfter
command is encountered. If the included file contaimsi command andnline is specified, the
unitscommand value within the included file remains in affect for the parent DCDL file until
anothemunitscommand is encountered.

If -inline is not specified, file scope commands are only in affect for the included file. At the end of
the included file, the parent file scope commands resume control.
4.6.4 Positional Parameters

pathnameidentifier

Thepathname_identifiespecifies the pathname to the file to be included. This identifier can use any
non-reserved character. Tpathname_identifiemust specify a path relative to the parent (or call-
ing) DCDL file for portability. Full pathnames should not be used.

4.6.5 Examples

include “designl/common_cnstr.dcdl”
include -inline “design2/com_cstr.dcdl”

4.6.6 Semantics

The include command is treated as including multiple physical files into a single file. At the location in the
DCDL file that theincludecommand exists, DCDL commands from the pathname specified are inserted. If
the pathname does not exist or the file cannot be opened, an error shall be issued. The included DCDL must
be syntactically and semantically legal for the location that it is being inserted.

Including files is a means to share DCDL commands and to assemble multiple block constraints from sepa-
rate sources into one file. For example, file scope DCDL commands suits@anddesign_name_space
can be specified once and included in many, individual DCDL files.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 55

10

15

20

25

30

35

40

45

50

Acellera

0.3.7 (7/25/00)

Recursive includes are supported by making sure thgtaleame_identifieis always relative to the parent

DCDL file.

The DCDL standard does not specify how a tool processes or writes out the include command. However, it is

DRAFT STANDARD FOR DCDL

assumed that the include structure matches the current design hierarchy.

4.6.7 Related Commands

The following commands are related to theludecommand:

56

extend_dcdl

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

4.7 units
°

Theunitscommand specifies a quantity in terms of a multiplier for time, capacitance, resistance, voltage,
and temperature values.

4.7.1 Usage
units

[-time multiplier] [-capacitancemultiplier] [-resistancemultiplier] [-voltage multiplier]
[-temperature multiplier] [-inductance multiplier]

4.7.2 Required Keywords
None.

4.7.3 Optional Keywords
-time multiplier

The timekeyword specifies a multiplier for all command values that express time.

The base unit is seconds.
-capacitance multiplier

The capacitancekeyword specifies a multiplier for all command values that express capacitance.

The base unit is farads.
-resistance multiplier

The +esistancekeyword specifies a multiplier for all command values that express resistance.

The base unit is ohms.
-voltage multiplier

The voltagekeyword specifies a multiplier for all command values that express voltage.

The base unit is volts.
-temperature multiplier

The temperaturekeyword specifies a multiplier for all command values that express temperature.
Temperature refers to junction temperature.

The base unit is celsius.
-inductance multiplier

The inductancekeyword specifies a multiplier for all command values that express inductance.

The base unit is henries.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 57

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

Themultiplier specifies a number that shall be used to scale the base unit. If an optional keyword is speci-
fied, the multiplier for that keyword is required. Scientific notation is allowed.

Default: 1
4.7.4 Positional Parameters
None.
4.7.5 Examples
units -time 1.0E-9 -capacitance 1.0E-12

The preceding example sets the following units: time in nanoseconds and capacitance in pico farads. All
other units are set to the default base units.

units -time 1.0E-12
units -voltage 1.0E-3

The preceding example shows the use of individual units commands to specify time in picoseconds and volt-
age in milli-volts. All other units are set to the default base units.

4.7.6 Semantics

The units defined by this command are either base or derived units from the International System of Units
standard.

Certain keyword values of commands specify a hnumber value and that number is a quantity with some unit
type. Theunitscommand affects these types of values from the point that the command exists in the file,
until anothemunitscommand appears (known as a file scope command - refer to page 38)nifgskcem-

mand is not specified, all affected commands will use the default values.

Theunitscommand follows a similar concept as value slots (refer page 36) in that the command can set one
value, or several values at the same time. For exampilleitegcommand can set only capacitance and later in

a file, anotheunitscommand can set time and leave capacitance alone.

4.7.7 Related Commands

The following commands are related to thets command:

include

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 58

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

4.8 version
°

Theversioncommand identifies the DCDL specification version to which the commands that follow refer-
ence.

4.8.1 Usage
version

version_identifier
4.8.2 Required Keywords
None.
4.8.3 Optional Keywords
None.
4.8.4 Positional Parameters
version_identifier

Theversion_identifieprovides the DCDL specification version number. ¥éesion_identifiecan
only bel.0and must be surrounded by quotes.

Default: “1.0”
4.8.5 Examples
version “1.0”
This example shows that the DCDL specification version utilized is 1.0.
4.8.6 Semantics

DCDL readers can utilize theersioncommand to adapt to any differences between DCDL specification
versions. DCDL readers might allow specification of one or more versions.

Theversioncommand must appear in a DCDL description before any version-dependent command is speci-
fied. Theversiondefinition applies to all commands in a DCDL description from the point that the command
exists in the file until anotherersioncommand appears (known as a file scope command - refer to page 38).
4.8.7 Related Commands

The following commands are related to tfeesioncommand:

history

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 59

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

60

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

5. Scoping Commands

This section describes the method used to indicate the location within a design to which the DCDL com-
mands that follow apply.

5.1 Scoping Theory
In the context of DCDL scoping refers to the following aspects of the language:

Design scopethe region or level of the design to which the DCDL commands apply. DCDL
assumes that there exists a top level of a design and that zero or more designs, blocks, or instances
exist “below” that top level. This is set using therent_scopeommand (refer to page 63).

File scope the region within the actual DCDL file. A file can be logicaa file with all includes
expanded, or a physical file - individual file with includes unexpanded. DCDL contains several file
scope commands whose definition applies to all design object identifiers in a DCDL file from the
point that the command exists in the file until the command appears again.

Figure 3-2 shows the general DCDL scoping concept.
DCDL File

current_scope -top

,units -capacitance 1.0E-12 1
port_capacitance -ports {a b} 0.2—{| —la / Q%

File .-

Scope '
Cmd. . _—
E current_scope -instance /block1 - | |
“.units -time 1.0E-9 1 ¢
port_capacitance -ports {a b} 0.3——®»_|p blockl of- | g Dlockz fi—

Figure 3-2 General DCDL Scoping Concept
Figure 3-2 presents the following concepts through example:

The first design scope is set to the top level, which &his is the default if theurrent_scopeom-
mand is not used. All non-file scope DCDL commands that follow apply to this block until the scope
is changed.

The file scope commanthitssets the capacitance units to picofarads. Any DCDL command expect-
ing a capacitance unit will use picofarads until anotimeits command is found in the file that sets
capacitance to another unit. In this example, loads of .2 picofarads are specified fmapdhs

on/. The scope is changed to the lower-level block calietkland the units are changed to nano-
farads. In this example, an external load of .3 nanofarads is specified fax aodis of blockl

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 61

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

The file scope concept takes on special meaning when usirigdliele command. By default, thimclude
command assumes that any file scope commands in the included file are in effect only within that included
file - in essence a new scope is created. If théne keyword is specified, any file scope command in the
parent file is in effect for the included file, until the included file specifies a file scope command - in effect
“inlining” the include file as if it was physically part of the parent file. Figure 3-3 presents this concept.

units -capacitance 1E—\Z§_ units -capacitance 15_5\

include -inline “c1” include “c1”

T T o > T T T T T T T 1
| I

|
| Port_capacitance -ports {bﬁ | port_capacitance -ports {b}
| units -capacitance 1E-9 i | units -capacitance 1E- |
| port_capacitance -ports {c}.).,_‘ 7 | |

l

| port_capacitance -ports {c} ,1

- - — — — i(Lo o
) port_capacitance -ports {a} 0.p
port_capacitance -ports {a} O|p

Inline Behavior Default Behavior

Figure 3-3 File Scopes and Includes
Figure 3-3 presents the following concepts through example:

Inline behavior. Theclfile is included using thenline option. The capacitance units for the parent
file is picofarads. Thus, the external load applied to jpog in picofarads. However, the units for
capacitance are set to nanofarads in the included file, so any external loadcditmia the parent
file uses nanofarads - until anothmits -capacitanceommand is specified.

Default behavior. Thecl file is included without theinline option. The external load units for port

b is whatever it was set to previously todd. If no units were specified, the default capacitance unit
is 1 farad. Thaunitscommand irnc1 sets the capacitance units to nanofarads. Thus the external load
for portcis set to .1 nanofarads. However, the external load ong@tset to 0.5 picofarads, the
units set by the parent file.

Refer to page 55 for details about theludecommand.
A concept related to scope is the application of DCDL commands to a cell versus an instance. If a command

is applied to a cell, all instances of that cell in the design receive the command value. If a command is
applied to an instance, only that instance receives the command value.

Copyright © 1999-2000 Accellera. All rights reserved.
62 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

5.2 current_scope
()

The current_scopecommand establishes the design level where all the referenced design objects can be
found by subsequent commands.

5.2.1 Usage
current_scope
-instanceinstance identifier | eell cell_identifier | top | -up level unsigned_number
5.2.2 Required Keywords
One of the following:
-instanceinstance identifier

The instancekeyword provides the instance name that is considered the root of the hierarchy for all
design object searches. Only one instance name can be specified.

-cell cell_identifier

The cell keyword provides the cell name that is considered the root of the hierarchy for all design
object searches. Only one cell name can be specified.

For theinstance_identifieandcell_identifierconstructs, pathnames can be used (refer to page 32).
If whitespace is used for these constructs, the identifier must be surrounded by double quotes.

-top

The top keyword provides a means to specify that the top of the design is the root of the hierarchy
for all design object searches.

-up level unsigned_number

The -upkeyword provides a method to move up a specified number of levels in the hierarchy relative
to the current position. The level is indicated using a positive integer.

5.2.3 Optional Keywords

None.

5.2.4 Positional Parameters

None.

5.2.5 Examples
current_scope -instance U2
current_scope -instance “/top/u2/my design”
current_scope -cell mux32

current_scope -top
current_scope -up 2

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 63

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

5.2.6 Semantics
If the current_scopeommand is not used, the scope defaults to the top level of the design.

If the specified instance or cell does not exist, an error shall be issueg.dpecifies a number of levels that
takes the level past the top of the design, an error shall be issued.

5.2.7 Related Commands

The following commands are related to tugrent_scopeommand:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 64

10

15

20

25

30

35

40

45

50

6. Operating Conditions

This section presents the set of commands used to specify the conditions in which a design or portion of a
design will operate.

6.1 Operating Conditions Theory

In general, the library defines the legal operating conditions, the effects on the cells, and the valid user-spec-
ified parameters. The role of operating condition commands in DCDL is to communicate the value of any
parameter that is available in the library. These parameters (or variables) fall into two categories:

Named operating points predefined by the library vendor identified with a label.

Explicit : operating point values (numbers) provided via the DCDL command and used in the library
in an operating condition equation.

DCDL provides the flexibility to specify both named and explicit values in individual commands, or all at
once in a single command. In general, the commands provide a means to select a set of characterization data
and then specify how that data should be used. However, the library always arbitrates the legal keyword and
keyword values.

6.1.1 Correlation and Operating Conditions

Correlation specifies whether early and late delays and slews should be computed assuming that variations
in operating conditions are on the chip (correlated) or between chips (uncorrelated).

DCDL defines separate commands that specify operating process, voltage, and temperature. These com-
mands contain process point optioriseét -nominal -worst, -min_best-typ_best-max_best-min_worst
-typ_worst and max_worsy that indicate which operating point is being defined, and how that operating
point should be interpreted:

For an uncorrelated analysis using just the operating extremesbbstand worstoperating
points should be specified.

For an analysis that considers correlated variations on-chip under best case conditions, both
-min_bestand max_besbperating points should be specified.

For an analysis that considers correlated variations on-chip under worst case conditions, both
-min_worstand max_worsbperating points should be specified.

For an analysis that simultaneously considers correlated variations on-chip under best case condi-
tions, and correlated variations on-chip under worst case conditigins best-max_best
-min_worst and max_worsbperating points should be specified.

For delay calculation to generate SDF min:typ:max tripletspminal -typ_bestor typ_worst
operating point can be specified.

6.1.2 Regimes

*** To be added. Discussion of voltage and temperature regimes. Regimes are also known as islands. Physi-
cal relationships, concept of min,typ,max and the relationship to base voltages to be added.***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 65

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

6.1.3 Operating Condition Command Precedence

In general, DCDL defines precedence such that a the more specific a value on a specific design object always
has precedence over a general value or a higher-level design object. This is true of operating conditions as
well - but with added scenarios:

Theoperating_rangeeommand specifies default values for process, voltage, and temperature. Spe-
cifically setting these points with tloperating_proces®perating_temperatureand/or
operating_voltageommands takes precedence over these defaults.

Operating conditions support the concept of inheritance as discussed in the next section.

Like many DCDL commands, many operating condition commands can specify more than one value. This is
known as the value slot concept (refer to page 36). For operating conditions, value slots refer to either pro-
cess, temperature, or voltage values; or minimum and maximum values. If a certain value slot is filled by an
earlier command, any following command that also fills that slot, has precedence - but any undefined slots
remain at their last value. Figure 3-4 shows value slots and precedence concepts.

Commands in a File* Subsequent Values of PVT

operating_rangesets
default PVT

operating_processets
P, defaults forV& T
still in effect

operating_voltagesets
V here, P was set
previously, & T still
uses the default

operating_temperature
sets T here, P & T retain
previous values

operating_temperature
sets a new T value here,
taking precedence over
the previous T

* Assumes the same scope & design object level

Figure 3-4 Operating Condition Value Slots and Precedence
The value slot precedence is affected by:

\oltage and temperature regimes, because these options create an extra value slot. In order for two
operating conditions to match (and thus invoke a precedence rule), the regime slot must also match if
present (refer to page 37 for more information about matching).

Library rules can define legal value slot values and if an error occurs, the value slot with retain its
original value.

6.1.4 Operating Condition Command Inheritance

DCDL provides no general command inheritance specification. However, operating condition commands
specified at certain scopes or applied to particular cells or instances are inherited by lower levels. This allows

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 66

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

a natural and efficient means to specify general operating conditions and differing particular conditions at
lower levels. If an operating condition is specified at the top level of a design and no other operating condi-
ton commands are specified, those conditions are inherited by all levels of the design. If operating conditions
are specified at a particular scope, all the design objects from that scope down in the hierarchy use those
operating conditions. This applies to hierarchical cells or instances. Thus, an operating condition applies to
all the contents of the scope, cell, or instance to which it is assigned.

Design - Point A
Block1 scope - Point B
V¥ /77777777 i
; InstanceA “ Point C
7 /
Cell /] Cell2 Point D

R AN

AR

/ Cell3 Cell4
/ 77777777777,

Block2 scope

Figure 3-5 Example of Operating Condition Inheritance
The example in Figure 3-5 provides the following points about inheritance:
An operating condition set &int Awould be in affect for the whole design, until a more specific

constraint is set.

An operating condition set &int Bwould be in affect for all objects containedBlockl but not
Block2

An operating condition set 8bint Con InstanceAwould be in affect for all objects contained in
that instanceell1-4).

An operating condition set &int Don Cell2 would be in affect foCell3 andCell4.
6.1.5 Operating Condition Precedence and Inheritance Interactions
Operating condition command precedence and inheritance interact with each other following these rules:

Specific cell or instance values take precedence over scope-level values.
The narrower (more specific) scope value takes precedence over a more general scope value.

If two commands set an operating condition on a cell and an instance that contains the cell, the
instance value takes precedence (more specific).

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 67

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

6.2 operating_point
°

Theoperating_pointommand provides a means to set the process, temperature, and voltage operating point
for a design all at once (as opposed to using the separate commands available).

6.2.1 Usage
operating_point
[-voltage_regimevoltage_regimeidentifier] [temperature_regimetemperature_regimedentifier]
[-library library_identifier] nameoperating_pointidentifier
(-best| -nominal | -worst | -min_best| typ_best| -max_best| -min_worst | typ_worst |
-max_worst)
6.2.2 Required Keywords
-nameoperating_pointidentifier
The namekeyword specifies the operating point by name - what set of characterization data should
be used. The operating points are named and defined in the current technology library for the design
or in the library explicitly named using the option@drary keyword.
-best| -nominal | worst | -min_best| typ_best| max_best| min_worst | typ_worst | snax_worst
These keywords specify the operating points - how the named set of characterization data should be

used. The operating points are defined in the current technology library for the design or in the
library explicitly named using the optiondibrary keyword.

Refer to page 65 for general information about using these keywords.

6.2.3 Optional Keywords

-voltage_regimevoltage_regimeidentifier
The wvoltage_regimdeyword associates operating point information with a previously-defined volt-
age regime through the use of thaltage_regime&ommand. This option only applies to the voltage
value slot.

-temperature_regimetemperature_regimedentifier
The temperature_regimkeyword associates operating temperature information with a previously-
defined temperature regime through the use ofettmperature_regimeommand. This option only
applies to the temperature value slot.

-library library_identifier

The dibrary keyword associates an explicit library with the operating point.

Default: the operating point specified applies to all the libraries used in the design.
6.2.4 Positional Parameters

None.

Copyright © 1999-2000 Accellera. All rights reserved.
68 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

6.2.5 Examples

operating_point -name MIL_worst -worst
operating_point -library BC_lib -name COM_best -best

6.2.6 Semantics

The operating_pointcommand provides a convenient method of specifying a single operating point as

defined in a library.
6.2.7 Related Commands
The following commands are related to dperating_pointommand:

operating_process
operating_range
operating_temperature
operating_voltage
temperature_regime
voltage_regime

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

69

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

6.3 operating_process
°

Theoperating_processommand specifies the process condition that should be applied to the design. Sev-
eral specification methods are available.

6.3.1 Usage
operating_process
[-library library_identifier]
[-value operating_pointrvalue] (best| -nominal | -worst | -min_best| typ_best| -max_best|
-min_worst | typ_worst | -/max_worst)
6.3.2 Required Keywords

-best| -nominal | worst | -min_best| typ_best| max_best| min_worst | typ_worst | snax_worst

These keywords specify the process points. The process points are defined in the current technology
library for the design or in the library explicitly named using the optiditary keyword.

Refer to page 65 for general information about using these keywords.
6.3.3 Optional Keywords
-library library_identifier

The dibrary keyword associates an explicit library with the operating process.

Default: the operating process specified applies to all the libraries used in the design.
-value operating_pointrvalue

The valuekeyword allows the process point to explicitly be defined using a real number. This value
is typically a variable within a library equation.

6.3.4 Positional Parameters
None.
6.3.5 Examples

operating_process -library acme -nominal
operating_process -best -value 1.0

6.3.6 Semantics

If the library pre-defines a process value associated with an operating poinaltie®ption in not
required. However, some libraries might require treueoption.

6.3.7 Related Commands

The following commands are related to tperating_processommand:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 70

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

operating_point
operating_range
operating_temperature
operating_voltage
units

voltage_regime

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

71

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

6.4 operating_range
°

Theoperating_rangeommand provides a method to specifyefaultrange of operating conditions for a
design (or design portion) through the use of a operating nhame specified in a technology library.

6.4.1 Usage
operating_range

[-library library_identifier Joperating_rangeidentifier
6.4.2 Required Keywords
None.
6.4.3 Optional Keywords
-library library_identifier

The dibrary keyword specifies the name of the technology library.

If no library is specified, the current technology library for the design (as specified using a mechanism
within a tool or supporting tool library) is assumed.

6.4.4 Positional Parameters
operating_rangeidentifier
Theoperating_range_identifiespecifies a name for the operating range as specified in the library.

6.4.5 Examples

operating_range -library com_lib COMMERCIAL
6.4.6 Semantics
Theoperating_rangeeommand is intended to specify default process, voltage, and temperature values by
indicating a library “label” that represents a particular model characterization. This label must be defined
within the library in order to be specified using tperating_rangecommand. If not, it is an error.
Theoperating_proces®perating_temperatur@ndoperating_voltageommands override values specified

by theoperating_rangeommand, becauserating_rangerovides defaults and these commands provide
more specific values (refer to 6.1.3 “Operating Condition Command Precedence”).

Some libraries might require specific values for process, temperature, and voltage and thus not allow the use

of operating_range
6.4.7 Related Commands

The following commands are related to tamperature_regimeommand:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 72

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

operating_process
operating_temperature
operating_voltage

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

73

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

6.5 operating_temperature
°

Theoperating_temperatureommand specifies the temperature value that should be applied to the design.
Several specification methods are available.

6.5.1 Usage
operating_temperature
([-temperature_regimetemperature_regimeadentifier | |
[-instancesinstance_list [pin pin_identifier])
[-library library_identifier] [vvalue operating_pointrvalue] (best| -nominal | -worst |
-min_best| typ_best| -max_best| -min_worst | typ_worst | -max_worst)
6.5.2 Required Keywords
-best| -nominal | worst | -min_best| typ_best| max_best| min_worst | typ_worst | snax_worst
These keywords specify the temperature points. The temperature points are defined in the current

technology library for the design or in the library explicitly named using the optitrary key-
word.

Refer to page 65 for general information about using these keywords.

6.5.3 Optional Keywords

-temperature_regimetemperature_regimedentifier
The temperature_regimkeyword associates operating temperature information with a previously-
defined temperature regime through the use ofettmperature_regimeommand. This option only
applies to the temperature value slot.

-instancesinstance_list [pin pin_identifier]

The instanceskeyword specifies one or more instance names that should be assigned the tempera-
ture value.

The optional pin keyword specifies the pin name on the instance.

Either temperature_regimer instancesan be specified (not both).
-library library_identifier

The dibrary keyword associates an explicit library with the operating temperature.

Default: the operating temperature specified applies to all the libraries used in the design.
-value operating_pointrvalue

The valuekeyword allows the temperature point to explicitly be defined using a real number. This
value is typically a variable within a library equation.

6.5.4 Positional Parameters

None.

Copyright © 1999-2000 Accellera. All rights reserved.
74 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

6.5.5 Examples

operating_temperature -temperature_regime low_temp -best
operating_temperature -best -value 20.0
operating_temperature -instances alu -pin inl -best -value 21.5

6.5.6 Semantics

Theoperating_temperatureommand specifies junction temperatures.
6.5.7 Related Commands

The following commands are related to tperating_temperatureommand:

operating_point
operating_process
operating_range
operating_voltage
temperature_regime
units
voltage_regime

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 75

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

6.6 operating_voltage
°

Theoperating_voltageommand specifies the voltage value that should be applied to the design. Several
specification methods are available.

6.6.1 Usage
operating_voltage
([-voltage_regimevoltage_regimeidentifier] |
[-instancesinstance_list [pin pin_identifier])
[-library library_identifier] [value operating_pointrvalue] (best| -nominal | -worst |
-min_best| typ_best| -max_best| -min_worst | typ_worst | -max_worst)
6.6.2 Required Keywords

-best| -nominal | worst | -min_best| typ_best| max_best| min_worst | typ_worst | snax_worst

These keywords specify the voltage points. The voltage points are defined in the current technology
library for the design or in the library explicitly named using the optiditary keyword.

Refer to page 65 for general information about using these keywords.

6.6.3 Optional Keywords

-voltage_regimevoltage_regimeidentifier
The voltage_regimé&eyword associates operating voltage information with a previously-defined
power regime through the use of th@tage regimeommand. This option only applies to the volt-
age value slot.

-instancesinstance_list [pin pin_identifier]

The instanceseyword specifies one or more instance names that should be assigned the voltage
value.

The optional pin keyword specifies the pin name on the instance.

Either voltage_regimer -instancexan be specified (not both).
-library library_identifier

The dibrary keyword associates an explicit library with the operating voltage.

Default: the operating voltage specified applies to all the libraries used in the design.
-value operating_pointrvalue

The wvaluekeyword allows the voltage point to explicitly be defined using a real number. This value
is typically a variable within a library equation.

6.6.4 Positional Parameters

None.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 76

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

6.6.5 Examples

operating_voltage -voltage_regime low_v -best
operating_voltage -worst -value 5.5
operating_voltage -instances {alu cpu} -best -value 3.45

6.6.6 Semantics

6.6.7 Related Commands
The following commands are related to tperating_voltageommand:

operating_point
operating_process
operating_range
operating_temperature
units

voltage_regime

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

7

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

6.7 temperature_regime
°

Thetemperature_regimeommand provides a method to specify a portion of a design within which temper-
ature variations are assumed to be correlated.

6.7.1 Usage
temperature_regime

[-cellscell_list] | [instancesinstance_list]
temperature_regimadentifier

6.7.2 Required Keywords
None.
6.7.3 Optional Keywords
-cellscell_list
The <cellskeyword specifies one or more cell names to which the temperature regime should apply.
-instancesinstance_list

The instanceseyword specifies one or more instance names to which the temperature regime
should apply.

If neither €ellsor instanceds specified, the regime applies to the instance or module specified using the
current_scopeommand.

Either cellsor instancescan be specified, but not both.
6.7.4 Positional Parameters
temperature_regimedentifier

Thetemperature_regime_identifispecifies the name for the regime. This regime can then be refer-
enced within other operating condition DCDL commands.

6.7.5 Examples
temperature_regime -cells {ram4x4 rom} mem_tregime
6.7.6 Semantics

*** Options to select a physical area will be appropriate when the physical constraint domain is added to
this specification. ***

6.7.7 Related Commands

The following commands are related to tamperature_regimeommand:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 78

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

current_scope

operating_temperature

operating_range

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

79

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

6.8 voltage_regime
°

Thevoltage_regimeommand provides a method to specify a portion of a design within which voltage vari-
ations are assumed to be correlated

6.8.1 Usage
voltage_regime
[-logical_rail logical_rail_identifier] | [physical_rail physical_rail identifier]

[-base_voltageroltage rvalue]
[-min_voltage minimum rvalue] [max_voltagemaximumrvalue]
[(-cellscell_list [-port port_identifig])] |
[(-instancesinstance_list [pin pin_identifie])]
voltage_regimeidentifier

6.8.2 Required Keywords

None.

6.8.3 Optional Keywords

-logical_rail logical_rail_identifier
The dogical_rail keyword specifies the name of the power rail within the design.

-physical_rail physical_rail identifier

The physical_railkeyword specifies the physical net name that represents the power rail within the
design.

The physical design system might map the physical rail name into several physical nets (particularly
when the physical design is implemented hierarchically).

-base_voltagevoltage rvalue

The base_voltag&eyword specifies a voltage for the power rails of the design, if that value is not
defined in the technology library.

-min_voltage minimum rvalue

The min_voltagekeyword specifies the minimum voltage value of the design power rail for all cal-
culation modes.

-max_voltagemaximumrvalue

The max_voltag&eyword specifies the maximum voltage value of the design power rail for all cal-
culation modes.

-cellscell_list [port port_identifier]
The <cellskeyword specifies one or more cell types that should be analyzed using the logical rail

name and the connected physical rail name. Usually, the cell names are inferred by an analysis tool,
but for libraries that do not contain power pin information, this option might be required.

Copyright © 1999-2000 Accellera. All rights reserved.
80 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

The optional port keyword specifies the port name that represents the power port on the cell, in case
there are more than one.

-instancesinstance_list [pin pin_identifier]

The instancekeyword specifies one or more instance names that should be analyzed using the log-
ical rail name and the connected physical rail name.

The optional pin keyword specifies the pin name that represents the power port on the instance, in
case there are more than one.

If neither €ellsor instanceds specified, the regime applies to the instance or module specified using the
current_scopeommand.

Either cellsor instancescan be specified, but not both.
6.8.4 Positional Parameters
voltage_regimeidentifier

Thevoltage_regime_identifieapecifies the name for the regime. This regime can then be referenced
within other operating condition DCDL commands.

6.8.5 Examples
voltage_regime -logical_rail vcc -min_voltage 2.5 low_v
6.8.6 Semantics
If the instance specified binstancedelongs to a hierarchical cell, the constraint applies to the entire hier-
archy under the named instance(s), unlesdtage_regimeommand has been applied to a lower-level

instance.

Because thegoltage_regimeontains value slots for minimum and maximum voltage, separate commands
can define the minimum and maximum values within a file.

6.8.7 Related Commands
The following commands are related to ttodtage regime&ommand:

current_scope
operating_process
operating_range
operating_temperature
operating_voltage

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 81

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

82

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

7. The Timing Domain

This section describes the theory and the commands representing the timing constraints domain. This

domain is divided into 3 categories: clock, timing boundary, and timing exception commands. These catego-

ries interact with each other and with other constraint domains.

I Timing
Domain
Other
Constraint
Domains

*** This section will provide the concepts required to understand the timing domain command semantics.
Material will be provided by participants, including background materials and graphics. ***

7.1 Clock (Synchronous) Theory

7.1.1 Clock Domains

7.1.2 Clock Roots and Networks

7.1.2.1 Clock and Data Conversion

*** Discussion about swapping clock and data as per IBM request on 1/5/00 ***
7.1.2.2 Clock Gating

7.1.3 Ideal Versus Propagated Clocks

7.1.3.1 Insertion Delay Model

*** Explain the different insertion delay types and "left" and "right" (external and internal) concepts. ***
7.1.4 Time Relative to Clock Edges

*** Include information about ideal vs effective edges here also. ***

7.1.5 Default Cycle Accounting

7.1.6 Clock Uncertainties

*** |Include relationship to the concept of absolute. ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 83

10

15

20

Acellera
0.3.7 (7/25/00)

7.1.6.1 Jitter
7.1.6.2 Inter-Clock Uncertainty
7.1.6.3 Intra-Clock Tree Skew

7.1.6.4 Target-Based Uncertainty

7.2 Timing Boundary Theory

*** required and arrival theory ***

7.3 Timing Exception Theory
7.3.1 False Paths and Disables

7.3.2 Latching

7.4 Timing Domain Interactions

DRAFT STANDARD FOR DCDL

*** How the 3 sub-domains within the timing domain work and affect each other and how other domains
such as operating conditions and the parasitic domains affect the timing domain will appear here. ***

7.5 Common Timing Command Conventions

*** The -early, -late (and relationship to -typ), delay calculation vs analysis, -rise, -fall convention, min/max
values, reference to placeholder and wildcarding discussion, defaults, ***

30

35

40

45

50

84

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

7.6 Clock Commands

This section documents all the commands associated with clocking.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

85

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.6.1 clock
]

Theclockcommand associates a waveform with actual design pins or ports.
7.6.1.1 Usage
clock

-waveform waveformidentifier (pins pin_list | ports port_list) [fparent_pin pin_identifier |
-parent_port port_identifier]

7.6.1.2 Required Keywords

-waveform waveform_identifier
The waveformkeyword specifies an ideal waveform used as a reference point for the clock. This is
usually the clock waveform for an external register that drives the pin(s). This waveform name can
refer to an ideal waveform specified previously usingwlaeeformcommand or a derived waveform
specified previously using tlerived_wavefornsommand.

-ports port_list

The portskeyword specifies the port or ports to which the clock applies. Eigogtser —pins (or
both) must be specified.

-pins pin_list

The pinskeyword specifies the pin or pins to which the clock applies. Eifi@mtsor —pins (or
both) must be specified.

7.6.1.3 Optional Keywords

-parent_pin pin_identifier
-parent_port port_identifier

The fparent_pinor parent_portkeyword is used to automatically calculate the actual phase shift
between the parent clock root and the derived clock root.

7.6.1.4 Positional Parameters
None.
7.6.1.5 Examples

clock -waveform master_clk -pins {CIk}
clock -waveform master_clk -ports {clka clkb} -parent_port cina

7.6.1.6 Semantics

The pins or ports specified are considered the clock root.

Copyright © 1999-2000 Accellera. All rights reserved.
86 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

Acellera
0.3.7 (7/25/00)

Derived clock functionality is supported through the use of glggent_pinor -parent_portkeywords. These

keywords shall specify pin or port identifiers that define a parent clock root (that was specified using a sepa-

rateclockcommand).

7.6.1.7 Related Commands

The following commands are related to theck command:

derived_waveform

waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

87

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.6.2 clock_arrival_time
)

Theclock_arrival_timecommand defines a window of time in which clock signals will arrive at pins and
ports with respect to a specified reference point (waveform).

7.6.2.1 Usage
clock_arrival_time

-waveform waveform identifier [lead | -trail] [-early | -late]
-ports port_list | pins pin_listclock_arrival time_value_list

7.6.2.2 Required Keywords

-waveform waveformidentifier
The waveformkeyword specifies one ideal waveform used as a reference point for the
clock_arrival_time_valueThis name is usually the clock waveform for an external register that
drives the port or pin.

-ports port_list

The portskeyword specifies the port or ports to which the clock arrival time applies. Ejtbes—
or —pins (or both) must be specified.

-pins pin_list

The pinskeyword specifies the pin or pins to which the clock arrival time applies. Eithettsor —
pins (or both) must be specified.

7.6.2.3 Optional Keywords
-lead | -trail
The {eador -trail keywords specify the edge of the ideal waveform used as a reference point for the

clock arrival_time_value

Default: if neither keyword is specified, both are implied.
-early | -late

The -early or -late keywords specify the type of analysis. Thate keyword specifies the latest time
that the clock signal can arrive at the port or pin (setup time); indicating that the clock signal will not
change after the specified time. Tkarly keyword specifies the earliest time that the clock signal
can arrive at the port or pin (hold time); indicating that the clock signal will remain stable at the
beginning of a clock cycle at least as long as the time specified.

Default: if neither early nor date is specified, both early and late analysis is implied.

Copyright © 1999-2000 Accellera. All rights reserved.
88 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.6.2.4 Positional Parameters

clock_arrival time_value_list
Theclock arrival_time_value_lisspecifies the effective offset (shift) in edge positions from the
ideal clock waveform - thus accounting for insertion delay to the "left" of the pin or port. Either a
single number or a list of four numbers is required, and the numbers can be negative.

7.6.2.5 Examples

clock_arrival_time -waveform sys_clk -lead \
-early -ports {clk1 clk2} 5.0

The preceding example shows the use of several optional keywords.

clock_arrival_time -waveform sys_clk \
-ports {clk3} {1.0 1.3 1.2 1.4}

The preceding example shows the use of a list of four values that specify early and late lead and trail values.
7.6.2.6 Semantics

Theclock_arrival_timecommand specifies the insertion delay for the portion of a clock network that lies
outside (to the "left" of the port or pin) from an implicit reference point (wdidek_delayspecifies the

delay to the "right" of the port or pin). This insertion delay affects the relative arrival time of the clock edges
at clock roots within the design.

Theclock_arrival_timespecifies a timing windowassertionwhile clock_required_timepecifies a timing
window constraint(refer to page 23).

One or moreelock_arrival_timecommands may be specified to associate different clock ports or pins with
the same or different ideal waveforms.

When any of the optionsarly,-late, -lead or -trail are specified, thelock_arrival_time_value_lighust be
a single value that applies to all of the time value slots implied by the combination of these options.

When early, -late, -lead,or -trail are not specified, thdock_arrival_time_value_listan either be a single
value that applies to all time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.6.2.7 Related Commands
The following commands are related to theck _arrival_timecommand:

clock
clock_required_time
common_insertion_delay
data_arrival_time
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 89

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.6.3 clock_delay
°

Theclock_delaycommand specifies the delay characteristics of a clock network or a portion of a hierarchi-
cal clock network.

7.6.3.1 Usage
clock delay

-waveform waveformidentifier | (¥oot_port port_identifier | root_pin pin_identifier) |
(-leaf pin_identifier) [+ise | fall] [-early | -late] delay unsigned_time_value_list

7.6.3.2 Required Keywords

Only one of the following:

-waveform waveformidentifier
The waveformkeyword indicates the ideal waveform to specify default values that affect all clock
networks driven by that waveform. This includes virtual clock networks referenced in arrival and

required time commands.

-root_port port_identifier
-root_pin pin_identifier

The +oot_portor -root_pinkeywords identify the name of one hierarchical input or bi-directional
port or primitive output pin that drives the clock network.

-leaf pin_identifier

The deaf keyword identifies an input clock leaf pin (as opposed to a clock root) on a primitive that
contains an internal clock network with significant insertion delay.

7.6.3.3 Optional Keywords
-rise | -fall

The rise or -fall keywords indicate whether the clock delay refers to the rising or falling edge of the
port, pin, or waveform specified.

Default: if neither keyword is specified, both are implied.
-early | -late
The early or -late keywords specify the type of analysis. Thate keyword specifies that the clock

delay is applied to the late arrival time (setup). Tdaly keyword specifies that the clock delay is
applied to the early arrival time (hold time).

Default: if neither keyword is specified, both are implied.
7.6.3.4 Positional Parameters

delay unsigned_time_value_list

Copyright © 1999-2000 Accellera. All rights reserved.
90 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

Thedelay_unsigned_time_value_lsgtecifies the time(s) at which the delay transition(s) occur.
Either a single number or a list of four numbers is required, and the numbers must be positive.

7.6.3.5 Examples
clock_delay -waveform m_clk {1.2}

The preceding example specifies the clock delay on the waveforatkas being 1.2 for the early rise, early
fall, late rise, and late fall time value slots.

clock_delay -root_port {clk} -early -rise {2.1}

The preceding example specifies the clock delay on the clocklkaas being 2.1 for all four time value
slots.

clock_delay -leaf {int_clk} {1.3 1.4 1.3 1.5}

The preceding example specifies the clock delay on the clockieelk for each of the four time value
slots.

7.6.3.6 Semantics

Theclock_arrival_timespecifies a delay value with respect to the "left" of the external port or pin, while the
clock_delaycommand specifies the delay to the "right" of the port or pin, in terms abtiteor Heaf
options. This is referred to as the elements that can be "seen" in a design. Whereasefoeroption
specifies an ideal waveform, which cannot be "seen" in a design.

When any of the optiongarly, -late, -rise, or fall are specified, théelay unsigned_time_value_lisust
be a single value that applies to all of the time value slots implied by the combination of these options.

When early, -late, -rise, and fall are not specified, thdelay unsigned_time_value_lsin either be a sin-
gle value that applies to all four time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-

ues (refer to page 37).
Values specified using theet option override those specified using theveformoption.

To describe clock delay external to a block for a leaf port (instead of &lpick, required_timehould be
used.

7.6.3.7 Related Commands
The following commands are related to theck delaycommand:

clock_arrival_time
clock_mode
clock_required_time
tree_delay
tree_mode

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 91

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.6.4 clock_mode
)

Theclock_moda&ommand specifies the default analysis for clock network delays.
7.6.4.1 Usage
clock_mode
[-root_port port_list | ¥oot_pin pin_list] ideal | -actual
7.6.4.2 Required Keywords
Either:
-ideal

The ideal keyword specifies whether the ideal insertion delay, skew, and transition times within all
clock networks should be used in analysis.

-actual

The actualkeyword specifies that the actual values should be computed for insertion delay, skew,
and transition times.

7.6.4.3 Optional Keywords

-root_port port_list
-root_pin pin_list

The foot_portor -root_pinkeywords specify a particular port or pin that represents a clock root for
which the mode applies.

Default: if toot_portor -root_pinis not specified, the clock mode applies to all clock roots in the
design.

7.6.4.4 Positional Parameters
None.
7.6.4.5 Examples
clock_mode -ideal
clock_mode -actual
clock_mode -root_port {clk1} -actual
7.6.4.6 Semantics
In general, the analysis mode is explicitly setitteal prior to inserting the clock networks andctual after
clock network insertion. It is expected that the command be explicitly used within the appropriate DCDL file
such that tools can choose the correct data.

If clock_modes not specified in a DCDL file, a clock mode of ideal is assumed by the tool.

If both pins and ports need to be specified, sepalatk modeommands must be used.

Copyright © 1999-2000 Accellera. All rights reserved.
92 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

Acellera
0.3.7 (7/25/00)

Theclock_mode&ommand allows inheritance; the specificatiortloick_modepplies to each lower design

block level, until anothetlock_modecommand is assigned, as per the general precedence rules (refer to

page 37).

7.6.4.7 Related Commands

The following commands are related to theck_modeommand:

clock_delay
tree_delay
tree_mode

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

93

10

15

20

25

30

35

40

45

50

Acellera

Design Constraints Description Language 0.3.7 (7/25/00)

7.6.5 clock_required_time

Theclock_required_timeommand defines a window of time in which clock signals are insured to arrive at
pins and ports with respect to a specified reference point (waveform).

7.6.5.1 Usage

clock _required_time

-waveform waveform identifier [lead | -trail] [-early | -late]
-ports port_list | pins pin_listclock_requiredtime_value_list

7.6.5.2 Required Keywords

-waveform waveformidentifier

The waveformkeyword specifies one ideal waveform used as a reference point for the
clock required_time_valud@his name is usually the clock waveform for an external register that
drives the port or pin.

-ports port_list

The portskeyword specifies the port or ports to which the clock required time applies. Ejtbeis—
or —pins (or both) must be specified.

-pins pin_list

The pinskeyword specifies the pin or pins to which the clock required time applies. Eitloetsor
—pins (or both) must be specified.

7.6.5.3 Optional Keywords

-lead | -trail

The {eador -trail keywords specify the edge of the ideal waveform used as a reference point for the
clock required_time_value

Default: if neither keyword is specified, both are implied.

-early | -late

The -early or -late keywords specify the type of analysis. Thate keyword specifies the latest time
that the clock signal will arrive at the port or pin (setup time); indicating that the clock signal will
not change after the specified time. Tleardy keyword specifies the earliest time that the clock sig-
nal will arrive at the port or pin (hold time); indicating that the clock signal will remain stable at the
beginning of a clock cycle at least as long as the time specified.

Default: if neither early nor date is specified, both early and late analysis is implied.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 94

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.6.5.4 Positional Parameters
clock_requiredtime_value_list

Theclock required_time_value_ligtpecifies the time(s) at which the transition(s) occur. Either a
single number or a list of four numbers is required, and the numbers can be negative.

7.6.5.5 Examples

clock_required_time -waveform sclk -lead \
-early -ports {clk1 clk2}

The preceding example shows the use of several optional keywords.

clock_required_time -waveform sclk \
-ports {clk3} {1.0 1.3 1.2 1.4}

The preceding example shows the use of a list of four values that specify early and late lead and trail values.
7.6.5.6 Semantics

Theclock_arrival_timespecifies a timing windowassertionwhile clock_required_timepecifies a timing
window constraint(refer to page 23).

One or moreclock_required_timeommands may be specified to associate different clock ports or pins with
the same or different ideal waveforms.

When any of the optiongarly,-late, -lead,or -trail are specified, thelock_required_time_value_listust
be a single value that applies to all of the time value slots implied by the combination of these options.

When early, -late, -lead,or -trail are not specified, thedock_required_time_value_lisain either be a single
value that applies to all time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.6.5.7 Related Commands
The following commands are related to theck _required_time&ommand:

clock

clock_arrival_time
common_insertion_delay
data_arrival_time
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 95

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.6.6 clock_skew
)

Theclock_skewcommand specifies skew characteristics of a clock network (or network portion).
7.6.6.1 Usage
clock skew

(-root_port port_identifier | root_pin pin_identifier) [rise | fall][-early | Hate]
skew unsigned_time_value_list

7.6.6.2 Required Keywords

-root_port port_identifier or
-root_pin pin_identifier

The +oot_portor -root_pinkeywords identify the name of one hierarchical input or bi-directional
port or primitive output pin that drives the clock network.

7.6.6.3 Optional Keywords
-rise | -fall

The +ise or -fall keywords indicate whether the clock skew refers to the rising or falling edge of the
port or pin specified.

Default: if neither keyword is specified, both are implied.
-early | -late
The early or -ate keywords specify the type of analysis. Thate keyword specifies that the clock

skew is applied to the late arrival time (setup). T¢ely keyword specifies that the clock skew is
applied to the early arrival time (hold time).

Default: if neither keyword is specified, both are implied.

7.6.6.4 Positional Parameters

skew unsigned_time_value_list
Theskew_unsigned_time_value_léstecifies the maximum difference in clock insertion delays to
any leaf pins implied by the specified root port or pin. Either a single number or a list of four num-
bers is required, and the numbers must be positive.

7.6.6.5 Examples

clock skew -root_port {clk} -early -rise {3.4}

The preceding example specifies the clock skew on the clocklkant being 3.4 for all four time value
slots.

Copyright © 1999-2000 Accellera. All rights reserved.
96 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.6.6.6 Semantics

When any of the optiongarly, -late, -rise, or fall are specified, thekew_unsignedime_value_lismust
be a single value that applies to all of the time value slots implied by the combination of these options.

When early, -late, -rise, and fall are not specified, thekew_unsignedime_value_listan either be a sin-
gle value that applies to all four time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.6.6.7 Related Commands
The following commands are related to theck _skewcommand:

clock
clock_arrival_time
clock_mode
clock_required_time
tree_delay
tree_mode

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 97

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.6.7 clock_uncertainty
°

Theclock_uncertainticommand specifies the worst-case uncertainty between two clock distribution net-
works.

7.6.7.1 Usage
clock_uncertainty
[-from root_waveformidentifier] [to target_waveformidentifier] [from_edge rise| fall]
[-to_edge rise| fall] [-early | -late] [-absolute]| -increment] [-ideal | -actual]
{ uncertainty rsvalue}
7.6.7.2 Required Keywords
Either of the following keywords (or both):

-from root_waveformidentifier

The from keyword specifies default values that affect all source clock networks driven by the speci-
fied waveform. This includes virtual clock networks referenced in arrival constraints.

-to target_waveformidentifier

The to keyword specifies default values that affect all target clock networks driven by the specified
waveform. This includes virtual clock networks reference in required time constraints.

7.6.7.3 Optional Keywords
-from_edge rise| fall

The from_edgekeyword indicates the edge (rising or falling) of the clock that launches data from
the source register of a path between the source and target clock networks.

-to_edge rise| fall

The to_edgekeyword indicates the edge (rising or falling) of the clock that captures data at the tar-
get register of a path between the source and target clock networks.

-early | {ate
The early or Jate keywords specify whether the uncertainty value is with respect to the hold or

setup checks.

Default: if no option is selected, both early and late analysis is applied.
-absolute| increment

The -absoluteand incremenkeywords indicate the calculation mode for the uncertainty value. The
-absoluteoption indicates that the uncertainty value represents the entire skew between the clocks.
The incrementoption indicates that the uncertainty value is added to any skew calculated between
the clocks.

Default: increment

Copyright © 1999-2000 Accellera. All rights reserved.
98 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-ideal | -actual

The 4idealand actualkeywords indicate the propagation mode for the uncertainty value. idéal -

option indicates that the uncertainty value applies when either the clock network for the source reg-
ister or clock network for the target register is analyzed in ideal mode. &dtealoption indicates

that the uncertainty value applies when the clock networks to both the source and target registers are
analyzed in actual mode.

Default: ideal
7.6.7.4 Positional Parameters
{ uncertainty rsvalue}

Theuncertainty_rsvalués the positive or negative real number list that indicates the uncertainty for
early and late analysis (1 or 2 values must be present in the list). The value(s) can override or add to
any skew inherent in the harmonic relationship between the edges in the source and target clock
waveforms; and any skew introduced by the insertion delays in the clock networks to the source and
target registers.

If one value is present, this value is used for both early and late analysis. If two values are present,
the first value is used for early analysis and the second is used for late analysis.

7.6.7.5 Examples
clock_uncertainty -from main_clk -absolute -ideal {.02 .05}
7.6.7.6 Semantics
Theclock_uncertainticommand can be used to increase optimism by using negative values for the
uncertainty_rsvalue This can be useful when the design has paths starting in one clock domain and ending
in another and when there are no synchronous relationships between two clocks.
7.6.7.7 Related Commands
The following commands are related to theck uncertaintyommand:
clock
clock_delay

clock_mode
target_uncertainty

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 99

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.6.8 common_insertion_delay
)

Thecommon_insertion_delayommand specifies the portion of the external insertion delay that is common
to two clock roots.

7.6.8.1 Usage
common_insertion_delay
(-from_port clock_port identifier | from_pin clock_pin identifier)
(-to_port clock port_identifier | to_pin clock pin_identifier) [tise | fall] [-early | Jate]
insertion rvalue_list

7.6.8.2 Required Keywords

-from_port clock_port identifier
-from_pin clock pin_identifier

The from_portor -from_pinkeywords specify the source root clock port or pin.

-to_port clock_port identifier
-to_pin clock_pin identifier

The to_portor -to_pinkeywords specify the target root clock port or pin.
7.6.8.3 Optional Keywords
-rise | -fall

The rise or -fall keywords indicate whether the insertion delay refers to the rising or falling edge of
the port or pin specified.

Default: if neither keyword is specified, both are implied.
-early | -late

The early or -late keywords specify the type of analysis. Thate keyword specifies that the delay
is applied to the late arrival time (setup). Tiearly keyword specifies that the delay is applied to the
early arrival time (hold time).

Default: if neither keyword is specified, both are implied.
7.6.8.4 Positional Parameters
insertion _rvalue_list
Theinsertion_rvalue_lisspecifies a delay value that represents a portion of the clock network as
specified by the "from" and "to" port or pins. Either a single number or a list of four numbers is
required and positive numbers shall be used.
7.6.8.5 Examples
common_insertion_delay -from_port clk_main -to_pin ckl_div {1 2 3 4}

common_insertion_delay -from_port clk1 -to_port clk2 -early -rise \
{1.2}

Copyright © 1999-2000 Accellera. All rights reserved.
100 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.6.8.6 Semantics

Thecommon_insertion_delagommand is commonly used for path pessimism removal techniques.

*** Mark to supply better description ***

The command allows the specification of how much of the clock path represents insertion delay such that a
tool does not have to analyze an entire clock tree network. This is useful because In many cases, the tool
might not have visibility of the entire network. This is particularly for board-level analysis.

When any of the optiongarly, -late, -rise, or fall are specified, thimsertion_rvalue_listnust be a single
value that applies to all of the time value slots implied by the combination of these options.

When early, -late, -rise, and fall are not specified, thasertion_rvalue_listan either be a single value that
applies to all four time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.6.8.7 Related Commands
The following commands are related to toenmon_insertion_delayommand:
clock

clock_arrival
clock_delay

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 101

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.6.9 derived_waveform
)

Thederived_waveforraommand specifies a new waveform, derived from an existing waveform.
7.6.9.1 Usage
derived_waveform
-waveform parent waveformidentifier namederived waveformidentifier [inverted]
[-phase {offset_shiftrsvalue_list]
([-multiplier mult_unsigned_number] fhvisor divisor_unsigned_number]) |
[-derived_edges {ead_edgeunsigned_numberail_edge unsigned_numbér]
[-lead_jitter jitter_value | trail_jitter jitter_value]

jitter_value ::={ left_unsigned_time_valugight_unsigned_time_valug|
{ offset unsigned_time_valug[-increment | -absolute]

7.6.9.2 Required Keywords
-waveform parent_waveformidentifier

The waveformkeyword indicates the name of the waveform from which the new waveform is
derived. This waveform is considered the parent.

-namederived_waveformidentifier

The namekeyword specifies a name for the new, derived waveform.
7.6.9.3 Optional Keywords
-inverted

The 4invertedoption changes the lead and trail values of the existing waveform edges for the new
waveform. The lead edge is falling, and the trail edge is rising.

Default: lead edge is rising and the trail edge is falling.
-phase {offset_shiftrsvalue_list

The phasekeyword specifies an offset (phase shift) from each edge of the parent waveform.
The value can be negative. There must be 1 or 2 values only - corresponding to the leading and/or
trailing edges from the parent waveform edge list.

Default: 0
-multiplier mult_unsigned_number

The multiplier keyword specifies a positive, integer multiplier value relative to the parent waveform
frequency.

Default: 1

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 102

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-divisor divisor_unsigned_number
The divisor keyword specifies a positive, integer divisor value relative to the parent waveform fre-
quency.
Default: 1

-derived_edgegslerived_edge_list

The derived_edgekeyword specifies that the edge positions in the derived waveform are obtained
by selecting particular rising and falling edges of the parent waveform. Exactly 2 values are
required.

Default: if -multiplier and/or divisor are used,derived_edgesannot be used. If none of these key-
words are used, the derived waveform is a copy of the parent that can be invertehvesiteglor
shifted using phase

-lead_jitter { left_unsigned_time_valueight_unsigned_time_valug| { offset unsigned_time_value
-trail_jitter { left_unsigned_time_valueight_unsigned_time_valug| { offset unsigned_time_value

The dead_jitterand trail_jitter keywords describe the maximum deviation (across all possible
clock cycles) from the lead and trail edge positions. This deviation is expressed as a time offset
value. A left and a right offset can be specified. If only one value is specified, that value applies to
both the left and right offset. The time values must be positive and a placeholder can be specified.

Default: 0.

-increment | -absolute
The incrementkeyword specifies that theead_jitterand/or trail_jitter values are to be added to
the jitter values from the parent waveform. Tladsolutekeyword specifies that théead_jitterand/

or -trail_jitter values represent the actual jitter value for the derived waveform, replacing any jitter
values specified in the parent waveform.

The incrementand absolutekeywords are ignored ifead_jitterand/or trail_jitter are not speci-
fied.

Default: -absolute(if -lead_jitterand/or trail_jitter are specified).

7.6.9.4 Positional Parameters
None.
7.6.9.5 Examples

derived_waveform -waveform mstr -name half_wave -divisor 2
The preceding example shows the specification of a waveform that has been divided in half.
7.6.9.6 Semantics
Thederived_waveformommand is a method to create derived waveforms based on a waveform specifed by

the waveform command. Theultiplier and divisor keywords provide an easy method to describe clock
dividers or multipliers, or more complex waveforms using tiezived_edgekeyword:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 103

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

Both the multiplier and divisor options can be specified to indicate a rational ratio between the par-
ent and derived frequencies.

The multiplier or -divisor options cannot be specified whelerived_edgess used.

The phaseoption is applied to the waveform aftenultiplier and/or divisor are applied.
The derived_edgekeyword is used when a simple divider or multiplier waveform is not sufficient. Using
this keyword allows specifying one rising and one falling edge of the parent waveform to be used in deriving
a new waveform. The lead and trail edge order is affected bintlegtedkeyword.
Figure 3-6 shows the derived edge concept.
-derived_edges { -posedge 1 -negedge 6 }

Edge Number 1 2 3 4 5 6 7 8

Parent Waveform — |

Derived Waveform —|

Figure 3-6 Derived Edges Concept
*** Does the phase shift affect the ideal waveform or not? ***
The derived waveform belongs to the same domain as the parent waveform (either an implied domain or an
explicit domain as specified using tredomainkeyword inwaveformcommand). While the parent waveform
can also be a derived waveform, the domain is estabilished by the top parent waveform as established by the
waveformcommand.
7.6.9.7 Related Commands

The following commands are related to tegived waveforncommand:

clock
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
104 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.6.10 target_uncertainty
)

Thetarget_uncertaintgommand specifies the worst-case uncertainty between the clock edge at a target reg-
ister and the clock edges at any source register.

7.6.10.1 Usage
target_uncertainty

-port clock_root identifier | (pin clock_leaf identifier |clock_root identifier) | instance
instance identifier [early | Hate] [-absolute| -increment] [-ideal | -actual]
uncertainty rsvalue

7.6.10.2 Required Keywords

-port clock_root identifier | (pin clock_leaf identifier |clock_root identifier) |
-instanceinstance identifier

An explicit target is specified usingin clock_leaf identifiedmplied targets are specified using
-port, -pin clock_root_identifigror -instance The clock root is specified by providing the name of
the port or pin that is the root of a clock distribution network. The clock leaf is specified by provid-
ing the name of the clock input port or pin on a target register or an instancmstidinceis speci-

fied, all the clock pins on that instance are implied targets.

7.6.10.3 Optional Keywords
-early | {ate

The early or Jate keywords specify whether the uncertainty value is with respect to the hold or
setup checks.

Default: if no option is selected, both early and late analysis is applied.
-absolute| increment

The -absoluteand incremenkeywords indicate the calculation mode for the uncertainty value. The
-absoluteoption indicates that the uncertainty value represents the entire skew between the target
clock and any source clock. Thiacrementoption indicates that the uncertainty value is added to
any skew calculated between the target clock and any source clock.

Default: increment

-ideal | -actual
The 4idealand actualkeywords indicate the propagation mode for the uncertainty value. idéa! -
option indicates that the uncertainty value applies when the source or target register is analyzed in

ideal mode. Theactualoption indicates that the uncertainty value applies when the clock network
to both the source and target registers are analyzed in actual mode.

Default: ideal
7.6.10.4 Positional Parameters

uncertainty rsvalue

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 105

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

Theuncertainty_rsvalués the positive or negative real number that indicates the uncertainty. This
value can override or add to any skew inherent in the harmonic relationship between the edges in the
source and target clock waveforms; and any skew introduced by the insertion delays in the clock net-
works to the source and target registers.

7.6.10.5 Examples

target_uncertainty -port {clk1} 0.124
target_uncertainty -instance {U1} -absolute -actual 0.214

7.6.10.6 Semantics
All paths to any explict or implied targets are affected bytahget uncertainticommand. By default, the
uncertainty_rsvalués added to any explicitly-computed uncertainty skews. This is overridden by the use of

-absolutekeyword.

The 4idealand actualkeywords control when thencertainty_rsvalués applied to the specified paths based
on when the paths are driven in ideal or actual mode as specifieddigdhemodeommand.

7.6.10.7 Related Commands

The following commands are related to tAmet_uncertaintfcommand:
clock
clock_delay

clock_mode
clock_uncertainty

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 106

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.6.11 waveform
]

Thewaveformcommand specifies an abstract, ideal waveform that can be used in other DCDL commands as
a reference.

7.6.11.1 Usage
waveform

-namewaveformidentifier [period period rvalue] [edges {lead rsvaluetrail _rsvalue} |
[-lead_jitter { left_unsigned_time_valueight_unsigned_time_valug|
{ offset unsigned_time_valug]
[-trail_jitter { left_unsigned_time_valugight_unsigned_time_valug|
{ offset unsigned_time_valug]
[-inverted] [-domain domain identifier]

7.6.11.2 Required Keywords
-namewaveformidentifier
The namekeyword specifies the name for the abstract waveform.
7.6.11.3 Optional Keywords
Either periodand/or edgeskeywords must be specified:
-period

The periodkeyword specifies the waveform period using a positive, real number.

Default: 50% duty-cycle clock derived from thedgespecification (if present). For example, if the
edges were 0 and 9, the period would be 1&d§ess not specified, the waveform starts at time 0
and it is rising.

-edges {lead rsvaluetrail _rsvalue}

The edgeskeyword defines the waveform’s leading and trailing edges. To create an asymmetrical
waveform, a list of edge pairs can be specified. |&8heé_rsvaluds the time at which the first tran-
sition occurs (rising). Thtail_rsvalueis the time at which the second transition occurs (falling).

Exactly 2 edge values are required and negative numbers can be specified. The separation between
between the first and second edge value must be not be greater than the period value (if specified).

Default: none.

-lead_jitter { left_unsigned_time_valueight_unsigned_time_valug| { offset unsigned_time_value
-trail_jitter { left_unsigned_time_valueight_unsigned_time_valug| { offset unsigned_time_valuge

The dead_jitterand trail_jitter keywords describe the maximum deviation (across all possible
clock cycles) from the lead and trail edge positions. This deviation is expressed as a time offset
value. A left and a right offset can be specified. If only one value is specified, that value applies to
both the left and right offset. The time values must be positive and a placeholder can be specified.

Default: 0.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 107

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-inverted

The 4invertedoption changes the lead and trail values of the waveform edges. The lead edge is fall-
ing, and the trail edge is rising.

Default: lead edge is rising and the trail edge is falling.
-domain domain identifier

The domainoption identifies the name of a clock domain. All clocks in the same domain are syn-
chronous with respect to each other.

Default: implicitly created clock domain created by the tool, to which all waveforms belowng that
do not specify thedomainkeyword. All the clocks in the default domain are synchronous with
respect to each other.
7.6.11.4 Positional Parameters
None.
7.6.11.5 Examples
waveform -name master_clk -period 18.0 -edges {0 9.0}
The preceding example defines a waveform cattedter_clkwith a period of 18 ns (units set to ns in a pre-
ceding command) with edges at 0 and 9 ns.€dgedlag is not strictly required in this example because
the default of a 50% duty-cycle and the leading edge at time 0.

waveform -name inverted_clk -period 18.0 -edges {1.0 10.0} -inverted

The preceding example defines a clock that is inverted. The same effect can be specified without the
-invertedkeyword:

waveform -name inverted_clk -period 18.0 -edges {11.0 19.0}
The 4invertedkeyword is replaced by adding half the period to each edge on the original example.

waveform -name jclk -edges {0 10.0} -lead_jitter {1 -2} \
-trail_jitter {1.1}

The preceding example shows the specification of jitter with respect to the lead and trail edges. The lead jit-
ter percent deviation is 1% positive and -2% negative (the negative sign is optional). The jitter with respect
to the trailing edge is 1.1% positive deviation and -1.1% for the negative.

7.6.11.6 Semantics

If a 50% duty cycle is not desired, both tperiodand edgeskeywords must be specified.

*** The effects of multiple clocks (cycle shift) and the effects on setup/hold, and other analyses will be
explored. A general waveform picture and a jitter waveform picture to be added. ***

7.6.11.7 Related Commands

The following commands are related to taveformcommand:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 108

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

clock
derived_waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

109

10

15

20

25

30

35

40

45

50

Acellera

Design Constraints Description Language 0.3.7 (7/25/00)

7.7 Timing Boundary Commands

*** \We need a clear definition of these conditions versus parasitic boundary conditions ***

This section provides information about timing boundary commands - commands that describe conditions

external to the design that affect timing behavior.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

110

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.7.1 data_arrival_time
)

Thedata_arrival_timecommand specifies when transitions on data signals arrive at input or bi-directional
ports or pins with respect to a specified reference point.

7.7.1.1 Usage
data_arrival_time

-waveform waveform identifier [target | source] [-lead | trail][-early | -late] [-rise | fall]
-ports port_list | pins pin_listarrival_time_value_list

7.7.1.2 Required Keywords
-waveform waveformidentifier

The waveformkeyword specifies one ideal waveform used as a reference point for the
arrival_time_value

-ports port_list

The portskeyword specifies the port(s) to which the arrival time applies. Eitpertsor —pins(or
both) must be specified.

-pins pin_list

The pinskeyword specifies the pin(s) to which the arrival time applies. Eifhents-or —pins (or
both) must be specified.

7.7.1.3 Optional Keywords
-target | source

The targetor -sourcekeywords specify whether the constraint affects the cycle in which the launch-
ing clock edge is assumed to occwo(rcd or the cycle in which the capturing clock edge is
assumed to occurtérged). *** check this ***

Default: if neither keyword is specifiedourceis implied.
-lead | -trail
The {eador -trail keywords specify the edge of the ideal waveform used as a reference point for the

arrival_time_value

Default: if neither keyword is specifiedeadis implied.
-early | -late

The -early or -late keywords specify the type of analysis. Thate keyword specifies the latest time
that the signal can arrive at the port or pin (setup time); indicating that the signal will not change
after the specified time. Thearly keyword specifies the earliest time that the signal can arrive at
the port or pin (hold time); indicating that the signal will remain stable at the beginning of a clock
cycle at least as long as the time specified.

Default: if neither early nor Jate is specified, both early and late analysis is implied.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 111

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-rise | -fall

The rise or fall keywords indicate whether the data transition offset fromwhgeformedge
refers to the rising or falling edge of the port or pin.

Default: if neither Hse nor fall are specified, both transitions are implied.
7.7.1.4 Positional Parameters
arrival_time_value_list

Thearrival_time_value_lisspecifies the time(s) at which the transition(s) occur. Either a single
number or a list of four numbers is required and the numbers can be negative.

7.7.1.5 Examples

data_arrival_time -waveform sys_clk -lead \
-early -rise -ports {inl1 in2} 5.0

The preceding example shows the use of several optional keywords.

data_arrival_time -waveform sys_clk -trail \
-ports {in3} {1.0 1.1 1.2 1.3}

The preceding example shows the use of a list of four values that specify early rise, late rise, early fall, and
late fall.

7.7.1.6 Semantics

Thedata_arrival_timecommand specifies a partial path delay time range at an input or bi-directional port or
an internal pin. This value does not include interconnect and loading delays due to the net external to a port.
This provides the constraint for the timing allowed for the remaining path internal to the block. If this com-
mand is applied to an internal pin, the value shall override any propagated value.

When any of the optiongarly, -late, -rise, or fall are specified, tharrival_time_value_listust be a sin-
gle value that applies to all of the time value slots implied by the combination of these options.

*** clock defaults and combinational delay, -reset ; Need to address pure combo. circuits. ***
*** Explain the concept of inside and outside the module ***

When early, -late, -rise, and fall are not specified, therival_time_value_listan either be a single value
that applies to all four time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.7.1.7 Related Commands
The following commands are related to ttada_arrival_timecommand:
clock

clock_arrival_time
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 112

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.7.2 data_required_time
)

Thedata_required_timeommand specifies the time required for output or bi-directional ports or pins to be
stable with respect to a specified reference point.

7.7.2.1 Usage
data_required_time

-waveform waveform identifier [target | -source] [-lead | -trail][-early | -late] [-rise | fall]
-ports port_list | pins pin_listrequired time_value_list

7.7.2.2 Required Keywords
-waveform waveformidentifier

The waveformkeyword specifies one ideal waveform used as a reference point for the
required_time_value

-ports port_list

The portskeyword specifies the port(s) to which the required time applies. Efibeiser —pins
(or both) must be specified.

-pins pin_list

The pinskeyword specifies the pin(s) to which the required time applies. Eithertsor —pins(or
both) must be specified.

7.7.2.3 Optional Keywords
-target | source

The targetor -sourcekeywords specify whether the constraint affects the cycle in which the launch-
ing clock edge is assumed to occwo(rcd or the cycle in which the capturing clock edge is
assumed to occurtérge?.

Default: if neither keyword is specifiedargetis implied.
-lead | -trail

The {eador -trail keywords specify the edge of the ideal waveform used as a reference point for the
required_time_value

Default: if neither keyword is specifiegadis implied.
-early | -late

The early or Hate keywords specify the type of analysis. Tlaete keyword indicates that the
required time is the latest time that the output port is allowed to changeeaftyekeyword indi-
cates that the required time is the earliest time that the output port is allowed to change.

Default: if neither keyword is specifiedate is implied.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 113

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-rise | -fall

The rise or fall keywords indicate whether the data transition offset fromwhgeformedge
refers to the rising or falling edge of the port or pin.

Default: if neither Hse nor fall are specified, both transitions are implied.
7.7.2.4 Positional Parameters
required time_value_list

Therequired_time_value_listpecifies the time(s) at which the transition(s) occur. Either a single
number or a list of four numbers is required, and the numbers can be negative.

7.7.2.5 Examples

data_required_time -waveform sys_clk -target -lead \
-early -rise -ports {outl out2} 5.0

The preceding example shows a list of ports and several of the optional keywords.

data_required_time -waveform sys_clk -target -trail \
-ports {out3} {1.01.1 1.2 1.3}

The preceding example shows the use of a list of four values that specify early rise, late rise, early fall, and
late fall.

7.7.2.6 Semantics

The timing values for thdata_required_timeommand are specified in terms of when the valid data signal
is required to be stable at output ports and pins. The change at the specified output ports or pins is associated
with either the leading or trailing edge of the specified ideal clock.

When any of the optionsarly, -late, -rise, or fall are specified, theequired_time_value_lishust be a sin-
gle value that applies to all of the time value slots implied by the combination of these options.

When early, -late, -rise, and fall are not specified, thequired_time_value_listan either be a single value
that applies to all four time value slots, or a list of four values (one for each time value slot).

In the case where the clock frequency of the source and the target clock differ, DCDL specifies which clock
that the cycle adjustments are relative to. Early offsets are positive additions to the source clock edges and
late offsets are positive additions to the target clock edges. *** does this need to go into the
data_arrival_timesemantics in some form? ***

There exists an interaction between the useairee| targetand early | Hate: in general, the larger the

cycle offset numbers, the looser the constraint. For exansplercecombined with early results in the

early launching clock edge occurring later than the default (making the hold check at the target easier to sat-
isfy). Combining thesourcewith -late option results in the late launching clock edge occurring earlier than

the default (hold check 0 cycle, setup check 1 cycle). This makes the setup check at the target easier to sat-

isfy.

*** clock defaults and combinational delay, -reset, ***
*** Explain the concept of inside and outside the module ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 114

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-

ues (refer to page 37).

7.7.2.7 Related Commands

The following commands are related to ttata_required_timeommand:

clock
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

115

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.7.3 departure_time
|
Thedeparture_timecommand specifies a partial path delay time range beyond a pin or port (not including

interconnect and loading due to the external net) for the timing reserved for the remaining path external to
the block.
7.7.3.1 Usage

departure_time

-waveform waveform identifier [early | late] [-rise | fall]
-ports port_list | pins pin_listdeparture time_value_list

7.7.3.2 Required Keywords
-waveform waveformidentifier

The waveformkeyword specifies an existing waveform used as a reference point for the
departure_time_value*** the taxonomy states this is optional ***

-ports port_list

The portskeyword specifies one or more ports to which the departure time applies. Biiwser
—pins (or both) must be specified.

-pins pin_list

The pinskeyword specifies one or more pins to which the departure time applies. Eibeser —
pins (or both) must be specified.

7.7.3.3 Optional Keywords
-early | -late
The early or Hate keywords specify the type of analysis. Thate keyword indicates that the depar-

ture time is the latest time that the port or pin is allowed to change.e@hgkeyword indicates
that the departure time is the earliest time that the port or pin is allowed to change.

Default: if neither keyword is specifiedate is implied.
-rise | -fall

The rise or fall keywords indicate whether the data transition offset fromvilageformedge
refers to the rising or falling edge of the port or pin.

Default: if neither Fise nor fall are specified, both transitions are implied.
7.7.3.4 Positional Parameters
departure time_value_list

Thedeparture_time_value_lisipecifies the time(s) at which the transition(s) occur. Either a single
number or a list of four numbers is required, and the numbers can be negative.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 116

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.7.3.5 Examples

departure_time -waveform sys_clk \
-early -rise -ports {outl out2} 5.0

The preceding example shows a list of ports and several of the optional keywords.

departure_time -waveform sys_clk \
-ports {out3} {1.01.1 1.2 1.3}

The preceding example shows the use of a list of four values that specify early rise, late rise, early fall, and
late fall.

7.7.3.6 Semantics
*** Need a clearer definition of this command ***

When any of the optiongarly, -late, -rise, or fall are specified, thdeparture_time_value_lishust be a
single value that applies to all of the time value slots implied by the combination of these options.

When early, -late, -rise, and fall are not specified, thdeparture_time_value_ligtan either be a single
value that applies to all four time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.7.3.7 Related Commands
The following commands are related to teparture_timeommand:
clock

external_delay
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 117

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.7.4 external_delay
0
Theexternal_delaycommand specifies purely combinational delays that are external to the design.

7.7.4.1 Usage
external_delay
-waveform waveform identifier [early | -late]
-ports port_list | pins pin_list
-rise_rangerise_time_value_listfall_range fall_time_value_list
7.7.4.2 Required Keywords
-waveform waveformidentifier
The waveformkeyword specifies an existing waveform used as a reference point.
-ports port_list

The portskeyword specifies one or more ports to which the external delay applies. Eiibeser
—pins (or both) must be specified.

-pins pin_list

The pinskeyword specifies one or more pins to which the external delay applies. pitheror —
pins (or both) must be specified.

-rise_rangerise_time_value_list

The rise_rangekeyword specifies the earliest and latest delay of a rising transition. Negative values

are allowed. *** 2 values here, correct? ***

-fall_range fall_time_value_list

The fall_rangekeyword specifies the earliest and latest delay of a falling transition. Negative val-

ues are allowed. *** 2 values here, correct? ***
7.7.4.3 Optional Keywords
-early | -late
The early or -late keywords specify the type of analysis. Thate keyword indicates that the exter-

nal delay refers to setup analysis. Téarly keyword indicates that external delay refers to hold
analysis.

Default: if neither keyword is specifiedate is implied.

*** Need lead, trail ? ***
7.7.4.4 Positional Parameters

None.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 118

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.7.4.5 Examples

7.7.4.6 Semantics
If there exist multiple specifications for the same port or pin, relative to the same waveform edge, only the
latest external delay command is in effect. *** Is this not a general topic that should be covered in "Prece-
dence Rules" ? ***

*** Taxonomy seems to differ from the Amtset_external_delayAlso, GCF differentiates external delay,
from path_delay do we neegath_dela®, interaction with required times? ***

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.7.4.7 Related Commands
The following commands are related to éxternal_delaycommand:
clock

required_time
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 119

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.7.5 slew_limit
0

Theslew_limitcommand specifies the maximum slew time allowed for input and output pins or ports.
7.7.5.1 Usage
slew_limit
[-early | -late] [-rise | fall] -ports port_list | pins pin_listslew_limit time_value
7.7.5.2 Required Keywords
-ports port_list

The portskeyword specifies one or more ports to which the slew limit applies. Ejtbets-er
—pins (or both) must be specified.

-pins pin_list

The pinskeyword specifies one or more pins to which the slew limit applies. Eitpertsor —ins
(or both) must be specified.

7.7.5.3 Optional Keywords
-early | -late
The -early or -late keywords specify the type of analysis. Thate keyword specifies the latest slew

time for the port or pin (setup time). Trearly keyword specifies the earliest slew time for the port
or pin (hold time).

Default: if neither early nor Jate is specified, both early and late analysis is implied.
-rise | -fall

The rise or fall keywords indicate whether the maximum slew time refers to the rising or falling
edge of the port or pin.

Default: if neither Fise nor fall are specified, both transitions are implied.
7.7.5.4 Positional Parameters
slew_limit time_value
Theslew_limit_time_valuspecifies the maximum slew allowed.
7.7.5.5 Examples
slew_limit -ports {addr[*] select} 1.34
7.7.5.6 Semantics

*** Ambit and GCF - not in taxonomy, relationship wistew_time ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 120

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

7.7.5.7 Related Commands

The following commands are related to ghew_limitcommand:

slew_time
units

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

121

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.7.6 slew_time
)

Theslew_timecommand specifies the ramp time required for a signal to cross two threshold points for a pin
or port. Clock slew can be specified with this command.

7.7.6.1 Usage
slew_time
[-early | -late] [-rise | fall]
-ports port_list | pins pin_list
slew time_value_list
7.7.6.2 Required Keywords

-ports port_list

The portskeyword specifies the port(s) to which the slew time applies. Eiflwetsor —pins (or
both) must be specified.

-pins pin_list

The pinskeyword specifies the pin(s) to which the slew time applies. Eiffegtsor —pins (or
both) must be specified.

The pin or port identifier can be a clock root - thus describing clock slew.
7.7.6.3 Optional Keywords
-early | -late
The -early or -late keywords specify the type of analysis. Thate keyword specifies the latest slew

time for the port or pin (setup time). Trearly keyword specifies the earliest slew time for the port
or pin (hold time).

Default: if neither early nor Jate is specified, both early and late analysis is implied.
-rise | -fall

The +ise or fall keywords indicate whether the slew time refers to the rising or falling edge of the
port or pin.

Default: if neither Fise nor fall are specified, both transitions are implied.
7.7.6.4 Positional Parameters
slew time_value_list

Theslew_time_value_listpecifies the slew time for the port or pin. Either a single number or a list
of four numbers is required, and the numbers can be negative.

7.7.6.5 Examples

slew_time -early -rise -ports {inl in2} 5.0

Copyright © 1999-2000 Accellera. All rights reserved.
122 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

The preceding example shows the use of several optional keywords.
slew_time -ports {in3} {1.0 1.1 1.2 1.3}

The preceding example shows the use of a list of four values that specify early rise, late rise, early fall, and
late fall.

7.7.6.6 Semantics
If the specified pin or port is clock root, in ideal mode - the value specified will be propagated directly
through the clock network to all leaf pins. Thus, slew at leaf pins is same as that specified on clock root. In

actual mode - the slew value behaves the same as data network.

When any of the optiongarly, -late, -rise, or fall are specified, thelew_time_value_lighust be a single
value that applies to all of the time value slots implied by the combination of these options.

*** Based on Ambit Strawman using DAC subset syntax - does not appear in taxonomy, -reset ***

When early, -late, -rise, and fall are not specified, threew_time_value_listan either be a single value that
applies to all four time value slots, or a list of four values (one for each time value slot).

Wildcarding is allowed for pin and port references (refer to page 32). Placeholders are allowed for time val-
ues (refer to page 37).

7.7.6.7 Related Commands
The following commands are related to ghew_timecommand:

clock_mode
slew_limit

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 123

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

7.8 Timing Exception Commands

*** Need a clear definition of timing exceptions here ***

124

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

DRAFT STANDARD FOR DCDL

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.8.1 borrow_limit
0

Theborrow_limit command specifies the maximum amount of time that can be borrowed from a cycle for
level-sensitive latches.

7.8.1.1 Usage
borrow_limit

[-ports port_list | pins pin_list | waveform waveformidentifier |
-instancesinstance_list porrow_limit_rvalue

7.8.1.2 Required Keywords
None.

7.8.1.3 Optional Keywords
-ports port_list

The portskeyword specifies one or more data input or clock ports of level-sensitive latches to
which the borrow limit applies. *** A particular latch or all of them? ***

-pins pin_list

The pinskeyword specifies one or more data input or clock pins of level-sensitive latches to which
the borrow limit applies.

-waveform waveformidentifier
The wavefornmkeyword specifies a waveform name to which the borrow limit applies. Borrowing is
restricted for all data inputs of the level-sensitive latches with respect to the clocks associated with
this waveform.

-instancesinstance_list

The 4instanceskeyword specifies a level-sensitive latch instance to which borrowing is restricted
from all data inputs. Pathnames are allowed.

If no keywords are specified, the borrow limit is applied to all level-sensitive latches within the scope the
command (current instance, module, or design).

7.8.1.4 Positional Parameters
borrow_limit_rvalue

Theborrow_limit_rvaluespecifies a real number representing the maximum time available from the
pulse width.

7.8.1.5 Examples

borrow_limit -instances lu_latch 2.5

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 125

10

15

20

25

30

35

40

45

50

Acellera

0.3.7 (7/25/00)

7.8.1.6 Semantics

*** From GCF: The default limit on time borrowing for a given latch is the active pulse width of the clock
minus the setup time of the latch. Therrow_limit command can only be used to specify a smaller limit;

DRAFT STANDARD FOR DCDL

larger limits are ignored. THeorrow_limit_rvalueapplies for all operating points. ***

*** This command could really use some timing diagrams! ***

7.8.1.7 Related Commands

The following commands are related to bwerow_limitcommand:

126

current_scope

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.8.2 disable
]

Thedisablecommand disables timing arcs in a library cell and all instances of that cell or a particular
instance.

7.8.2.1 Usage
disable
[-library library_identifier] cell cell_identifier | instanceinstance identifier
[-from_port port_list | to_pin pin_list] [-to_port port_list | to_pin pin_list] | [-output_arcs] |
[-input_arcs] | [-internal_arcs]
7.8.2.2 Required Keywords
One of the following:
-cell cell_identifier
The <ell keyword specifies the name of the cell to be disabled.
-instanceinstance identifier
The 4instancekeyword specifies the name of the instance to be disabled.
7.8.2.3 Optional Keywords
-library library_identifier

The dibrary keyword specifies the name of the library that contains the cell to be disabled.

If the library is not specified, the current technology library for the design (as specified using a
mechanism within a tool or supporting tool library) is assumed.

Either:

-from_port port_list
-from_pin pin_list

The from_portor -from_pinkeywords specify port(s) or pin(s) that start the timing arc. If "from"
port(s) or pin(s) are specified without "to" port(s) or pin(s), all paths originating from the "from"
port(s) or pin(s) shall be disabled. Specifying both "from" and "to" port(s) or pin(s) identifies a path
with a specific start and end point.

-to_port port_list
-to_pin pin_list

The to_portor -to_pinkeywords specify port(s) or pins(s) that end the timing arc. If "to" port(s) or
pin(s) are specified without "from" port(s) or pin(s), all paths ending at the "to" port(s) or pin(s) shall
be disabled. Again, specifying both "from" and "to" port(s) or pin(s) identifies a path with a specific
start and end point.

Or:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 127

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-output_arcs

The -output_arckeyword specifies that only the timing arcs that lead through the outputs of the
specified cell are disabled.

-input_arcs

The 4input_arcskeyword specifies that only the timing arcs the originate from the inputs of the spec-
ificied cell are disabled.

-internal_arcs

The 4internal_arcskeyword specifies that only the internal timing arcs of the specified cell are dis-
abled.

Any combination of eutput_arcs-input_arcs and internal_arcscan be specified. Specifying all 3
options is the same as just specifyinglk

7.8.2.4 -Positional Parameters
None.
7.8.2.5 Examples
disable -library acmel.0 -cell and2 -from_port {a} -to_port {q}
disable -library acmel.0 -cell and2
disable -cell and2 -from_port {a}
disable -cell and2 -to_port {g}
disable -library acmel.0 -cell and2 -input_arcs -output_arcs
disable -instance ul
disable -instance u2 -from_pin {r}

7.8.2.6 Semantics

If only the cell keyword is specified, all the timing arcs in the specified cell are disabled. Likewise, if only
the instancekeyword is specified, all the timing arcs in the specified instance are disabled.

If -cell is specified, thefrom_portand/or-to_portkeywords must be used. lhstanceis specified, the
-from_pinand/or to_pinkeywords must be used..

*** Did not find in Ambit strawman. GCF (disable) and GCGlet_broken_afchave similar concepts.
Allow ports also? Pathnames and pathname rules. ***

*** We could add more to this command: through, nets, instances, rise, fall, early, late, etc. , ***

*** Can there be multiple from and to in a singlsablecommand? How about pin and port combinations
on from and to? ***

7.8.2.7 Related Commands
The following commands are related to theablecommand:

false_path

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 128

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.8.3 false_path
)

Thefalse_pathcommand identifies timing paths that should not be analyzed.
7.8.3.1 Usage
false_path
[-early | -late] [-rise | fall] path_options
path_options ::= (from_port | from_pin | from_instance| from_waveform { object_identifieg) |
(-from_port | from_pin | from_instance| -from_waveform { object_identifieg}) |
({ -through_port | through_pin | through_instance| -through_net { object_identifie} })
7.8.3.2 Required Keywords
Any single or combination of the following keywords:
-from_port | from_pin | from_instance | from_waveform { object_identifier
The "from" keywords specify a list of design objects that start the false path. If a "from" keyword is
used without a "to" keyword, all paths originating from the "from" object shall be false paths. Spec-
ifying both "from" and "to" keywords identifies a path with a specific start and end point. Multiple
"from" designobject_identifieiconstructs can be specified.
-from_port | from_pin | from_instance | from_waveform { object_identifier
The "to" keywords specify a list of design objects that end the false path. If a "to" keyword is used
without a "from" keyword, all paths ending at the "to" object shall be false paths. Again, specifying
both "from" and "to" keywords identifies a path with a specific start and end point. Multiple "to"
designobject_identifierconstructs can be specified.

{ -through_port | through_pin | through_instance| through_net { object_identifief }

The "through" keywords specify a list of design objects through which a path must flow in order to
be considered a false path. Multiple "through" desigject_identifierconstructs can be specified.
Multiple through options can be used in a sirfglee_pathcommand.

For the "to" and "from" keyword values, a pin, port, instance, or waveform object identifier can be specified.

For "through" keyword values, a pin, port, instance, or net object identifier can be specified. The
object_identifiecan use wildcarding and pathnames (refer to page 32).

*** Are all of these keywords overridden by theveformcommand? ***
7.8.3.3 Optional Keywords
-early | -late
The earlyor -ate keywords specify the type of analysis (hold or setup). These options only apply to

the "to" objects when specified. Otherwise, the option applies to the "from" objects. *** What
aboutthrougtP ***

Default: if neither keyword is specified, both analyses are implied.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 129

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-rise | -fall

The +ise or fall keywords indicate whether *** what? ** with respect to the rising or falling edge
of the data signal.

These options only apply to the "to" objects when specified. Otherwise, the option applies to the
"from" objects. *** What abouthrough? ***

Default: if neither Hse nor fall are specified, both transitions are implied.

7.8.3.4 Positional Parameters
None.
7.8.3.5 Examples

false_path -from_port {test_in} -to_port {"/fpu/tout*" /alu/test_0"}

false_path -from_port {test} -to_pin {test_con}

false_path -from_instance {ul}

false_path -early -rise -from_pin {in[*] in2[*] -through_pin {a}

false_path -to {MemWrite}

false_path -from_port {a} -through_instance{u2} -to_port {in1}

7.8.3.6 Semantics

If a waveform object is specified, all registers triggered by the specified waveform are considered the from/to
points of the path.

*** Need to add something about théardughmodel - ANDed or ORed, waveform to waveform specifica-
tions ****

7.8.3.7 Related Commands
The following commands are related to false pathcommand:

multi_cycle_path
waveform

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 130

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.8.4 multi_cycle_path
)

Themulti_cycle_patlcommand identifies timing paths that span over multiple clock cycles.
7.8.4.1 Usage
multi_cycle_path

[-target | -source |-waveform waveformidentifier] [-early | -late] [-rise | -fall]
path_optiong cycle_numbe}

path_options ::= (from_port | from_pin | from_instance| from_waveform { object_identifie}) |
(-from_port | from_pin | from_instance| -from_waveform { object_identifief}) |
({ -through_port | through_pin | through_instance | through_net { object_identifieg })

cycle_number ::=[sign] real | [sign] unsigned_number |
{[sign]real [sign] red |
{ [sign] unsigned_number [sign] unsigned_nunjber
{ [sign]real [sign] unsigned_numbjef{ [sign] unsigned_number [sign] ré4dl
placeholder
7.8.4.2 Required Keywords
Any single or combination of the following keywords:

-from_port | from_pin | from_instance | from_waveform { object_identifier

The "from" keywords specify a list of design objects that start the multi-cycle path. If a "from" key-
word is used without a "to" keyword, all paths originating from the "from" object shall be multi-
cycle paths. Specifying both "from" and "to" keywords identifies a path with a specific start and end

point. Multiple "from" desigrobject_identifieiconstructs can be specified.

-from_port | from_pin | from_instance | from_waveform { object_identifier

The "to" keywords specify a list of design objects that end the multi-cycle path. If a "to" keyword is
used without a "from" keyword, all paths ending at the "to" object shall be multi-cycle paths. Again,
specifying both "from" and "to" keywords identifies a path with a specific start and end point. Multi-

ple "to" desigrobject_identifierconstructs can be specified.

{ -through_port | through_pin | through_instance| through_net { object_identifie} }

The "through" keywords specify a list of design objects through which a path must flow in order to

be considered a multi-cycle path. Multiple "through" desigject_identifieconstructs can be
specified.

Multiple through options can be used in a singldti_cycle pattcommand.

For the "to" and "from" keyword values, a pin, port, instance, or waveform object identifier can be specified.

For "through" keyword values, a pin, port, instance, or net object identifier can be specified. The
object_identifiecan use wildcarding and pathnames (refer to page 32).

*** Are all of these keywords overridden by theveformcommand? ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 131

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.8.4.3 Optional Keywords
-target | source

The targetor -sourcekeywords specify whether the constraint affects the cycle in which the launch-
ing clock edge is assumed to occwo(rcg or the cycle in which the capturing clock edge is
assumed to occurtérgel).

Default: if neither keyword is specifiegourceis implied.
-waveform waveformidentifier

If -waveformis specified, all registers triggered by the specified waveform are considered the from/
to of the path.

-early | -late

The early or -late keywords specify the type of analysis. Thate keyword indicates that cycles are
with respect to the late time of the data signal (setup). 8dré/keyword indicates that cycles are
with respect to the early time of the data signal (hold).

These options only apply to the "to" objects when specified. Otherwise, the option applies to the
"from" objects. *** what about through? ***

Default: if neither keyword is specified, both analyses are implied.
-rise | -fall
The +ise or fall keywords indicate whether the cycles apply with respect to the rising or falling

edge of the data signal.

These options only apply to the "to" objects when specified. Otherwise, the option applies to the
"from" objects. *** What abouthrough? ***

Default: if neither ise nor fall are specified, both transitions are implied.
7.8.4.4 Positional Parameters
{ cycle_numbe}

Thecycle_numbeindicates the number of cycles for the path specified by "to",
"through™ keywords. This value is a real number and it can be negative.

from", and

When eitherearly or Jate are specified, theycle_numbemust be a single value and it applies to

the value slot implied by that option. When neitlearly nor late is specified, theycle_number

can either be a single value that applies to both value slots, or a list of two values, one for each slot
(early and late).

Thecycle_numbecan use placeholders (refer to page 37)

The default hold check uses 0 cycles and the default setup check uses 1 cycle.
7.8.4.5 Examples
multi_cycle_path -source -to_port {MemWrite} {1 2}

The preceding example specifies that the hold check should use 1 cycle and the setup check should use 2
cycles.

Copyright © 1999-2000 Accellera. All rights reserved.
132 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

7.8.4.6 Semantics

Thecycle_numberepresents the total number of cycles used for the setup or hold check - not the number of
additional cycles.

In the case where the clock frequency of the source and the target clock differ, DCDL specifies which clock
that the cycle adjustments are relative to. Early offsets are positive additions to the source clock edges and
late offsets are positive additions to the target clock edges.

There exists an interaction between the useairee| targetand early | Hate: in general, the larger the

cycle numbers, the looser the constraint. For exangdarcecombined with early results in the early
launching clock edge occurring later than the default (making the hold check at the target easier to satisfy).
Combining the sourcewith -late option results in the late launching clock edge occurring earlier than the
default (making the setup check at the target easier to satisfy. *** what amuaferm?**

*** Need to add something about tteoughmodel - ANDed or ORed ****

7.8.4.7 Related Commands

The following commands are related to thelti_cycle_patlcommand:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 133

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.8.5 tree_delay
|
Thetree_delaycommand constrains the timing characteristics of a general buffer tree.

7.8.5.1 Usage
tree_delay
-root_port port_identifier | root_pin pin_identifier

[-ideal| -actual] [-explict_leafpin_list]
[-default_insertion delay rvalue] [-explicit_insertion delay rvalue]
[-internal_insertion delay rvalue]
[-default_skewskew rvalue] [default_transition time _rvalue]
[-explicit_transition time _rvalue]

7.8.5.2 Required Keywords

-root_port port_identifier
-root_pin pin_identifier

The yoot_portor -root_pinkeywords identify the name of one hierarchical port or primitive output
pin that drives the buffer tree.

7.8.5.3 Optional Keywords
-ideal | -actual
The ideal keyword specifies whether the ideal insertion delay, skew, and transition times within

the buffer tree should be used in analysis. Hotualkeyword specifies that the actual values
should be computed for insertion delay, skew, and transition times.

Default: *** 2 *x*

-explicit_leaf pin_list
The explicit_leafkeyword overrides the default rules to specify that pins which would otherwise lie
within the default buffer tree should be treated as leaf pins. This has the effect of grouping a set of
default leaf pins in order to override the default insertion delay or slew constraints.

-default_insertion delay rvalue

The default_insertiorkeyword specifies the nominal cumulative delay from the root to the default
leaf pins and the default value for explicit leaf pins.

-explicit_insertion delay rvalue

The explicit_insertionkeyword overrides the default insertion delay by specifying a different inser-
tion delay for a group of explicit leaf pins.

-internal_insertion delay rvalue

The 4internal_insertiorkeyword specifies additional insertion delay that lies beyond an explicit leaf
pin, but that should be included in the calculated insertion delay to the leaf.

Copyright © 1999-2000 Accellera. All rights reserved.
134 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

-default_skewskew rvalue

The default_skevkeyword indicates the range of differences in insertion delay allowed between
any pair of leaf pins, except for the leaf pins excluded bydat - leafoption.

-default_transition time rvalue

The default_transitiorkeyword specifies the range of transition (ramp) times allowed at each
default leaf pin and the default value for explicit leaf pins.

-explicit_transition time_rvalue

The -explicit_transitionkeyword specifies the range of transition times allowed at a group of explicit
leaf pins.

7.8.5.4 Positional Parameters
None.

7.8.5.5 Examples

7.8.5.6 Semantics

*** This command will be brought in line with the clock_delay (and required times) methodology. The
options that mention ranges - do you need 2 values?***

In general, the analysis mode is setitteal prior to inserting the clock networks anactualafter clock net-
work insertion.

The 4nternal_insertiorkeyword should be used when the explicit leaf pin is an input on a model of a hierar-
chical module in order to represent the internal insertion delay from the input port to the real leaf pins within
the module.
7.8.5.7 Related Commands
The following commands are related to treee_delaycommand:

clock_mode

clock_delay
tree_mode

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 135

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

7.8.6 tree_mode
0
Thetree_modeommand specifies the default analysis for buffer tree delays.

7.8.6.1 Usage
tree_mode
-ideal | -actual
7.8.6.2 Required Keywords
-ideal | -actual
The ideal keyword specifies whether the ideal insertion delay, skew, and transition times within all

buffer trees described by theee_delaycommand should be used in analysis. Taetualkeyword
specifies that the actual values should be computed for insertion delay, skew, and transition times.

Default; *** 2 ***

*** Do we need the same options as added to clock_mode? (root pin or port) ***
7.8.6.3 Optional Keywords
None.
7.8.6.4 Positional Parameters
None.
7.8.6.5 Examples

tree_mode -ideal
tree_mode -actual

7.8.6.6 Semantics

In general, the analysis mode is setideal prior to inserting the buffer trees arattual after buffer tree
insertion. Refer to page 51 for information about modes.

The tree mode is overridden by tinee _delaycommand.
7.8.6.7 Related Commands
The following commands are related to treee_modecommand:

clock_mode
tree_delay

Copyright © 1999-2000 Accellera. All rights reserved.
136 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

7.9 SDF Mapping

*** GCF (sdf_delay_conditionsearly/late value to min/typ/max SDF mapping technique - not sure if this

goes here ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

137

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

138

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

1

10

15

20

25

30

35

40

45

50

8. The Parasitic Boundary Domain

*** Need a clear definition of this domain versus the timing boundary domain. Also, it looks like you could
use these commands along with OLA to fully define electrical rule checks. Should this be an exploration
area? ***

*** Included “raw” is some of the text from the taxonomy about parasitics for review purposes: ***

The scope of this section includes the following coverage and points of view:

This section defines the boundary conditions that surround any particular net or fragment of a set
within a block within a design hierarchy. The boundary conditions therefore define the specific
environment for defining (prescribing) and/or constraining the timing of signals being carried by a
net.

Electrical, magnetic, optical, thermal, (and possibly other forms of energy), material, and mechani-
cal properties that drive (source, transmit), load (sink, receive, terminate), surround, or otherwise
affect the timing of signals carried by a net.

The timing of signals on the net may be affected directly or indirectly by the above forms of energy,
mechanics, and material properties. These parasitics may therefore include effects of coupling and
‘over the cell’ routing.

Presumed, typical, or actual characteristics of the signals being carried (propagated) to the net through some
port or via. Both static, steady state and transient signal characteristics may be prescribed.

Presumed, typical, or actual characteristics of the environment conditions, including, but not limited
to, power, temperature, particle density, noise. Both static, steady state and transient characteristics
may be prescribed.

Hierarchical structure of that portion of the design surrounding the net:

Target net is assumed to be contained within one block of an overall design hierarchy. The tar-
get net may also possibly be further contained within one layer or strata of the physically
implemented design. Where a net consists of more than one net fragment (portion, net seg-
ment, subnet), the fragments may be connected by a via or other intra-layer conducting mecha-
nism.

Hierarchical driving boundary conditions: The signals carried by a net may pass from an upper
level portion of the design hierarchy to the target net within a block by flowing from a receiving
instance port (occurrence port in the fully elaborated hierarchical design) ‘down’ to the con-
taining block’s interface definition port. Signals may also be carried from a lower level portion
(sub-block or block instance) of the design hierarchy to the net by flowing ‘up’ from a sub-
block’s driving instance port.

Hierarchical receiving boundary conditions: The signals are carried away from a net to some
upper level portion of the design hierarchy from the target net within a block by flowing to the
containing block’s receiving interface definition port ‘up’ to the above portion of the design
hierarchy. Signals may also be carried away from a net to some lower level portion of the
design hierarchy by flowing ‘down’ to a sub-block’s receiving instance port.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 139

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

8.1 Parasitic Boundary Theory

*** To be added. ***

140

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

DRAFT STANDARD FOR DCDL

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

8.2 driver_cell
°

Thedriver_cellcommand provides a method to describe the characteristics of the driver cell that is driving
the external net that connects to an input or bi-directional port of the design.

8.2.1 Usage
driver_cell
[-library library_identifier] cell cell_identifier [instanceinstance identifier] [-to port_identifier]
([-from port_identifier] [rise_slewslew rvalue] [fall_slewslew rvalue])
([-multiplier multiplier] | [-parallel driver_unsigned_number]) fise | fall] [-early | -late]
-ports port_list
8.2.2 Required Keywords

-cell cell_identifier

The cell keyword specifies the cell name from a library that should be used to calculate the loading
delay for the external net.

-ports port_list

The port keyword specifies the port or ports on the design, driven by the driving cell or strength
value.

8.2.3 Optional Keywords
-library library_identifier

The dibrary keyword specifies the name of the library that contains the driver cell.

Default: the current technology library for the design (as specified using a mechanism within a tool
or supporting tool library) is assumed.

-instanceinstance identifier

The 4instancekeyword specifies the name of a particular instance of the driver cell.
Default: the tool will implicitly name the instance.
-to port_identifier

If the cell has more than one output port, tleekeyword shall be used to specify the one desired
output port of the driver cell. If there is only one output port for the driver telk eptional.

Default: the output port of the driver cell (if there is only one).
-from port_identifier

The from keyword specifies the name of the input port on the specified cell driving this port. This
pin will be used for both rise and fall transitions.

Default: all inputs of the cell or instance of the cell ifistanceused).

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 141

1

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

Options available when specifying tHeom keyword are:

-rise_slewslew rvalue
-fall_slewslew rvalue

The rise_slewand fall_slewkeywords assign a rising and/or falling slew value for the
input port on the driving cell for the purpose of calculating the loading delay of the
external net. The value is a positive, real number.

Default: 0

-multiplier multiplier

The multiplier keyword multiplies the delay characteristics of the specified cell by a specified
factor.

Default: 1.0

-parallel driver_unsigned_number

The parallel keyword virtually connects a specific number of the driver cell(s) to the port(s) speci-

fied using theports keyword. The number of cells must be expressed using a positive integer.
Default: 1

Either multiplier or parallel can be used, but not both.
-rise | fall

The rise and fall keywords specify the transition on the design port (specified witis) to which
the driver value applies.

Default: if neither keywords are specified, both rise and fall transitions are assumed.
-early | -late
The -early or -late keywords specify the type of analysis. Tlate keyword specifies that the driver

is applied using the late arrival time (setup). Téwrly keyword specifies that the driver is applied
using the early arrival time (hold time).

Default: if neither early nor Jate is specified, both early and late analyses are assumed.
8.2.4 Positional Parameters
None.
8.2.5 Examples
driver_cell -cell d_cell -to Z -ports {inl in2}

The preceding example assigns a driving cell nadgheell output porZ to be used for analysis at the
design portsnlandin2.

driver_cell -cell buf -to Z -from A -parallel 4 -rise -early \
-ports {in3}

Copyright © 1999-2000 Accellera. All rights reserved.
142 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

The preceding example assigns a driving cell natmgdo the design porin3. The arc from inpuf to out-
putZ onbufis specified. This driver applies to the rising transitiom8fand early analysis should be used.

8.2.6 Semantics

Thedriver_cellcommand models the drive capability of an external driver connected to an input or bi-direc-
tional port. The specified cell is not considered part of the circuit, so the output capacitance of the
-to is not included into the capacitance of the port specifiepdys

Itis an error if the cell name specified does not exist in the current library.
Itis an error if the cell specified contains more than one output anddteyword and keyword value is not
specified.

The instancekeyword allows for the specification of multiple instances of the same driver cell. This elimi-
nates value overwriting problems due to matching commands in a DCDL file.

There are two general methods of assigning multiple drivers to ports in the deditgtgifceis not speci-
fied):

Simple: using the multiplier or parallel keywords within a single driver cell command for a given
port. This method allows the specification of one driver, but adjusts the influence of the driver. The -
multiplier keyword has the affect of scaling the driver characteristics whaeallel indicates that 1

or more parallel drivers are to be used.

Cumulative: using multipledriver_cellcommands for a given port. The general precedence rules of
DCDL apply to multipledriver_cellcommands (refer to page 37). In addition, these rules apply:

If the cell name matches and the port and ports names match but thtem name does not
match, this shall be treated as specifying an additional delay arc to be used in the delay calculation
on the design port.

If the -cell name andportsnames match and tho-port name doesot match, this shall be treated
as adding another driver to the design port.

If the portsname matches and theeH name does not match, this shall also be treated as adding
another driver to the design port.

*** Might need to add options to support PVT and temperature/voltage regimes.***
8.2.7 Related Commands
The following commands are related to thever_cellcommand:

driver_resistance

port_capacitance
slew_time

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 143

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

8.3 driver_resistance
U

Thedriver_resistanceommand specifies a resistance value for the cell connected to an external net that is
connected to an input or bi-directional port on the design.

8.3.1 Usage
driver_resistance

[-early | -late] [-rise | fall]
-ports port_listresistancervalue

8.3.2 Required Keywords
-ports port_list
The portskeyword specifies the port or ports to which the driver resistance applies.
8.3.3 Optional Keywords
-early | -late
The early or Hate keywords specify the type of analysis. Thate keyword specifies that the drive

resistance is applied to the late arrival time (setup). Baely keyword specifies that the drive resis-
tance is applied to the early arrival time (hold time).

Default: if neither early nor Jate is specified, both early and late analyses are assumed.
-rise | -fall

The rise or fall keywords indicate whether the drive resistance refers to the rising or falling edge of
the port.

Default: if neither Fise nor fall are specified, both transitions are implied.
8.3.4 Positional Parameters
resistancervalue

Theresistance_rvaluspecifies the resistance for the driver using a real number.
8.3.5 Examples

driver_resistance -ports {in2 in3} 3.5

8.3.6 Semantics
*** |nteraction with arrival timesgdriver_cell andslew_time ***
8.3.7 Related Commands

The following commands are related to thiver_resistanceommand:

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 144

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

driver_cell
units

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

145

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

8.4 external_sinks
U
Theexternal_sinks€ommand specifies the number of external sinks connected to ports.

8.4.1 Usage
external_sinks

-ports port_listsinks unsigned_number
8.4.2 Required Keywords
-ports port_list

The portskeyword specifies the port or ports to which the sinks should be connected.

8.4.3 Optional Keywords
None.
8.4.4 Positional Parameters
sinks unsigned_number

Thesinks_unsigned_numbegrdicates an integer value representing the number of sinks to connect
to the ports.

*** Allow real instead of integer? ***
8.4.5 Examples
external_sinks -ports {in1 out5} 3
8.4.6 Semantics

Specifying the number of sinks on the port does not contribute to the fanout count for analyses such as
design rule checks.

*** Allow pins? How this relates tavire_load_modet**
8.4.7 Related Commands
The following commands are related to éxternal_sink€ommand:

external_sources
wire_load_model

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 146

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

8.5 external_sources
|
Theexternal_sourcesommand specifies the number of external sources connected to ports.

8.5.1 Usage
external_sources

-ports port_listsources unsigned_number
8.5.2 Required Keywords
-ports port_list

The portskeyword specifies the port or ports to which the sources should be connected.

8.5.3 Optional Keywords
None.
8.5.4 Positional Parameters
sourcesunsigned_number

Thesources_unsigned_numliadicates an integer value representing the number of sources to con-
nect to the ports.

*** Allow real instead of integer? ***
8.5.5 Examples
external_sources -ports {in2 out6} 2
8.5.6 Semantics
*** Allow pins? How this relates to wire_load_model ***
8.5.7 Related Commands
The following commands are related to &éx¢ernal_sourcesommand:

external_sinks
wire_load_model

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 147

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

8.6 fanout_load
U
Thefanout_loadcommand specifies the number of loads on design ports.

8.6.1 Usage
fanout_load

-ports port_listload unsigned_number
8.6.2 Required Keywords
-ports port_list

The portskeyword specifies the port or ports to which the load should be connected.

8.6.3 Optional Keywords
None.
8.6.4 Positional Parameters
load_unsigned_number

Theload_unsigned_numbéndicates an integer value representing the number of loads to connect
to the ports.

*** Allow real instead of integer? ***
8.6.5 Examples
fanout_load -ports {in3 out7} 4
8.6.6 Semantics
*** allow pins? ***
8.6.7 Related Commands
The following commands are related to tarout_loadcommand:

port_capacitance

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 148

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

8.7 fanout_load_limit
|
Thefanout_load_limittommand specifies the maximum fanout load allowed on design ports.

8.7.1 Usage
fanout_limit

-ports port_listload_limit_unsigned_number
8.7.2 Required Keywords
-ports port_list

The portskeyword specifies the port or ports to which the load limit should be applied.

8.7.3 Optional Keywords
None.
8.7.4 Positional Parameters
load_limit_unsigned_number

Theload_limit_unsigned_numbéndicates an integer value representing the load limits for the
specified ports.

*** Allow real instead of integer? ***
8.7.5 Examples
fanout_load_limit -ports {in3 out7} 4
8.7.6 Semantics
*** allow pins? ***
8.7.7 Related Commands
The following commands are related to fapout_load_limittommand:

fanout_load

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 149

10

15

20

25

30

35

40

45

50

Acellera

Design Constraints Description Language 0.3.7 (7/25/00)

8.8 port_capacitance

The port_capacitanceommand specifies the capacitance external to a port in a design, based on input and
output loading from other pins and nets connected to the port.

8.8.1 Usage

port_capacitance

[-early | -late | -typ][-pin_load | -wire_load | lumped_load] -ports port_listcapacitancervalue_list

8.8.2 Required Keywords

-ports port_list

The portskeyword specifies the port or list of ports to which the external capacitance shall be
assigned.

8.8.3 Optional Keywords

-early | -late | -typ

The early or Hate keywords specify the type of analysis. Ttate keyword specifies setup time
analysis and theearly keyword specifies hold time analysis.

The typ keyword indicates that the nominal operating condition as used in computitgptsiet in
an SDF triplet should be used for delay calculation purposes.

Default: if neither early, -late, nor-typis specified, the port capacitance should be used in all anal-
ysis types.

-pin_load | -wire_load | Humped_load

The pin_loadkeyword indicates that the capacitance value represents the total pin capacitance for
the external net (not the wire capacitance) on the port(s) specifiponby -

The wire_loadkeyword indicates that the capacitance value represents only the external wire
capacitance (not the pin capacitance) on the port(s) specifipdtby -

The dumped_loackeyword indicates that the capacitance value represents both the pin and the wire
load on the port(s) specified yorts

Default: if neither of these three options are specifigd, foadis assumed.

8.8.4 Positional Parameters

capacitancervalue_list

Thecapacitance_rvalue_ligipecifies a positive, real number indicating the capacitance value. This
value can be a single value that applies in early and late analysis, or 2 values that indicate early and
late values.

8.8.5 Examples

port_capacitance -ports {WriteData[*] MemWrite} {0.2 0.4}

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 150

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

The preceding example shows specifying both the early and late capacitance values that should be assigned
to all bus ports ofNriteDataand theMemWriteport. The capacitance model is pin load (default if not spec-
ified).

port_capacitance -lumped_load -ports {MemRead} 0.4

The preceding example shows the assignment of capacitance keth®eadort using the lumped load
model. The 0.4 value applies to both the early and late analysis.

8.8.6 Semantics
The capacitance value elements are determined bpithdoad -wire_load or Jumped_loadkeywords.
8.8.7 Related Commands
The following commands are related to fet_capacitanceommand:
port_capacitance_limit

port_wire_load
units

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 151

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

8.9 port_capacitance_limit
U

Theport_capacitance_limicommand specifies the maximum capacitance value from a source external to
the design port.

8.9.1 Usage
port_capacitance_limit

-ports port_listload_limit_rvalue
8.9.2 Required Keywords
-ports port_list

The portskeyword specifies the port or ports to which the limit should be applied.

8.9.3 Optional Keywords
None. *** early and late needed? ***
8.9.4 Positional Parameters
load_limit_rvalue

Theload_limit_rvalueindicates an real value representing the maximum capacitance for the speci-
fied port or ports.

8.9.5 Examples
port_capacitance_limit {in1 out5} 6.5
8.9.6 Semantics

Theport_capacitance_limitcommand allows limiting external port capacitance contributed by loading from
connected ports and nets.

*** Allow pins? How this relates tavire_load_modet**

8.9.7 Related Commands

The following commands are related to goet_capacitance_limicommand:
port_capacitance

units
wire_load_model

Copyright © 1999-2000 Accellera. All rights reserved.
152 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

8.10 port_wire_load
U
Theport_wire_loadcommand specifies a wire load model for a specified port.

8.10.1 Usage
port_wire_load

[-library library_identifier]-ports port_listwire_load_modelidentifier
8.10.2 Required Keywords
-ports port_list

The portskeyword specifies the port or ports to which the wire load should be applied.

8.10.3 Optional Keywords
-library library_identifier

The dibrary keyword specifies the name of the library that contains the wire load model.

Default: if dibrary is not specified, the current technology library for the design is used.
8.10.4 Positional Parameters

wire_load_modelidentifier

Thewire_load_model_indentifiegpecifies the name of the wire load model from as specified in the

technology library.
8.10.5 Examples
port_wire_load -library acme2.1 -ports {in1 outl} 10KGATES_5

8.10.6 Semantics

*** Not sure if this command is to assign a particular wire load model to a port, or some kind of load value -

assumed model. This comes from Ambit. Do we allow pins also and add a separate command? ***
8.10.7 Related Commands
The following commands are related to froet_wire_loadcommand:

wire_load_model

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 153

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

8.11 wire_load_model
U
Thewire_load_modetommand specifies which wire load model should be applied from a library.

8.11.1 Usage
wire_load_model
[-library library_identifier] [-instancesinstance_list ire_load_modelidentifier
8.11.2 Required Keywords
None.
8.11.3 Optional Keywords
-library library_identifier

The dibrary keyword specifies the name of the library that contains the wire load model.

Default: if a library is not specified, the current technology library for the design is used.
-instancesinstance_list
The instanceskeyword specifies a particular instance or list of instances to which to apply the wire

load model. If thevire_load_modetommand applies to the top level instance, this keyword is not
necessary.

If the current_scopeommand has been specified beforevthie_load_modetommand and
-instancess not specified, the wire load model is applied to the appropriate scope.

8.11.4 Positional Parameters
wire_load_modelidentifier

Thewire_load_model_indentifiespecifies the name of the wire load model as specified in the tech-
nology library.

8.11.5 Examples

wire_load_model -library acme2.1 10KGATES_5
wire_load_model -library acme2.1 -instances {U11063 U1} 5KGATES_5

8.11.6 Semantics

8.11.7 Related Commands
The following commands are related to thiee_load_modetommand:

current_scope
port_wire_load

Copyright © 1999-2000 Accellera. All rights reserved.
154 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

*** NOTES: Ambit provides a method to annotate physical data séthwire_capacitance
set_wire_resistancas well as handles wireload estimates usetgwire_load_mod& hese should be con-
sidered in the context of the 9/28/99 discussion on physically-aware synthesis during the phone conference.

The information about RCL and M found at the end of the parasitic boundary section in the taxonomy was
not included. It looks like we need this information, but it is not ready for placement in the specification
without some preliminary discussion.

*kk

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 155

10

15

20

25

30

35

40

45

50

Design Constraints Description Language

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

Acellera
0.3.7 (7/25/00)

156

1

10

15

20

25

30

35

40

45

50

9. Standard Compliance
*** Will we have levels of compliance like GCF or VITAL?***
EDA tools shall be considered compliant with this standard if ***

*** Do we need a statement about the usexiénd_dcd ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

157

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

158

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

10. Glossary

For the purposes of this specification, the following terms and definitions apply. IEEE Std 100T1@92,

New IEEE Standard Dictionary of Electrical and Electronics Tersisould be referenced for terms not
defined in this specification.

10.1actual mode ***

10.2annotation: characterized data attached to a design object that is based on the design implementation.
10.3application, EDA application: any software program that interacts with DCDL.

10.4arc: See:timing arc.

10.5arrival time : ***

10.6assertion a statement of truth about a design object that a tool accepts as fact during analysis.

10.7back annotation the addition of information from further downstream steps (towards fabrication) in
the design procesSee alspannotation.

10.8back annotation file a file containing information to be read by a tool for the purpose of back annota-
tion. See alsoback annotation.

10.9bi-directional: a pin or port which can place logic signals onto an interconnect and receive logic sig-
nals from it (i.e., act both as a driver and a receiver).

10.10borrow : ***

10.11boundary: the outer part of an integrated circuit where instances of cell types designed specifically to
interface the internal circuitry to the “outside world” are placed. This part includes “pad” cells (which are
input and output buffers) and power and ground pads; it may also include test circuitry, such as boundary
scan cells.

10.12buffer tree: ***

10.13bus: a collection of nets, pins, or ports.

10.14cell: a functional design unit usually contained in a library.

10.15chip: ***

10.16clock: ***

10.17clock root: the physical pins or ports to which a virtual or ideal waveform is associated.

10.18clock tree: ***

10.19constraint: a desired characteristic that an EDA tool must enforce or satisfy.

10.20correlation: specifies whether early and late delays and slews should be computed assuming that vari-
ations in operating conditions are on the chip (correlated) or between chips (uncorrelated).

10.21delay. the time taken for a digital signal to propagate between two points.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 159

1

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

10.22delay arc. Seeitiming arc.

10.23delay equation any mathematical expression describing cell delay or interconnect delay.
10.24departure time: ***

10.25desigm ***

10.26directive: a statement that directs a tool to implement a specific characteristic.

10.27driver: a pin of a cell instance that, in the current context, is placing or can place a signal onto an
interconnect structure.

10.28early mode ***

10.29false path ***

10.30fanin: ***

10.31fanout: the pin count of a net (the number of pins connected to the net), minus one. This definition
includes all input, output, and bidirectional pins on the net with the sole exception of one pin (assumed to be
related to the particular timing arc currently of interest). Although less fundamental than pin count, fanout is

frequently used in the definition of wireload models.

10.32forward annotation: the annotation of information from further upstream (earlier in the design flow)
in the design procesSee alsoforward annotation file.

10.33forward annotation file: a file containing information to be read by a tool for the purpose of forward
annotation, for example an SDF fifgee alsoforward annotation.

10.34gate a logical abstraction of an library primitive.

10.35hierarchical instance the concrete appearance of a design unit at some hierarchical level. Because
higher-level design units may be instantiated multiple times, a single such appearance may give rise to mul-
tiple instances of the lower-level design units within it. Where instances are referred to as “occurrences”,
hierarchical instances are referred to simply as instances.

10.36ideal mode ***

10.37implementation (hardware): ***

10.38implementation (software): ***

10.39implementation-defined behavior behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible behav-
iors is delineated by this specification.

10.40implementation limits: restrictions imposed by an implementation.

10.41input: a pin or port that shall onlgeceve logic signals from a connected net or interconnect structure.

10.42insertion delay. ***

Copyright © 1999-2000 Accellera. All rights reserved.
160 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

10.43instance cell instance a particular, concrete appearance of a cell in the fully-expanded (flattened,
unfolded, elaborated) design description of an integrated circuit, also referred to elsewhere as an “occur-
rence.” An instance is a “leaf” of the unfolded design hieratshg. alsocell, hierarchical instance

10.44intent (or design intent): ***

10.45interconnect a collective term for structures (in an integrated circuit) that propagate a signal between
the pins of cell instances with as little change as possible.

10.46jitter ; ***

10.47latch; ***

10.48late mode ***

10.49leading edge ***

10.50level-sensitive ***

10.51library : a collection of circuit functions, implemented in a particular integrated circuit technology,

that an integrated circuit designer or EDA application can select in order to implement aSkssigiso:

cell.

10.52load: ***

10.53logical: *** as opposed to physical ***

10.54logical file: a DCDL file with all included files expanded.

10.55module; ***

10.56multi-cycle path: ***

10.57net, net instance an abstraction expressing the idea of an electrical connection between various
points in a design. In a hierarchical representation of the design, nets can occur at all levels and may connect
to pins of lower hierarchical levels (including cell instances), ports of the current hierarchical level and each
other. In a flattened (unfolded and elaborated) design, electrically connected nets are collapsed and each net

instance corresponds to an unique interconnect structure in the implementation.

10.58node a conceptual point (through which logic signals pass) that has been identified as an aid to mod-
eling the timing properties of a cell but may not correspond to any physical structure.

10.590perating condition: ***

10.600utput: a pin or port that shall onjplace logic signals onto a connected net or interconnect structure.
10.61overshoot ***

10.62parameter: a data item required for the calculation of some result.

10.63parasitics: electrical properties of a design (resistance, capacitance, and impedance) that arise due to
the nature of the materials used to implement the design.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 161

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

10.64pathname a set of characters separated by hierarchy characters that represent the relative position/
location of a design object.

10.65periphery: Seeboundary.
10.66physical: *** as opposed to logical ***
10.67physical file: an individual DCDL file containing unexpanded includes.

10.68pin: a terminal point where an interconnect structure makes electrical contact with the fixed structures
of a cell instance; or the conceptual point where a net connects to a lower level in the design hierarchy.

10.69pin count: the number of cell instance pins that an interconnect structure visits, including all input,
output, and bidirectional pins. Pin count is the number of “places” the interconnect goes to on the chip. A pin
count of less than two is not possible.

10.70port: a conceptual point at which a cell or a hierarchical design unit makes its interface available to
higher levels in the design hierarchy.

10.71positional parameter. a value or identifier not associated with a keyword in a DCDL command.
10.72primary input : the point where a logic signal arrives at the boundary of the design as currently known
to an EDA application. For a complete integrated circuit design, for example, this point is the metal pad of
an input or bidirectional pad cell.

10.73primary output : the point where a logic signal leaves the design as currently known to an EDA appli-
cation. For a complete integrated circuit design, for example, this point is the metal pad of an output or bidi-
rectional pad cell.

10.74process point ***

10.75rail : ***

10.76RC, RC time constant the product of some resistance and some capacitance (having the dimensions
of time) or a time constant computed in some other &way:Elmore delay.

10.77receiver. a pin of a cell instance that is receiving or can receive a signal from an interconnect struc-
ture.

10.78regime; ***

10.79required time: ***

10.80shared port an output or bidirectional port where some other output port of the cell derives its logic
function. The output load at a shared port affects not only the delay to that port itself, but also the delay to

any ports sharing it.

10.81sink, sink pin: the pin is the end of a delay arc, i.e. the destination of the logic signal. For arcs across
cell instances, the sink is the driver pin. For arcs across interconnect structures, the sink is the receiver pin.

10.82skew. ***

Copyright © 1999-2000 Accellera. All rights reserved.
162 This is an unapproved standards draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

10.83slew. a measure of the shape of the waveform constituting a logic state transition. A slew value can
have the dimensions of time, in which case it is a slew time, or the dimensions of voltage-per-time, in which
case it is a slew rate.

10.84slew-dependent delaythat part of an input-to-output delay that can be attributed to the signal at the
input of the arc taking longer to make a transition than is considered ideal.

10.85slew rate a measure of how quickly a signal takes to make a transition, i.e., a voltage-per-unit time.
Slew rate is inversely related $tew timeand is sometimes used incorrectly whelesv timeis intended.

10.86slew time a measure of how long a signal takes to make a transition, i.e., the rise time or fall time.
Slew time is inversely related to slew rate. The way a slew time value is abstracted from the continuous
waveform at a cell pin varies with different cell characterization methods.

10.87source source pirt the source pin is the start of a delay arc, i.e., the origin of the logic signal. For arcs
across cell instances, the source is the receiver pin. For arcs across interconnect structures, the source is the
driver pin.

10.88target, target pin: ***

10.89time-of-flight: the time delay between a signal leaving a driving pin or primary input port and reach-
ing a receiving pin or primary output port (measured at the logic threshold). Although light-speed delay may
be significant in some cases, time-of-flight is generally dominated by the time taken to charge the distributed
capacitance of the interconnect and the capacitance of the driven pins through the distributed impedance of
the interconnect. The internal impedance of the driving port affects the load-dependent daebay but

(directly) the time-of-flight.

10.90timing annotation (file): the annotation of a design in one tool with timing data computed by another
tool. If timing calculation is performed as an off-line process (separately from the application using the tim-
ing data), the process of reading the timing data into the tool is known as timing annotation. A timing anno-
tation file stores the data written by the timing calculator and is later read by an appl®atitack

annotation.

10.91timing arc: a pair of ports, pins, or nodes that possess some timing relationship such as the propaga-
tion delay of a signal from one to the other or a timing check between them. Delay arcs may be from cell
inputs to outputs or over the interconnect from driver pins to receiver pins.

10.92timing check: a timing property of a circuit (frequently a cell) that describes a relationship in time
between two input signal events. This relationship needs to be satisfied for the circuit to function correctly.

10.93timing model: a timing model represents the timing behavior of a cell for applications such as simula-
tion and timing analysis. For black-box timing behavior, it represents the definition of pin-to-pin delays
between any pair of pins as well as internal nodes. In addition, for sequential cells it provides the definition
of timing checks and constraints on any pair of pins and/or internal nodes.

10.94trailing edge: ***
10.95transition: the change of a logic signal from one state to another (as in “... a transition at the input
shall cause ...”) or the pair of logic states between which a transition may occur (as in “... the delay for a

low-to-high transition ...”).

10.96uncertainty: ***

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 163

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

10.97unloaded delay the conceptual delay value for a delay arc of a cell when the output pin is unloaded
(unconnected) and the signal at the input pin conforms to some ideal wav@jorimtrinsic delay.

10.98undefined behavior behavior for which this specification imposes no requirements (e.g., use of an
erroneous program construct). Permissible undefined behavior ranges from

— ignoring a situation completely with unpredictable results;

— behaving during translation or program execution in a documented manner characteristic of the envi-
ronment (with or without the issuance of a diagnostic message);

— terminating a translation or execution (with the issuance of a diagnostic message).

10.99unspecified behavior behavior (for a correct program construct and correct data) that depends on the
implementation. The implementation is not required to document which behavior occurs. Usually the range
of possible behaviors is delineated by this specification.

10.100waveform: ***
10.101wireload modet a statistical model that estimates interconnect properties as a function of the geo-

metric measures available before the completion of layout and routing. Typical model properties include:
fanout, capacitance, length, and resistance.

Copyright © 1999-2000 Accellera. All rights reserved.
164 This is an unapproved standards draft, subject to change.

Annex A

BNF

*** Min, typ, and max values are not represented yet. And/or constructs not represented welhdite -
and/or ping***

A.1.1 General Structure BNF.
dcdl_line_entry :: command | comment

comment ::= commang#text | (#command | [text])

15

20

25

30

35

40

45

50

command ::=

universal_command |
scoping_command |
operating_conditions_command |
timing_command |
parasitics_command

universal_command ::=

constant |
design_name_space |
extend_dcdl |
functional_mode
history |

include |

tool_domain |

units |

version

scoping_command ::=

current_scope

operating_conditions_command ::=

operating_point |
operating_process |
operating_range |
operating_temperature |
operating_voltage |
temperature_regime |
voltage_regime

timing_command ::=

clock_command |
timing_boundary_command |
timing_exception_command

Copyright © 1999-2000 Accellera. All rights reserved.

This is an unapproved standards draft, subject to change.

165

15

20

30

35

40

45

50

Acellera

0.3.7 (7/25/00)

clock_command ::=

timing_boundary_command ::=

timing_exception_command ::=

clock |
clock_arrival_time |
clock _delay |
clock_mode |
clock_required_time |
clock_skew |
clock_uncertainty |

common_insertion_delay |

derived_waveform |
target_uncertainty |
waveform

data_arrival_time |
data_required_time |
departure_time |
external_delay
slew_limit |
slew_time

borrow_limit|
disable |
false_path |
multi_cycle_path |
tree_delay |
tree_mode

parasitics_command ::=

166

driver_resistance |
driver_cell |
external_sinks |
external_sources |
fanout_load |
fanout_load_limit |
port_capacitance |
port_capacitance_limit |
port_wire_load |
wire_load_model

Copyright © 1999-2000 Accellera. All rights reserved.

DRAFT STANDARD FOR DCDL

This is an unapproved standards draft Standards Draft, subject to change.

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

A.1.2 Shared BNF CONStrUCES.ot e e

10

15

20

25

30

35

40

45

50

character ::=
nonreserved_character |
reserved_character |
whitespace

nonreserved_character ::= a - z | A-Z | integer_digit
IS &N =T+ -1% =< > D T @] |

reserved_character =2 |{ |} |;]" [#]|\

whitespace ::space| horizontal_tab

text ::= character_set

character_set ::= whitespace { whitespace } | nonreserved_character { nonreserved_character }

character_range ::= nonreserved_charaatenreserved_character
{ nonreserved_charactenonreserved_character }

identifier ::= nonreserved_character { nonreserved_charatter }

identifier_list ::={ identifier} |
{ identifier { identifier } }

real ::= unsigned_numbeunsigned_number |
usigned_number.[unsighed_number] exponent unsigned_number

integer ::= [sign] unsigned_number
unsigned_number ::= integer_digit { integer_digit }
integer_digit ::=0|1|2|3|4|5|6|7]8]9
exponent ::=E | e[sign]

rvalue ::= real

rvalue_list ::={ real} |
{real {real }}

rsvalue ::=[sign] real
sign =+ |-
time_value ::=[sign] real | placeholder

unsigned_time_value ::= real | placeholder

IActual characters governed by design_name_space command.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 167

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

time_value_list :: time_value} |
*** Might need to be more specific here, as it is usually 2 or 4 values only ***
{ time_value { time_value }

placeholder ::=

port_list ::={ object_identifier} |
{ object_identifier { object_identifier } |
wildcard

pin_list ::={ object_identifier} |
{ object_identifier { object_identifier } |
wildcard

instance_list ::§ object_identifier} |
{ object_identifier { object_identifier } |
wildcard

cell_list ::={ identifier} |
{ object_identifier { object_identifier } |
wildcard

wildcard ::= identifiet | * | *identifier* | identifief?

object_identifier ::= identifier |
pathname

pathname ::Z [hierarchy_delimitercharacter] {identifieriierarchy_delimitercharacter]}

multiplier ::= real

A.1.3 Universal Commands BNF e
constant ::=constant(-ports port_list | pins pin_list)0 |1

design_name_space design_name_spacererilog (“ 1995 " |“ 2000 “) |
-vhdl (“1987 “|“ 1993 “|*“2000“) | -edif (200" |“300“|“400") |
-custom (-characters “ [character_sqt” |“[character_rangé” |
“[character_set character_rarjge
“[character_range character_Fef)
(-case_sensitive | -case_insensitiyve
(-character_escape ‘escapecharactet |
-string_escape_start “escapecharactef [-string_escape_end ‘escapecharactef |)
(-escape_type include | exclude
(-bus_range_separator_up ‘index _charactef |“ index identifier”)
(-bus_range_separator_down ‘index charactel' |“ index identifier”)
(-bus_bit left“ bit_charactel')
(-bus_bit right“ bit_charactet')
(-hierarchy_delimiter “ delimiter_charactef)

extend_dcdl ::=extend_dcdlcommandidentifier Farguments “ argument text”]

Copyright © 1999-2000 Accellera. All rights reserved.
168 This is an unapproved standards draft Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

functional_mode::functional_mode ([-group_namegroup_identifier]
-mode_namemode identifier) | (all | -default) instance_list

history ::=history “ history text”
include ::=include [-inline 1 “ pathnameidentifier”

units :: =units [-time multiplier] [-capacitancemultiplier] [-resistancemultiplier]
[-voltage multiplier] [-temperature multiplier] [-inductance multiplier]

version ::=version version_identifier

version_identifier ::= V1.0“

A.L1.4 Scoping ComMMAaNAS. e e e e

current_scope ::surrent_scope -instancanstance identifier | eell cell_identifier | top |
-up level unsigned_number

A.1.5 Operating Conditions BNF

operating_point ::®@perating_point [-voltage_regimevoltage_regimeidentifier]
[-temperature_regimetemperature_regimedentifier] [dibrary library_identifier]
-nameoperating_pointidentifier (best| -nominal | -worst | -min_best| typ_best|
-max_best| -min_worst | typ_worst | -max_worst)

operating_process :Bperating_procesq -library library_identifier]
[-value operating_pointrvalue] (best| -nominal | worst | -min_best| typ_best|
-max_best| -min_worst | typ_worst | max_worst)

operating_range ::eperating_range[-library library_identifier Joperating_rangeidentifier

operating_temperature :gperating_temperature
([-temperature_regimetemperature_regimeadentifier] |
[-instancesinstance_list [pin pin_identifier])
[-library library_identifier] [value operating_pointrvalue] (best| -nominal | worst |
-min_best| typ_best| max_best| min_worst | typ_worst | max_worst)

operating_voltage ::operating_voltage([-voltage_regimevoltage_regimeidentifier] |
[-instancesinstance_list [pin pin_identifier])
[-library library_identifier] [-value operating_pointrvalue] (best| -nominal | -worst |
-min_best| typ_best| imax_best| min_worst | typ_worst | nax_worst)

temperature_regime :temperature_regime|[-cellscell_list] |
[-instancesinstance_list]
temperature_regimeadentifier

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 169

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

voltage_regime ::woltage_regime] -logical_rail logical_rail_identifier] |
[-physical_rail physical_rail identifier]
[-base_voltagevoltage rvalue]
[-min_voltage minimum rvalue] [max_voltagemaximumrvalue]
[(-cellscell_list [port port_identifier])] |
[(-instancesinstance_list [pin pin_identifier])]
voltage_regimeidentifier

A.1.6 Clock Commands BNF.

clock ::=clock -waveform waveformidentifier (pins pin_list | ports port_list)
[-parent_pin pin_identifier | parent_port port_identifier]

clock_arrival_time ::=clock_arrival_time -waveform waveform identifier
[-lead| trail][-early | 1ate]
-ports port_list | pins pin_listclock_arrival time_value_list

clock_delay ::=xclock_delay-waveform waveformidentifier |
(-root_port port_identifier | foot_pin pin_identifier) | (teaf pin_identifier)
[-rise| fall] [-early | -late] delay unsigned_time_value_list

clock_mode ::=lock_mode[-root_port port_list | root_pin pin_list] ideal | -actual

clock_skew ::=clock_skew(-root_port port_identifier | froot_pin pin_identifier) [+ise | fall]
[-early | Hate] skew unsigned_time_value_list

clock _required_time ::slock_required_time -waveform waveform identifier [{ead | -trail]
[-early | Hate] -ports port_list | pins pin_listclock_requiredtime_value_list

clock uncertainty ::=lock_uncertainty [-from root_waveformidentifier]
[-to target_waveformidentifier] [from_edge rise| fall]
[-to_edge rise| fall] [-early | Hate] [-absolute| -increment] [-ideal | -actual]

{ uncertainty rsvalue}

common_insertion_delay :common_insertion_delay(-from_port clock_port identifier |
-from_pin clock_pin_identifier) (-to_port clock port_identifier |
-to_pin clock pin_identifier) [rise | fall] [-early | Jate] insertion rvalue_list

derived_waveform ::=derived_waveform-waveform parent waveformidentifier
-namederived waveformidentifier [-inverted] [-phase {offset_shiftrsvalue_lis}]
([-multiplier mult_unsigned_number] fivisor divisor_unsigned_numlivg) |
[-derived_edges {ead_edgeunsigned_numberail_edge unsigned_numbét]
[-lead_jitter jitter_value | trail_jitter jitter_value]

jitter_value ::={ left_unsigned_time_valueight_unsigned_time_valug|
{ offset unsigned_time_valug[-increment | -absolute]

target_uncertainty ::target_uncertainty -port clock_root identifier |
(-pin clock_leaf identifier |clock_root identifier) | instanceinstance identifier
[-early | Hate] [-absolute| -increment] [-ideal | -actual] uncertainty rsvalue

tree_delay ::#ree_delay-root_port port_identifier | root_pin pin_identifier
[-ideal | -actual] [-explict_leaf pin_list]
[-default_insertion delay rvalue] [explicit_insertion delay rvalue]

Copyright © 1999-2000 Accellera. All rights reserved.
170 This is an unapproved standards draft Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

Acellera
Design Constraints Description Language 0.3.7 (7/25/00)

[-internal_insertion delay rvalue]
[-default_skewskew rvalue] [default_transition time rvalue]
[-explicit_transition time rvalue]

tree_mode ::#ree_mode-ideal | -actual

waveform ::=waveform -namewaveformidentifier [period period rvalue]
[-edges {lead rsvaluetrail _rsvalue}]
[-lead_jitter { left_unsigned_time_valueight_unsigned_time_valug|
{ offset unsigned_time_valug]
[-trail_jitter { left_unsigned_time_valueight_unsigned_time_valug|
{ offset unsigned_time_valukg]
[-inverted] [-domain domain identifier]

A.1.7 Timing Boundary Commands BNF.

data_arrival_time ::€lata_arrival_time -waveform waveform identifier
[-target | -source] [-lead | 4rail][-early | date] [-rise | fall]
-ports port_list | pins pin_list
arrival_time_value_list

data_required_time ::data_required_time -waveform waveform identifier
[-target | source] [-lead | trail]
[-early | date] [-rise | fall] -ports port_list | pins pin_listrequired time_value_list

departure_time ::departure_time -waveform waveform identifier
[-early | date] [-rise | fall]
-ports port_list | pins pin_listdeparture time_value_list

external_delay ::external_delay-waveform waveform identifier [early | 1ate]
-ports port_list | pins pin_list
-rise_rangerise time_value_listfall_range fall_time_value_list

slew_limit ::=slew_limit [-early | Hate] [-rise | fall]
-ports port_list | pins pin_listslew_limit time_value

slew_time ::=slew_time[-early | date] [-rise | fall] -ports port_list | pins pin_list
slew time_value_list

A.1.8 Timing Exception Commands BNF.

*** Not sure how to specify one or more keywords in BNF. For example, in the following
commands,te, -from, and through- one or more must be specified. ***

borrow_limit ::=borrow_limit [-ports port_list | pins pin_list |
-waveform waveformidentifier |
-instancesinstance_list borrow_limit_rvalue

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 171

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

disable ::=disable[-library library_identifier] cell cell_identifier | instanceinstance identifier

10

15

20

25

30

35

40

45

50

[-from_port port_list | from_pin pin_list] [-to_port port_list | to_pin pin_list] |
[-input_arcs] | [-internal_arcs]

false_path ::#alse_path[-early | date] [-rise | fall] path_options

multi_cycle_path ::=multi_cycle_path[-target | -source |-waveform waveformidentifier]
[-early | date] [-rise | fall] path_optiond cycle_numbe}

cycle_number ::=[sign] real | [sign] unsigned_number |
{ [sign]real [sign] red |
{ [sign] unsigned_number [sign] unsigned_number
{ [sign] real [sign] unsigned_numblef{ [sign] unsigned_number [sign] rgd!
placeholder

path_options ::= (from_port | from_pin | from_instance| from_waveform
{ object_identifieq) |
(-from_port | from_pin | from_instance| from_waveform { object_identifieg) |
({ -through_port | through_pin | -through_instance| -through_net
{ object_identifieg })

A.1.9 Parasitics Commands BNF

172

driver_cell ::=driver_cell [-library library_identifier] -cell cell_identifier
[-instanceinstance identifier] [-to port_identifier]
([-from port_identifier] [+ise_slewslew rvalue] [fall_slewslew rvalue])
([-multiplier multiplier]| [-parallel driver_unsigned_number]) fise | fall]
[-early | Hate] -ports port_list

driver_resistance ::driver_resistance[-early | Hate] [-rise | fall] -ports port_list
resistancervalue

external_sinks ::external_sinks-ports port_listsinks unsigned_number
external_sources ::external_sourcesports port_listsourcesunsigned_number
fanout_load ::=fanout_load -ports port_listload unsigned_number
fanout_load_limit ::=fanout_load_limit -ports port_listload_limit_unsigned_number

port_capacitance ::= parly | Jate | -typ] [-pin_load | -wire_load | dumped_load]
-ports port_listcapacitancervalue_list

port_capacitance_limit :;port_capacitance_limit-ports port_listload_limit rvalue

port_wire_load ::9port_wire_load [-library library_identifier]-ports port_list
wire_load_modelidentifier

wire_load_model ::wvire_load_model][-library library_identifier]
[-instancesinstance_list wire_load_modelidentifier

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

Annex B

(informative)

Bibliography
[C1] Cadence Design Systems, Inc., “Command Reference Manual (Ambit strawman)

[C2] Cadence Design Systems, Inc., “General Constraint Format Specification”, Version 2.0, January 26,
1999.

[C3] Mentor Graphics Corporation, “SST Velocity Reference Manual”, Version 3.2., 1999.
[C4] Open Library API (OLA) specification, Version 1.0.2, May 1999.

[C5] IEEE (1003.2) ISO/IEC 9945-2 “Portable Operating System Interface (POSIX) Part 2: Shell and Utili-
tes”, Section 2, 1993.

[C6] Barry N. Taylor, “Guide for Use of the International System of Units”,1995

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 173

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

174

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

Annex C

(informative)

Analyzed and Rejected Functionality

This annex houses the features and commands that were discussed, analyzed, and ultimately rejected for
inclusion in this version of the standard. This functionality is provided here as an archive so that the reader
can understand the rationale for not including it into the specification and to potentially re-visit in future ver-
sions of the standard.

C.1 Merging Constraint Values

The DC-WG considered whether or not the value of merging constraints (and potentially allowing incremen-
tal constraints) was great enough to include in the first phase of this specification. An example of merging is
handling the creation of a new constraint value based on minimum and maximum values for a matching con-
straint.

Removed from after section 3.3.7.3 “Unsetting and Resetting Constraint Values”

Justification for rejection : the complexity that merging implies is very great while the return on investment
is not known. For example, it is not known whether designers even want this feature.

C.2 The persistent_comment Command

The purpose of thpersistent_commergbmmand was to allow comments to be passed through to a DCDL
file that is written out of a tool. Normal comments, represented by the # character, are ignored during read-
ing and thus would be lost during the writing of DCDL.

Removed from after section4.6 “include”
Justification for rejection: due to the potential of design transformations, keeping track of the exact loca-
tion within the output DCDL file for the comment would be very difficult for most design tools to support. If

the designer wanted persistent comments and was working with a tool that could support this concept, the
extend_dcdcommand could be used to prototype this feature.

C.3 The tool_domain Command

The purpose of thwol_domaincommand was to specify a region of DCDL commands that applied to a par-
ticular tool or tool type. This is similar to the pragma concept.

Removed from after section 4.6 “include”
Justification for rejection: a user can accomplish this functionality using several other techniques. The

includecommand could be used or embedding DCDL in an extension language that had case statements
would accomplish this task.

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 175

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

C.4 Tags

Tags apply when modeling the constraints at the boundary of a hierarchical block or a chip. In most tools, there can
be different arrival (required) times at an input (output) pin, one for each of the clock signals associated with registers
in other blocks which are in the cone of logic ending (starting) at the input (output) pin.

With tags, there may be several different arrival (required) times with respect to the same clock, and a unique tag is
used to distinguish between them. The value of this is in modeling false or multi-cycle exceptions which span the
boundary of the block. Suppose there are two partial paths, A and B, starting outside the block and ending at an input
pin, and two partial paths, C and D, starting at the input pin and ending inside the block. If the full path consisting of
A and C is false, but the other three paths (A+D, B+C, B+D) are not, the normal approaches to describing arrival
times and setup/hold arcs break down, because they describe the worst case across all partial paths.

Tags are used to distinguish between different classes of partial paths. In the example, A and B would be modeled as
two separate arrival times with different tags. Then a false path constraint would be specified for the combination of
As tag and path C.

Removed from after section 7.5 “Common Timing Command Conventions”
Justification for rejection: tags are not well-understood at this point and only just now being investigated by EDA

vendors and designers. It is also not known if designers desire this feature. It is likely that tags will be re-visited in a
later version of this specification.

Copyright © 1999-2000 Accellera. All rights reserved.
176 This is an unapproved standards draft Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

Annex D

(informative)

DCDL Relationship to OLA

This annex provides a mapping between DCDL commands and related Open Library API (OLA) functions.

Table 4-4—Related DCDL and OLA Commands

DCDL Command Related OLA Function(s) Notes
functional_mode Ifall is used, that is an error.
operating_point *** calc mode *** If vauleis used, that is an error.
operating_process *** calc mode *** Ifvauleis used, that is an error
operating_range appGetCurrentOpRange
operating_temperature *** calc mode *** Ivaulecould be optional depending on lib.
operating_voltage *** calc mode *** Ifwvaulecould be optional depending on lib.
power_regime dpcmGetRailVoltageRangg
temperature_regime

The DCDL operating condition commmands can represent correlated or uncorrelated values (refer to
| page 65) based on process. This corresponds to[BLM_ProcessVariationsThe application would set
the PROCESS_VARIATIOfield in the standard structure to:
DCM_NoVariationfor uncorrelated variation
DCM_MinEarly_MaxLatdor correlated variation

DCM_MaxEarly_MinLate_EdgesSanoe DCM_MaxEarly_MinLate_EdgesOppositer common
path pessimism removal in clock paths with correlated variation

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 177

10

15

20

25

30

35

40

45

50

Acellera
0.3.7 (7/25/00)

178

DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft Standards Draft, subject to change.

B

Background, of the DCDL effort 21
Bibliography 173

Bit representation 32

BNF description 165

borrow_limit 125

Boundary commands, timing 110
Bus bits 32

C

Case sensitivity 27
Cell 31
Character set 27
clock 86
Clock networks 83
clock_arrival_time 88
clock delay 90
clock_mode 92
clock _required_time 94
clock _skew 96
clock _uncertainty 98
Clocks
Clock commands 85
Clock domains 83
Clock edges 83
Clock roots 83
Clock uncertainties 83
Cycle accounting, default 83
Gating 83
Ideal clocks 83
Inter-Clock uncertainty 84
Intra-Clock tree skew 84
Propagated clocks 83
Target-Based uncertainty 84
Collisions, command names 39
Command conventions, common to timing 84
Command ordering 33
Command shorthand 29
Command structure 27
Commands
borrow_limit 125
clock 86
clock_arrival_time 88
clock delay 90
clock_mode 92
clock _required_time 94
clock _skew 96
clock _uncertainty 98
common_insertion_delay 100
constant 42
current_scope 63

data_arrival_time 111
data_required_time 113
departure_time 116
derived_waveform 102
design_name_space 43
disable 127
driver_cell 141
driver_resistance 144
extend_dcdl 49
external_delay 118
external_sinks 146
external_sources 147
false_path 129
fanout_load 148
fanout_load_limit 149
functional_mode 51
history 54
include 55
multi_cycle_path 131
operating_point 68
operating_process 70
operating_range 72
operating_temperature 74
operating_voltage 76
port_capacitance 150
port_capacitance_limit 152
port_wire_load 153
slew_limit 120
slew_time 122
target_uncertainty 105
temperature_regime 78
tree_delay 134
tree_mode 136
units 57
version 59
voltage_regime 80
waveform 107
wire_load_model 154
Comments 28
Comments and continuation characters 28
common_insertion_delay 100
Compliance rules for DCDL 157
constant 42
Constraint object types 31
Continuation characters and comments 28
Continuing, a single line 28
Conventions, for the document 25
Correlation 65
current_scope 63

D

data_arrival_time 111

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change.

179

Acellera
0.3.7 (7/25/00)

data_required_time 113
Default constraint values 35
Defaults

Keyword 35

Meta 35

Positional parameters 35

Delay and Power Calculation WG interaction 23

departure_time 116
derived_waveform 102
Design Constraint Working Group, about 22
Design object identifiers 32
Design scope 61
design_name_space 43
disable 127

Disables 84

Document conventions 25
driver_cell 141
driver_resistance 144

E

Error handling 39

Escaping characters in strings 29
Exception commands, timing 124
extend_dcdl 49

Extending DCDL 49
external_delay 118
external_sinks 146
external_sources 147

F

False paths 84
false_path 129
fanout_load 148
fanout_load_limit 149
File scope 61

File scope commands 38
functional_mode 51

G

Glossary 159
H

history 54

Ideal clocks 83

DRAFT STANDARD FOR DCDL

Identifiers 29

include 55

Inheritance 38

Insertion delay model 83

Instance 31

Interacations, within timing domain 84

J
Jitter 84
K

Keyword order 33
Keywords 28

L

Latching 84

Lexical elements 27

Library 31

Line continuation 28

Lists, as arguments 29
Logical design object types 31
Logical file 61

M

Merging constraint values 175
Message handling 39

Meta defaults 35

Modes 51

multi_cycle_path 131

N

Name spaces, overview 31
Naming collisions 38
Nets 31

O

Object types
Constraint 31
Logical 31
Physical 31
Obijective, of DCDL 21
OLA interaction 23
OLA, relationship to DCDL 177
Open Library API, relationship to DCDL 177
Operating conditions 65

Copyright © 1999-2000 Accellera. All rights reserved.
180 This is an unapproved standards draft, subject to change.

Design Constraints Description Language

operating_point 68
operating_process 70
operating_range 72
operating_temperature 74
operating_voltage 76

P

Parasitic boundary commands 139
Participants, in creating DCDL 24
Pathnames to design objects 32
Pattern matching 32

Physical file 61

Physical object types 31

Pins 31

Placeholders 37
port_capacitance 150
port_capacitance_limit 152
port_wire_load 153

Ports 31

Precedence rules 37

Process point, options 65
Propagated clocks 83

R

Regimes 65

Rejected functionality 175
Reporting errors and messages 39
Reserved characters 28

Reserved words 28

Resetting constraint values 36

S

Scope, an overview 38
Scope, of the language 21
Scoping commands 61

SDF, mapping to 137
Shorthand, for commands 29
SLDL interaction 23
slew_limit 120

slew_time 122

Standards, interaction with other groups 23
Strings, as arguments 29
Synchronous theory 83
Syntax, complete 165

T

target_uncertainty 105
temperature_regime 78

Acellera
0.3.7 (7/25/00)

Termination, of commands 28

Terms, definition of 159

Timing boundary commands 110

Timing boundary theory 84

Timing command conventions, common 84
Timing domain 83

Timing exception commands 124

Timing exception theory 84

tree_delay 134

tree_mode 136

U

Uncertainties, clock 83

units 57

Unsetting constraint values 36
Usage models, of DCDL 22

Vv

Value slots 36
Values, constraint 34
version 59
voltage_regime 80

wW

waveform 107

Whitespace 27

Who is involved in DCDL 24
Wildcards 32
wire_load_model 154

Copyright © 1999-2000 Accellera. All rights reserved.
This is an unapproved standards draft, subject to change. 181

Acellera
0.3.7 (7/25/00) DRAFT STANDARD FOR DCDL

Copyright © 1999-2000 Accellera. All rights reserved.
182 This is an unapproved standards draft, subject to change.

	Draft 0.3.7
	Draft Standard for the Design Constraints Description Language (DCDL)
	Table 1: Version History

	Background
	Figure�1�1 Design Standards

	Scope
	Figure�1�2 DCDL Scope

	Usage Models
	a) Initial constraint entry. Initial design intent is specified by using pure DCDL or by embeddin...
	b) Constraint interchange. A very important facet of interoperability is the ability to pass DCDL...
	c) IP authoring. Soft and firm IP products require a means to express intent and to guarantee tha...

	Standards Organization
	Figure�1�3 DC-WG Creation Process

	Standards Interaction
	2. Language Documentation Conventions
	2.1 Language Conventions
	a) Lowercase words, some containing embedded underscores, are used to denote syntactic constructs...
	b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a req...
	c) The ::= operator separates the two parts of a BNF syntax definition. The syntax category appea...
	d) A vertical bar separates alternative items (use one only). For example:
	e) Square brackets enclose optional elements, unless the brackets are part of the syntax (in whic...
	f) Braces enclose a repeated item, unless the braces are part of the syntax (in which case they w...
	g) Parentheses enclose items within a group, unless the parentheses are part of the syntax (in wh...
	h) A hyphen (-) is used to denote a range. For example:
	i) If the name of any element starts with an italicized part, it is equivalent to the construct n...

	2.2 Status
	2.3 Specification Organization
	a) Basic language features: the building blocks and general rules of the language.

	3. Basic Language Features
	3.1 Command Structure
	Figure�3�1 Command Structure

	3.2 Lexical Elements and Rules
	3.2.1 Character Set
	3.2.2 Case Sensitivity
	3.2.3 Whitespace
	3.2.4 Command Termination
	3.2.5 Line Continuation
	3.2.6 Comments
	3.2.7 Reserved Words and Characters

	3.3 General Language Features
	3.3.1 Command Shorthand
	3.3.2 Identifiers
	3.3.3 Lists as Arguments
	3.3.4 Strings as Arguments
	3.3.5 Design References
	3.3.5.1 Object Types
	3.3.5.1.1 Logical Design Object Types
	3.3.5.1.2 Constraint Object Types
	3.3.5.1.3 Physical Design Object Types

	3.3.5.2 Design Name Spaces
	3.3.5.3 Design Object Identifiers
	3.3.5.4 Bit Representation
	3.3.5.5 Wildcards

	3.3.6 Command Ordering
	3.3.6.1 Command Ordering Examples

	3.3.7 Constraint Values
	3.3.7.1 Undefined Constraint Values
	3.3.7.2 Default Constraint Values
	3.3.7.3 Unsetting and Resetting Constraint Values
	3.3.7.4 Constraint Value Slots
	3.3.7.4.1 Value Slot Placeholders

	3.3.8 Precedence Rules
	1) Matching explicit commands: the last command read overrides the preceding command.
	2) Matching default commands: the last default command read overrides the preceding command.
	3) Reset matches explicit command: will eliminate the effect of the explicit command but not the ...
	4) Unset matches explicit command: will eliminate the effect of the explicit and default command....
	5) Placeholders: are not affected by the precedence rules, as they indicated that nothing is spec...
	6) Value slots: the preceding precedence rules apply independently to each value slot.
	7) Meta defaults: for the few commands for which DCDL implies values, unset commands that match e...
	3.3.8.1 Precedence Rule Examples

	3.3.9 Constraint Scoping
	3.3.10 Constraint Inheritance
	3.3.11 Command Name Collisions
	3.3.12 Message Handling

	3.4 DCDL and Extension Languages
	3.4.1 Tcl Interoperability for Script Writers
	3.4.2 Tcl Interoperability for Application Developers

	4. Universal Commands and Features
	4.1 constant
	4.1.1 Usage
	4.1.2 Required Keywords
	4.1.3 Optional Keywords
	4.1.4 Positional Parameters
	4.1.5 Examples
	4.1.6 Semantics
	4.1.7 Related Commands

	4.2 design_name_space
	4.2.1 Usage
	4.2.2 Required Keywords
	Table�4�1— Verilog Name Space Overview
	Table�4�2— VHDL Name Space Overview
	Table�4�3— EDIF Name Space Overview

	4.2.3 Optional Keywords
	4.2.4 Positional Parameters
	4.2.5 Examples
	4.2.6 Semantics
	4.2.7 Related Commands

	4.3 extend_dcdl
	4.3.1 Usage
	4.3.2 Required Keywords
	4.3.3 Optional Keywords
	4.3.4 Positional Parameters
	4.3.5 Examples
	4.3.6 Semantics
	4.3.7 Related Commands

	4.4 functional_mode
	4.4.1 Usage
	4.4.2 Required Keywords
	4.4.3 Optional Keywords
	4.4.4 Positional Parameters
	4.4.5 Examples
	4.4.6 Semantics
	4.4.7 Related Commands

	4.5 history
	4.5.1 Usage
	4.5.2 Required Keywords
	4.5.3 Optional Keywords
	4.5.4 Positional Parameters
	4.5.5 Examples
	4.5.6 Semantics
	4.5.7 Related Commands

	4.6 include
	4.6.1 Usage
	4.6.2 Required Keywords
	4.6.3 Optional Keywords
	4.6.4 Positional Parameters
	4.6.5 Examples
	4.6.6 Semantics
	4.6.7 Related Commands

	4.7 units
	4.7.1 Usage
	4.7.2 Required Keywords
	4.7.3 Optional Keywords
	4.7.4 Positional Parameters
	4.7.5 Examples
	4.7.6 Semantics
	4.7.7 Related Commands

	4.8 version
	4.8.1 Usage
	4.8.2 Required Keywords
	4.8.3 Optional Keywords
	4.8.4 Positional Parameters
	4.8.5 Examples
	4.8.6 Semantics
	4.8.7 Related Commands

	5. Scoping Commands
	5.1 Scoping Theory
	Figure�3�2 General DCDL Scoping Concept
	Figure�3�3 File Scopes and Includes

	5.2 current_scope
	5.2.1 Usage
	5.2.2 Required Keywords
	5.2.3 Optional Keywords
	5.2.4 Positional Parameters
	5.2.5 Examples
	5.2.6 Semantics
	5.2.7 Related Commands

	6. Operating Conditions
	6.1 Operating Conditions Theory
	6.1.1 Correlation and Operating Conditions
	6.1.2 Regimes
	6.1.3 Operating Condition Command Precedence
	Figure�3�4 Operating Condition Value Slots and Precedence

	6.1.4 Operating Condition Command Inheritance
	Figure�3�5 Example of Operating Condition Inheritance

	6.1.5 Operating Condition Precedence and Inheritance Interactions

	6.2 operating_point
	6.2.1 Usage
	6.2.2 Required Keywords
	6.2.3 Optional Keywords
	6.2.4 Positional Parameters
	6.2.5 Examples
	6.2.6 Semantics
	6.2.7 Related Commands

	6.3 operating_process
	6.3.1 Usage
	6.3.2 Required Keywords
	6.3.3 Optional Keywords
	6.3.4 Positional Parameters
	6.3.5 Examples
	6.3.6 Semantics
	6.3.7 Related Commands

	6.4 operating_range
	6.4.1 Usage
	6.4.2 Required Keywords
	6.4.3 Optional Keywords
	6.4.4 Positional Parameters
	6.4.5 Examples
	6.4.6 Semantics
	6.4.7 Related Commands

	6.5 operating_temperature
	6.5.1 Usage
	6.5.2 Required Keywords
	6.5.3 Optional Keywords
	6.5.4 Positional Parameters
	6.5.5 Examples
	6.5.6 Semantics
	6.5.7 Related Commands

	6.6 operating_voltage
	6.6.1 Usage
	6.6.2 Required Keywords
	6.6.3 Optional Keywords
	6.6.4 Positional Parameters
	6.6.5 Examples
	6.6.6 Semantics
	6.6.7 Related Commands

	6.7 temperature_regime
	6.7.1 Usage
	6.7.2 Required Keywords
	6.7.3 Optional Keywords
	6.7.4 Positional Parameters
	6.7.5 Examples
	6.7.6 Semantics
	6.7.7 Related Commands

	6.8 voltage_regime
	6.8.1 Usage
	6.8.2 Required Keywords
	6.8.3 Optional Keywords
	6.8.4 Positional Parameters
	6.8.5 Examples
	6.8.6 Semantics
	6.8.7 Related Commands

	7. The Timing Domain
	7.1 Clock (Synchronous) Theory
	7.1.1 Clock Domains
	7.1.2 Clock Roots and Networks
	7.1.2.1 Clock and Data Conversion
	7.1.2.2 Clock Gating

	7.1.3 Ideal Versus Propagated Clocks
	7.1.3.1 Insertion Delay Model

	7.1.4 Time Relative to Clock Edges
	7.1.5 Default Cycle Accounting
	7.1.6 Clock Uncertainties
	7.1.6.1 Jitter
	7.1.6.2 Inter-Clock Uncertainty
	7.1.6.3 Intra-Clock Tree Skew
	7.1.6.4 Target-Based Uncertainty

	7.2 Timing Boundary Theory
	7.3 Timing Exception Theory
	7.3.1 False Paths and Disables
	7.3.2 Latching

	7.4 Timing Domain Interactions
	7.5 Common Timing Command Conventions
	7.6 Clock Commands
	7.6.1 clock
	7.6.1.1 Usage
	7.6.1.2 Required Keywords
	7.6.1.3 Optional Keywords
	7.6.1.4 Positional Parameters
	7.6.1.5 Examples
	7.6.1.6 Semantics
	7.6.1.7 Related Commands

	7.6.2 clock_arrival_time
	7.6.2.1 Usage
	7.6.2.2 Required Keywords
	7.6.2.3 Optional Keywords
	7.6.2.4 Positional Parameters
	7.6.2.5 Examples
	7.6.2.6 Semantics
	7.6.2.7 Related Commands

	7.6.3 clock_delay
	7.6.3.1 Usage
	7.6.3.2 Required Keywords
	7.6.3.3 Optional Keywords
	7.6.3.4 Positional Parameters
	7.6.3.5 Examples
	7.6.3.6 Semantics
	7.6.3.7 Related Commands

	7.6.4 clock_mode
	7.6.4.1 Usage
	7.6.4.2 Required Keywords
	7.6.4.3 Optional Keywords
	7.6.4.4 Positional Parameters
	7.6.4.5 Examples
	7.6.4.6 Semantics
	7.6.4.7 Related Commands

	7.6.5 clock_required_time
	7.6.5.1 Usage
	7.6.5.2 Required Keywords
	7.6.5.3 Optional Keywords
	7.6.5.4 Positional Parameters
	7.6.5.5 Examples
	7.6.5.6 Semantics
	7.6.5.7 Related Commands

	7.6.6 clock_skew
	7.6.6.1 Usage
	7.6.6.2 Required Keywords
	7.6.6.3 Optional Keywords
	7.6.6.4 Positional Parameters
	7.6.6.5 Examples
	7.6.6.6 Semantics
	7.6.6.7 Related Commands

	7.6.7 clock_uncertainty
	7.6.7.1 Usage
	7.6.7.2 Required Keywords
	7.6.7.3 Optional Keywords
	7.6.7.4 Positional Parameters
	7.6.7.5 Examples
	7.6.7.6 Semantics
	7.6.7.7 Related Commands

	7.6.8 common_insertion_delay
	7.6.8.1 Usage
	7.6.8.2 Required Keywords
	7.6.8.3 Optional Keywords
	7.6.8.4 Positional Parameters
	7.6.8.5 Examples
	7.6.8.6 Semantics
	7.6.8.7 Related Commands

	7.6.9 derived_waveform
	7.6.9.1 Usage
	7.6.9.2 Required Keywords
	7.6.9.3 Optional Keywords
	7.6.9.4 Positional Parameters
	7.6.9.5 Examples
	7.6.9.6 Semantics
	Figure�3�6 Derived Edges Concept

	7.6.9.7 Related Commands

	7.6.10 target_uncertainty
	7.6.10.1 Usage
	7.6.10.2 Required Keywords
	7.6.10.3 Optional Keywords
	7.6.10.4 Positional Parameters
	7.6.10.5 Examples
	7.6.10.6 Semantics
	7.6.10.7 Related Commands

	7.6.11 waveform
	7.6.11.1 Usage
	7.6.11.2 Required Keywords
	7.6.11.3 Optional Keywords
	7.6.11.4 Positional Parameters
	7.6.11.5 Examples
	7.6.11.6 Semantics
	7.6.11.7 Related Commands

	7.7 Timing Boundary Commands
	7.7.1 data_arrival_time
	7.7.1.1 Usage
	7.7.1.2 Required Keywords
	7.7.1.3 Optional Keywords
	7.7.1.4 Positional Parameters
	7.7.1.5 Examples
	7.7.1.6 Semantics
	7.7.1.7 Related Commands

	7.7.2 data_required_time
	7.7.2.1 Usage
	7.7.2.2 Required Keywords
	7.7.2.3 Optional Keywords
	7.7.2.4 Positional Parameters
	7.7.2.5 Examples
	7.7.2.6 Semantics
	7.7.2.7 Related Commands

	7.7.3 departure_time
	7.7.3.1 Usage
	7.7.3.2 Required Keywords
	7.7.3.3 Optional Keywords
	7.7.3.4 Positional Parameters
	7.7.3.5 Examples
	7.7.3.6 Semantics
	7.7.3.7 Related Commands

	7.7.4 external_delay
	7.7.4.1 Usage
	7.7.4.2 Required Keywords
	7.7.4.3 Optional Keywords
	7.7.4.4 Positional Parameters
	7.7.4.5 Examples
	7.7.4.6 Semantics
	7.7.4.7 Related Commands

	7.7.5 slew_limit
	7.7.5.1 Usage
	7.7.5.2 Required Keywords
	7.7.5.3 Optional Keywords
	7.7.5.4 Positional Parameters
	7.7.5.5 Examples
	7.7.5.6 Semantics
	7.7.5.7 Related Commands

	7.7.6 slew_time
	7.7.6.1 Usage
	7.7.6.2 Required Keywords
	7.7.6.3 Optional Keywords
	7.7.6.4 Positional Parameters
	7.7.6.5 Examples
	7.7.6.6 Semantics
	7.7.6.7 Related Commands

	7.8 Timing Exception Commands
	7.8.1 borrow_limit
	7.8.1.1 Usage
	7.8.1.2 Required Keywords
	7.8.1.3 Optional Keywords
	7.8.1.4 Positional Parameters
	7.8.1.5 Examples
	7.8.1.6 Semantics
	7.8.1.7 Related Commands

	7.8.2 disable
	7.8.2.1 Usage
	7.8.2.2 Required Keywords
	7.8.2.3 Optional Keywords
	7.8.2.4 -Positional Parameters
	7.8.2.5 Examples
	7.8.2.6 Semantics
	7.8.2.7 Related Commands

	7.8.3 false_path
	7.8.3.1 Usage
	7.8.3.2 Required Keywords
	7.8.3.3 Optional Keywords
	7.8.3.4 Positional Parameters
	7.8.3.5 Examples
	7.8.3.6 Semantics
	7.8.3.7 Related Commands

	7.8.4 multi_cycle_path
	7.8.4.1 Usage
	7.8.4.2 Required Keywords
	7.8.4.3 Optional Keywords
	7.8.4.4 Positional Parameters
	7.8.4.5 Examples
	7.8.4.6 Semantics
	7.8.4.7 Related Commands

	7.8.5 tree_delay
	7.8.5.1 Usage
	7.8.5.2 Required Keywords
	7.8.5.3 Optional Keywords
	7.8.5.4 Positional Parameters
	7.8.5.5 Examples
	7.8.5.6 Semantics
	7.8.5.7 Related Commands

	7.8.6 tree_mode
	7.8.6.1 Usage
	7.8.6.2 Required Keywords
	7.8.6.3 Optional Keywords
	7.8.6.4 Positional Parameters
	7.8.6.5 Examples
	7.8.6.6 Semantics
	7.8.6.7 Related Commands

	7.9 SDF Mapping

	8. The Parasitic Boundary Domain
	8.1 Parasitic Boundary Theory
	8.2 driver_cell
	8.2.1 Usage
	8.2.2 Required Keywords
	8.2.3 Optional Keywords
	8.2.4 Positional Parameters
	8.2.5 Examples
	8.2.6 Semantics
	8.2.7 Related Commands

	8.3 driver_resistance
	8.3.1 Usage
	8.3.2 Required Keywords
	8.3.3 Optional Keywords
	8.3.4 Positional Parameters
	8.3.5 Examples
	8.3.6 Semantics
	8.3.7 Related Commands

	8.4 external_sinks
	8.4.1 Usage
	8.4.2 Required Keywords
	8.4.3 Optional Keywords
	8.4.4 Positional Parameters
	8.4.5 Examples
	8.4.6 Semantics
	8.4.7 Related Commands

	8.5 external_sources
	8.5.1 Usage
	8.5.2 Required Keywords
	8.5.3 Optional Keywords
	8.5.4 Positional Parameters
	8.5.5 Examples
	8.5.6 Semantics
	8.5.7 Related Commands

	8.6 fanout_load
	8.6.1 Usage
	8.6.2 Required Keywords
	8.6.3 Optional Keywords
	8.6.4 Positional Parameters
	8.6.5 Examples
	8.6.6 Semantics
	8.6.7 Related Commands

	8.7 fanout_load_limit
	8.7.1 Usage
	8.7.2 Required Keywords
	8.7.3 Optional Keywords
	8.7.4 Positional Parameters
	8.7.5 Examples
	8.7.6 Semantics
	8.7.7 Related Commands

	8.8 port_capacitance
	8.8.1 Usage
	8.8.2 Required Keywords
	8.8.3 Optional Keywords
	8.8.4 Positional Parameters
	8.8.5 Examples
	8.8.6 Semantics
	8.8.7 Related Commands

	8.9 port_capacitance_limit
	8.9.1 Usage
	8.9.2 Required Keywords
	8.9.3 Optional Keywords
	8.9.4 Positional Parameters
	8.9.5 Examples
	8.9.6 Semantics
	8.9.7 Related Commands

	8.10 port_wire_load
	8.10.1 Usage
	8.10.2 Required Keywords
	8.10.3 Optional Keywords
	8.10.4 Positional Parameters
	8.10.5 Examples
	8.10.6 Semantics
	8.10.7 Related Commands

	8.11 wire_load_model
	8.11.1 Usage
	8.11.2 Required Keywords
	8.11.3 Optional Keywords
	8.11.4 Positional Parameters
	8.11.5 Examples
	8.11.6 Semantics
	8.11.7 Related Commands

	9. Standard Compliance
	10. Glossary
	10.1 actual mode: ***
	10.2 annotation: characterized data attached to a design object that is based on the design imple...
	10.3 application, EDA application: any software program that interacts with DCDL.
	10.4 arc: See: timing arc.
	10.5 arrival time: ***
	10.6 assertion: a statement of truth about a design object that a tool accepts as fact during ana...
	10.7 back annotation: the addition of information from further downstream steps (towards fabricat...
	10.8 back annotation file: a file containing information to be read by a tool for the purpose of ...
	10.9 bi-directional: a pin or port which can place logic signals onto an interconnect and receive...
	10.10 borrow: ***
	10.11 boundary: the outer part of an integrated circuit where instances of cell types designed sp...
	10.12 buffer tree: ***
	10.13 bus: a collection of nets, pins, or ports.
	10.14 cell: a functional design unit usually contained in a library.
	10.15 chip: ***
	10.16 clock: ***
	10.17 clock root: the physical pins or ports to which a virtual or ideal waveform is associated.
	10.18 clock tree: ***
	10.19 constraint: a desired characteristic that an EDA tool must enforce or satisfy.
	10.20 correlation: specifies whether early and late delays and slews should be computed assuming ...
	10.21 delay: the time taken for a digital signal to propagate between two points.
	10.22 delay arc: See: timing arc.
	10.23 delay equation: any mathematical expression describing cell delay or interconnect delay.
	10.24 departure time: ***
	10.25 design: ***
	10.26 directive: a statement that directs a tool to implement a specific characteristic.
	10.27 driver: a pin of a cell instance that, in the current context, is placing or can place a si...
	10.28 early mode: ***
	10.29 false path: ***
	10.30 fanin: ***
	10.31 fanout: the pin count of a net (the number of pins connected to the net), minus one. This d...
	10.32 forward annotation: the annotation of information from further upstream (earlier in the des...
	10.33 forward annotation file: a file containing information to be read by a tool for the purpose...
	10.34 gate: a logical abstraction of an library primitive.
	10.35 hierarchical instance: the concrete appearance of a design unit at some hierarchical level....
	10.36 ideal mode: ***
	10.37 implementation (hardware): ***
	10.38 implementation (software): ***
	10.39 implementation-defined behavior: behavior, for a correct program construct and correct data...
	10.40 implementation limits: restrictions imposed by an implementation.
	10.41 input: a pin or port that shall only receive logic signals from a connected net or intercon...
	10.42 insertion delay: ***
	10.43 instance, cell instance: a particular, concrete appearance of a cell in the fully-expanded ...
	10.44 intent (or design intent): ***
	10.45 interconnect: a collective term for structures (in an integrated circuit) that propagate a ...
	10.46 jitter: ***
	10.47 latch: ***
	10.48 late mode: ***
	10.49 leading edge: ***
	10.50 level-sensitive: ***
	10.51 library: a collection of circuit functions, implemented in a particular integrated circuit ...
	10.52 load: ***
	10.53 logical: *** as opposed to physical ***
	10.54 logical file: a DCDL file with all included files expanded.
	10.55 module: ***
	10.56 multi-cycle path: ***
	10.57 net, net instance: an abstraction expressing the idea of an electrical connection between v...
	10.58 node: a conceptual point (through which logic signals pass) that has been identified as an ...
	10.59 operating condition: ***
	10.60 output: a pin or port that shall only place logic signals onto a connected net or interconn...
	10.61 overshoot: ***
	10.62 parameter: a data item required for the calculation of some result.
	10.63 parasitics: electrical properties of a design (resistance, capacitance, and impedance) that...
	10.64 pathname: a set of characters separated by hierarchy characters that represent the relative...
	10.65 periphery: See boundary.
	10.66 physical: *** as opposed to logical ***
	10.67 physical file: an individual DCDL file containing unexpanded includes.
	10.68 pin: a terminal point where an interconnect structure makes electrical contact with the fix...
	10.69 pin count: the number of cell instance pins that an interconnect structure visits, includin...
	10.70 port: a conceptual point at which a cell or a hierarchical design unit makes its interface ...
	10.71 positional parameter: a value or identifier not associated with a keyword in a DCDL command.
	10.72 primary input: the point where a logic signal arrives at the boundary of the design as curr...
	10.73 primary output: the point where a logic signal leaves the design as currently known to an E...
	10.74 process point: ***
	10.75 rail: ***
	10.76 RC, RC time constant: the product of some resistance and some capacitance (having the dimen...
	10.77 receiver: a pin of a cell instance that is receiving or can receive a signal from an interc...
	10.78 regime: ***
	10.79 required time: ***
	10.80 shared port: an output or bidirectional port where some other output port of the cell deriv...
	10.81 sink, sink pin: the pin is the end of a delay arc, i.e. the destination of the logic signal...
	10.82 skew: ***
	10.83 slew: a measure of the shape of the waveform constituting a logic state transition. A slew ...
	10.84 slew-dependent delay: that part of an input-to-output delay that can be attributed to the s...
	10.85 slew rate: a measure of how quickly a signal takes to make a transition, i.e., a voltage-pe...
	10.86 slew time: a measure of how long a signal takes to make a transition, i.e., the rise time o...
	10.87 source, source pin: the source pin is the start of a delay arc, i.e., the origin of the log...
	10.88 target, target pin: ***
	10.89 time-of-flight: the time delay between a signal leaving a driving pin or primary input port...
	10.90 timing annotation (file): the annotation of a design in one tool with timing data computed ...
	10.91 timing arc: a pair of ports, pins, or nodes that possess some timing relationship such as t...
	10.92 timing check: a timing property of a circuit (frequently a cell) that describes a relations...
	10.93 timing model: a timing model represents the timing behavior of a cell for applications such...
	10.94 trailing edge: ***
	10.95 transition: the change of a logic signal from one state to another (as in “… a transition a...
	10.96 uncertainty: ***
	10.97 unloaded delay: the conceptual delay value for a delay arc of a cell when the output pin is...
	10.98 undefined behavior: behavior for which this specification imposes no requirements (e.g., us...
	10.99 unspecified behavior: behavior (for a correct program construct and correct data) that depe...
	10.100 waveform: ***
	10.101 wireload model: a statistical model that estimates interconnect properties as a function o...

	Annex A
	BNF
	A.1.1 General Structure BNF
	A.1.2 Shared BNF Constructs
	A.1.3 Universal Commands BNF
	A.1.4 Scoping Commands
	A.1.5 Operating Conditions BNF
	A.1.6 Clock Commands BNF
	A.1.7 Timing Boundary Commands BNF
	A.1.8 Timing Exception Commands BNF
	A.1.9 Parasitics Commands BNF

	Annex B
	(informative)
	Bibliography
	[C1] Cadence Design Systems, Inc., “Command Reference Manual (Ambit strawman)
	[C2] Cadence Design Systems, Inc., “General Constraint Format Specification”, Version 2.0, Januar...
	[C3] Mentor Graphics Corporation, “SST Velocity Reference Manual”, Version 3.2., 1999.
	[C4] Open Library API (OLA) specification, Version 1.0.2, May 1999.
	[C5] IEEE (1003.2) ISO/IEC 9945-2 “Portable Operating System Interface (POSIX) Part 2: Shell and ...
	[C6] Barry N. Taylor, “Guide for Use of the International System of Units”,1995

	Annex C
	(informative)
	Analyzed and Rejected Functionality
	C.1 Merging Constraint Values
	C.2 The persistent_comment Command
	C.3 The tool_domain Command
	C.4 Tags

	Annex D
	(informative)
	DCDL Relationship to OLA

