
General Constraint
Format

Specification
Version 1.4

August 17, 1999

Cadence Design Systems, Inc.

Version 1.4 August 17, 1999 iii

1 Introduction . 9
Introduction 11

Acknowledgements 13

Version History 14

2 GCF in the Design Process . 21
GCF in the Design Process 23

Sharing of Constraint Data 23
Using Multiple GCF Files in One Design 23
Timing Environment 23
Timing Constraints 23
Parasitic Constraints 24
Parasitic Environment 24
Area Constraints 24
Power Constraints 24
The GCF Creator 24
The Annotator 25
Consistency Between GCF File and Design Description 25
Consistency Between GCF File and Analysis 26

Forward-Annotation of Constraints for Design Synthesis 27

3 Using GCF . 29
GCF File Content 31

Header Section 32
GCF Version 32
Design Name 33
Date 33
Program 33
Delimiters 34
Scaling Factors 35

Levels 37
Level 0 37
Level 1 37
Usage 38

Cases 39
Constant Values 40

Extensions 41

Precedence Rules 43
Normal Precedence Rules 43

iv August 17, 1999 Version 1.4

Meta Data 44
Precedence Overrides 44
Other Meta Data 44
Usage 45

Include Files 46

Labels 47

Value Types 48
Min and Max 48
Min, Max, or both Min and Max 49
Rise, Fall, or both Rise and Fall 49
Rise Min/Max,
Fall Min/Max 50

Globals 52
Environment Globals 52
Process 53
Voltage 53
Temperature 54
Operating Conditions 54
Voltage Threshold 55
Lifetime 56
Environment Globals Case 57
Timing Globals 58
Slew Mode 58
Primary Waveform 59
Derived Waveform 63
Clock Groups 67
Timing Globals Case 68

Design References 70
Name Prefix 70
Cell Instance 71
Port Instance 71
Net 72
Typed Waveform 73
Instance, Port, Pin, and Net Expressions 74
Cell Type 75
Port Master 75
Port Instance or Master 76

Cell Entries 77
Cell Instance Spec 78

Subsets 80

4 Timing Subset . 81
Timing Subset Header 83

Timing Environment 84

Version 1.4 August 17, 1999 v

Clock Specifications 85
Clock Arrival 86
Arrival Time 91
Required Time 95
External Delay 99
Driver Specification 101
Driver Cell 101
Driver Strength 104
Input Slew 105

Constant Values 106
Operating Conditions 106
Internal Slew 106
Timing Environment Cases 107

Timing Exceptions 109
Path Specifications 110
Precedence Rules for Exceptions 120
Disable Specifications 120
Level 0 Disables 122
Level 1 Disables 128

Multi-Cycle Paths 129
Default Definition 129
Overriding the Default 130

Combinational Delays 135
Slew Limit 139
Latch-Based Borrowing 140
Clock Mode 141
Clock Delay 142
Precedence Rules 149
Inter-Clock Uncertainty 151

Timing Exception Cases 156
Archaic Timing Exception Constructs 158
Max Transition Time 163

5 Parasitics Subset . 165
Parasitics Subset Header 167

Parasitics Environment 169
External Loading 169
External Fanout 170
External Wire Load Model 170
Wire Load Model 171
Parasitics Environment

vi August 17, 1999 Version 1.4

Cases 172

Parasitics Constraints 173
Internal Loading 173
Loading 173
Internal Fanout 174
Fanout 175
Parasitics Constraint Cases 175

6 Area Subset . 177
Area Subset Header 179

Area Constraints 180
Primitive Area 180
Total Area 180
Porosity 180
Area Constraint Cases 181

7 Power Subset . 183
Power Subset Header 185

Power Constraints 186
Average Cell Power 186
Average Net Power 186
Power Constraint Cases 187

8 Syntax of GCF . 189
GCF File Characters 191

GCF Characters 191
Comments 192

Syntax Conventions 193
Notation 193
Variables 193

GCF File Syntax 196
Extensions 198
Labels 198
Meta Data 198
Include Specifications 198
Value Types 198
Globals 200
Environment Globals 200
Timing Globals 201
Design References 204
Cell Entries 206
Subsets 206
Timing Subset 207

Version 1.4 August 17, 1999 vii

Timing Environment 207
Timing Exceptions 209
Archaic Timing Exceptions 215
Parasitics Subset 217
Parasitics Environment 217
Parasitics Constraints 218
Area Subset 219
Power Subset 220

9 Index . 221

10 Cadence-Specific Extensions . 1
TLF Files 3

viii August 17, 1999 Version 1.4

Introduction
Introduction

Acknowledgements

Version History

1

Introduction

Version 1.4 August 17, 1999 11

Introduction

The General Constraint Format (GCF) file is intended to be used for
interchanging constraint data associated with a design between EDA tools
used at any stage in the design process. The data in the GCF file is
represented in a tool-independent way and can currently include

■ Timing environment: intended operating timing environment

■ Timing constraints

■ Parasitics constraints

■ Parasitics environment: intended operating parasitics environment

■ Area constraints

■ Power constraints

■ Design/instance-specific or type/library-specific data

Cadence Design Systems expects that other types of constraint data will be
added to the GCF specification in the future, such as

■ Analog constraints

■ Noise and signal integrity constraints

A particular GCF file can contain all of these types of constraints, or it can
contain only certain types of constraints.

GCF is not intended to represent detailed constraints such as the timing
checks described in the Standard Delay Format (SDF), as SDF is already
well-defined for this information. Instead, GCF covers many types of
constraints for which no standard currently exists.

The name of each GCF file is determined by the EDA tool. There are no
conventions for naming GCF files.

12 Version 1.4

Introduction

Cadence Design Systems has developed this GCF specification to enable
accurate and unambiguous transfer of constraint data between tools that
require this information.All parties utilizing the GCF should interpret
and manipulate constraint data according to this specification. Please
direct questions and corrections to:

Mark Hahn
Cadence Design Systems
555 River Oaks Parkway, MS 2B1
San Jose, CA 95134

Tel: (408) 428-5399
Fax: (408) 428-5959
internet e-mail: mhahn@cadence.com

Cadence Design Systems, Inc. makes no warranties whatsoever with
respect to the completeness, accuracy, or applicability of the information
in this document to a user’s requirements.

Cadence Design Systems reserves the right to make changes to the
General Constraint Format Specification at any time without notice.

Publi shed by Cadence
Design Systems

Acknowledgements

Version 1.4 August 17, 1999 13

Acknowledgements

The Constraint Forum working group of Cadence Design Systems
acknowledges the individual and team efforts invested in establishing this
version of the GCF specification:

Mark Hahn (primary author)

Ria Simons-Arnout (editor)

Suzanne Thomas (editor)

Henry Chang

Edoardo Charbon

James Cherry

Geoffrey Ellis

Theo Kelessoglou

Anandi Krishnamurthy

Enrico Malavasi

Ed Martinage

Dave Noice

Sherry Solden

Ted Vucurevich

The SDF 3.0 specification developed by Open Verilog International has
strongly influenced GCF. The organization and format of the GCF
document and the contents of a number of sections are borrowed loosely
from SDF. The intent is to build upon this excellent previous work as a
foundation for a broader description of the designer’s intent, particularly
with respect to timing.

14 Version 1.4

Version History

Version History

General Changes
■ Introduced the notion of archaic constructs, which are supported in this

version of GCF for backward compatibility, but may be dropped in the
next major version. Classified a number of timing exceptions as
archaic and grouped these into a separate section.

■ Modified most constructs to allow the use of an asterisk as a place-
holder forNUMBER or RNUMBER values that are unset.

■ Expanded the Value Types section and consolidated definitions for the
semantics of each value type. Added a description of the semantics for
min/max value pairs, given a single operating point assumption.

■ Clarified the Normal Precedence Rules to avoid conflicts with specific
precedence rules for individual constructs.

■ Added constructs to support explicitly specifying the types of ports,
pins, instances, nets, and waveforms. In most cases, wherever an
ambiguous name could be specified before, an explicitly typed name
can be specified instead. Untyped names are still allowed for backward
compatibility.

■ Added constructs to support specifying ports, pins, instances, and nets
using an expression including one or more asterisks as wildcards. In
GCF 1.4, expressions are only allowed within theDISABLE ,
MULTI_CYCLE , PATH_DELAY , andEXTERNAL_DELAY
constructs. This may be expanded to other constructs in a future
version.

Signal Integrity Changes
■ Added aLIFETIME construct to the environment globals subset, to

model the required lifetime for the design.

Timing Analysis Changes
■ Added aSLEW_MODE construct to select the algorithm used in

merging slews.

■ Enhanced theWAVEFORM construct to more precisely describe the
ideal edges and jitter for the waveform.

■ Enhanced theDERIVED_WAVEFORM construct to includeINVERT
andPERIOD_DIVISOR options.

Version 1.4 -
August 17, 1999

Version History

Version 1.4 August 17, 1999 15

Added anEDGES option to select particular edges from the master
waveform and specify their phase shift.

Replaced theSKEW_ADJUSTMENT construct with
JITTER_ADJUSTMENT for consistency with theWAVEFORM
enhancements.

Added separatePHASE_SHIFT values for rise and fall.

Added an option to control whether thePHASE_SHIFT affects the
ideal edge position or the effective edge position.

Revised the semantics of thePERIOD_MULTIPLIER option for
improved compatibility.

Added an option to specify the duty cycle when using
PERIOD_DIVISOR .

■ Added aCLOCK_ARRIVAL construct to describe external insertion
delay leading up to aclock_root.

■ AddedREQUIRED as a synonym forDEPARTURE, and modified the
semantics to use required time as the preferred terminology over
departure time.

■ Modified the description of theINTERNAL_SLEW construct to use a
slew_value,which is arise_fall_min_max (four values), rather than
just rise_fall (two values). There was an inconsistency in GCF 1.3
between the main description of the construct and the BNF summary;
the BNF was correct.

■ Added aSLEW_LIMIT construct as the preferred way to specify
transition time constraints (both min and max). Included the ability to
specify theSLEW_LIMIT on a master basis by giving the cell type and
the port on that cell type.

TheMAX_TRANSITION_TIME construct is still supported but
archaic.

■ Greatly expanded the discussion of the various types of path
specifications.

■ Added an optionalBETWEEN keyword to improve clarity in
endpoints_spec.

■ Added afrom_to_thru_specpath specification to handle mixing from,
to, and through options.

■ Added precedence rules to handle cases where several timing
exceptions affect the same path.

■ Added a description of the semantics of the relationship between
disables and slew and constant propagation.

16 Version 1.4

Version History

■ Addedcell_instance andwaveform_name as possible items for
BORROW_LIMIT .

■ Added aDATA_LEAF option toCLOCK_DELAY to handle cases
where a clock signal is distributed to logic where it is treated as a data
signal.

■ Modified the semantics description ofrise_fall_min_max values in
CLOCK_DELAY .

■ Added aCLOCK_UNCERTAINTY construct that specifies target-
based and inter-clock skew (CLOCK_DELAY specifies intra-tree
skew).

■ Added aCLOCK_MODE construct to specify the default analysis
mode (IDEAL or ACTUAL) for the clock networks within the design.

■ Added a capability of overriding the defaultCLOCK_MODE on
specific clock networks using theCLOCK_DELAY construct.

Parasitics Changes
■ Added aEXTERNAL_WIRE_LOAD_MODEL construct that specifies

the names of wire load models that are to be used for primary i/o ports.

■ Added aWIRE_LOAD_MODEL construct that specifies the names of
wire load models that are to be used for module instances and master
cell types.

■ Modified theLOAD limit construct to allow the limit to be specified on
a master basis by giving the cell type and the port on that cell type.

Power Changes
■ Modified theTOTAL_AREA , PRIMITIVE_AREA , POROSITY,

AVG_CELL_POWER , andAVG_NET_POWER constraints to use the
same convention as the other standard value types, where a single
value represents both the min and max values (a range of a single
point).

- For the area and power constraints, a single value previously
represented just the max endpoint of the range, and the min
value was implicitly 0. The old semantics can be emulated by
explicitly specifying 0 or by using an asterisk as a place-holder
for the min value.

- For the porosity constraint, a single value previously represented
just the min endpoint of the range, and the max value was
unspecified. The old semantics can be emulated by using an
asterisk as a place-holder for the max value.

Version History

Version 1.4 August 17, 1999 17

These changes were done for future consistency and are expected to
have little impact because these constraints were not yet supported.

■ Modified the semantics of theMAX_TRANSITION_TIME construct
to allow the constraint to be specified on input ports as well as output
and bidirectional ports.

■ Modified the syntax and semantics of theCLOCK_DELAY construct
to allow using awaveform_nameto specifiy insertion delay and skew
for external clock networks (virtual clocks).

■ Modified the syntax of theCLOCK_DELAY construct to use a
rise_fall_min_max value forSKEW.

■ Modified the semantics of theCLOCK_DELAY construct to explicitly
specify the interpretation of insertion delay and skew.

■ Specified the semantics of delay calculation on interface nets given
DRIVER_CELL , DRIVER_STRENGTH , INPUT_SLEW, and
EXTERNAL_LOAD specifications, and the relationship between this
and howARRIVAL , DEPARTURE, andEXTERNAL_DELAY values
should be set.

■ Corrected typographical errors in, and clarified the semantics
description for theEXTERNAL_LOAD , INTERNAL_LOAD ,
EXTERNAL_FANOUT , andINTERNAL_FANOUT constructs.

■ Added an option todisable_spec_0 to control whether paths through
preset and clear inputs on registers are disabled, as well as an option to
control whether reentrant bidirectional paths are disabled.

■ Added an explicit statement in the precedence rules that default values
propagate down through the hierarchy when specified on a non-leaf
GCF cell, and the default can be overridden at lower levels in the
hierarchy.

■ Fixed several incorrect examples and added some diagrams.

■ Clarified the definition of the starting points and ending points for
endpoint-based false and multi-cycle exceptions, which are implicitly
determined when waveform names or register names are specified as
theFROM or TO item.

■ Modified a number of places in the grammar wheremeta_data, a level
1 construct, was included as an option where only level 0 constructs
should be used, to provide the same capability as option within the
corresponding clauses where level 1 constructs should be used. This
affects the way the grammar is organized, but doesn’t change the GCF
syntax itself.

Version 1.3 -
June 25, 1998

18 Version 1.4

Version History

■ Modified the syntax and semantics of theWAVEFORM construct to
allow edge times to be negative numbers.

■ Modified the semantics of theDEPARTURE_TIME construct to
directly correspond to setup and hold times of a virtual register
connected to the output.

■ Added anEXTERNAL_DELAY construct that describes purely
combinational delays external to a cell.

■ Modified thePATH_DELAY construct semantics to reflect the
EXTERNAL_DELAY construct, and to allow cell instances and
waveform names to be specified as endpoints.

■ Added a section on default precedence rules, as well as a number of
specific precedence rules for particular constraints and sets of
constraints.

■ Added internal slew and clock slew constructs.

■ Modified theCLOCK_DELAY construct to allow the leaf pins to be
omitted, in which case all primitive clock input pins reachable from the
specified root are implied.

■ Modified thePATH_DELAY construct to allow each of the rise min,
rise max, fall min, fall max delays to be specified independently.

■ Updated theDRIVER_CELL , DRIVER_STRENGTH , and
INPUT_SLEW constructs to explicitly state that if noport_instanceis
specified, then the construct applies by default to all primary input and
bidirectional pins.

■ Fixed conflicting statements about whether theARRIVAL and
DEPARTURE constructs allow internal pins to be specified as well as
primary i/o’s. The statements have been corrected to indicate that
internal pins are allowed.

■ Added the ‘<‘ and ‘>’ characters as legal bus delimiters.

■ Added the syntax description fordisable_cell_spec_1, which was
missing in Version 1.0.

■ Fixed minor inconsistencies.

■ Extensive editing to improve readability.

■ Added operating conditions and voltage thresholds to the environment
globals. Added the ability to override the operating conditions for part
of the design in Level 1.

■ Changed the semantics of the process, voltage, and temperature
constructs to specify the range of operating conditions over which the
design is intended to operate.

Version 1.2 -
August 22, 1997

Version 1.1 -
July 8, 1997

Version 1.0 -
March 21, 1997

Version History

Version 1.4 August 17, 1999 19

■ Modified the default voltage thresholds to be 10% and 90% instead of
20% and 80%.

■ Added a restriction on clock waveforms to only allow a single pair of
edges.

■ Added anr_rise_fall_min_max value type, which allows for negative
arrival and departure times, and anINUMBER variable, which
represents a possibly negative integer.

■ Dropped the delay offset construct.

■ Moved fanout-based parasitics constructs to Level 1, since these
require wire load models to interpret.

■ Updated the driver cell construct to allow distinguishing between the
cell types that should be used for each type of edge.

■ Modified the CLOCK_TREE construct and renamed it to
CLOCK_DELAY.

■ Modified name prefixes to include the number of prefixes, and to
require that the id numbers be sequential starting at 0.

■ Modified the max transition time check to refer to output pins, rather
than load pins.

■ Significantly modified the disables section to eliminate problems with
overloading several different types of disables into a single syntax.

■ Significantly expanded the description of the multi-cycle constraint
semantics and modified them to better match existing tools.

■ Modified the syntax to allow Level 1 constraints to be grouped
together within a GCF section.

■ Fixed many minor inconsistencies between different sections of the
document.

■ Added many new kinds of information:

❑ Case-dependent constraints

❑ Constant signal specifications

❑ Clock domains

❑ Process, voltage, and temperature specifications

❑ Area and power constraints.

❑ Meta data describing the precedence between alternate constraints.

■ Significantly revised many of the timing constraints to better match the
semantics of existing tools.

Version 0.7 -
January 24, 1997

Version 0.6 -
November 15, 1996

20 Version 1.4

Version History

■ Separated constraints into several levels of support.

■ Modified the syntax to reduce verboseness and eliminate ambiguities
when using yacc as the basis for parsing.

■ Incorporated feedback from internal review.

■ Initial formal version for internal review.

Version 0.5 -
April 15, 1996

Version 0.4 -
April 8, 1996

GCF in the Design Process
GCF in the Design Process

Forward-Annotation of Constraints for Design Synthesis

2

GCF in the Design Process

Version 1.4 August 17, 1999 23

GCF in the Design Process

By accessing a GCF file, EDA tools are assured of consistent, accurate,
and up-to-date data. This means that EDA tools can use data created by
other tools as input to their own processes. By sharing data in this way,
estimation, synthesis, floorplanning, analysis, and layout tools can all use
a consistent set of design constraints with well-defined semantics.

The EDA tools create, read (to update their design), and write to GCF files.

GCF files support hierarchical constraint annotation. A design hierarchy
might include several different ASICs (and/or cells or blocks within
ASICs), each with its own GCF file as illustrated in Figure 1.

Figure 1 Multiple GCF Files in a Hierarchical Design

GCF includes constructs for describing the intended timing environment in
which a design will operate. For example, you can specify the waveform
to be applied at clock inputs and the arrival time of primary inputs.

Some of the timing environment information is also covered by SDF 3.0.
You should use SDF to pass delay data and detailed path constraints
between tools and use GCF to pass high-level timing constraints and the
timing environment description between tools.

GCF contains a richer description of the environment, particularly in terms
of the information required for doing delay calculation on interface nets. It
also supports many types of timing constraints which are not covered by
SDF.

GCF contains constructs for describing special cases within a sequential
circuit, such as false and multi-cycle paths. It also contains constructs

Sharing of
Constraint Data

Using Multiple GCF
Files in One Design

ASIC 1

System Module

ASIC 2

GCF File
for ASIC 1

GCF File
for ASIC 2

GCF File
for System

Interconnect

Timing
Environment

Timing
Constraints

24 Version 1.4

GCF in the Design Process

which allow constraints to be applied on combinational or asynchronous
parts of a circuit.

GCF contains constructs for describing constraints on the parasitics within
a circuit, such as a limit on the internal capacitance of interface nets. These
constraints would typically be used by synthesis and layout tools.

GCF includes constructs for describing the parasitics in the environment in
which a design will operate. For example, you can specify the external
capacitance for interface nets.

GCF contains constructs for constraining the primitive area and the total
area of a cell, as well as the porosity of the cell.

GCF includes constructs for constraining the average power consumed by
a cell and the average power dissipated by the capacitance in a net.

One or more tools can be responsible for generating the GCF file. For
example, a synthesis tool or a dedicated constraint management tool can
capture constraint information from the designer and then write out this
data in GCF. To do this, it will examine the specific design for which it has
been instructed to generate constraint data. Tools which create GCF files
must locate, within the design, each region for which constraint data exists
and calculate values for the parameters of those constraints.

Many types of constraints, such as clock waveform descriptions, apply
throughout the design process. Other types of constraints, such as parasitic
constraints on an interconnection, can be derived from high-level timing
constraints. GCF supports describing both high-level and derived
constraints in the same file. Thus, GCF is suitable for both prelayout and
postlayout applications.

There are provisions in the GCF specification for adding meta data
associated with constraints in a later revision. This meta data can be used
in many ways; some planned uses include describing relationships
between constraints, and describing the relative importance of each
constraint. The meta data will refer to constraints through a uniquelabel
which can be associated with each constraint.

Many tools only need a description of the constraints themselves, and do
not require any of the meta data. However, tools which create GCF files
should not make assumptions about the requirements of the tools which

Parasitic
Constraints

Parasitic
Environment

Area Constraints

Power Constraints

The GCF Creator

GCF in the Design Process

Version 1.4 August 17, 1999 25

will read the GCF file. To prevent the need for multiple GCF files with
different sets of meta data for a given design, a tool which creates GCF
files should include as much meta data as possible. Each reader is expected
to filter out the meta data it does not require. Tools which create GCF files
can make judicious use of theinclude construct to make this filtering
efficient.

GCF imposes no restrictions on the precision which is used to represent the
data in a GCF file. Therefore, the accuracy of the data in the GCF file will
depend on the accuracy of the constraint generator and the information
made available to it.

The GCF file is brought into a reader tool through an annotator. The job of
the annotator is to match data in the GCF file with the design description.
Each region in the design identified in the GCF file must be located.
Constraints in the GCF file for this region must be applied to the
appropriate parameters of the design.

The annotator can be instructed to apply the data in the GCF file to a
specific region of the design, other than at the top level of the design
hierarchy. In this case, it will search for regions identified in the GCF file
starting at this point in the hierarchy. The file must clearly have been
prepared with this in mind, otherwise the annotator will be unable to match
what it finds in the file with the design viewed from this point.

The foregoing implies that the annotator must have access to the design
description. Frequently, this will be via the internal representations
maintained by the reader tool. The annotator will then be a part of the tool.
As an alternative, the annotator can operate independently of the reader
tool and convert the data in the GCF file into a format suitable for the tool
to read directly. If such an annotator is unable to match the GCF file to the
design description, then the effect of inconsistencies is unpredictable.
Also, certain constructs of GCF cannot be supported without access to the
design description (for example, wildcard cell instance specifications and
wildcard bit specifications).

A GCF file contains constraint data for a specific design. The contents of
the file identifies regions of the design and provides constraints that apply
to various properties of that region. The analysis tool or annotator cannot
operate if the regions identified in the GCF file do not correspond exactly
with the design description. Therefore, changes to the design sometimes
require writing a new GCF file, depending on the types of changes and
constraints. A future version of GCF might provide a mechanism for
describing incremental changes to an existing GCF file.

Of equal importance to the logic of the design is the naming of design
objects. Even if the same cells are present and are connected in the same
way, annotation cannot operate if the names by which these cells and nets

The Annotator

Consistency
Between GCF File
and Design
Description

26 Version 1.4

GCF in the Design Process

are known differ in the GCF file and the design description. The naming
of objects must be consistent in these two places.

During annotation, inconsistencies between the GCF file and the design
description are considered errors.

GCF includes a description of a standard semantics for many kinds of
constraints. Some tools might not support all of the types of constraints in
GCF, or might restrict the semantics for some types of constraints. For
example, a layout tool might handle disabling of false paths where a single
port is specified, but not handle disabling of false paths where multiple
ports are specified.

The constraints of GCF are divided into a number of subsets, where each
subset contains constraints associated with a particular aspect of a circuit,
such as timing or parasitics. When a tool reads a GCF file, it can choose to
read one or more of these subsets. During the annotation of each subset a
tool reads, unsupported constraints or unsupported semantics for a
constraint are considered to be warnings. However, a tool should not warn
about unsupported constraints in other subsets.

Consistency
Between GCF File
and Analysis

Forward-Annotation of Constraints for Design Synthesis

Version 1.4 August 17, 1999 27

Forward-Annotation of Constraints for Design Synthesis

In addition to the use of constraint data for analysis and estimation, GCF
supports the forward-annotation of constraints to design synthesis tools.
(In this context, we use the term “synthesis” in its broad sense of
construction, thus including not only logic synthesis, but also
floorplanning, layout and routing.) Constraints are “requirements” for the
design’s overall properties and are often modified and broken down by
previous steps in the design process. Figure 2 shows a typical scenario of
the use of GCF in a design synthesis environment.

Figure 2 GCF Files in Constraint Forward-Annotation

Constraints can also be originated by an analysis tool alone. For example,
a timing budgeting tool might be able to propagate the high-level timing
constraints specified by a designer down to each hierarchical module in the
design, setting arrival time and departure time constraints on each module
port automatically.

GCF File

Synthesis Tool
(logic synthesis,

Analysis
Tool

user
constraints

(synthesis
constraints)

layout, etc.)

design

28 Version 1.4

Forward-Annotation of Constraints for Design Synthesis

Using GCF
GCF File Content

Header Section

Levels

Cases

Extensions

Meta Data

Include Files

Labels

Value Types

Globals

Design References

Cell Entries

Subsets

3

GCF File Content

Version 1.4 August 17, 1999 31

GCF File Content

GCF files are ASCII text files. Every GCF file contains a header section
followed by one or more additional sections. A GCF file can contain zero
cell entries.

Syntax

constraint_file ::= (GCF header section+)

section ::= globals
||= cell_spec
||= extension
||= meta_data
||= include

Theheadersection contains information relevant to the entire file such as
the design name, the tool used to generate the GCF file, and scaling factors
for the values in the file (see “Header Section” on page 32).

Theglobalssection describes information that is common to all cells in a
design.

Each cell construct,cell_spec, identifies part of the design (a“ region” or
“scope”) and contains data for the constraints on that part of the design (see
“Cell Entries” on page 77). Acell can be a physical primitive from the
ASIC library, a modeling primitive for a specific analysis tool or some
user-created part of the design hierarchy. Acell can encompass the entire
design.

Extensions provide a mechanism to extend the standard GCF format with
user-defined portions.

Meta data describes relationships between constraints.

This chapter describes the header, globals, cell-spec, and a number of
GCF-specific concepts (such as levels, cases, labels, include files, value
types, and design references). The following chapters describe specific
subsets in GCF. For each part of the file, the purpose is discussed, the
syntax is specified, and an example is presented. A complete, formal
definition of the file syntax is contained in Chapter 8, “Syntax of GCF.”
You can refer to that chapter for precise definitions of some of the
abbreviated syntax descriptions given here.

32 Version 1.4

Header Section

Header Section

The header section of a GCF file contains information that relates to the
file as a whole. Except for the GCF version, entries are optional, so that it
is possible to omit most of the header section.

The design name, date, and program entries are for documentation
purposes and do not affect the meaning of the data in the rest of the file.
However, the version, delimiters, and scaling factors do affect how the
data in the file is interpreted.

Syntax

header ::= (HEADER version header_info*)
header_info ::= design_name

||= date
||= program
||= delimiters
||= time_scale
||= cap_scale
||= res_scale
||= length_scale
||= area_scale
||= voltage_scale
||= power_scale
||= current_scale
||= extension

The version construct identifies the version of the GCF specification to
which the file conforms.

Syntax

version ::= (VERSION QSTRING)

QSTRINGis a character string in double quotes. The first substring within
QSTRING, which consists of just numeric characters and a period,
identifies the GCF version. Other characters before and after this substring
are permitted and will be ignored by readers when determining the GCF
version.

Example

(VERSION “Cadence Version 1.4”)

Readers of GCF files can use the GCF version construct to adapt to the
differences in file syntax between versions. If the file does not contain a
GCF version construct, or one is present but theQSTRING field does not
contain a numeric substring, the GCF reader will give an error message.

GCF Version

Header Section

Version 1.4 August 17, 1999 33

The design name construct specifies the name of the design to which the
constraints in the GCF file apply. This construct is for documentation
purposes only.

Syntax

design_name::= (DESIGN QSTRING)

QSTRING is a name that identifies the design. Although this construct is
not used by the annotator, it is recommended that, if it is included, the
name should be the name given to the top level of the design description.
This is analogous to theCELLTYPE construct, and in fact, the same name
would be used in a cell construct for the entire design. It must not be the
instance name of the design in a test-bench; this would instead be used as
part of the cell instance path in theINSTANCE entries for all cells.

The date construct indicates how current the data in the file is. This
construct is for documentation purposes only.

Syntax

date ::= (DATE QSTRING)

The QSTRINGrepresents the date or time when the data in the GCF file was
generated or last modified.

Example

(DATE “Friday, June 6, 1997 - 7:30 p.m.”)

The program name construct indicates the name of the program that
created or last modified the file. This construct is for documentation
purposes only.

Syntax

program ::= (PROGRAM
program_name program_version
 program_company)

program_name::= QSTRING

program_version::= QSTRING

program_company::= QSTRING

TheQSTRING parameters contain (respectively)

■ The name of the program used to generate or modify the GCF file

■ The version number of that program

■ The company that produced the program

Design Name

Date

Program

34 Version 1.4

Header Section

Example

(PROGRAM “GCF writer” “2.0” “Cadence”)

The delimiters construct specifies the characters that are used as delimiters
in design names.

Syntax

delimiters ::= (DELIMITERS QSTRING)

The QSTRING always contains three characters:

■ The first character is referred to as the hierarchy delimiter character, or
HCHAR, and must be either a period (.) or a slash (/). If there is no
delimiters construct in the GCF file, theHCHAR defaults to a period.

■ The second character is referred to as the left index character, or
LI_CHAR, and must be either a left bracket ([), a left parenthesis ((), or
a left angle bracket (<). If there is nodelimiters construct in the GCF
file, theLI_CHAR defaults to a left bracket.

■ The third character is referred to as the right index character, or
RI_CHAR, and must be either a right bracket (]), a right parenthesis ()),
or a right angle bracket (>). If there is nodelimiters construct in the
GCF file, theRI_CHAR defaults to a right bracket.

Example

(DELIMITERS “/()”)
 . . .

(INSTANCE a/b/c(3))
 . . .

In this example, the hierarchy delimiter is specified to be the slash (/)
character, so the hierarchical paths use the slash (rather than the period) to
separate elements. In addition, the left and right index characters are set to
be parentheses, so that bit-specs for selecting elements from instance
arrays or buses are specified using parentheses (rather than brackets).

Hierarchical delimiters can be used in anIDENTIFIER and aPATH. Index
characters can be used in anIDENTIFIER. For more information, see
“Variables” on page 193.

Delimiters

Header Section

Version 1.4 August 17, 1999 35

A scaling factor entry specifies the multiplier to be used to scale the values
for the specified physical property.

Syntax

time_scale::= (TIME_SCALE multiplier)
cap_scale::= (CAP_SCALE multiplier)
res_scale::= (RES_SCALEmultiplier)

length_scale::= (LENGTH_SCALE multiplier)
area_scale::= (AREA_SCALE multiplier)

voltage_scale::= (VOLTAGE_SCALE multiplier)
power_scale::= (POWER_SCALE multiplier)

current_scale::= (CURRENT_SCALE multiplier)
multiplier ::= NUMBER

The default time scale is 1 second. Iftime_scale is specified, the GCF
reader will multiply all delay numbers in the GCF file by the specified
value, which is in seconds. For example, a multiplier of 1.0E-12
corresponds to delay values in ps.

The default capacitance scale is 1 Farad. Ifcap_scaleis specified, the GCF
reader will multiply all capacitance numbers in the GCF file by the
specified value, which is in Farads. For example, a multiplier of 1.0E-12
corresponds to capacitance values in pF.

The default resistance scale is 1 ohm. Ifres_scale is specified, the GCF
reader will multiply all resistance numbers in the GCF file by the specified
value, which is in ohms. For example, a multiplier of 1.0E-3 corresponds
to resistance values in milli-ohms.

The default length scale is 1 meter. Iflength_scale is specified, the GCF
reader will multiply all length numbers in the GCF file by the specified
value, which is in meters. For example, a multiplier of 1.0E-6 corresponds
to length values in microns.

The default area scale is 1 square meter. Ifarea_scaleis specified, the GCF
reader will multiply all area numbers in the GCF file by the specified
value, which is in square meters. For example, a multiplier of 1.0E-12
corresponds to area values in square microns.

The default voltage scale is 1 volt. Ifvoltage_scale is specified, the GCF
reader will multiply all voltage numbers in the GCF file by the specified
value, which is in volts. For example, a multiplier of 1.0E-3 corresponds
to voltage values in millivolts.

Scaling Factors

36 Version 1.4

Header Section

The default power scale is 1 watt. Ifpower_scale is specified, the GCF
reader will multiply all power numbers in the GCF file by the specified
value, which is in watts. For example, a multiplier of 1.0E-3 corresponds
to power values in milliwatts.

The default current scale is 1 ampere. Ifcurrent_scale is specified, the
GCF reader will multiply all current numbers in the GCF file by the
specified value, which is in amperes. For example, a multiplier of 1.0E-3
corresponds to current values in milliamps.

Example

(CAP_SCALE 1.0E-12)

Levels

Version 1.4 August 17, 1999 37

Levels

GCF provides a mechanism for interchanging constraint data between
many different kinds of tools. The capabilities of each tool affect the types
of constraints that the tool can support.

It is desirable to standardize as many types of constraints as possible to
ensure that the tools that support each constraint do so in a consistent way.
However, this presents a dilemma to a designer who is using GCF: What
constraints can be used successfully given the set of tools that the designer
must use?

GCF divides the constraints into several levels of support. In this version
of GCF, two levels have been identified. In this document, all constraints
are Level 0 unless otherwise specified.

Level 0 provides a baseline capability to which most tools will conform. It
includes the most important basic constraints. These constraints are widely
supported already, and the algorithms required to support the constraints
are well understood and relatively straightforward to implement.

A designer or a flow developer might choose to use only the Level 0
constraints so that the GCF file is widely portable across different tools.

Tool vendors should state whether their tools comply with Level 0 on a
subset-by-subset basis. For example, a timing analysis tool vendor might
state that the tool fully supports GCF Level 0 (Timing and Parasitics
subsets).

Level 1 includes additional constraints that are less widely supported but
are viewed as important for certain design styles or methodologies. These
constraints generally allow a more precise description of the intended
operation of the circuit than can be expressed using just the Level 0
constraints.

Level 1 constraints might require more complex algorithms that affect the
performance of a tool. On the other hand, a tool might achieve better
quality results or perform a more accurate analysis when Level 1
constraints are used.

Level 0

Level 1

38 Version 1.4

Levels

A designer or a flow developer can choose to use some or all of the Level
1 constraints. This decision is necessarily more difficult than choosing to
use only Level 0 constraints. It requires careful analysis of at least the
following:

■ The performance versus accuracy trade-off

■ The tools that support the desired Level 1 constraints

■ The resulting effect if not all of the tools support all of the constraints

Even when some aspect of the design behavior can’t be expressed properly
by using Level 0 constraints, it is likely that a designer still needs to specify
Level 0 constraints (which are overly restrictive) so that tools that only
support Level 0 can produce correct results.

In a flow that mixes tools supporting Level 0 and Level 1 constraints, it is
desirable to specify the Level 1 constraints as well. If both constraints are
specified in the same GCF file, it is ambiguous which constraints will be
used by a Level 1 tool. In this case, thePRECEDENCE construct can be
used to describe the relationship between the constraints (see “Meta Data”
on page 44).

It is desirable that every tool can read a GCF file containing both Level 0
and Level 1 constraints, so that a single GCF can be used throughout a
flow. The syntax for GCF has been defined in a way that allows tools that
only support Level 0 to easily ignore Level 1.

Level 0 constraints are not explicitly identified as belonging to Level 0,
while Level 1 and higher constraints must appear within thelevel
construct.

The general form for the level construct is shown below. There are a
number of variations of the level construct, where each variation restricts
the types of level-specific constraints that can appear at a particular point
in the GCF file.

Syntax

level ::= (LEVEL NUMBER construct+)

A precise description of each type of level specification is included in
Chapter 8, “Syntax of GCF.”

For this version of GCF,NUMBER must be set to 1.

Usage

Cases

Version 1.4 August 17, 1999 39

Cases

With some design styles, it is either necessary or convenient to separate the
constraints into several different cases. For example, you can use cases

■ To distinguish between major modes of operation (such as, normal
mode versus test mode and reset mode)

■ To describe the circuit behavior when several clocks are muxed
together

■ To describe the effect of gating clocks

Some tools do not support case-dependent constraints, some tools handle
each case separately without considering the interactions between them,
and some tools can look at each case separately, as well as consider the
interactions between them.

Because not all tools support case-dependent constraints, these constraints
are included in GCF Level 1, but not in Level 0. However, given that there
are a number of tools that do support case analysis, there is value in being
able to describe the cases in a consistent way.

Cases are identified in GCF using a unique identifier. Unless they appear
within thecase construct, all constraints in a GCF belong to thedefault
case. The namedefault cannot be used to identify other cases.

The general form for case specifications is shown below. The description
of a case-dependent constraint depends on the context in which it is used.

Syntax

case_spec::= (CASE IDENTIFIER
case_dependent_constraint+)

Each case is likely to be described using a number of differentcase_spec
constructs in different places in the GCF. The unique identifier for the case
must be used in each of thecase_specconstructs associated with the case.

A precise description of each type of case specification is included in
Chapter 8, “GCF File Syntax.”

40 Version 1.4

Cases

In addition to allowing constraints to be separated into different cases,
GCF also allows specifying that certain signals have a constant value in a
given case. In this respect, case-dependent constraints are similar to state-
dependent delays. However, state-dependent delays are commonly
expressed using Boolean expressions on signal values. In GCF, there is an
implicit AND of the constant values specified for a given state.

Constant specifications appear within the timing subset for the cell that
contains theport_instance (see “Timing Environment” on page 84).

Constant Values

Extensions

Version 1.4 August 17, 1999 41

Extensions

There are a number of cases in which it is desirable to extend a standard
format such as GCF in unofficial ways:

■ For preliminary testing of official proposals for new versions of the
format

■ For early versions of evolving portions of the format

■ For representing company-specific, flow-specific, or tool-specific data
that is not suitable for standardization but is strongly related to the data
in the standard (Often, a separate data format is appropriate for these
cases, but in some cases having a separate data format would require
duplicating much of the information)

However, there are also several concerns with unofficial extensions:

■ Unofficial extensions might be used indefinitely for data that should
become part of the official standard.

■ Without a built-in mechanism for extensions, most GCF readers would
not be able to read a GCF file containing an extension. This would
greatly limit the use of extensions because all of the readers in a
particular design flow would have to be modified for each extension.
With a built-in mechanism for extensions, only tools requiring the data
included in the extension would need to be modified.

To overcome the latter concern, GCF includes a built-in mechanism for
unofficial extensions, and establishes a policy restricting the syntax of
those extensions.

Syntax

extension::= (EXTENSION QSTRING
extension_construct+)

extension_construct::= (user_defined)
||= include

TheQSTRINGcontains the name of the extension. Extension names must
be unique. For example, an extension name might include the name of the
tools that support it.

Extensions must conform to the GCF syntax for parenthesized constructs
and strings to enable every GCF reader to ignore the extension by
searching for a matching right parenthesis that is not embedded within a
quoted string.

42 Version 1.4

Extensions

Except for these restrictions, the format for the extension is flexible. Any
keywords can be used, including existing GCF keywords. There is no limit
on the number of the parenthesized constructs associated with an
extension, and extension constructs can be arbitrarily nested.

Extensions must not be inserted at arbitrary points in a GCF file. They can
only be included where explicit provisions were made in the GCF syntax.

Example

(EXTENSION “color”
(PACKAGE_COLOR “white” “grey” “black”)

)

In this example, an extension is defined for a constraint on the possible
colors of the package containing the design, where the color must be one
of the listed values.

Precedence Rules

Version 1.4 August 17, 1999 43

Precedence Rules
Some types of constraints can be expressed in several similar forms. Each
of these forms results in different degrees of accuracy. Ideally, only the
most accurate form would be included in the GCF, and all tools would
support this form.

For example, the effect of an external driver on delay calculation for an
interface signal can be described by identifying the cell and its drive
strength or by specifying an input slew. Identifying the cell is the most
accurate approach in most cases.

Unfortunately, not all the tools in a given flow support the same forms of
a constraint. In this case, it isn’t possible to create a single GCF file with
only one form of a constraint and go through the flow successfully.

GCF allows multiple forms of a constraint to be included in a single GCF
file. For tools that only support one form of the constraint, there isn’t any
question about what the tool will do. But for tools that support several
forms of the constraint, a set of default precedence rules are defined in
order to make it clear which form will be applied. There is also a capability
in Level 1 to explicitly override the default precedence rules; see “Meta
Data” on page 44.

In the absence of any explicit precedence overrides, the following general
precedence rules are used. Specific precedence rules are also given for
particular constructs and sets of constructs in the section of the
specification that describes those constructs.

■ A value that is given explicitly for a particular design element always
overrides a default value. Another way to say this is that the default
value only applies to design elements for which a value was not
explicitly specified.

■ If two different values are given explicitly for the same design element,
the value that appears later in the GCF file is used.

■ If a place-holder (“*”) is given for a value in one construct, and the
same type of value is given explicitly in another construct of the same
type, the explicit value is used.

■ If a place-holder (“*”) is given for a value in one construct, and the
same type of value is given as a default in another construct of the same
type, the default value is used.

■ Default values affect the current GCF cell and all of its hierarchical
descendents, unless overridden for a lower level cell.

■ If two different default values are given at the same hierarchical level,
the default value that appears later in the GCF file is used.

Normal Precedence
Rules

44 Version 1.4

Meta Data

Meta Data

This version of GCF primarily describes basic constraint data. Meta data
is information about the relationships between constraints or about how to
apply the constraints. Meta data is only supported in Level 1.

The supported form of meta data describes the precedence among several
related constraints. The precedence meta data construct allows the user to
explicitly override the default precedence for a set of several constraints.
A tool that supports the precedence meta data applies just one constraint
from the set. The chosen constraint will be the highest precedence
constraint that the tool supports; the remaining constraints in the set are
ignored.

There are many other types of meta data that might be added to GCF in
future versions. For example, tools often convert constraints of one type
into constraints of another type. The meta data might include a description
of the transformation algorithm that should be used or the parameters used
in the transformation.

Another example is constraint propagation (decomposing high-level
constraints on a design into lower-level constraints on each portion of the
design). The meta data might include a description of the dependency
between the high-level constraint and the lower-level constraints.

Often it is not strictly necessary to satisfy every individual constraint. It
might be acceptable to make trade-offs between different constraints.
Failing to meet a particular constraint might not be catastrophic.

For example, capacitance constraints can be budgeted for each net in a
design. Even though a number of nets fail to meet their constraints, the
circuit can still function properly if other nets more than satisfy their
constraint. Meta data could describe which constraints must be strictly
satisfied (such as the cycle time) and which constraints are only goals that
help to ensure that the strict constraints are satisfied.

A designer often sets constraints on a number of different aspects of a
circuit, such as area, timing, and power. If not all of these constraints can
be satisfied, the designer can use meta data to describe the relative
importance of each aspect.

Precedence Overrides

Other Meta Data

Meta Data

Version 1.4 August 17, 1999 45

Meta data usually must refer to constraints. To allow constraint references,
the constraints must be uniquely labeled. For more information, see
“Labels” on page 47.

Syntax

meta_data::= (LEVEL 1 meta_data_1+)
meta_data_1::= (META meta_construct+)

meta_construct::= precedence
||= meta_reserved
||= include

precedence::= (PRECEDENCE (label_id label_id+))
meta_reserved::= (IDENTIFIER reserved_for_future_definition)

Constraints must be listed in thePRECEDENCE construct in decreasing
order of precedence: the first label in the list is the most preferred
constraint.

Example

(META (PRECEDENCE (label1 label2)))

This example describes the precedence between two different constraints
identified aslabel1 andlabel2. The description of these constraints must
precede theMETA construct in the GCF file. If a tool supports the
constraint referenced bylabel1, it will apply that constraint. Otherwise, if
it supports the constraint referenced bylabel2, it will apply that constraint.
If it doesn’t support either constraint, the tool will give a warning.

Usage

46 Version 1.4

Include Files

Include Files

GCF is intended to be the basis for describing a broad range of different
types of constraints of varying levels of detail, as well as meta data
associated with those constraints. Therefore, it is likely that a complete
GCF file for a design will be fairly large.

The GCF syntax organizes related data by cell type, subsets, extensions,
and meta data. By creating separate files for each cell type, subset,
extension, or type of meta data, a GCF writer can make it as efficient as
possible for reader applications to find and read just the relevant data. This
has to be weighed against the cost of reading from multiple files and the
additional complexity for the user of maintaining multiple files.

.

If a file is not found in any of the directories listed in the search path, the
GCF reader will give an error message.

Syntax

include ::= (INCLUDE QSTRING)

TheQSTRING specifies the name of the file to be included. GCF writers
will use relative file names to allow a set of GCF files to be copied from
one location to another. Relative file names are interpreted with respect to
the file that contains the include specification, not with respect to the
current working directory of a reader.

The GCF syntax describes explicitly where the include construct can be
used. An include file that is referenced at a particular point in the GCF
must contain only data that would, if substituted directly at that point,
conform to the GCF specification. The intent of these restrictions is to
make it possible for a reader application to easily identify those include
files that it does not have to read at all because they can only contain data
that is not relevant to the reader.

Labels

Version 1.4 August 17, 1999 47

Labels

Labels can be used to identify constraints within a GCF file. Consequently,
each label within a GCF file must be unique. The label must be an
identifier or a quoted string if the label is a GCF keyword.

There is a provision for a label in every basic constraint construct of GCF.

Syntax

label ::= label_id COLON

label_id ::= IDENTIFIER
||= QSTRING

A simple and compact approach for a GCF writer is to assign consecutive
integers as labels. If desired, more information can be conveyed in the
label by using a quoted string.

.

Example

(27: INTERNAL_LOAD 10.0 out6)

In this example, the label is 27, and it uniquely identifies a constraint on
the internal load of the net connected to pinout6.

48 Version 1.4

Value Types

Value Types

Most constraints take one or more values, and there are similar restrictions
on the types of values that are legal. This section describes a number of
basic value types that are used in other constructs.

The semantics for values that require both a minimum and a maximum
value depends on the type of operating conditions that are specified for
analysis. See “Min/Max Values and Operating Conditions” on page 51 for
a description of the different interpretations that are possible.

Syntax

min_and_max::= min_number max_number

r_min_and_max::= r_min_number r_max_number

min_number::= NUMBER

max_number::= NUMBER

r_min_number::= RNUMBER

r_max_number::= RNUMBER

Two values must be specified for themin_and_max andr_min_and_max
value types. The first represents the min value, while the second represents
to the max value. Place-holders are not allowed for either value in the
min_and_max andr_min_and_max value types.

NUMBER is a non-negative (zero or positive) real number, for example: 0,
1, 0.0, 3.4, .7, 0.3, 2., 2.4e2, 5.3e-1, 8.2E+5

RNUMBER is a positive, zero or negative real number, for example: 0, 1,
0.0, -3.4, .7, -0.3, 2., 2.4e2, -5.3e-1, 8.2E+5

Min and Max

Value Types

Version 1.4 August 17, 1999 49

Syntax

min_max ::= NUMBER
||= min_value max_value

r_min_max ::= RNUMBER
||= r_min_value r_max_value

min_value ::= number_or_place_holder

max_value::= number_or_place_holder

r_min_value ::= r_number_or_place_holder

r_max_value::= r_number_or_place_holder

number_or_place_holder::= NUMBER
||= *

r_number_or_place_holder::= RNUMBER
||= *

One or two values can be specified for themin_maxandr_min_maxvalue
types. When one value is specified, it applies to both the min and the max
values. When two values are specified, the first represents the min value,
while the second represents to the max.

Both value types allow an asterisk to be used as a place-holder for either
the min or the max value. Whenever an asterisk is used as a place-holder,
the corresponding value is treated as unspecified. Whenever several
number_or_place_holderor rnumber_or_place_holdervalues appear in a
row (as inmin_max), at least one of the values must not be an asterisk.

Syntax

rise_fall ::= NUMBER
||= rise_value fall_value

r_rise_fall ::= RNUMBER
||= r_rise_value r_fall_value

rise_value ::= number_or_place_holder

fall_value ::= number_or_place_holder

r_rise_value ::= r_number_or_place_holder

r_fall_value ::= r_number_or_place_holder

Therise_fallandr_rise_fallvalue types represent a pair of times, one for
a rise edge and one for a fall edge.

One or two values can be specified. If a single value is specified, it applies
to both the rise and fall edges. If two values are specified, the first value
represents the rise edge, and the second value represents the fall edge.
When two values are specified, at least one of them must not be an asterisk.

Min, Max, or both Min
and Max

Rise, Fall, or both Rise
and Fall

50 Version 1.4

Value Types

Syntax

rise_fall_min_max::= NUMBER
||= rise_value fall_value
||= rise_min_value rise_max_value

fall_min_value fall_max_value

r_rise_fall_min_max::= RNUMBER
||= r_rise_value r_fall_value
||= r_rise_min_value r_rise_max_value

r_fall_min_value r_fall_max_value

rise_min_value::= number_or_place_holder
rise_max_value::= number_or_place_holder
fall_min_value ::= number_or_place_holder
fall_max_value::= number_or_place_holder

r_rise_min_value::= r_number_or_place_holder
r_rise_max_value::= r_number_or_place_holder
r_fall_min_value ::= r_number_or_place_holder
r_fall_max_value::= r_number_or_place_holder

Therise_fall_min_max andr_rise_fall_min_max value types represent a
range of times for a rising edge and a range of times for a falling edge.

One, two, or four values can be specified. If a single value is specified, it
applies to all four of the edge times.

If two values are specified, the first value applies to both the rise minimum
and the rise maximum values, and the second value applies to both the fall
minimum and the fall maximum values. In the two value forms, if an
asterisk is used as a place-holder for the first value, the rise minimum and
rise maximum values are unset. If an asterisk is used as a place-holder for
the second value, the fall minimum and fall maximum values are unset. At
least one of the two values must not be an asterisk.

When four values are specified, the order of the values is rise minimum,
rise maximum, fall minimum, and fall maximum.

The minimum values must be less than or equal to the maximum values for
the same transition.

Rise Min/Max,
Fall Min/Max

Value Types

Version 1.4 August 17, 1999 51

Most constraints and environment specifications in GCF allow a min/max
pair of values (r_min_max), or min/max value pairs for rising and falling
transitions (r_min_max_rise_fall).

In GCF 1.4, theOPERATING_CONDITIONS construct supports a single
operating point. Therefore, the semantics for min/max values are defined
as follows:

■ A min/max value for a constraint represents the allowable variation of
the constrained parameter, measured at the operating point

■ A min/max value for an environment specification represents the
extremes of the parameter expected at the operating point.

A future version of GCF is expected to support multiple operating points,
in which case the semantics for min/max values will depend on whether a
single operating point or multiple operating points are given.

Min/Max Values an d
Operating Conditions

52 Version 1.4

Globals

Globals

The globals section describes the constraint data that applies to multiple
cells within the design. Use of the globals section avoids duplication of
constraint data within each cell. The globals section must appear before
anycell_spec sections.

Syntax

globals ::= (GLOBALS globals_subset+)

globals_subset::= env_globals_subset
||= timing_globals_subset
||= extension
||= meta_data

This version of the GCF defines two types of global data: the environment
globals subset and the timing globals subset.

The environment globals subset describes the operating conditions for a
design, including process, temperature, and voltage values. There are two
types of specifications: a range specification, which describes the range of
values over which the design is intended to operate, and an operating point
specification, which describes a particular process, voltage, and
temperature point for which analysis or optimization is to be done.

The environment globals subset also describes the voltage thresholds used
for the slew specifications and maximum transition constraints in other
parts of the GCF.

In Level 1, the operating conditions can be case-dependent.

Syntax

env_globals_subset::= (GLOBALS_SUBSET ENVIRONMENT
 env_globals_body)

env_globals_body::= env_globals_spec+
||= include

env_globals_spec::= env_globals_spec_0
||= env_globals_spec_1

env_globals_spec_0::= process
||= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
||= lifetime
||= extension
||= meta_data

Environment Globals

Globals

Version 1.4 August 17, 1999 53

env_globals_spec_1::= (LEVEL 1 env_globals_1+)
env_globals_1::= env_globals_case

||= meta_data_1

env_globals_case::= (CASE IDENTIFIER
env_globals_case_spec+)

env_globals_case_spec::= env_globals_spec_0

Example

(GLOBALS_SUBSET ENVIRONMENT
(voltage 4.5 5.5)
(operating_conditions “fastest” 0.8 3.1 -25.0)

)

In this example, only the voltage range is specified, and the process corner
to be used for analysis corresponds to the fastest delays.

Theprocessconstruct specifies the range of process derating factors over
which the design is intended to operate. This range restricts the
process_valuethat can be specified for the operating conditions.

Syntax

process ::= (label?PROCESSmin_and_max)

Example

(process 0.8 1.2)

In this example, assuming that 1.0 represents a nominal process, the
process derating factor used for analysis can vary by plus or minus 20
percent.

Thevoltage construct specifies the range of voltages over the design is
intended to operate. This range restricts thevoltage_valuethat can be
specified for the operating conditions.

Syntax

voltage ::= (label?VOLTAGE r_min_and_max)

Ther_min_and_maxparameter specifies minimum and maximum voltages.

Example

(voltage 2.9 3.1)

In this example, assuming that the voltage scaling factor is set to 1.0, the
design is intended to operate with a supply voltage between 2.9 and 3.1
volts.

Process

Voltage

54 Version 1.4

Globals

Thetemperatureconstruct specifies the range of temperatures over which
the design is intended to operate. This range restricts the
temperature_valuethat can be specified for the operating conditions.

Syntax

temperature::= (label?TEMPERATURE r_min_and_max)

Ther_min_and_max parameter specifies the minimum and maximum
operating ambient temperatures in degrees Celsius (centigrade).

Example

(temperature -25.0 85.0)

In this example, the design is intended to operate between -25.0 and 85.0
degrees Celsius.

Theoperating_conditionsconstruct specifies an environmental corner—a
particular combination of process, voltage, and temperature derating
points —for which analysis or optimization is to be done.

Syntax

operating_conditions::= (label?OPERATING_CONDITIONS
QSTRING
process_value
voltage_value
temperature_value)

process_value::= NUMBER

voltage_value::= RNUMBER

temperature_value::= RNUMBER

TheQSTRING parameter specifies a name for the environment corner,
which is used in some libraries to obtain the models for converting the
process, voltage, and temperature derating points into delay multipliers.

Theprocess_valuespecifies the process derating point. The interpretation
and the units of the derating factor are library-dependent. The process
derating point is used to compute a multiplier for scaling delays to reflect
the impact of variations in the process. Usually the derating point is
interpreted as an index into a linear model that defines the delay multiplier.

If the GFC file contains aprocess construct that defines a range of
allowable process derating points, theprocess_valuemust fall within that
range. There is no default range.

Thevoltage_valuespecifies the voltage derating point, which has units
specified by thevoltage_scale. The voltage derating point is used to

Temperature

Operating Conditions

Globals

Version 1.4 August 17, 1999 55

compute a multiplier for scaling delays to reflect the impact of variations
in the supply voltage. Usually the derating point is interpreted as an index
into a linear model that defines the delay multiplier.

If the GFC file contains avoltage construct that defines a range of
allowable voltages, thevoltage_valuemust fall within that range. There is
no default range.

Thetemperature_valuespecifies the temperature derating point in degrees
Celsius (centigrade). The temperature derating point is used to compute a
multiplier for scaling delays to reflect the impact of variations in the
ambient temperature. Usually the derating point is interpreted as an index
into a linear model that defines the delay multiplier.

If the GFC file contains atemperature construct that defines a range of
allowable temperatures, the operatingtemperature_valuemust fall within
that range. There is no default range.

The operating conditions defined in the global environment subset apply
by default to all cells in the design. In Level 1, this can be overridden for
particular cells by including anoperating_conditions specification in the
timing subset for a cell.

Example

(operating_conditions “slowest” 1.2 2.9 85.0)

In this example, the environment corner is set to reflect derating points that
result in the analysis or optimization being based on the slowest delays.

Thevoltage_threshold construct specifies the measurement points on a
waveform that were used in calculating the slews (transition times) in the
GCF file.

The measurement points are defined as a percentage of the change in
voltage from the start of the transition to the end of the transition. If no
voltage thresholds are specified in a GCF file, the default values for slew
measurement are 10% and 90%.

Syntax

voltage_threshold::= (label?VOLTAGE_THRESHOLD
min_and_max)

Themin_and_max parameter specifies the minimum and maximum
measurement points for slews as numbers between 0 and 100.

Voltage Threshold

56 Version 1.4

Globals

Example

(voltage_threshold 20.0 80.0)

In this example, the measurement points on the waveform for slew are at
the 20% and 80% points with respect to the change in voltage associated
with the transition.

The lifetime construct specifies the required operating lifetime for the
design, which is used in some types of signal integrity and reliability
analysis.

Syntax

lifetime ::= (label?LIFETIME lifetime_value)
lifetime_value ::= min_max

Thelifetime_valuespecifies the required lifetime in years. Although this is
a time value, it is not scaled by thetime_scale, which is usually intended
to scale time values to be in units of ns or ps.

In GCF 1.4, only a single operating point can be modeled with the
OPERATING_CONDITIONS construct. This leads to ambiguities because
lifetime_value supports both minimum and maximum fields, for
compatibility with a future version of GCF that is expected to support
multiple operating points. At that time, the minimum fields will
correspond to best case operating conditions while the maximum fields
will correspond to worst case operating conditions.

For GCF 1.4, in general the mininimum and maximum fields in
lifetime_valueshould both be set to the same value:

❑ The minimum required lifetime expected at the operating point
specified in theOPERATING_CONDITIONS construct.

Tools will generally use the minimum field.

Example

(lifetime 3)

In this example, the design must operate successfully for at three years at
the given operating point.

Lifetime

Globals

Version 1.4 August 17, 1999 57

The environment globals can be case-dependent.

Syntax

env_globals_spec_1::= (LEVEL 1 env_globals_1+)
env_globals_1::= env_globals_case

env_globals_case::= (CASE IDENTIFIER
env_globals_case_spec+)

env_globals_case_spec::= env_globals_spec_0

Example

(GLOBALS_SUBSET ENVIRONMENT
(level 1

(case board1
(voltage 4.5 5.5)

)
(case board2

(voltage 3.1 3.5)
)

)
)

In this example, the voltage range depends on the board in which the
design is used.

Environment Globals
Case

58 Version 1.4

Globals

The timing globals subset defines waveforms, derived waveforms, and
clock domains. Waveforms and their derivatives can be referenced by each
cell, as needed. A clock domain is a group of clocks that are synchronous
with respect to each other.

Syntax

timing_globals_subset::= (GLOBALS_SUBSET TIMING
 timing_globals_body)

timing_globals_body::= timing_globals_spec+
||= include

timing_globals_spec::= timing_globals_spec_0
||= timing_globals_spec_1

timing_globals_spec_0::= slew_mode
||= primary_waveform
||= extension
||= meta_data

timing_globals_spec_1::= (LEVEL 1 timing_globals_1+)
timing_globals_1::= timing_globals_no_case_1

||= timing_globals_case

timing_globals_no_case_1::= derived_waveform
||= clock_group
||= meta_data_1

The following sections describe how operating points are specified for use
in delay calculation and timing analysis, primary waveforms, derived
waveforms, clock groups, and case-dependent timing globals.

Example

(GLOBALS_SUBSET TIMING
(include “global_timing.gcf”)

)

In this example, the global timing constraints are described in a separate
file, global_timing.gcf, which must located in a directory along the search
path.

TheSLEW_MODE construct specifies how slews should be propagated
through the design.

Syntax

slew_mode::= (label?SLEW_MODE
slew_mode_value)

slew_mode_value::= WORST
||= CRITICAL

The default isWORST.

Timing Globals

Slew Mode

Globals

Version 1.4 August 17, 1999 59

Example

(SLEW_MODE CRITICAL)

When theSLEW_MODE is set toWORST,

■ The smallest of the minimum incoming slews for each timing arc will
be used in computing the minimum delays for SDF and the earliest
clock and data arrival times for timing checks.

■ The largest of the maximum incoming slews for each timing arc will
be used in computing the maximum delays for SDF and the latest clock
and data arrival times for timing checks.

■ The average of the typical incoming slews for each timing arc will be
used in calculating the typical delays for SDF.

When theSLEW_MODE is set toCRITICAL ,

■ The minimum slew of the earliest transition arriving at the start of each
timing arc will be used in computing the minimum delays for SDF and
the earliest clock and data arrival times for timing checks.

■ The maximum slew of the latest transition arriving at the start of each
timing arc will be used in computing the maximum delays for SDF and
the latest clock and data arrival times for timing checks.

■ The average of the typical incoming slews for each timing arc will be
used in calculating the typical delays for SDF.

The primary waveform construct defines an abstract periodic waveform,
which is not necessarily associated with any particular signal in the portion
of the design described by the GCF file. A waveform typically is used to
define one or more clock signals.

The following example uses a waveform that isn’t associated with any
signal. The GCF file for a chip might need to refer to the waveform of an
off-chip clock in a constraint on the arrival time at an input pin of the chip,
but that clock itself might not be supplied to the chip.

The primary and derived waveform constructs allow multiple pairs of
edges. However, when a waveform description is used to define a clock or
is used as a reference for an arrival or departure time, the waveform must
only have a single pair of edges.

Primary Waveform

60 Version 1.4

Globals

Syntax

primary_waveform::= (label?WAVEFORM waveform_name
period edge_pair_list)

waveform_name::= QSTRING

period ::= NUMBER

edge_pair_list ::= pos_pair+
||= neg_pair+

pos_pair ::= pos_edge neg_edge

neg_pair ::= neg_edge pos_edge

pos_edge::= (POSEDGEedge_position)
neg_edge::= (NEGEDGE edge_position)

edge_position::= ideal_edge
||= ideal_edge_with_jitter
||= edge_range

ideal_edge::= RNUMBER
||= placeholder

ideal_edge_with_jitter::= ideal_edge jitter_spec

jitter_spec ::= (JITTER jitter_value)
jitter_value ::= NUMBER

||= neg_jitter pos_jitter

neg_jitter ::= NUMBER
pos_jitter ::= NUMBER

edge_range::= r_min_and_max (archaic)

The name of the waveform must be unique. The period describes the
interval at which the waveform repeats, and it is in units of time.

All waveforms are described with respect to an implicit reference point in
time. When a circuit contains several clock domains (see “Clock Groups”
on page 67), there is one implicit reference point for each clock domain
that applies to all of the clocks in that domain. The clock waveforms within
a clock domain must be described relative to the implicit reference point,
so that known skew between related clocks is reflected in the respective
waveform edge positions.

There is no relationship between the reference points for different clock
domains.

edge_pair_list describes a single period of the waveform. It consists of a
list of edge pairs, which can be either apos_edgeconstruct followed by a
neg_edge construct or aneg_edge construct followed by apos_edge
construct. Thus, the total number of edges in the list will be even and the
edges will alternate betweenPOSEDGE andNEGEDGE.

Globals

Version 1.4 August 17, 1999 61

In addition to the direction of the transition, each edge gives the time at
which the transition takes place relative to the start of each period. Offsets
must increase monotonically throughout theedge_pair_list and must not
exceed the period. The edge times may be negative, in which case care
must be taken to correctly define the period, which is always a positive
number.

The offset of each edge can be specified in three different ways. The
simplest form is to specify only the ideal offset. Given an ideal clock
waveform that has no uncertainty, the rising and falling edges will
modeled as always occuring at exactly the same offset within every clock
cycle.

Placeholders must only be used in theDERIVED_WAVEFORM construct
for anideal_edge. Placeholders must not be used for anideal_edge in a
WAVEFORM construct.

External factors in the environment such as crosstalk can introduce
variation called jitter in the actual offset for a clock edge from cycle to
cycle. The second form for theedge_positionshould be used to model the
peak jitter that may occur, where peak jitter is the maximum difference in
any cycle between the actual offset for an edge and the ideal position for
the edge.

Theneg_jitter value is subtracted from theideal_edge and thepos_jitter
value is added to theideal_edgeto create an uncertainty region, where the
actual edge position in a particular cycle may lie anywhere within the
uncertainty region. For anyedge_position that has an uncertainty region,
tools will assume that a single transition of the specified direction occurs
somewhere in the uncertainty region but will not make any assumptions
about the exact location. Tools unable to model uncertainty will issue a
warning message and use theideal_edge position instead.

When the edge positions of two waveforms are compared in order to
establish the relationship between the waveforms, theideal_edgeis always
used.

When a waveform edge is used as a reference for an arrival or departure
time, jitter on the waveform edge extends the uncertainty region for the
arrival or departure time.

Ther_min_and_maxform of theedge_position is archaic and has been
replaced by theideal_edge_with_jitter form. The uncertainty region is
treated the same with both forms, but in ther_min_and_max form the
ideal_edge is defined as the mean of the two endpoints, rather than
represented explicitly. Computing the mean is subject to floating point
arithmetic inaccuracies that can affect the comparison between
ideal_edges. Two waveforms intended to have the sameideal_edge and

Modeling Jitter

62 Version 1.4

Globals

uncertainty regions with different sizes may not have exactly the same
computedideal_edge position.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)

)

In this example, a waveform is defined with a 50% duty cycle and a 10 ns
period (assuming that the time_scale construct specifies that delay values
in the file are in ns).

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0 (JITTER 0.2))
(NEGEDGE 5.0 (JITTER 0.2))

)

In this example, a waveform is defined with a jitter of 0.2 ns on both the
rising and falling edges. This creates an uncertainty window of 0.4 ns
around each edge. The earliest possible transition for the rising edge in any
machine cycle is expected to be at an offset of -0.2 ns from the implicit
reference point. The latest possible transition for the falling edge in any
machine cycle is expected to be at an offset of 5.2 ns from the implicit
reference point.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0 (JITTER 0.1 0.2))
(NEGEDGE 5.0 (JITTER 0.3 0.4))

)

In this example, a waveform is defined to have different positive and
negative jitter values for each edge. The earliest possible transition for the
rising edge is expected to be at an offset of -0.1 ns, while the latest possible
transition is at 0.2 ns. The earliest possible transition for the falling edge is
expected to be at an offset of 4.7 ns, while the latest possible transition is
at 5.4 ns.

Example (archaic)

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE -0.2 0.2) (NEGEDGE 4.8 5.2)

)

This example illustrates using the archaic uncertainty range form to
describe jitter of 0.2 ns. Theideal_edgeposition is determined as the mean

Globals

Version 1.4 August 17, 1999 63

of the two endpoints for each edge, so the risingideal_edge will be at
approximately 0.0 ns, and the fallingideal_edgewill be at approximately
5.0 ns.

The derived waveform construct defines a waveform that is harmonically
related to a previously defined waveform (the “parent” waveform, which
might itself be a derived waveform). Derived waveforms can only be
specified in Level 1.

Derived waveforms are commonly used in a multi-phase, single-frequency
clocked system. A single abstract waveform is defined, and other phases
are derived from it.

Another example of when this is useful is when clock multipliers or
dividers are used to convert one clock waveform into another waveform
with a different but related frequency. By defining the output waveform of
a divider as a derived waveform, a change to the definition of the period of
the parent waveform will automatically affect the output waveform.

Syntax

derived_waveform::= (label?DERIVED_WAVEFORM
waveform_name
parent_waveform_name
derived_waveform_option+)

parent_waveform_name::= QSTRING

derived_waveform_option::= period_multiplier
||= period_divisor
||= derived_edges
||= phase_shift
||= jitter_adjustment
||= invert

period_multiplier ::= (PERIOD_MULTIPLIER
period_multiplier_value)

period_divisor ::= (PERIOD_DIVISOR
period_divisor_value duty_cycle_value?)

derived_edges::= (EDGES derived_edge_list)

derived_edge_list::= derived_pos_pair+
||= derived_neg_pair+

derived_pos_pair::= derived_pos_edge derived_neg_edge

derived_neg_pair::= derived_neg_edge derived_pos_edge

derived_pos_edge::= (POSEDGEderived_edge)
derived_neg_edge::= (NEGEDGE derived_edge)

derived_edge::= edge_num derived_edge_shift?

derived_edge_shift::= (PHASE_SHIFT edge_shift_valueIDEAL ?)

Derived Waveform

64 Version 1.4

Globals

phase_shift::= (PHASE_SHIFT phase_shift_valueIDEAL ?)

jitter_adjustment::= (JITTER_ADJUSTMENT
edge_pair_list)

invert ::= INVERT

period_multiplier_value::= DNUMBER

period_divisor_value::= DNUMBER

duty_cycle_value::= NUMBER

edge_num::= DNUMBER

edge_shift_value::= RNUMBER

phase_shift_value::= r_rise_fall

The basic relationshipship between the edges in the parent waveform and
the edges in the derived waveform can be specified in two different ways:

■ using theperiod_multiplier and/or theperiod_divisor constructs to
scale the period and edge positions of the parent waveform

■ using thederived_edges construct to select specific edges by number
from multiple cycles of the parent waveform

These two approaches cannot be combined. Thederived_edges construct
cannot be used in combination withperiod_multiplier or period_divisor.

If a period_multiplier is specified, the period of the derived waveform is
obtained by multiplying the period of the parent waveform by the
period_multiplier_value.

■ If the period_multipler is a power of two, the positions of each of the
edges in the derived waveform will be set to the position of successive
rising edges across multiple periods of the parent waveform, starting
with the first rising edge in the first period.

■ If the period_multiplier is not a power of two, the position of each
waveform edge in the parent is multiplied byperiod_multiplier to
determine the corresponding edge position in the derived waveform.

If a period_divisor is specified, the period of the derived waveform is
obtained by divided the period of the parent waveform by the
period_divisor_value.Theduty_cycle_value represents the percentage (0
to 100) of the derived period that the derived waveform is high. If
duty_cycle_value is not specified, the position of each waveform edge in
the parent is also divided, to determine the corresponding edge position in
the derived waveform.

If duty_cycle_value is specified, only the first edge position in the parent
is used in determining the edge positions in the derived waveform, which

Uniform Scaling

Globals

Version 1.4 August 17, 1999 65

will always have just two edges, regardless of how many edges there are
in the parent waveform. The position of the first waveform edge in the
parent is divided by theperiod_divisor_valueto obtain the position of the
first derived waveform edge. Then theduty_cycle_value is applied to the
derived period to determine the second edge position.

■ If the first waveform edge in the parent is a rising edge, or if it is falling
and theINVERT keyword is specified, then the second edge position
will be at time

❑ first_edge_time + ((duty_cycle_value / 100.0) * derived_period)

■ If the first waveform edge in the parent is a falling edge, or if it is rising
and theINVERT keyword is specified, then the second edge position
will be at time

❑ first_edge_time + (((100 -duty_cycle_value) / 100.0) *
derived_period)

Both aperiod_multiplier and aperiod_divisor can be specified, for cases
where the period of the derived waveform is a rational multiple of the
parent waveform’s period. The multiplier is applied first, then the divisor.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)

)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”

(period_multiplier 2)
)

)

In this example, which models a clock divider, the period of the derived
waveform is multiplied by 2 (and the frequency is divided by 2). The rising
edge of the derived waveform is at 0, and the falling edge of the derived
waveform is at 10.

If derived_edges is specified, the edge positions in the derived waveform
are obtained by selecting particular edges by number from multiple cycles
of the parent waveform. Each derived edge can then be shifted by a unique
amount usingderived_edge_shift.

By default, the ideal edge position is the same as the ideal edge position in
the parent, and thederived_edge_shift is treated as insertion delay. If the
IDEAL keyword is specified in thederived_edge_shift construct, the
derived_edge_shift is included in the ideal edge position.

Edge Selection

66 Version 1.4

Globals

The edge numbers in the parent waveform are consecutive integers starting
at 1 and incrementing on each transition.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)

)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”

(edges (posedge 1) (negedge 3))
)

)

For example, for a parent waveform with edges at 0 (rising) and 5 (falling)
and a period of 10, specifying edge numbers 1 and 3 inderived_pos_pair
will result in a waveform with edges at 0 (rising) and 10 (falling).

If phase_shift is specified, all of the edges of the derived waveform are
computed by adding the specified value(s) to the corresponding edge
positions specified in the parent waveform or to the computed edge
positions ifperiod_multiplier, period_divisor,or derived_edgesis
specified.

■ If the INVERT keyword is not specified, the risephase_shift_valueis
added to thepos_edgeedges, while the fallphase_shift_valueis added
to theneg_edge edges.

■ If the INVERT keyword is specified, the risephase_shift_value is
added to theneg_edgeedges, while the fallphase_shift_valueis added
to thepos_edge edges.

■ If bothphase_shiftandderived_edge_shiftare specified, the sum of the
two is used in computing thederived_edge position.

If jitter_adjustment is not specified, the derived waveform will have the
same jitter as the parent waveform.

If jitter_adjustment is specified, it overrides the jitter from the parent
waveform. Within thejitter_adustment construct, a placeholder must be
used to represent eachideal_edgeposition, since the actual offset of each
ideal_edge will be computed from the other specifications.

When a combination ofperiod_multiplier, period_divisor, derived_edges,
phase_shift, or jitter_adjustment constructs are specified, first the ideal
edge positions for the derived waveform are computed, using the
period_multiplier or period_divisor if specified.

Uniform Phase Shift

Jitter Adjustments

Globals

Version 1.4 August 17, 1999 67

Then the effective edge positions are computed, considering the effect of
aphase_shiftif specified. Finally, the uncertainty around each effective
edge position is determined from thejitter_adjustment if specified

The waveform resulting from the calculations must be valid: offsets must
increase monotonically throughout theedge_pair_listand must not exceed
the adjusted period.

If the INVERT option is specified, the derived waveform is inverted with
respect to its parent.

When the edge positions of a derived waveform are compared against
another waveform in order to establish the relationship between the
waveforms, the comparison is done using the ideal edges for the derived
waveform.

When theMULTI_CYCLE construct (see “Multi-Cycle Paths” on page
129) is used for a parent waveform, it has no effect on any waveforms
derived from that parent; any adjustments must be specified independently
for each derived waveform.

Example

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”

(period_multiplier 2)
)

)

In this example, a waveform is defined with a 50% duty cycle and a 20 ns
period by deriving from a previously defined parent waveform.

By default, all clocks are assumed to be derived from a common source
clock and to have harmonically related frequencies, so that it is meaningful
to perform timing checks on paths between any pair of registers.

In both Level 0 and Level 1, by default all clock waveforms are assigned
to the same default clock domain. In Level 1, it is possible to describe cases
where not all of the clocks are derived from the same source by separating
the waveforms into groups of related clocks or “clock domains.” If any
clock domains are specified, only paths between clock waveforms in the
same group are constrained.

Clock waveforms in different domains are assumed to be asynchronous.
There is no default constraint on the delay of paths that start in one clock
domain and end in a different one, although an explicit combinational
delay constraint could be specified as an exception. A synchronizer must
usually be used for these paths.

Clock Groups

68 Version 1.4

Globals

Syntax

clock_group ::= (label?CLOCK_GROUP
clock_group_name waveform_name+)

clock_group_name::= QSTRING

The clocks within the group are identified by their waveform names, and
the definitions of the waveforms must precede theclock_group_spec.
Usually derived waveforms will be in the same clock group as their parent
waveform, but this must be specified explicitly.

Including the same waveform name in multiple clock groups is not
allowed because doing so implies that the clock is asynchronous with
respect to itself.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)

)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”

(period_multiplier 2)
)
(CLOCK_GROUP “group1”

“100 MHz 50/50” “50 MHz 50/50”
)

)

The timing globals can be case-dependent.

Syntax

timing_globals_case::= (CASE IDENTIFIER
timing_globals_case_spec+)

timing_globals_case_spec::= timing_globals_spec_0
||= timing_globals_no_case_1

Timing Globals Case

Globals

Version 1.4 August 17, 1999 69

Example

(GLOBALS_SUBSET TIMING
(level 1

(case board
(WAVEFORM “100 MHz 50/50” 10.0

(posedge 0) (negedge 5.0)
)

)
(case tester

(WAVEFORM “20 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)

)
)

)
)

In this example, the clock waveform supplied to the chip depends on
whether it is mounted on the board or is being tested.

70 Version 1.4

Design References

Design References

GCF allows three types of design preferences: name prefixes, cell and port
instances, and cell types.

Constraints generally refer to the properties of specific objects within a
design (for example, cell instances or port instances). In GCF, it is only
possible to refer to these objects by their name. However, the full
hierarchical name of a design object can be a fairly long string, and many
design objects have similar names.

To reduce the size of GCF files, GCF allows the use of name prefixes. A
name prefix is a short alias to be created for an initial portion of a
hierarchical path name. When the full hierarchical names of many design
objects share a common initial prefix, the use of name prefixes can
substantially reduce the size of a GCF file.

Syntax

name_prefixes::= (NAME_PREFIXES num_prefixes
name_prefix+)

num_prefixes::= DNUMBER

name_prefix::= prefix_id QSTRING

prefix_id ::= DNUMBER

To optimize reading a GCF file, thenum_prefixesparameter must specify
the exact number of name prefixes that follow, and theprefix_idsmust be
consecutive integers starting at 0.

Name prefixes are defined within a cell specification. A GCF writer can
choose to use any set of strings for use as name prefixes, or can choose to
not define any prefixes at all. One possible choice for the name prefixes is
the instance names of primitives instantiated as descendents of the cell.

Once a name prefix has been defined, it can be used to identify cell
instances or port instances within the current cell instance. The definition
of the name prefix must precede any usage of the prefix.

When a name prefix is used, it is interpreted as the initial portion of a
relative path name beginning at the context of the current cell instance.

Since the name prefix and thePARTIAL_PATH are simply concatenated
without interpretation to form the fullPATH for the cell instance, the name
prefix must use the hierarchy delimiter character,HCHAR, to separate each
level of hierarchy in the name.

Name Prefix

Design References

Version 1.4 August 17, 1999 71

The cell instance construct is used to identify a particular instance of a cell
within the design. In early versions of GCF, the cell instance construct was
untyped. In some constructs, it was ambiguous without access to the netlist
whether a given string orprefix_idrepresented an cell instance name or a
port name or a pin name. Thetyped_cell_instanceconstruct can be used to
avoid this ambiguity, but for backward compatibility it is not required.

Syntax

cell_instance::= untyped_cell_instance
||= typed_instance_list

untyped_cell_instance::= PATH
||= (prefix_id)
||= (prefix_id PARTIAL_PATH)

typed_instance_list::= (INSTANCE untyped_cell_instance+)

The port instance construct is used to identify either a top level port on the
current GCF cell, a pin on a primitive contained within the current GCF
cell or its descendents, or a pin on a hierarchical module contained within
the current GCF cell or its descendents (a “hierarchical pin”).

Not all tools reading GCF support hierarchical pins, because doing so
requires access to a hierarchical netlist, while some tools only read a
flattened netlist. Constraints originally specified on hierarchical pins may
need to be “flattened”, or propagated to primitive pins at certain points in
a design flow.

In early versions of GCF, the port instance construct was untyped. In some
constructs, it was ambiguous without access to the netlist whether a given
string orprefix_id represented an cell instance name or a port name or a
pin name. Thetyped_port_instance construct can be used to avoid this
ambiguity, but for backward compatibility it is not required.

Syntax

port_instance::= untyped_port_instance
||= typed_port_instance

untyped_port_instance::= port
||= PATH HCHARport
||= (prefix_id port)
||= (prefix_id PARTIAL_PATH HCHARport)

typed_port_instance::= typed_port_list
||= typed_pin_list

typed_port_list ::= (PORT untyped_port_instance+)
typed_pin_list ::= (PIN untyped_port_instance+)

Cell Instance

Port Instance

72 Version 1.4

Design References

Example

(CELL()
(SUBSET “timing”

(EXCEPTIONS
(SLEW_LIMIT 1.0 2.0 3.0 4.0 a.b.c.d.IN1)
(SLEW_LIMIT 5.0 6.0 7.0 8.0 a.b.c.e.IN1)

)
)

)

In this example, a slew limit (transition time) constraint on two primitive
pins is specified using theuntyped_port_instance form.

Example

(CELL()
(SUBSET “timing”

(EXCEPTIONS
(SLEW_LIMIT 1.0 2.0 3.0 4.0 (PIN a.b.c.d.IN1))
(SLEW_LIMIT 5.0 6.0 7.0 8.0 (PIN a.b.c.e.IN1))

)
)

)

In this example, the same constraint is specified using thetyped_pin_list
form.

Example

(CELL()
(NAME_PREFIXES 2

0 “a.b.c.d.”
1 “a.b.c.e.”

)
(SUBSET “timing”

(EXCEPTIONS
(SLEW_LIMIT 1.0 2.0 3.0 4.0 (1 IN1))
(SLEW_LIMIT 5.0 6.0 7.0 8.0 (2 IN1))

)
)

)

In this example, the same constraint is specified using the name prefixes
form.

The net construct is used to identify a particular net contained within the
current GCF cell or its descendents. In most GCF constructs, nets are
identified implicitly by specifying one of the pins connected to the net.
However, in several constructs a net name can be used directly.

Generally, the name of a net that connects through several levels of
hierarchy is ambiguous, as the net will have a different local name, or alias,

Net

Design References

Version 1.4 August 17, 1999 73

within each level of hierarchy. Applications that interpret net names
generally need to have access to all of the net aliases in order to find a net
referenced in the GCF.

The net name can be typed or untyped, for consistency with cell instance
and port instance. The typed form is preferred.

Syntax

net ::= untyped_net
||= typed_net_list

untyped_net::= PATH
||= (prefix_id)
||= (prefix_id PARTIAL_PATH)

typed_net_list::= (NET untyped_net+)

Example

(CELL()
(SUBSET “timing”

(EXCEPTIONS
(DISABLE

(PATHS
(THRU_ALL

(NET net1)
(NET net2)

)
)

)
)

)
)

In this example, all paths through bothnet1 andnet2 are disabled.

For consistency withcell_instanceandport_instance, there is an explicitly
typed form for waveforms. Thetyped_waveform_list can be used for
clarity, although there isn’t any ambiguity between waveforms and other
design objects, since waveform names must be enclosed in quotes.

Syntax

typed_waveform_list::= (WAVEFORM waveform_name+)

Example

(WAVEFORM “wave1”)

Typed Waveform

74 Version 1.4

Design References

In certain GCF constraints, to reduce the GCF file size it is possible to
specify an expression including theWILDCARD character, “*”, that
matches a set of cell instance names, port names, or pin names.

Syntax

typed_instance_expr::= (INSTANCE_EXPR PATH_EXPR)
typed_port_expr::= (PORT_EXPR PATH_EXPR)
typed_pin_expr::= (PIN_EXPR PATH_EXPR)
typed_net_expr::= (NET_EXPR PATH_EXPR)

PATH_EXPR is the same as PATH (see “Variables” on page 193), with
the addition of the wildcard character. TheWILDCARD character matches
any substring within a single level of a hierarchical name, but it does not
match across hierarchy boundaries.

Example

(CELL()
(SUBSET “timing”

(EXCEPTIONS
(DISABLE (PIN_EXPR a.*.c.*.IN1))

)
)

)

In this example, given that the current GCF cell contains the pins
a.b.c.d.in1, a.b.c.e.in1, and a.b.c.e.f.in1, only first two pins will be
disabled. The third pin would be matched by

(PIN_EXPR a.*.c.*.*.in1)

Example

(CELL()
(SUBSET “timing”

(EXCEPTIONS
(DISABLE (PIN_EXPR *.IN1))

)
)

)

In this example, only the IN1 pins on instances that are direct children
within the current GCF cell are matched, not all of the IN1 pins on any
instance contained within the current GCF cell and its descendents.

Instance, Port, Pin, and
Net Expressions

Design References

Version 1.4 August 17, 1999 75

Example

(CELL()
(SUBSET “timing”

(EXCEPTIONS
(DISABLE (FROM (PORT_EXPR SCAN_DATA_*_)))

)
)

)

In this example, aSCAN_DATA bus port in the original netlist has been
mapped into individual ports in the current netlist, replacing the bus
delimiters with underscores. ThePORT_EXPR construct is used to match
all of the ports corresponding to the original bus port.

Thecell_idconstruct is used to refer to exactly one type of cell.

Syntax

cell_id ::= (CELLTYPE cell_name)
||= (CELLTYPE

library_name cell_name view_name?)

library_name ::= QSTRING

cell_name ::= QSTRING

view_name::= QSTRING

The library name indicates the library that contains the cell. The view name
specifies a particular view of the cell.

Example

(CELLTYPE "AN2")

This example specifies the AN2 cell type. Since the library is not specified,
the effect of this ambiguous if there are several libraries used in the design
that include different cells named AN2.

Example

(CELLTYPE "REFLIB" "AN2")

This example specifies the AN2 cell from the REFLIB library.

Theport_mastersymbol is used to refer to a port on a particular type of
cell. This is generally used to establish a master-based default for a
constraint on allport_instances that correspond to theport_master.

Syntax

port_master ::= (cell_id scalar_port)

The library name indicates the library that contains the cell. The view name
specifies a particular view of the cell.

Cell Type

Port Master

76 Version 1.4

Design References

Example

((CELLTYPE "REFLIB" "AN2") IN1)

This example specifies the IN1 port on the AN2 cell from the REFLIB
library.

Theport_instance_or_mastersymbol is used to refer to either a specific
port_instance, or to allport_instances that correspond to aport_master.

Syntax

port_instance_or_master::= port_instance
||= port_master

Port Instance or Master

Cell Entries

Version 1.4 August 17, 1999 77

Cell Entries

A cell construct identifies a particular “region” or “scope” within a design
and contains constraint data to be applied to that region.

For example, a cell construct might identify a unique occurrence of a user-
defined cell or block and provide constraints on the interface ports of that
block. Or, it might identify a unique occurrence of an ASIC physical
primitive (such as a flip-flop) in the design and define constraints specific
to that occurrence (such as a multi-cycle path constraint on all paths
starting at that flip-flop). Besides identifying such design-specific regions,
cell entries can identify all occurrences of a particular user-defined cell or
an ASIC library physical primitive, such as a certain type of gate or flip-
flop. Data is applied to all such regions in the design.

Syntax

cell_spec ::= (CELL cell_instance_spec cell_body_spec+)
cell_instance_spec::= cell_instance_path

||= (cell_instance_path+)
||= ()
||= cell_views

cell_instance_path::= PATH

cell_body_spec::= name_prefixes
||= subset
||= extension
||= meta_data
||= include

Thecell_instance_spec identifies one or more regions of the design. The
cell_body_spec contains the constraint data for that region. These will be
discussed in detail in the following chapters.

Example

(CELL a1.b1.c1
(SUBSET PARASITICS

(INTERNAL_LOAD 5.0 7.5 IN1)
)

)

A GCF file can contain any number of cell entries (including zero). The
order of the cell entries is significant only if they have an overlapping
effect, where data from two different cell entries applies to the same
constraint in the design. In this situation, the cell entries are processed
strictly from the beginning to the end of the file, and the data they contain

78 Version 1.4

Cell Entries

is applied in sequence to whatever region is appropriate to that cell
construct. Where data is applied to a constraint previously referenced by
the same GCF file, the new data will be applied over the old.

This interpretation supports the definition of a set of default constraints for
all instances of a cell, then overriding those constraints for particular cell
instances.

Thecell_instance_spec identifies the parts of the design to which the
constraints in the cell construct apply.

Syntax

cell_instance_spec::= cell_instance_path
||= (cell_instance_path+)
||= ()
||= cell_views

cell_instance_path::= PATH

The first form of thecell_instance_specidentifies a unique occurrence in
the design. Thecell_instance_path must be relative to the level in the
design at which the annotator is instructed to apply the GCF file (see “The
Annotator” on page 25). Frequently, this is the topmost level.

Thecell_instance_path is extended down through the hierarchy by
specifying a hierarchical path name with the name of each hierarchical
level separated by the hierarchy delimiter character,HCHAR. The
hierarchical path name must not start with the hierarchy delimiter
character. Name prefixes cannot be used in thecell_instance_path.

Example

(CELL a1.b1.c1
 . . .

)

In this example, the relative hierarchical path is specified asa1.b1.c1 .
The region identified is cell or blockc1 within blockb1, which is in turn
within blocka1, which must be contained within the level at which the
GCF is applied. The period character separates levels or elements of the
path. The example assumes that the delimiters construct in the GCF header
specified the hierarchy delimiter as the period character or, since period is
the default, the construct was absent.

The second form of thecell_instance_spec identifies several occurrences
of the cell to which the same constraints must be applied.

The () form of thecell_instance_specindicates that the constraints defined
in thecell_body_specapply to the hierarchical level in the design at which

Cell Instance Spec

Cell Entries

Version 1.4 August 17, 1999 79

the annotator is instructed to apply the GCF file. This is typically used to
specify constraints on the top-level cell in the design.

Thecell_views form of the cell instance list indicates that the constraints
defined within thecell_body_spec apply to all occurrences of the given
type of cell that are instantiated under the hierarchical level at which the
GCF is applied.

Syntax

cell_views ::= (CELLTYPE cell_name)
||= (CELLTYPE

library_name cell_name view_name*)

library_name ::= QSTRING

cell_name ::= QSTRING

view_name::= QSTRING

The library name indicates the library that contains the cell, while the view
name can be used to specify which views of the cell are affected.

Example

(CELL (CELLTYPE “WORKLIB” "ALU")
 . . .

)

The effect of this example is to apply the constraints to every instance of
every view of the ALU cell from the WORKLIB library.

80 Version 1.4

Subsets

Subsets

GCF is organized into a number of subsets of related constraint data. The
intent of this is to allow tools to efficiently access only the data that is
relevant to them.

Syntax

subset ::= timing_subset
||= parasitics_subset
||= area_subset
||= power_subset

Timing Subset
Timing Subset Header

Timing Environment

Timing Exceptions

4

Timing Subset Header

Version 1.4 August 17, 1999 83

Timing Subset Header

The timing subset of each cell entry in the GCF file includes information
about the following:

■ The timing environment in which the cell is intended to operate

■ The constraints on the timing characteristics of the cell

This chapter describes the timing environment and timing exceptions. For
information on other constructs, refer to “Extensions” on page 37, “Meta
Data” on page 40, and “Include Files” on page 42.

Syntax

timing_subset::= (SUBSET TIMING timing_subset_body)

timing_subset_body::= timing_subset_spec+
||= include

timing_subset_spec::= timing_environment
||= timing_exceptions
||= extension
||= meta_data

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(SUBSET TIMING

(ENVIRONMENT
 . . .

)
(EXCEPTIONS

 . . .
)

)
)

84 Version 1.4

Timing Environment

Timing Environment

The timing environment of a cell describes a number of conditions external
to the cell that affect its timing behavior. The following conditions are
included:

■ Arrival and required times of signals at the cell ports

■ Clock waveforms used by the cell

■ Information about the external drivers connected to the input ports of
the cell

This section describes clock specifications, arrival time, driver cell, driver
strength, input slew, constant values, operating conditions, and timing
environment cases. Chapter 5, “Parasitics Subset,” includes additional
information that affects the cell’s timing behavior.

Syntax

timing_environment::= (ENVIRONMENT timing_env_spec+)

timing_env_spec::= timing_env_spec_0
||= timing_env_spec_1

timing_env_spec_0::= clock_spec
||= clock_arrival_spec
||= arrival_spec
||= required_spec
||= external_delay_spec
||= driver_spec
||= input_slew_spec
||= extension

timing_env_spec_1::= (LEVEL 1 timing_env_1+)

timing_env_1::= timing_env_no_case_1
||= timing_env_case

timing_env_no_case_1::= constant_spec
||= operating_conditions
||= internal_slew_spec
||= meta_data_1

Timing Environment

Version 1.4 August 17, 1999 85

Each clock that is applied to the cell (or generated internally by the cell
itself) is described by relating a waveform (see “Timing Globals” on page
50) to aport_instance(the source of that waveform within the cell). These
port_instancesare usually the roots of a clock network and are referred to
as clock roots.

Syntax

clock_spec::= (label?CLOCK waveform_name
clock_root+)

clock_root ::= port_instance

If the waveform was not previously defined, an error message will be
given. Although theWAVEFORM construct generally allows more than
one pair of edges, clock waveforms must only have a single pair of edges.

Theclock_root can be a primary input port, an output of a primitive
instance within the current GCF cell, or a hierarchical output pin on a
lower level cell.

An error message will be given if aclock_rootfor aCLOCK construct lies
in the transitive fanout of aclock_root for anotherCLOCK construct.
When modeling hierarchical clock trees, each GCF must only specify the
highestclock_rootcontained within the portion of the design described by
the GCF.

Figure 3 Simple Clock Tree

Example

(CLOCK “100 MHz 50/50” CLK)

In Figure 3, theCLK input port is aclock_rootthat is the source of the “100
MHz 50/50” waveform within theTOP module. The clock network

Clock
Specifications

FF1

TOP

FF2

C1

C2 C5C3

CLK CLK2

86 Version 1.4

Timing Environment

distributes that waveform to the clock input pins ofFF1 andFF2, as well
as to the output port,CLK2.

TheCLOCK_ARRIVAL construct specifies external insertion delay that
should be included in the effective offset for certain clock edges.

Syntax

clock_arrival_spec::= (label?CLOCK_ARRIVAL
clock_arrival_value
clock_arrival_item+)

clock_arrival_value ::= r_rise_fall_min_max

clock_arrival_item ::= clock_root
||= clock_leaf
||= waveform_name
||= typed_waveform_list

clock_leaf ::= port_instance

Theclock_arrival_valueis a time value and must be specified in the units
defined by thetime_scale. It follows the ordering convention for
r_rise_fall_min_max described in “Value Types” on page 48, as well as
the semantics for operating points described in “Min/Max Values and
Operating Conditions” on page 51.

When the current GCF cell is part of a larger design, the current GCF cell
may contain only a portion of a larger clock distribution network. The
characteristics of the overall clock network are important when the current
GCF cell contains two different subtrees. In that case, the relationship
between clock edges at registers in different subtrees depends on the
external insertion delay from the root of the overall clock network up to
each subtree’sclock_root. This external insertion delay should be
specified using theCLOCK_ARRIVAL construct.

Generally, the effective offset of a clock edge at a register clock input
includes:

■ the offset of the clock edge within the waveform

■ external insertion delay specified in theCLOCK_ARRIVAL

■ internal insertion delay between theclock_root and the register clock
input.

Similar factors also affect clock edges that are used as a reference for
ARRIVAL andREQUIRED times. In that case, the whole clock network
lies outside the current GCF cell, and the effective offset of the reference
clock edge includes:

Clock Arrival

Timing Environment

Version 1.4 August 17, 1999 87

■ the offset of the clock edge within the waveform

■ a portion of the overall external insertion delay specified using a
waveform name in theCLOCK_ARRIVAL construct

■ a portion of the overall external insertion delay specified using a
waveform name in theCLOCK_DELAY construct

Separating the overall external insertion delay into two parts can be
valuable when the same clock waveform is used for both internal and
external registers.

When a higher level subtree in the clock distribution network is not yet
implemented, there may be uncertainty in the clock arrival time. Since the
min/max range for theclock_arrival_value is used to model different
operating points, it must not be used to describe the uncertainty in the
higher level subtree. Instead, the uncertainty should be modeled using the
CLOCK_SKEW construct (see “Inter-Clock Uncertainty” on page 151).

For aclock_root, theclock_arrival_value affects the effective offset of
clock edges at the registers in the transitive fanout from the clock_root.

For aclock_leaf, theclock_arrival_valueaffects the effective offset of the
clock edge at thatport_instance, which must be the clock input of a
register.

For awaveform_name, theclock_arrival_valueaffects the effective offset
of the clock edges at the registers in the transitive fanout from each
clock_rootassociated with the waveform. It also affects the effective offset
of the clock edges used as a reference inARRIVAL andREQUIRED
constructs.

88 Version 1.4

Timing Environment

Figure 4 Hierarchical Clock Tree

Example

(CELL ()
(SUBSET TIMING

(CLOCK "WAVE" CLK2 GCLK2)
(CLOCK_ARRIVAL 0.5 0.6 0.4 0.5 CLK2)
(CLOCK_ARRIVAL 0.6 0.7 0.5 0.6 GCLK2)

)
)

In Figure 4, theCLK input port on theTOPlevel module is theclock_root
when the entire design is being analyzed.

However, for a GCF that is intended to describe theCURRENT module,
CLK2 andGCLK2 are theclock_roots. Since they are derived from a
common waveform, they can be listed in the sameCLOCK construct.
However, the partial insertion delay from theCLK input port at theTOP
level to theCLK2 input is different than the partial insertion delay from the
CLK input port to theGCLK2 input.

This difference in the top level insertion delays affects the effective
constraint on paths betweenFF1 andFF2. In this example, the clock
arrival time atGCLK2 is 100 ps later than atCLK2. This causes the
effective setup constraint on paths betweenFF1 andFF2 to be 100 ps
looser than if the clock arrival times were the same.

FF1

CURRENT

FF2

TOP

CLK

CLK2 GCLK2

ENABLE

Timing Environment

Version 1.4 August 17, 1999 89

Figure 5 External Clock Trees and Arrival/Required Times

Example

(GLOBALS
(GLOBALS_SUBSET TIMING

(WAVEFORM "WAVE" 10 (NEGEDGE 0) (POSEDGE 5))
)

)
(CELL ()

(SUBSET TIMING
(ENVIRONMENT

(CLOCK "WAVE" CLK2)
(CLOCK_ARRIVAL 0.5 0.7 0.4 0.6 "WAVE")
(ARRIVAL (POSEDGE "WAVE") 5.0 6.5 4.0 5.2 IN)
(REQUIRED (POSEDGE "WAVE") 4.0 2.7 3.0 2.0 OUT)

)
(EXCEPTIONS

(CLOCK_DELAY "WAVE" (INSERTION_DELAY 2.0 2.6))
)

)
)

In a GCF for theCURRENT module in Figure 5,CLK2 is theclock_root
for the internal clock network. The top level clock tree affects the arrival
time of the clock edge at the CLK2 input. The top level clock tree also
affects the arrival time of the clock edge at CLK1 and CLK3, which in turn
affects the arrival time atIN and the required time atOUT.

FF2

CURRENT

TOP

CLK

CLK2

FF1

SOURCE

CLK1

FF3

TARGET

CLK3

IN OUT

90 Version 1.4

Timing Environment

Specifying the waveform name in theCLOCK_ARRIVAL construct is a
convenient way to describe a balanced top level clock network, where the
partial insertion delay is the same fromCLK to CLK1, CLK2, andCLK3.

Specifying the waveform name in theCLOCK_DELAY construct is a
convenient way to describe balanced lower level clock networks, where
the partial insertion delay within each of the lower level modules is the
same.

The effective minimum offset of the rising clock edge at the clock input of
FF2 is

5.0 (waveform edge offset) +
0.5 (external insertion delay fromCLOCK_ARRIVAL) +
2.0 (internal insertion delay fromCLOCK_DELAY)
= 7.5

The effective maximum offset of the rising clock edge at the clock input of
FF2 is

5.0 (waveform edge offset) +
0.7 (external insertion delay fromCLOCK_ARRIVAL) +
2.6 (internal insertion delay fromCLOCK_DELAY).

The effective offsets of the reference clock edges used in theARRIVAL
andREQUIRED time constructs are computed similarly, except that the
CLOCK_ARRIVAL construct describes the top level portion of the
external clock network, and theCLOCK_DELAY construct describes the
lower level portion of the external clock network.

The earliest arrival time of the falling edge atIN has a total offset from the
implicit reference point of

5.0 (waveform edge offset) +
0.5 (partial external insertion delay fromCLOCK_ARRIVAL) +
2.0 (partial external insertion delay fromCLOCK_DELAY) +
4.0 (arrival time)
= 11.5

The latest time (as an offset from the implicit reference point) by which the
rising data edge must reachOUT for single-cycle operation is

10.0 (cycle time) +
5.0 (waveform edge offset) +
0.7 (partial external insertion delay fromCLOCK_ARRIVAL) +
2.6 (partial external insertion delay fromCLOCK_DELAY) -
4.0 (required setup time)
= 14.3

Timing Environment

Version 1.4 August 17, 1999 91

The earliest time (as an ofset from the implicit reference point) that the
falling data edge must not reachOUT before is

5.0 (waveform edge offset) +
0.5 (partial external insertion delay fromCLOCK_ARRIVAL) +
2.0 (partial external insertion delay fromCLOCK_DELAY) +
2.0 (required hold time)
= 9.5

TheARRIVAL construct defines ranges of time in which signal transitions
can occur at aport_instancethat includes register data inpus in its
transitive fanout. Arrival times are usually specified only for primary input
and bidirectional ports, but they can also be specified for internal input and
bidirectional pins on primitives, and for hierarchical pins on lower level
modules or blocks. When specified on internal or hierarchical pins, the
arrival time overrides any propagated arrival time.

Syntax

arrival_spec ::= (label?ARRIVAL
arrival_waveform_edge
arrival_value
port_instance*)

arrival_waveform_edge::= (waveform_edge_identifier waveform_name)

arrival_value ::= source_arrival_value
source_arrival_value::= r_rise_fall_min_max

||= (waveform_edge_identifier
r_min_max) (archaic)

If no port_instance is specified, the arrival time applies by default to all
primary input and bidirectional ports on the cell except those that have
been identified as clock inputs.

Thearrival_waveform_edge specification, which identifies a waveform
and an edge of that waveform, is required. The effective offset of the
waveform edge implicitly includes any external insertion delay specified
for the waveform using theCLOCK_ARRIVAL construct, as well as the
offset of the edge specified in the waveform definition.

If the waveform was not previously defined, an error message will be
given. Although theWAVEFORM construct generally allows more than
one pair of edges, clock waveforms used for arrival times must have only
a single pair of edges.

Thearrival_value is interpreted as a positive offset from the effective
position of the waveform edge, and it affects all partial paths starting at the
specifiedport_instances.

Arrival Time

92 Version 1.4

Timing Environment

Thearrival_valueis a time value and must be specified in the units defined
by thetime_scale. It follows the ordering conventions for
r_rise_fall_min_maxandr_min_maxdescribed in “Value Types” on page
48, as well as the semantics described in “Min/Max Values and Operating
Conditions” on page 51.

The r_rise_fall_min_max value type is the preferred form for the
source_arrival_value.

The secondsource_arrival_value form, waveform_edge_identifier
r_min_max, is archaic. It is more easily and consistently specified using the
r_rise_fall_min_max form with asterisks as place-holders.

The arrival time at an input pin should include

■ The portion of the external insertion delay of the clock network to the
source register specified using theCLOCK_ARRIVAL construct

This is implicitly included in the effective offset of the waveform edge,
and should not be included in thearrival_value itself.

■ The portion of the external insertion delay of the clock network to the
source register specified using theCLOCK_DELAY construct

This is implicitly included in the effective offset of the waveform edge,
and should not be included in thearrival_value itself.

■ The CLK->Q delay of the source register

■ The delay from the output of the source register up to the input of the
driver of the interface net connected to the input pin

■ The intrinsic delay of the driver of the interface net.

The delay computed for the partial path starting at the input pin includes

■ The load-dependent delay of the driver

■ The interconnect delay of the interface net

■ The delay from the input of the receiver on the interface net up to the
input of the target register

■ The setup time (subtracted) or hold time (added) of the target register

■ The portion of the insertion delay of the clock network to the target
register that is internal to the current GCF cell, specified using the
CLOCK_ARRIVAL construct (subtracted)

■ The portion of the insertion delay of the clock network to the target
register that is external to the current GCF cell, specified using the
CLOCK_DELAY construct (subtracted)

Timing Environment

Version 1.4 August 17, 1999 93

Figure 6 Arrival Time

Example

In Figure 6, the arrival time set on pin IN of block B should include

■ A/CLK1 source clock arrival
(implicit in waveform edge)

■ A/CLK1 to S/CK source insertion delay
(implicit in waveform edge)

■ A/S/CK to A/S/Q clk->q delay

■ A/S/Q to A/G1/W combinational delay

■ A/G1/W to A/G1/X intrinsic delay

The delay computed for the partial path starting at B/IN includes

■ A/G1/W to A/G1/X load-dependent delay

■ A/G1/X to B/G2/Y interconnect delay

■ B/G2/Y to B/T/D combinational delay

■ B/T/D to B/T/CK setup/hold time

■ B/CLK2 to B/T/CK target insertion delay

■ B/CLK2 target clock arrival

EL is the external load specified on the input pin, and it is included when
computing the load-dependent delay and interconnect delay.

Multiple ARRIVAL constructs can be defined for the same port. Each
ARRIVAL construct can reference a differentwaveform_edge. The arrival
times associated with a given referencewaveform_edgeare independent of

S

A

G1
W X

B

T

Y Z
G2

EL

CLK1 CLK2

INQ

CK CK

D

94 Version 1.4

Timing Environment

the arrival times associated with any other referencewaveform_edge, and
analysis will be done separately for each referencewaveform_edge.

If severalARRIVAL constructs appear in a GCF file, and each construct
specifies arrival times for the same port instance with respect to the same
referencewaveform_edge, the effect is cumulative and overriding. For
example, assume there are two arrival constructs for the same port instance
with respect to the same referencewaveform_edge:

■ If the first construct specifies only thePOSEDGEarrival times and the
second construct specifies only theNEGEDGE arrival times, the result
is that both thePOSEDGE andNEGEDGE arrival times are set.

■ If the first construct specifies bothPOSEDGE andNEGEDGE arrival
times and the second construct specifies only theNEGEDGE arrival
times, the result is that the values of thePOSEDGEarrival times come
from the first construct, while the values of theNEGEDGE arrival
times come from the second construct.

Example

(ENVIRONMENT
(ARRIVAL (POSEDGE “50 MHz 50/50”)

10.0 14.0 12.0 16.0 D[*])
)

This example specifies the arrival times for all input pins referenced by the
bit-spec D[*]. Assuming that the time scale is in ns, rise transitions will
occur no sooner than 10 ns and no later than 14 ns after the rising edge of
the reference clock. Fall transitions will occur no sooner than 12 ns and no
later than 16 ns after the clock edge.

Example

(ENVIRONMENT
(ARRIVAL (NEGEDGE “100 MHz 50/50”)

4.0 * 2.0 * A)
)

This example specifies the arrival times for the input pin A. Assuming that
the time scale is in ns, rise transitions will occur no sooner than 4.0 ns and
fall transitions will occur no sooner than 2.0 ns after the falling edge of the
reference clock. The latest time at which either rise transitions or fall
transitions will occur is unspecified.

Timing Environment

Version 1.4 August 17, 1999 95

TheREQUIRED construct defines ranges of time in which signal
transitions must occur at aport_instancethat includes register data outputs
in its transitive fanin. These ranges of time are commonly referred to as
required times. Earlier versions of GCF were based on a less commonly
used terminology, departure times, which had the same semantics. The
DEPARTURE keyword is still allowed as a synonymous keyword for the
REQUIRED construct for backward compatibility.

Required times are usually specified only for primary output and
bidirectional ports, but they can also be specified for internal output and
bidirectional pins on primitives, and for hierarchical pins on lower level
modules or blocks. When specified on internal or hierarchical pins, the
required time overrides any propagated required time.

Syntax

required_spec::= (label? required_keyword
required_waveform_edge
required_value
port_instance*)

required_keyword::= REQUIRED
||= DEPARTURE

required_waveform_edge::= (waveform_edge_identifier waveform_name)

required_value::= target_required_value
target_required_value::= setup_rise_fall hold_rise_fall

||= (waveform_edge_identifier
setup_value
hold_value) (archaic)

setup_rise_fall::= r_rise_fall

hold_rise_fall ::= r_rise_fall

setup_value::= RNUMBER

hold_value ::= RNUMBER

If no port_instanceis specified, the required time applies by default to all
primary output and bidirectional ports on the cell.

Therequired_waveform_edgespecification, which identifies a waveform
and an edge of that waveform, is required. The effective offset of the
waveform edge implicitly includes any external insertion delay specified
for the waveform using theCLOCK_ARRIVAL construct, as well as the
offset of the edge specified in the waveform definition.

If the waveform was not previously defined, an error message will be
given. Although theWAVEFORM construct generally allows more than

Required Time

96 Version 1.4

Timing Environment

one pair of edges, clock waveforms used for required times must have only
a single pair of edges.

The required times are target-based, and thetarget_required_values are
interpreted as setup and hold constraints.

Specifying a target-based required time is equivalent to adding a register
with corresponding setup and hold constraints at the output.

■ The hold required_value is added to the effective offset of the
required_waveform_edge in the hold check clock cycle.

■ the setuprequired_value is subtracted from the effective offset of the
required_waveform_edge in the setup check clock cycle.

See “Default Definition” on page 129 for a description of how the setup
and hold check clock cycles are normally determined.

All partial paths from the specifiedport_instances to the target registers
clocked by a particular waveform edge must be considered in setting the
target-based required times related to that waveform edge.

■ For the earliest (minimum) required time, the delay of each partial path
must be subtracted from the hold time of the target register, and the
earliest required time must be set to the largest (most positive)
resulting value. Since the partial path delays will generally be larger
than the hold time of the target registers, the earliest required time will
usually be a negative number.

■ For the latest (maximum) required time, the setup time of the target
register must be added to the delay of each partial path, and the latest
required time must be set to the largest resulting value.

Therequired_value is a time value and must be specified in the units
defined by thetime_scale. It follows the ordering conventions for
r_rise_fall_min_maxandr_rise_falldescribed in “Value Types” on page
48, as well as the semantics for operating points described in “Min/Max
Values and Operating Conditions” on page 51.

The firsttarget_required_valueform,setup_rise_fall hold_rise_fall, is the
preferred form.

The secondtarget_required_value form, waveform_edge_identifier
setup_value hold_value, is archaic. It is more easily and consistently
specified using the first form with asterisks as place-holders.

The required time at an output pin should include

Timing Environment

Version 1.4 August 17, 1999 97

■ The delay from the input of the receiver on the interface net up to the
input of the target register

■ The setup time (subtracted) or hold time (added) of the target register

■ The portion of the external insertion delay of the clock network to the
target register specified using theCLOCK_ARRIVAL construct
(subtracted)

This is implicitly included in the effective offset of the waveform edge,
and should not be included in therequired_value itself.

■ The portion of the external insertion delay of the clock network to the
target register specified using theCLOCK_DELAY construct
(subtracted)

This is implicitly included in the effective offset of the waveform edge,
and should not be included in therequired_value itself.

The delay computed for the partial path ending at the output pin includes

■ The portion of the insertion delay of the clock network to the source
register that is internal to the current GCF cell, specified using the
CLOCK_ARRIVAL construct

■ The portion of the insertion delay of the clock network to the source
register that is external to the current GCF cell, specified using the
CLOCK_DELAY construct

■ The CLK->Q delay of the source register

■ The delay from the output of the source register up to the input of the
driver of the interface net connected to the input pin

■ The intrinsic delay of the driver of the interface net.

■ The load-dependent delay of the driver

■ The interconnect delay of the interface net

98 Version 1.4

Timing Environment

Figure 7 required Time

Example

In Figure 7, the required time set on pin OUT of block A should include

■ B/G2/Y to B/T/D combinational delay

■ B/T/D to B/T/CK setup/hold time

■ B/CLK2 to B/T/CK target insertion delay
(implicit in waveform edge)

■ B/CLK2 target clock arrival
(implicit in waveform edge)

The delay computed for the partial path ending at A/OUT includes

■ A/CLK1 source clock arrival

■ A/CLK1 to S/CK source insertion delay

■ A/S/CK to A/S/Q clk->q delay

■ A/S/Q to A/G1/W combinational delay

■ A/G1/W to A/G1/X intrinsic delay

■ A/G1/W to A/G1/X load-dependent delay

■ A/G1/X to B/G2/Y interconnect delay

EL is the external load specified on the output pin, and it is included when
computing the load-dependent delay and interconnect delay.

Multiple REQUIRED constructs can be defined for the same port. Each
REQUIRED construct can reference a differentwaveform_edge. The
required times associated with a given referencewaveform_edge are
independent of the required times associated with any other reference

S

A

G1
W X

B

T

Y Z
G2

EL

CLK1 CLK2

OUTQ

CK CK

D

Timing Environment

Version 1.4 August 17, 1999 99

waveform_edge, and analysis will be done separately for each reference
waveform_edge.

Like ARRIVAL constructs, the effect of multipleREQUIRED constructs
is cumulative and overriding.

Example

(ENVIRONMENT
(REQUIRED (NEGEDGE “50 MHz 50/50”)

12.0 18.0 -8.0 -14.0 A[15:0])
)

This example specifies required times for each of the 16 output pins
A[15:0] and that the falling edge is the active edge of the target clock.
Assuming that the time scale is in ns, rising transitions must occur no later
than 12.0 ns before the setup active edge and no earlier than 8.0 ns before
the hold active edge. Falling transitions must occur no later than 18.0 ns
before the setup active edge and no earlier than 14.0 ns before the hold
active edge.

TheEXTERNAL_DELAY construct is used with thePATH_DELAY
construct to constrain purely combinational portions of a design.

ThePATH_DELAY construct describes constraints on the combinational
delay through a portion of the design, while theEXTERNAL_DELAY
construct describes purely combinational delays that are external to that
portion of the design. The external delays are added to the computed path
delays within that portion of the design before comparing to the path delay
constraint.

External delays can be specified on both primary interface ports and on
internal port instances. If no external delay is specified for a port instances
that is an endpoint of aPATH_DELAY constraint, the external delay
defaults to 0.

Syntax

external_delay_spec::= (label?EXTERNAL_DELAY
external_delay_value endpoints_spec+)

external_delay_value::= r_rise_fall_min_max
||= (waveform_edge_identifier

r_min_max) (archaic)

Theendpoints_spec is described in “Path Specifications” on page 110.
External delays specified using theFROM keyword are to be added to
combinational paths that start at the given endpoints, while external delays
specified using theTO keyword are to be added to combinational paths

External Delay

100 Version 1.4

Timing Environment

that end at the given endpoints. A given internal port instance or primary
bidirectional port can appear in two different external delay specifications,
one using theFROM keyword and one using theTO keyword.

Theexternal_delay_valueis a time value and must be specified in the units
defined by thetime_scale. It follows the ordering conventions for
r_rise_fall_min_maxandr_min_maxdescribed in “Value Types” on page
48, as well as the semantics for operating points described in “Min/Max
Values and Operating Conditions” on page 51.

The r_rise_fall_min_max value type is the preferred form for the
external_delay_value.

The secondexternal_delay_value form, waveform_edge_identifier
r_min_max, is archaic. It is more easily and consistently specified using the
r_rise_fall_min_max form with asterisks as place-holders.

The transitions for both forms are with respect to the given endpoints, and
the minimum values must be less than or equal to the maximum values for
the same transition.

The values specified for external delay should reflect the delay
computation on the interface net, which is handled the same as for the
ARRIVAL andREQUIRED constructs.

Like ARRIVAL andREQUIRED constructs, the effect of multiple
EXTERNAL_DELAY constructs for the same port instance is cumulative
and overriding.

Example

(SUBSET TIMING
(ENVIRONMENT

(EXTERNAL_DELAY 5.0
(FROM IN[0])

)
(EXTERNAL_DELAY 3.0 * 2.0 1.0

(TO OUT[0])
)

)
(EXCEPTIONS

(PATH_DELAY 10.0
(BETWEEN (FROM IN[0]) (TO OUT[0]))

)
)

Assuming that time values are in ns, this example specifies that

Timing Environment

Version 1.4 August 17, 1999 101

■ An external combinational delay of 5 ns should be added to the
computed delay of any purely combinational path starting atIN[0]

■ An external combinational delay of 3 ns should be added to the rise min
computed delay of any purely combinational path ending atOUT[0].

■ An external combinational delay of 2 ns should be added to the fall min
and fall max computed delays of any purely combinational path ending
at OUT[0].

■ No value is specified for the rise max external delay atOUT[0] , so this
is not constrained.

■ The effective min combinational delay constraint for paths starting at
IN[0] and ending with a rise transition atOUT[0] is 2 ns (the 10 ns
PATH_DELAY constraint minus external delays of 5.0 and 3.0).

■ The effective min combinational delay constraint for paths starting at
IN[0] and ending with a fall transition atOUT[0] is 3 ns (the 10 ns
PATH_DELAY constraint minus external delays of 5.0 and 2.0).

■ The effective max combinational delay constraint for paths starting at
IN[0] and ending with a fall transition atOUT[0] is 4 ns (the 10 ns
PATH_DELAY constraint minus external delays of 5.0 and 1.0).

Driver specifications describe information about an external driver that is
connected to a primary input or bidirectional port of the cell.

Syntax

driver_spec ::= driver_cell_spec
||= driver_strength_spec

Precedence Rules

There are several different types of driver specifications, as well as the
ability to directly specify the slew for an input. When several different
constructs appear in a GCF that affect a given port, the following rules are
used to determine which of the constructs should be used:

■ An explicit specification of the driver cell, driver strength, or input
slew for a given port always overrides any of the defaults.

■ When there are multiple explicit specifications for the same port, the
last specification given will be used.

■ When there are multiple default specifications, but no explicit
specifications for a given port, the last default specified will be used.

TheDRIVER_CELL construct is used when the cell type of the external
driver is known. For example, for a user-defined block within a chip, the

Driver
Specification

Driver Cell

102 Version 1.4

Timing Environment

external driver is usually a cell within another user-defined block. The
default driver cell type can be specified for all primary input and
bidirectional ports by not specifying anyport_instance.

Syntax

driver_cell_spec::= (label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
port_instance*)

driver_cell_port_spec::= (cell_id)
||= (cell_id output_port)
||= (cell_id input_port output_port)

driver_cell_options::= (driver_cell_option+)

driver_cell_option ::= drive_multiplier
||= driver_input_slew
||= waveform_edge_identifier

drive_multiplier ::= (PARALLEL_DRIVERS DNUMBER)

driver_input_slew::= (INPUT_SLEW slew_value input_port*)

slew_value::= rise_fall_min_max

If a waveform_edge_identifier is specified, the driver cell construct only
applies to delay calculation for that edge.

If multiple buffers of the same type are connected in parallel, the number
of those buffers can be specified using thePARALLEL_DRIVERS
construct. If multiple buffers of different types are connected in parallel,
multiple DRIVER_CELL constructs can be specified. When a driver cell
type is explicitly specified for a primary input and bidirectional port, it
overrides any default; the explicitly specified driver cell is not connected
in parallel with the default driver cell.

Theoutput_port specifies the port on the driving cell that is connected to
the primary inputs. It must be specified whenever the driving cell has
multiple outputs.

Theinput_portspecifies a single input port on the driving cell that must be
the starting point when doing delay calculation. If theinput_port is not
specified, delay calculation is done by computing the worst case across all
inputs ports that are associated with the specifiedoutput_port.

Input slews can be specified for one or more of the input ports on the
driver. If the input slew is not specified for an input port that is the starting
point for a timing arc considered in delay calculation, a default slew of 0
is used.

Timing Environment

Version 1.4 August 17, 1999 103

Theslew_values are time values that use the convention for
rise_fall_min_maxdescribed in “Value Types” on page 48. They must be
specified in the units defined by thetime_scale. The voltage thresholds for
measuring the slew are defined by theVOLTAGE_THRESHOLD
construct (see “Voltage Threshold” on page 48). If no voltage thresholds
are specified, theslew_value represents by default the time required to
transition between the 10 and 90 percent points of the power supply
voltage.

The information about the driver cell affects the accuracy of the delay
calculation.

■ For the most accurate approach, both theinput_port and the
output_portmust be provided, along with the slew at theinput_port. In
general, this is only feasible when there is only one connected input
port. At the time a GCF file is created, it is unknown which input port
is switching, and a worst-case analysis must be done instead.

■ For the most accurate worst-case analysis, theoutput_port on the
driver cell must be specified, along with the slew at every input.

■ For a less accurate worst-case analysis, the slew values for each input
port can be omitted, in which case the default slew is used.

When a driver cell type is specified on a normal (non-clock) input port, it
has three effects on the transition at the inputs of the first stage gates within
the current GCF cell:

■ The transition is delayed by the load-dependent delay of the driver cell.
This does not include the intrinsic delay of the cell.

■ The transition is delayed by the interconnect delay, which is computed
using the driver cell model in conjunction with the parasitics within the
current GCF cell and the external load.

■ The effective capacitance of the parasitics is used to determine the slew
at the output of the driver. The output slew is then degraded at the loads
of the input net to reflect the propagation across the parasitics of the
net, including the external load.

The intrinsic delay of the driver cell is defined as the cell delay computed
using an output capacitance value of 0 and the input slew(s) specified on
the inputs of the driver. The load-dependent delay is the difference
between the cell delay computed with the effective capacitance, and the
intrinsic delay computed without any load.

For a clock input pin, the driver cell specification is ignored when the
nominal values specified by aCLOCK_DELAY construct are used instead

104 Version 1.4

Timing Environment

of calculating delays. When the nominalCLOCK_DELAY values are not
used, delays are calculated for clock input pins in the same way as for other
pins.

When the cell type of the external driver is not known, the
DRIVER_STRENGTH construct can be used instead. Specifying the
driver strength is less accurate than specifying the driver cell type, because
the effective drive strength for a given cell may vary depending on the load
it is driving. When the driver cell type is specified, the effective drive
strength can be determined during delay calculation.

Syntax

driver_strength_spec::= (label?DRIVER_STRENGTH strength_value
port_instance*)

strength_value::= rise_fall_min_max

The default driver strength can be specified for all primary input and
bidirectional pins by not specifying anyport_instance.

Thestrength_valueis a resistance value and must be specified in the units
defined by theres_scale. It follows the ordering convention for
rise_fall_min_maxdescribed in “Value Types” on page 48, as well as the
semantics for operating points described in “Min/Max Values and
Operating Conditions” on page 51.

When a driver strength is specified on a normal (non-clock) input pin, it
has three effects on the transition at the inputs of the first stage gates within
the module:

■ The transition is delayed by a “load-dependent delay”, which is
modeled asstrength_value * Ctotal.

■ The transition is delayed by the interconnect delay, which is computed
using the drive strength in conjunction with the parasitics within the
cell and the external load.

■ The slew (transition time) at the loads of the input net is also set to
strength_value* Ctotal. The voltage thresholds for measuring the slew
are defined by theVOLTAGE_THRESHOLD construct. If no voltage
thresholds are specified, the slew represents by default the time
required to transition between the 10 and 90 percent points of the
power supply voltage.

Ctotal is the sum of the capacitance on the interface net connected to the
input pin, including the external load, the internal interconnect
capacitance, and the load pin capacitances.

Driver Strength

Timing Environment

Version 1.4 August 17, 1999 105

For a clock input pin, the driver strength specification is ignored when the
nominal values specified by aCLOCK_DELAY construct are used instead
of calculating delays. When the nominalCLOCK_DELAY values are not
used, delays are calculated for clock input pins in the same way as for other
pins.

When the cell type of the external driver is not known, theINPUT_SLEW
construct can be used instead. In general, theINPUT_SLEW construct
should only be used for primary inputs on a chip. For chip-level inputs, the
DRIVER_CELL andDRIVER_STRENGTH constructs would be less
accurate thanINPUT_SLEW , because the on-chip delay modeling would
not properly account for the effects of the board-level interconnect,
package pins, etc.

For inputs on modules within a chip, theDRIVER_CELL construct is more
accurate thanINPUT_SLEW , because it takes into account the interaction
between the driver and the interconnect.

Note that theINPUT_SLEW construct can be used both within the context
of aDRIVER_CELL construct and by itself. When used by itself, it
describes the input slew at the primary input of the cell, and a label can be
associated with the construct.

Syntax

input_slew_spec::= (label?INPUT_SLEW slew_value
port_instance*)

The default input slew can be specified for all primary input and
bidirectional pins by omitting theport_instances.

Theslew_value is a time value and must be specified in the units defined
by thetime_scale. It follows the convention forrise_fall_min_max
described in “Value Types” on page 48, as well as the semantics for
operating points described in “Min/Max Values and Operating
Conditions” on page 51.

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified, theslew_value represents by
default the time required to transition between the 10 and 90 percent points
of the power supply voltage.

When an input slew specified on a normal (non-clock) input pin, it has two
effects on the transition at the inputs of the first stage gates within the
module:

Input Slew

106 Version 1.4

Timing Environment

■ The transition is delayed by the interconnect delay, which is computed
using an artificial driver model (with zero delay and a fixed output slew
equal to the specified input slew) in conjunction with the parasitics
within the cell and the external load.

■ The specified input slew is degraded at the loads of the input net to
reflect the propagation across the parasitics of the net, including the
external load.

There is no modeling of the load-dependent delay of the driver.

For a clock input pin, the input slew specification is ignored when the
nominal values specified by aCLOCK_DELAY construct are used instead
of calculating delays. When the nominalCLOCK_DELAY values are not
used, delays are calculated for clock input pins in the same way as for other
pins.

In Level 1, GCF allows specifying that certain signals have a constant
value. Often, this is used to describe case-dependent constraints (see
“Cases” on page 35) or to disable a portion of a circuit.

Syntax

constant_spec::= (CONSTANT constant_value port_instance+)

constant_value::= 0
||= 1

Constant values are defined in terms of signals but specified using
port_instances. A constant value specified for any of theport_instances
connected to a signal affects the signal as a whole. An error message will
be given if different constant values are specified on twoport_instances
connected to the same signal.

The operating conditions defined in the global environment subset (see
“Environment Globals” on page 45) apply by default to all cells in the
design. These conditions can be overridden for particular cells by
including anoperating_conditionsspecification in the timing subset for a
cell. When applied to a non-leaf cell, the operating conditions are
overridden for that cell and all of its descendents, unless overridden again
by one of the descendents.

The INTERNAL_SLEW construct is a Level 1 construct and specifies a
slew that overrides the default slew on internal pins (input or bidirectional
pins on primitives). Normally,INTERNAL_SLEW must not be used for
clock input pins on primitives; theSLEW option of theCLOCK_DELAY
construct must be used instead.

Constant Values

Operating
Conditions

Internal Slew

Timing Environment

Version 1.4 August 17, 1999 107

Syntax

internal_slew_spec::= (label?INTERNAL_SLEW slew_value
port_instance*)

The INTERNAL_SLEW construct is normally only used

■ For input or bidirectional pins that are part of a combinational loop
broken using a disable

■ For cases where the slew that would be computed by the normal delay
calculation is known to be inaccurate

The default internal slew can be set by not specifying anyport_instance.

Theslew_value is a time value and must be specified in the units defined
by thetime_scale. It follows the convention forrise_fall_min_max
described in “Value Types” on page 48, as well as the semantics for
operating points described in “Min/Max Values and Operating
Conditions” on page 51.

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified, theslew_value represents by
default the time required to transition between the 10 and 90 percent points
of the power supply voltage.

The internal slew values will be determined using the following
precedence order:

■ An explicit INTERNAL_SLEW for the pin

■ The calculated slew, if it is possible to calculate one

■ The defaultINTERNAL_SLEW , if no slew can be calculated

■ The defaultINPUT_SLEW

■ 0

The timing environment can be case-dependent.

Syntax

timing_env_case::= (CASE IDENTIFIER
timing_env_case_spec+)

timing_env_case_spec::= timing_env_spec_0
||= timing_env_no_case_1

Timing
Environment
Cases

108 Version 1.4

Timing Environment

Example

(ENVIRONMENT
(level 1

(case board
(input_slew 2.0 1.0 in1)

)
(case tester

(input_slew 5.0 3.0 in1)
)

)
)

In this example, the input slew of a signal supplied to the chip depends on
whether the chip is mounted on the board or is being tested.

Timing Exceptions

Version 1.4 August 17, 1999 109

Timing Exceptions

By default, GCF assumes that, a circuit is synchronous. This assumption
implies that there are a set of implicit constraints on the delays of paths
through combinational logic. These constraints are determined by the
clock waveforms provided to source registers and target registers, and by
the arrival and required times specified for ports on the cell.

Timing exceptions are GCF constructs that can be used to

■ Override the implicit synchronous timing constraints for portions of a
design

■ Describe explicit constraints on asynchronous portions of a design

This section describes path specifications, disable specifications, multi-
cycle paths, combinational delays, max transition times, internal slew,
latch-based borrowing, clock delay, and timing exception cases.

Archaic timing exception constructs are described starting on page 158.

Syntax

timing_exceptions::= (EXCEPTIONS timing_exception_spec+)

timing_exception_spec::= timing_exception_spec_0
||= timing_exception_spec_1

timing_exception_spec_0::= disable_spec_0
||= multi_cycle_spec_0
||= path_delay_spec_0
||= slew_limit_spec
||= max_transition_time_spec (archaic)
||= extension

timing_exception_spec_1::= (LEVEL 1 timing_exception_1+)

timing_exception_1::= timing_exception_no_case_1
||= timing_exception_case

timing_exception_no_case_1::= disable_spec_1
||= multi_cycle_spec_1
||= path_delay_spec_1
||= borrow_limit_spec
||= clock_mode_spec
||= clock_delay_spec
||= clock_uncertainty_spec
||= meta_data_1

110 Version 1.4

Timing Exceptions

Many of the timing exceptions require path specifications. This section
describes ways of specifying paths that are common to several types of
timing exceptions.

The Level 0thru_spec construct constrains all paths that pass through a
singleport_instance, including those that start or end at theport_instance.

Syntax

thru_spec ::= (THRU port_instance)

When specified on a flip flop data output, thethru_spec construct affects
paths from the flip flop clock input through the output, and paths through
asynchronous preset and clear inputs through the output).

When specified on a flip flop data input, thethru_spec construct affects
paths ending at the data input.

When specified on a flip flop clock input, thethru_spec construct affects
paths from the clock input. It does not affect paths ending at the flip flop
data input.

When specified on a latch data output, thethru_spec construct affects
paths from the latch enable input through the output, paths through the
latch data input through the output, and paths through asynchronous preset
and clear inputs through the output). It does not affect borrowing for paths
ending at the latch data input.

When specified on a latch data input, thethru_specconstruct affects paths
ending at the data input and paths through the data input through the
output.

When specified on a latch enable input, thethru_spec construct affects
paths from the enable input. It does not affect paths ending at the latch data
input or paths through the data input through the data output.

Example

(THRU ff1.Q)

This example constrains all paths that go through the Q output of the flip
flop ff1. This includes paths from the clock input through the output and
paths from asynchronous preset or clear inputs through the output.

Path
Specifications

Level 0
THRU Specifications

Timing Exceptions

Version 1.4 August 17, 1999 111

When aport_instance is specified by itself (which is only used in the
DISABLE construct), the semantics are different than if the same
port_instance was specified within athru_spec, from_spec, or to_spec.

Starting with GCF 1.4, when aport_instanceis specified by itself within a
DISABLE construct, it disables

■ slews that would otherwise propagate through theport_instanceduring
delay calculation

■ constants that would otherwise propagate through theport_instance
during delay calculation

■ timing checks on paths that pass through theport_instance during
timing analysis.

When aport_instance is specified within athru_spec, from_spec, or
to_specDISABLE , only the timing checks are disabled. In earlier versions
of GCF, this was also true for the case where aport_instancewas specified
by itself within aDISABLE construct.

When aport_instance on a combinational gate is specified, it affects all
paths through theport_instance.

When a flip flop data output is specified, it affects paths from the related
flip flop clock input through the output, as well as paths through
asynchronous preset and clear inputs through the output.

When a flip flop data input is specified, it does not affect paths ending at
the data input.

When a flip flop clock input is specified, it affects all paths to, from, or
through the flip flop.

When a latch data output is specified, it affects paths from the related latch
enable input through the output, paths through the latch data input through
the output, and paths through asynchronous preset and clear inputs through
the output. It also affects borrowing for paths ending at the latch data input.

When a latch data input is specified, it disables borrowing between the
paths ending at the data input and paths starting at the latch enable, but it
does not otherwise affect those paths.

When a latch enable input is specified, it affects all paths to, from, or
through the latch.

Level 0 port_instance
Specifications

112 Version 1.4

Timing Exceptions

When acell_instance is specified by itself (which is only used in the
DISABLE construct), the semantics are different than if the same
cell_instance was specified within afrom_spec, to_spec, or
disable_instance_spec.

Starting with GCF 1.4, when acell_instanceis specified by itself within a
DISABLE construct, it disables

■ slews that would otherwise propagate through the affected pins of the
cell_instance during delay calculation, and

■ constants that would otherwise propagate through the affected pins of
thecell_instance during delay calculation

■ timing checks on paths that pass through thecell_instance during
timing analysis.

When acell_instance is specified within athru_spec, from_spec, or
to_specDISABLE , only the timing checks are disabled. In earlier versions
of GCF, this was also true for the case where acell_instancewas specified
by itself within aDISABLE construct.

When acell_instancethat is a combinational gate is specified, it affects all
paths through thecell_instance.

When a flip flop is specified, it disables all paths to, from, or through the
flip flop.

When a latch is specified, it affects paths from the related latch enable
input through the output, paths through the latch data input through the
output, and paths through asynchronous preset and clear inputs through the
output. It also affects borrowing for paths ending at the latch data input.

Level 0 cell_instance
Specifications

Timing Exceptions

Version 1.4 August 17, 1999 113

The Level 0ARC construct constrains all paths that pass through a pair of
port_instances, including paths that start or end at the arc. The port
instances must be contiguous in the path (either an input to output
connection on a cell, or an output to input connection on a net). The SDF
IOPATH andINTERCONNECT constructs describe similar arcs.

When the starting point of the arc is an output on a flip flop or latch, the
same paths as athru_spec construct with the sameport_instance are
considered, and only those paths that also pass through the ending point of
the arc are specified.

When the ending point of the arc is an input on a flip flop or latch, the same
paths as athru_specconstruct with the sameport_instanceare considered,
and only those paths that also pass through the starting point of the arc are
specified.

Starting with GCF 1.4, when anarc_spec is specified within aDISABLE
construct, it disables

■ slews that would otherwise propagate through the arc during delay
calculation, and

■ constants that would otherwise propagate through the arc during delay
calculation

■ timing checks on paths that pass through the arc during timing analysis.

Syntax

arc_spec ::= (ARC port_instance port_instance)

Example

(ARC or1.a or1.z)

This example constrains all paths that go through the A input and the Z
output ofor1.

Example

(ARC ff1.clk ff1.q)

This example constrains all paths that start at the clock input and go
through theqoutput offf1. If there is an inverting output,qn, paths through
it are not affected.

Level 0
Arc Specifications

114 Version 1.4

Timing Exceptions

The Level 0endpoints_spec construct specifies paths in terms of their
endpoints.

Syntax

endpoints_spec::= from_spec
||= to_spec
||= (BETWEEN? from_spec to_spec)

from_spec::= (FROM from_to_item+)

to_spec ::= (TO from_to_item+)

from_to_item ::= port_instance
||= cell_instance
||= waveform_name
||= typed_waveform_name_list
||= typed_port_expr
||= typed_pin_expr
||= typed_instance_expr

If only FROM items are specified, they refer to a set of starting points for
paths, and all paths that start at any of those points and end at either register
data inputs or primary output/bidirectional ports are constrained.

If only TO items are specified, they refer to a set of ending points for paths,
and all paths that end at any of those points and start at either register clock
inputs or primary input/bidirectional ports are constrained.

If both FROM andTO items are specified using theBETWEEN form, they
refer to a set of starting points and endpoint points for paths, and all paths
between any of those starting points and any of those ending points are
constrained. TheBETWEEN keyword is optional for backward
compatibility with earlier versions of GCF, but it can be included for
clarity.

Some of the exception constructs allow multipleendpoint_specs. In this
case, if bothFROM andTO items are specified in differentendpoint_specs
(without using theBETWEEN form), the effect is to constrain all paths
from the starting points, as well as (separately) all paths to the ending
points. This will generally constrain more paths than specifying the same
FROM andTO items within aBETWEEN construct.

See “Disabling Paths Between Endpoints” on page 125, and “Multi-Cycle
Paths Between Endpoints” on page 131 for details on how the
endpoints_spec construct is used in these cases.

FROM items used in anendpoints_spec for a Level 0DISABLE or
MULTI_CYCLE construct must be waveform names, primary input or

Level 0 Endpoint
Specifications

Caution

Disable And Multi-Cycle 0
Endpoint Specifications

Timing Exceptions

Version 1.4 August 17, 1999 115

bidirectional ports, registers, register clock inputs, or register data outputs.
A port_instance on an intermediate level of hierarchy may also be
specified as aFROM item, when the internal net is driven directly by a
register.

Combinationalport_instancesor cell_instancesare not allowed asFROM
items in GCF 1.4.

When waveform names, registers, orport_instanceson intermediate levels
of hierarchy are specified asFROM items, they implicitly refer to a set of
register clock inputs, and/or a set of primary input or bidirectional ports,
which are the actual starting points for the paths described by the
endpoints_spec.

■ For a primary input or bidirectional port, the port itself is the the
starting point.

■ For a register clock input, the input itself is the starting point.

■ For a waveform name, the starting points are the register clock inputs
in the transitive fanout of each clock pin to which the waveform is
assigned, as well as any primary input or bidirectional ports that have
an arrival time referenced to that waveform.

■ For a register name, the starting points are the clock inputs on that
register.

■ For aport_instanceon an intermediate level of hierarchy, the starting
point is the clock input on the register that drives the internal net.

When atyped_port_expr, typed_pin_expr, or typed_instance_expris used
as aFROM item, the expression is expanded to refer to the set of ports,
pins, or instances that both match the expression and would also be legal
FROM items for the constraint.

TO items used in anendpoints_spec for a Level 0DISABLE or
MULTI_CYCLE construct must be waveform names, primary output or
bidirectional ports, registers, register data inputs, or register clock inputs.
A port_instance on an intermediate level of hierarchy may also be
specified as aTO item, when the internal net directly drives a register.

Combinationalport_instances or cell_instances are not allowed asTO
items in GCF 1.4.

When waveform names, registers, orport_instanceson intermediate levels
of hierarchy are specified asTO items, they implicitly refer to a set of
register data inputs, and/or a set of primary output or bidirectional ports,

116 Version 1.4

Timing Exceptions

which are the actual ending points for the paths described by the
endpoints_spec.

■ For a primary output or bidirectional port, the port itself is the the
ending point.

■ For a register data input, the input itself is the ending point.

■ For a waveform name, the ending points are the register data inputs on
registers whose clock input is in the transitive fanout of each clock pin
to which the waveform is assigned, as well as any primary output or
bidirectional ports that have a required time referenced to that
waveform.

■ For a register name, the ending points are the data inputs on that
register.

■ For aport_instance on an intermediate level of hierarchy, the ending
point is the clock input on the register that is driven by the internal net.

When atyped_port_expr, typed_pin_expr, or typed_instance_expris used
as aTO item, the expression is expanded to refer to the set of ports, pins,
or instances that both match the expression and would also be legalTO
items for the constraint.

See “Combinational Delays” on page 135 for details on how the
endpoints_spec construct is used with thePATH_DELAY construct.

FROM items used in anendpoints_spec for a Level 0PATH_DELAY
construct can be any of the types that are allowed for theFALSE and
MULTI_CYCLE constructs, with the same rules for implicitly determining
the actual starting points for the constrained paths. In addition,FROM
items can be internal port instances on combinational logic (input, output,
or bidirectional) or output port instances on registers.

TO items used in anendpoints_spec for a Level 0PATH_DELAY
construct can be any of the types that are allowed for theFALSE and
MULTI_CYCLE constructs, with the same rules for implicitly determining
the actual ending points for the constrained paths. In addition,TO items
can be internal port instances on combinational logic (input, output, or
bidirectional).

Path Delay Endpoint
Specifications

Timing Exceptions

Version 1.4 August 17, 1999 117

The Level 0from_to_thru_specconstruct constrains paths that start at the
FROM endpoints (if given), pass through theTHRU_ALL points (if
given), and end at theTO endpoints (if given). The affected transitions
through the constrained paths can be specified using edges at each point.

Syntax

from_to_thru_spec::= (PATHS from_to_thru_item+)

from_to_thru_item::= from_opt_edge_spec
||= to_opt_edge_spec
||= thru_all_items_spec

from_opt_edge_spec::= from_spec
||= (FROM from_item_edge+)

to_opt_edge_spec::= to_spec
||= (TO to_item_edge+)

from_item_edge::= (edge_identifier from_to_item+)

to_item_edge::= (edge_identifier from_to_item+)

thru_all_items_spec::= (THRU_ALL
thru_any_item_spec+)

thru_any_item_spec::= thru_item
||= (THRU_ANY thru_item+)

thru_item ::= port_instance
||= net
||= typed_port_expr
||= typed_pin_expr
||= typed_net_expr
||= port_instance_edge

port_instance_edge::= (edge_identifier port_instance)

Thefrom_to_thru_spec must include at most one of each type of
from_to_thru_item (one set ofFROM endpoints, one set ofTHRU_ALL
points, and/or one set ofTO endpoints).

In thefrom_opt_edge_specand theto_opt_edge_spec, theFROM andTO
endpoints follow the same conventions as in the Level 0endpoints_spec.
See “Level 0 Endpoint Specifications” on page 114 for details on the types
of endpoints that are allowed and the paths that are constrained.

When anedge_identifier is specified for thefrom_opt_edge_spec, only
that transition through each of the constrained paths is affected.

When anedge_identifier is specified for theto_opt_edge_spec, only that
transition at the endpoint of each constrained path is affected.

Level 0 From, To, Thru
Specification

118 Version 1.4

Timing Exceptions

When atyped_port_expr, typed_pin_expr, or typed_net_expr is used as a
thru_item, the expression is expanded in place to refer to the set of ports,
pins, or nets that match the expression. Therefore, the expression affects
paths that goTHRU_ANY one of the ports, pins, or nets, not paths that go
THRU_ALL of the ports, pins, or nets.

When aport_instance_edge is specified for athru_item, only the
transitions through each of the constrained paths that result in the specified
edge at thatport_instance are affected.

If the thru_all_items_specis given, each constrained path must go through
at least one of thethru_itemslisted in each of thethru_any_item_specs, in
the order in which thethru_any_items_specsare listed. Thethru_itemsin
thethru_any_item_specs do not have to be contiguous in the paths.

Example

(PATHS
(FROM ff1.clk)
(THRU_ALL

ff1.q
and1.a

)
(TO ff2.d)

)

This example constrains all paths that start at eitherff1.clk, go throughff1.q
followed byand1.a, then end atff2.d. All transitions through the
constrained paths are affected.

Example

(PATHS
(THRU_ALL

and1.a
)

)

This example constrains all transitions through all paths that go through
and1.a.

Timing Exceptions

Version 1.4 August 17, 1999 119

Example

(PATHS
(THRU_ALL

and2
(posedge and3.a)
(negedge and4.a)

)
)

This example constrains all paths that go through the cell instanceand2,
followed byand3.a, thenand4.a. Only the transitions through the
constrained paths that result in a rising edge atand3.aand a falling edge at
and4.a are affected.

Example

(PATHS
(FROM (negedge in1 in2))
(THRU_ALL

and1.a
(posedge and2.a)
(THRU_ANY and3.a (negedge and4.a))

)
(TO (posedge ff1.d ff2.d))

)

This example constrains all paths that start at eitherin1 or in2, go through
and1.afollowed byand2.a, then go through eitherand3.aor and4.a, then
end at eitherff1.d or ff2.d.

Only certain transitions through the constrained paths are affected:

■ a falling transition atin1 or in2 that results in a

■ rising transition atand2.a that results in a

■ falling transition atand4.a (or either transition atand3.a) that results
in a

■ rising transition atff1.d or ff2.d.

120 Version 1.4

Timing Exceptions

In general,DISABLE , MULTI_CYCLE , andPATH_DELAY exceptions
should be viewed as modifying the default analysis based on either the
early (minimum) delay or the late (maximum) delay of a particular
transition propagating through a particular path in the circuit.

The following precedence rules are used in the order given when several
exceptions affect the analysis for the same type of delay (early or late) for
the same transition propagating through the same path in the circuit:

■ DISABLE has the highest precedence

■ PATH_DELAY has higher precedence thanMULTI_CYCLE

■ A PATH_DELAY (MULTI_CYCLE) construct that includes a
port_instance as afrom_item has higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

■ A PATH_DELAY (MULTI_CYCLE) construct that includes a
port_instance as ato_item has higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

■ A PATH_DELAY (MULTI_CYCLE) construct that includes athru_all
specification has higher precedence than aPATH_DELAY
(MULTI_CYCLE) construct that does not.

■ A PATH_DELAY (MULTI_CYCLE) construct that includes a
waveform_name as afrom_item has higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

■ A PATH_DELAY (MULTI_CYCLE) construct that includes a
waveform_name as ato_item has higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

■ ThePATH_DELAY or MULTI_CYCLE construct that specifies the
tightest constraint on the delay of the transition through the path is
used.

Disabling paths is important for the following reasons:

■ To break combinational feedback loops

■ To eliminate false paths (paths that will never be activated during
normal operation of the circuit)

■ To eliminate paths that are only active during certain modes of circuit
operation (for example, paths associated with testability logic)

TheDISABLE construct identifies a set of paths for which selected timing
checks must be suppressed.

The timing checks that might be affected are separated into two groups:

Precedence Rules
for Exceptions

Disable
Specifications

Timing Exceptions

Version 1.4 August 17, 1999 121

■ The early (minimum) timing checks are hold, removal, and the hold
portion of no-change checks. When theHOLD keyword is specified in
a disable construct, it refers generically to all of the early timing
checks.

■ The late (maximum) timing checks are setup, recovery, and the setup
portion of no-change checks. When theSETUPkeyword is specified in
a disable construct, it refers generically to all of the late timing checks.

In the context of disabled paths, the phrase “all timing checks” means both
early and late timing checks, but not skew, period, or pulse width checks.

In GCF 1.4 and above, some types of disables affect slew propagation.
Normally during delay calculation and timing analysis, the slew at a pin is
computed from the slew propagated through the timing arcs that end at the
pin, and the slew at the pin is then propagated through the timing arcs that
start at the pin. When a pin is specified in theport_instance form or an
output pin is implied by thecell_instance form ofdisable_item_spec_0,
slews will not be propagated through the timing arcs that start at the pin.

When thearc_specform of disable_item_spec_0is used, slews will not be
propagated through any timing arcs between the endpoints of thearc_spec.

Similarly, when preset and clear arcs on registers are disabled using
preset_clear_spec, the slews at the preset or clear input pin will not be
propagated through the timing arcs that start at the pin.

Other types of disables, such as thereentrant_paths_spec and the
disable_from_to_thru_spec, do not affect slew propagation during delay
calculation for SDF generation. The effect of these other types of disables
on slew propagation during the delay calculation used for timing analysis
is unspecified in GCF 1.4; some tools may disable slew propagation in
these cases, while other tools may not. The behavior is expected to be
explicitly specified in a subsequent version of GCF.

In GCF 1.4 and above, some types of disables affect constant propagation.
Normally, constant values specified using theCONSTANT construct are
propagated through the circuit, causing additional pins to have a constant
value. When a pin is specified in theport_instance form or an output pin
is implied by thecell_instance form ofdisable_item_spec_0, constant
values will not be propagated through the pin.

When thearc_spec form ofdisable_item_spec_0 is used, constants will
not be propagated through any timing arcs between the endpoints of the
arc_spec.

Slew Propagation and
Disables

Constant Propagation an d
Disables

122 Version 1.4

Timing Exceptions

Similarly, when preset and clear arcs on registers are disabled using
preset_clear_spec, constants will not be propagated through the timing
arcs that start at the pin.

Other types of disables do not affect constant propagation.

In Level 0, the paths can be identified by a single port instance, a cell
instance, the path endpoints, or by a set of from, to, and through items.

Syntax

disable_spec_0::= disable_item_spec_0
||= disable_endpoints_spec_0
||= disable_from_to_thru_spec_0

The simplest form of theDISABLE construct,disable_item_spec_0,
disables all timing checks associated with a set of paths, and in some cases,
slew propagation and constant propagation along those paths.

Syntax

disable_item_spec_0::= (label?DISABLE disable_item_0+)

disable_item_0::= port_instance
||= cell_instance
||= typed_port_expr
||= typed_pin_expr
||= typed_instance_expr
||= arc_spec
||= preset_clear_spec
||= reentrant_paths_spec

preset_clear_spec::= (PRESET_CLEAR_ARCS true_false)

reentrant_paths_spec::= (REENTRANT_PATHS true_false)

true_false ::= TRUE
||= FALSE

All timing checks associated with the constrained paths are disabled. For
details on the paths constrained by theport_instance, cell_instance, and
arc_spec forms, refer to “Path Specifications” on page 110.

Note that the Level 0cell_instance form is not the same as the Level 1
disable_instance_spec, which disables all paths associated with the
instance (from, to, or through). Thecell_instanceform only disables paths
through the outputs.

Example

(DISABLE ff1.Q)

Level 0 Disables

Disabling Port Instances,
Cell Instances, and Arcs

Timing Exceptions

Version 1.4 August 17, 1999 123

This example disables all paths that go through the Q output of the flip flop
ff1. This includes paths from the clock input through the output and paths
from asynchronous preset or clear inputs through the output.

Example

(DISABLE ff1)

This example constrains all paths that go through the data outputs of the
flip flop ff1.

Example

(DISABLE (ARC or1.A or1.Z))

This example disables all paths that go through the A input and the Z
output of or1.

If the preset_clear_spec construct is used, it specifies whether delay arcs
starting at preset or clear inputs on registers in the current GCF cell should
be disabled. Disabling these arcs suppresses paths that go through preset
or clear inputs, but does not suppress timing checks associated with those
inputs.

When applied to a non-leaf GCF cell, thepreset_clear_specsetting applies
to all registers within that cell and all of its descendents, unless overridden
by apreset_clear_spec for one of the descendents.

The default is that the delay arcs starting at preset and clear inputs are
disabled.

Example

(DISABLE (PRESET_CLEAR_ARCS FALSE))

This example enables paths that go through asynchronous preset and clear
inputs.

If the reentrant_paths_spec construct is given, it specifies whether
reentrant bidirectional paths should be disabled within the current GCF
cell. By default, these reentrant paths are disabled.

There are two types of reentrant bidirectional paths:

■ Paths through nets connected to primary bidirectional ports on the
current GCF cell, as shown in Figure 8.

Disabling Paths Through
Asynchronous Preset and
Clear Arcs

Disabling Reentrant
Bidirectional Paths

124 Version 1.4

Timing Exceptions

■ Paths through primitives that have a bidirectional pin, where the timing
arcs to and from the bidirectional pin form a reentrant connection, as
shown in Figure 9.

Figure 8 Reentrant Paths for Primary Bidirectional Ports

In Figure 8, B1 is a primary bidirectional port for both CELL1 and CELL2.
Normally, for a bidirectional port like B1, there will be paths from source
registers within the cell to target registers outside the cell, as well as paths
from source registers outside the cell to target registers inside the cell. The
reentrant_paths_spec disable affects reentrant paths, where both the
source and target registers are within the cell.

In both CELL1 and CELL2, the paths from FF1 to FF2 are reentrant.
Whether it makes sense to analyze the timing of these paths depends on the
design style. In CELL1, using complementary enables on the tri-state
buffers ensures that the paths from FF1 to FF2 can never be activated. For
this design style, reentrant paths should be disabled. In CELL2, the paths
from FF1 to FF2 can be activated, so reentrant paths should not be
disabled.

FF1
CELL1

EN B1

FF2

FF1
CELL2

B1

FF2

EN

Timing Exceptions

Version 1.4 August 17, 1999 125

Figure 9 Reentrant Paths Through a Bidirectional Primitive

In Figure 9, whether analyzing the reentrant path from FF1 to FF2 through
the bidirectional primitive BIBUF1 makes sense depends on the design
style. If complementary enables are connected to EN1 and EN2 on
BIBUF1, then the reentrant path will never be active. The reentrant path
from FF3 to FF4 through BIBUF2 is similar. The paths from FF1 to FF4,
and from FF3 to FF2 are not reentrant, and are not affected by the
reentrant_paths_spec.

Example

(DISABLE (REENTRANT_PATHS FALSE))

This example enables reentrant paths.

Thedisable_endpoints_spec_0 construct disables selected timing checks
on a set of paths that are identified by their from, to, or both from and to
endpoints. See “Level 0 Endpoint Specifications” on page 114 for details
on the types of endpoints that are allowed and the paths that are affected.

Syntax

disable_endpoints_spec_0::= (label?DISABLE
endpoints_spec+ disable_option*)

disable_option ::= timing_check
||= edge_identifier

If the HOLD or SETUPkeyword is specified as adisable_option, only the
early (minimum) or late (maximum) timing checks will be disabled;
otherwise, both the early and late timing checks will be disabled.

If an edge_identifier(for example,POSEDGEor NEGEDGE) is specified
as adisable_option, only the timing checks on the rising or falling data

CELL3

FF1 FF3

EN1

BIBUF1

EN2

BIBUF2

EN2

EN1

FF2 FF4

Disabling Paths
Between Endpoints

126 Version 1.4

Timing Exceptions

transitions at the path target will be disabled. Otherwise, both the rising
and falling timing checks will be disabled.

Example

(DISABLE
(BETWEEN (FROM ff1.clk) (TO ff2.d ff3.d))

)

The disable specification in this example affects all paths betweenff1 and
eitherff2 or ff3.

Example

(DISABLE
(FROM ff1.clk) setup posedge

)

This example disables setup checks for the rising edge at the target for all
paths starting atff1.clk.

Thedisable_from_to_thru_spec_0construct disables all paths that start at
theFROM endpoints (if given), pass through theTHRU_ALL points (if
given), and end at theTO endpoints (if given). See “Level 0 From, To,
Thru Specification” on page 117 for details on the types of items that can
be specified forfrom_to_thru_spec and the paths that are affected.

Syntax

disable_from_to_thru_spec_0::= (label?DISABLE
from_to_thru_spec+ disable_option*)

If the HOLD or SETUPkeyword is specified as adisable_option, only the
early (minimum) or late (maximum) timing checks will be disabled.
Otherwise, both the late and early timing checks will be disabled.

If an edge_identifier(for example,POSEDGEor NEGEDGE) is specified
as adisable_option, only the timing checks on the rising or falling data
transitions at the path target will be disabled. Otherwise, both the rising
and falling timing checks will be disabled.

Theedge_identifier as adisable_option applies in general to all of the
endpoints implied by thefrom_to_thru_spec. The generaledge_identifier
has a lower precedence than anedge_identifier specified explicitly for a
particularto_item within thefrom_to_thru_spec.

Disabling Paths With
From, To, and Thru

Timing Exceptions

Version 1.4 August 17, 1999 127

Example

(DISABLE
(PATHS

(FROM ff1.clk)
(THRU_ALL

(THRU_ANY and1.a and2.a)
(THRU_ANY and3.a and.a)
mux.a

)
(TO ff2.d)

)
)

This example disables all paths that start atff1.clk, go through either
and1.aor and2.a, followed byand3.aor and4.a, followed bymux.a, then
end atff2.d. The intermediate thru points do not have to be contiguous in
the path.

Example

(DISABLE
(PATHS

(FROM (posedge in1))
(THRU_ALL

(THRU_ANY and1.a and2.a)
and3.z

)
(TO ff2)

)
)

This example disables the rising transition propagating through all paths
that start atin1, go through eitherand1.a or and2.a, followed byand3.z,
then end atff2. The intermediate thru points do not have to be contiguous
in the path.

Example

(DISABLE
(PATHS

(FROM (posedge ff1.clk)
(THRU_ALL

and1.a
)
(TO ff2.d)

)
hold
negedge

)

128 Version 1.4

Timing Exceptions

This example disables early timing checks for all paths that start atff1.clk
and go throughand1.a, for the transitions through each path that start with
a rising transition on the clock atff1.clk and end with a falling data
transition atff2.d.

In Level 1, there are several additional ways in which to specify paths that
are to be disabled.

Syntax

disable_spec_1::= disable_cell_spec_1
||= disable_edges_spec_1 (archaic)

Thedisable_cell_spec_1 construct disables all timing checks associated
with all paths associated with one or more cell instances, including the
following:

■ All timing checks associated with paths to, from, or through the
instance

■ All timing checks associated with paths contained within the instance

Disabling a cell type affects all instances of that cell within either the
current GCF cell instance or its descendents. All timing checks associated
with all paths associated with any of those instances are disabled.

If a cell type is disabled within the GCF section for the top-level cell of a
design, the cell type is disabled throughout the entire design.

Syntax

disable_cell_spec_1::= (label?DISABLE disable_cell_path_spec+)

disable_cell_path_spec::= disable_instance_spec
||= disable_master_spec

disable_instance_spec::= (INSTANCE untyped_cell_instance+)

disable_master_spec::= (MASTER cell_id)

Example

(DISABLE (INSTANCE vco))

This example disables all paths associated with thevco instance.

Example

(DISABLE (MASTER (CELLTYPE DUMMY))

This example disables all paths associated with all occurrences of the
DUMMY cell.

Level 1 Disables

Disabling Cell Instances
and Cell Types

Timing Exceptions

Version 1.4 August 17, 1999 129

TheMULTI_CYCLE construct identifies the paths for which setup or hold
checks must use a different set of active clock edges rather than the default.
This construct is commonly used to describe paths whose data can
propagate to the target register over multiple clock cycles by not clocking
the target every cycle.

By default, timing checks are computed with respect to the active edges of
the source and target clocks.For flip-flops, the active clock edge is the
triggering clock edge. For level-sensitive latches, the active edges are the
opening clock edge for sources and the closing clock edge for targets.

When the source and target clocks have the same frequency and phase, the
following rules are commonly used to determine the active edges:

■ Setup checks are computed between an active edge at the source in one
cycle and the active edge at the target in the next cycle.

■ Hold checks are computed between an active edge at the source in one
cycle and the active edge at the target in the same cycle.

When the source and target clocks have different frequencies or phases, or
when multiple cycles are allowed for a path, these rules can no longer be
used. A more precise definition of the process for choosing the default
active edges is used in GCF.

The clock root that drives the source of a path is called the source clock
root, and the waveform edge at the source clock root that triggers the
source of a path is called the source root edge.

The clock root that drives the target of a path is called the target clock root,
and the waveform edge at the target clock root that triggers the target of a
path is called the target root edge.

If the clock signal is inverted between the clock root and the clock input of
a register or latch, the root edge is different than the triggering edge of the
register.

The relationship between particular source and target root edges
determines which active edges are used for setup and hold checks.

Multi-Cycle Paths

Default Definition

130 Version 1.4

Timing Exceptions

Multiple cycles of the source and target clocks are considered in
identifying the source and target root edges for a timing check.

The setup check ensures that the expected data signals reach the target
registers in time to be latched correctly. If no multi-cycle specification
affects a path, the following rules are used for the setup check:

■ Each target root edge and the nearest source root edge that precedes it
are called a setup edge pair.

■ The default source and target root edges are defined to be the setup
edge pair with the smallest positive difference between the target root
edge and the source root edge. The default active edges are the
propagated versions of the root edges, measured at the source and
target.

The hold check ensures that data does not reach the target registers early
enough to be latched in the wrong cycle of the target clock. If no multi-
cycle specification affects a path, every setup edge pair is considered for
the hold check. For each setup edge pair, the root edges define the current
cycle at the source and at the target. Two conditions must be satisfied with
respect to these cycles:

■ Data triggered by the current cycle at the source must not be latched by
the previous cycle at the target. This condition defines a hold edge pair
in which the hold source root edge is the same as the setup source root
edge, and the hold target root edge is one cycle earlier than the setup
target root edge.

■ Data triggered by the next cycle at the source must not be latched by
the current cycle at the target. This condition defines a hold edge pair
in which the hold source root edge is one cycle later than the setup
source root edge, and the hold target root edge is the same as the setup
target root edge.

These conditions are both checked by choosing the hold edge pair with the
most positive difference between the target root edge and the source root
edge (note that the difference can still be negative). The default active
edges for the hold check are the propagated versions of the root edges,
measured at the source and target.

TheMULTI_CYCLE construct allows changing the active edges that are
chosen for specific paths or for all paths between a given source and target
clock pair.

In Level 0, multi-cycle paths can be identified by the path endpoints, or by
a set of from, to, and through items.

Overriding the Default

Level 0 Multi-Cycle Paths

Timing Exceptions

Version 1.4 August 17, 1999 131

Syntax

multi_cycle_spec_0::= multi_cycle_endpoints_spec_ 0
||= multi_cycle_from_to_thru_spec_0

See “Level 0 Endpoint Specifications” on page 114 for a description of the
types of endpoints that are allowed and the paths that are affected.

When both the source and target endpoints are specified using waveform
names, the effect is to change the default relationship between the
waveforms.

Syntax

multi_cycle_endpoints_spec_0::= (label?MULTI_CYCLE
multi_cycle_endpoints_param_list)

multi_cycle_endpoints_param_list::= multi_cycle_option+ endpoints_spec+
||= endpoints_spec+ multi_cycle_option+

multi_cycle_option::= timing_check_offset
||= edge_identifier

timing_check_offset::= (timing_check num_cycles
reference_clock?)

reference_clock::= SOURCE
||= TARGET

num_cycles::= INUMBER

At least onetiming_check_offsetand at least oneendpoints_specmust be
specified in themulti_cycle_endpoints_param_list.

Thetiming_check_offset, which specifies the number of cycles to be
allowed for a path, is used to adjust the active edges for the timing checks
for all paths between the specified endpoints.

The following procedure is used to determine the setup edge pair:

■ For all paths affected by aMULTI_CYCLE construct (whether
SETUP, HOLD , or bothSETUPandHOLD adjustments are specified),
a default setup edge pair is chosen in the same way as for normal
timing checks.

■ Multiple cycles of the source and target clocks are still considered
when determining the default setup edge pair. The pair with the
smallest positive difference between the target root edge and the source
root edge is selected.

■ If the SETUP timing check is specified, then the corresponding
num_cyclesparameter is used to determine an adjusted setup edge pair
as follows:

Multi-Cycle Paths
Between Endpoints

132 Version 1.4

Timing Exceptions

❑ By default, or ifTARGET is specified, the setupnum_cycles
parameter affects the target root edge. Instead of the default target
root edge, the edge that arrives (num_cycles - 1) cycles later is
used.

❑ If SOURCE is specified, the setupnum_cycles parameter affects
the source root edge. Instead of the default source root edge, the
edge that arrives (num_cycles - 1) cycles earlier is used.

■ The adjusted active edges for the setup check are the propagated
versions of the adjusted root edges, measured at the source and target.

The default hold edge pair is chosen differently for paths affected by a
MULTI_CYCLE construct than for paths that are not. For normal timing
checks, the hold edge pair is chosen by considering the two hold conditions
with respect to all possible setup edge pairs.

For all paths affected by aMULTI_CYCLE construct, the default hold
edge pair is chosen by considering the two hold conditions only with
respect to a single setup edge pair, rather than by considering them with
respect to every setup edge pair.

The following procedure is used to determine the hold edge pair:

■ If the SETUP option is specified, then the default hold edge pair is
chosen with respect to the adjusted setup edge pair. If theHOLD option
is specified but theSETUPoption is not, then the default hold edge pair
is chosen with respect to the default setup edge pair.

■ The default hold edge pair is chosen to reflect the more restrictive of
the two hold conditions (the most positive difference between the
target root edge and the source root edge).

■ An adjusted hold edge pair is always determined, regardless of whether
theHOLD option is specified. If theHOLD option is not specified, the
holdnum_cyclesparameter is set to 0. IfHOLD option is specified and
theSETUP option is not.

❑ By default, or ifSOURCE is specified, the holdnum_cycles
parameter affects the source root edge. Instead of the default source
root edge, the edge that arrivesnum_cycles cycles later is used.

❑ If TARGET is specified, the holdnum_cyclesparameter affects the
target root edge. Instead of the default target root edge, the edge
that arrivesnum_cycles cycles earlier is used.

■ The adjusted active edges for the hold check are the propagated
versions of the adjusted root edges, measured at the source and target.

Timing Exceptions

Version 1.4 August 17, 1999 133

Adjustments can be made independently to the active edges of the setup
check and hold check. However, the hold check root edges are defined
with respect to the setup check root edges, so a setup offset will implicitly
cause a change in the active edges used in the hold check.

When both a setup and hold offset are specified, the setup offset is
interpreted first, establishing a new default hold edge pair. The hold offset
is then applied to the edges of that pair.

If anedge_identifieris given, it specifies which data edge at the path target
is affected by the changes in the active edges of the clock. If no edge is
specified, both the rising and falling data edges at the target are affected.

Example

(TIMING
(ENVIRONMENT

(CLOCK “100 MHz 50/50” clk1)
(CLOCK “50 MHz 50/50” divider.clkout)

)
(EXCEPTIONS

(MULTI_CYCLE (SETUP 3 SOURCE) (HOLD 1) posedge
(BETWEEN

(FROM “100 MHz 50/50”)
(TO “50 MHz 50/50”)

)
)

)
)

The multi-cycle path specification in this example has the following
effects on all paths between registers whose source clock originates atclk1
and registers whose target clock originates atdivider.clkout.

■ For the setup check on rising data edges at the target, the active edge at
the source is two source clock cycles earlier than the default. The
default active edge at the target is unchanged.

■ The hold check on rising data edges at the target is affected by the setup
adjustment as well as the hold adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair.
This will generally cause the source edge of the default hold edge pair
to be two cycles earlier than if no setup adjustment was specified.

The hold adjustment is then applied, resulting in the hold active edge
at the source being one source clock cycle later than in the default hold
edge pair, while the hold active edge at the target is the same as in the
default hold edge pair.

134 Version 1.4

Timing Exceptions

■ The setup and hold checks on falling data edges at the target are
unaffected by the multi-cycle specification.

Example

(MULTI_CYCLE (SETUP 2)
(BETWEEN (FROM ff1.clk) (TO ff2.d ff3.d))

)

The multi-cycle path specification in this example has the following
effects on all paths that start atff1 and end at eitherff2 or ff3:

■ For the setup check on both rising and falling data edges, the active
edge at the target is one target clock cycle later than the default. The
default active edge at the source is unchanged.

■ The hold check on both rising and falling data edges at the target is
implicitly affected by the setup adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair,
which is used without adjustment in the hold check.

Themulti_cycle_from_to_thru_spec_0 construct constrains all paths that
start at theFROM endpoints (if given), pass through theTHRU_ALL
points (if given), and end at theTO endpoints (if given). See “Level 0
From, To, Thru Specification” on page 117 for details on the types of items
that can be specified forfrom_to_thru_specand the paths that are affected.

Syntax

multi_cycle_from_to_thru_spec_0::= (label?MULTI_CYCLE
multi_cycle_from_to_thru_param_list)

multi_cycle_from_to_thru_param_list::= from_to_thru_spec+ multi_cycle_option+
||= multi_cycle_option from_to_thru_spec+

At least onetiming_check_offsetand at least onefrom_to_thru_specmust
be specified in themulti_cycle_from_to_thru_param_list.

Example

(MULTI_CYCLE
(SETUP 2)
(PATHS

(FROM ff1)
(THRU_ALL

(posedge and1.a)
)
(TO ff2)

)
)

Multi-Cycle Paths With
From, To, and Thru

Timing Exceptions

Version 1.4 August 17, 1999 135

The multi-cycle path specification in this example has the following
effects on all paths that start atff1, go throughand1.a, and end atff2 or ff3:

■ For the setup check on the data edge(s) at the target that result from a
rising transition atand1.a, the active edge at the target is one target
clock cycle later than the default. The default active edge at the source
is unchanged.

■ The hold check on the data edge(s) at the target that result from a rising
transition atand1.ais implicitly affected by the setup adjustment. After
applying the setup adjustment, the two hold conditions are considered
with respect to the adjusted setup edge pair to determine the new
default hold edge pair, which is used without adjustment in the hold
check.

Example

(MULTI_CYCLE
(SETUP 2 SOURCE)
(PATHS

(FROM (posedge in1))
(THRU_ALL

(THRU_ANY and1.a and2.a)
and3.z

)
(TO ff2)

)
)

The multi-cycle path specification in this example has the following
effects on all paths that start atin1, go through eitherand1.a or and2.a,
followed byand3.z, then end atff2:

■ For the setup check on the data edge(s) at the target that result from a
rising transition atin1, the active edge at the source is one source clock
cycle earlier than the default. The default active edge at the target is
unchanged.

■ The hold check on the data edge(s) at the target that result from a rising
transition atand1.ais implicitly affected by the setup adjustment. After
applying the setup adjustment, the two hold conditions are considered
with respect to the adjusted setup edge pair to determine the new
default hold edge pair, which is used without adjustment.

ThePATH_DELAY construct specifies constraints on the delay of paths
through non-sequential parts of the design, such as the following:

■ Paths through combinational logic

■ Connections between hierarchical blocks

Combinational
Delays

136 Version 1.4

Timing Exceptions

■ Paths between asynchronous clock domains

ThePATH_DELAY construct describes constraints on the combinational
delay through a portion of the design, while theEXTERNAL_DELAY
construct describes purely combinational delays that are external to that
portion of the design. The external delays are added to the computed path
delays within that portion of the design before comparing to the path delay
constraint.

Some forms of thePATH_DELAY construct allow the starting points for
the constrained paths to be unspecified. When the starting points are
unspecified, all paths that start at a register clock input or a primary input/
bidirectional port instance and go through the other logic specified in the
PATH_DELAY construct are constrained.

Some forms of thePATH_DELAY construct allow the ending points for
the constrained paths to be unspecified. When the ending points are
unspecified, all paths that go through the other logic specified in the
PATH_DELAY construct and end at a register data input or a primary
output/bidirectional port instance are constrained.

The paths through combinational logic constrained by aPATH_DELAY
constructs cannot go through a data input on a latch, through a transparent
arc, then through a data output. However, the constrained paths can start at
a clock input on a flip flop or an enable input on a latch, then go through a
data output. WhenPRESET_CLEAR_ARCS are enabled (see page 123),
the constrained paths can also go through an asynchronous preset or clear
input, then through a data output.

Thepath_delay_value is a time value and must be specified in the units
defined by thetime_scale. It follows the ordering conventions for
rise_fall_min_maxdescribed in “Value Types” on page 48, as well as the
semantics for operating points described in “Min/Max Values and
Operating Conditions” on page 51.

When a path constrained by aPATH_DELAY construct starts or ends at a
sequential pin, the combinational delay constraint for that path will be
implicitly adjusted to include the effect of clock skew and timing checks:

■ For paths starting at clock inputs or data outputs of a sequential
element, the clock insertion delay to the sequential element will be
added to the combinational delay of the path before comparing against
the constraint.

For early (minimum) delay constraints, the minimum clock insertion
delay will be added.

Timing Exceptions

Version 1.4 August 17, 1999 137

For late (maximum) delay constraints, the maximum clock insertion
delay will be added.

■ For paths ending at data inputs of a sequential element, the clock
insertion delay to the sequential element will be added to the constraint
value before comparing against the constraint.

For early (minimum) delay constraints, the maximum clock insertion
delay will be added.

For late (maximum) delay constraints, the minimum clock insertion
delay will be added.

■ For paths ending at data inputs of a sequential element, the setup and
hold times will be used to adjust the constraint value before comparing
against the constraint.

For early (minimum) delay constraints, the hold time will be added.

For late (maximum) delay constraints, the setup time will be
subtracted.

ThePATH_DELAY construct must not be used to define clock tree
insertion delays. TheCLOCK_DELAY construct must be used instead (see
“Clock Delay” on page 142).

In Level 0, combinational path delays can be identified by the path
endpoints, or by a set of from, to, and through items.

Syntax

path_delay_spec_0::= path_delay_endpoints_spec_ 0
||= path_delay_from_to_thru_spec_0

See “Level 0 Endpoint Specifications” on page 114 for a description of the
types of endpoints that are allowed and the paths that are affected.

Syntax

path_delay_endpoints_spec_0::= (label?PATH_DELAY
path_delay_value
endpoints_spec+)

path_delay_value::= rise_fall_min_max
||= path_delay_single_value(archaic)

path_delay_single_value ::= (timing_check
waveform_edge_identifier
NUMBER)(archaic)

Therise_fall_min_max value type is the preferred form for the
path_delay_value.

Level 0 Combinational
Path Delays

Path Delays Between
Endpoints

138 Version 1.4

Timing Exceptions

The second form,path_delay_single_value, is archaic. It is more easily and
consistently specified using therise_fall_min_maxform with asterisks as
place-holders.

Example

(PATH_DELAY 4.0 5.5 * *
(BETWEEN

(FROM scan_di)
(TO ff1.d)

)
)

This example specifies the combinational delay for certain transitions
through all paths betweenscan_diandff1.d. Becauseff1.d is an input on a
sequential element, the effects of clock skew and timing checks will be
considered in the constraint.

Suppose that ideal clock insertion delays have been defined such that the
minimum clock insertion delay toff1 is 1.0 ns, the maximum clock
insertion delay is 1.3 ns, the hold time for the rising transition atff1.dis 0.4
ns, and the setup time for the rising transition atff1.d is 0.6 ns.

In that case,

■ the effective early (minimum) delay constraint is
4.0 + 1.0 + 0.4 = 5.4 ns

■ the effective late (maximum) delay constraint is
5.5 + 1.3 - 0.6 = 6.2 ns.

■ These constraints affect only the transitions through the constrained
paths that result in a rising transition atff1.d. The delay for other
transitions is unconstrained.

Thepath_delay_from_to_thru_spec_0 construct constrains all paths that
start at theFROM endpoints, pass through theTHRU points, and end at the
TO endpoints. See “Level 0 From, To, Thru Specification” on page 117 for
details on the types of items that can be specified forfrom_to_thru_spec
and the paths that are affected.

Syntax

path_delay_from_to_thru_spec_0::= (label?PATH_DELAY
path_delay_value from_to_thru_spec+)

Path Delays With
From, To, and Thru

Timing Exceptions

Version 1.4 August 17, 1999 139

Example

(PATH_DELAY 3.0 4.0 2.5 2.9
(PATH

(FROM and1.a)
(THRU_ALL and2.a and3.a)
(TO and4.a)

)
)

This example specifies the combinational delay for all paths that start at
and1.a, go throughand2.a thenand3.a, then end atand4.a.

The delay through each path of the transitions resulting in a rising
transition atand4.a must be greater than 3.0 ns and less than 4.0 ns.

The delay through each path of the transitions resulting in a falling
transition atand4.a must be greater than 2.5 ns and less than 2.9 ns.

TheSLEW_LIMIT construct is the preferred way to specify a constraint
on edge transition time as measured at a specified port (input, output or
bidirectional). The relatedMAX_TRANSITION_TIME construct is archaic.

Syntax

slew_limit_spec::= (label?SLEW_LIMIT slew_value
port_instance_or_master*)

Theslew_value is a time value and must be specified in the units defined
by thetime_scale. It follows the convention forrise_fall_min_max
described in “Value Types” on page 48, as well as the semantics for
operating points described in “Min/Max Values and Operating
Conditions” on page 51.

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified, theslew_value represents by
default the time required to transition between the 10 and 90 percent points
of the power supply voltage.

Eachport_instance must be a port on a cell contained within the current
GCF cell. The default slew limit, which can be set by omitting the
port_instances, applies to all ports on all cells contained within the current
GCF cell.

A master-based default slew limit can also be specified usingport_master.
The master-based default slew limit applies to all occurrences of the
scalar_port on cell instances of typecell_id.

Path Delays With Arc,
Thru, and Thru All
(archaic)

Slew Limit

140 Version 1.4

Timing Exceptions

Precedence Rules

■ Usually, the slew limit is specified in the library. If the slew limit is
specified in both the library and the GCF file, the more restrictive
constraint will be used.

■ Explicit slew limits have higher precedence than master-based default
slew limits, which have higher precedence than normal default slew
limits.

■ TheSLEW_LIMIT construct and theMAX_TRANSITION_TIME
construct (archaic) have the same precedence for the maximum slew
limit. If both are specified in the same GCF file, the last one given will
be used.

Example

(SLEW_LIMIT 2.0 3.0 2.5 3.5 out1)

This example specifies that the slew (transition time) atout1 must be
between 2.0 and 3.0 ns for the rising transition, and between 2.5 and 3.5 ns
for the falling transition.

Example

(SLEW_LIMIT * 1.5 * 1.8
((CELLTYPE dff) d)

)

This example constrains the maximum slew (transition time) at thed input
of all instances of thedff cell type within the current GCF cell and its
descendents. The slew must be less than 1.5 ns for the rising transition, and
less than 1.8 ns for the falling transition.

TheBORROW_LIMIT construct specifies the maximum amount of time
that can be borrowed by one cycle from the next cycle when using level-
sensitive latches. This construct is a Level 1 construct.

Data normally starts propagating from a source latch at the opening edge
of the source clock. It must arrive at the target latch data input before the
opening edge of the target clock, thereby ensuring consistency across
multiple cycles.

Time borrowing allows data to arrive at a target latch during the active
portion of the target’s clock. To ensure consistency across multiple clock
cycles, the delay allowed for paths starting at that latch must be reduced by
the difference between the actual arrival time at the latch and the opening
edge of the clock (the time borrowed by paths in the previous cycle).

Latch-Based
Borrowing

Timing Exceptions

Version 1.4 August 17, 1999 141

The default limit on time borrowing for a given latch is the active pulse
width of the clock minus the setup time of the latch. Theborrow_limit
construct can only be used to specify a smaller limit; larger limits are
ignored. Theborrow_value applies for all operating points.

Syntax

borrow_limit_spec::= (label?BORROW_LIMIT NUMBER
borrow_item*)

borrow_value ::= NUMBER

borrow_item ::= port_instance
||= cell_instance
||= waveform_name
||= typed_waveform_list

If no borrow_itemsare specified, borrowing will be restricted for all level-
sensitive latches within the current GCF cell and its descendents.

If a port_instance that was identified as a clock (through theCLOCK
construct—see “Clock Specifications” on page 85) is specified, borrowing
will be restricted for all data inputs of all level-sensitive latches in the
transitive fanout of that clock. Otherwise, theport_instancesmust be data
input pins or clock input pins of level-sensitive latches. When a clock input
is specified, it affects the borrowing for all of the related data inputs on the
latch.

If a cell_instance is specified, it must be a level-sensitive latch, and
borrowing is restricted on all data inputs of the latch.

If a waveform_name is specified, borrowing will be restricted for all data
inputs on level-sensitive latches in the transitive fanout of the clocks
associated with that waveform.

When several borrow limits specified in different ways affect the same
data input, the tightest limit is used.

Example

(BORROW_LIMIT 3.0 latch1.clk)

This example constrains borrowing for all data inputs on latch1 related to
clk to use no more than 3.0 ns of the available portion of the pulse width.

TheCLOCK_MODE construct is used to specify the default clock mode,
which affects computation of

■ the insertion delay betweenclock_roots specified inCLOCK
constructs) and primitive clock input pins

Clock Mode

142 Version 1.4

Timing Exceptions

■ the slew at primitive clock input pins.

Syntax

clock_mode_spec::= (label?CLOCK_MODE
clock_mode_value)

clock_mode_value::= IDEAL
||= ACTUAL

The default clock mode for the current GCF cell and its descendents can
be explicitly specified using theCLOCK_MODE construct. When the
clock mode is specified at several levels in the design hierarchy, the mode
specified at the lowest level has precedence. If no clock mode is specified,
the default clock mode isIDEAL .

The default clock mode applies to all clock paths starting atclock_roots
within the current GCF cell, including the primary inputs of the cell. The
default clock mode can be overridden for particular clock networks by
specifying the clock mode explicitly in aCLOCK_DELAY construct.

TheCLOCK_DELAY construct is used to specify the following
constraints:

■ The insertion delay through a clock distribution network

■ The skew in the insertion delay between different leaf pins of the
network

■ The slew of the clock at the leaf pins of the network

TheCLOCK_DELAY constraints describe the worst case characteristics of
the network, and they are often used in constructing the final version of the
network.

In addition, the constraints are used for worst case analysis of the design
before the final network is created. In the early stages of the design flow,
the design will often contain a preliminary network. To ensure that the
design will still perform correctly once the final network is created,
analysis tools may ignore the preliminary network, using the worst case
characteristics from theCLOCK_DELAY constraints instead.

The scope of the clock distribution network includes the root, the leaf pins,
and the cells and nets between the root and the leaf pins. Leaf pins lie on
the boundary of the clock network; no logic beyond a leaf pin is included
in the clock network.

Each leaf pin must be reachable by tracing forward from the root through
interconnect, buffers, inverters, and possibly combinational logic gates.

Clock Delay

CLOCK_DELAY
Scope

Timing Exceptions

Version 1.4 August 17, 1999 143

An error will be reported if the leaf pin is reachable by tracing forward
through any non-unate timing arcs.

Generally there will only be one path between the root and a given leaf pin,
but in certain cases (such as parallel buffers driving an internal net within
a clock tree, or a clock mesh) there may be several paths. An error will be
reported if two paths through the clock distribution network to a given leaf
pin to have different unateness (either positive unate or negative unate are
allowed, but not both).

Leaf pins fall into three categories:

■ Default leaf pins. These are all of the clock input pins on primitives that
are reachable from the root without tracing through any explicit leaf
pins. In Figure 10, the clock inputs on FF1, FF2, FF3, and FF4 are
default leaf pins.

Default leaf pins must be identified in the library as clock pins. The
relevant edges of the clock at a default leaf pin are determined either
explicitly from additional attributes on the pin, or implicitly from the
timing checks and delay arcs related to the pin. When specified, the
additional attributes indicate whether the pin is rising or falling edge-
triggered, or active low or high level-sensitive.

■ Explicit leaf pins. These are port instances (pins on primitives or
primary output/bidirectional pins on the cell) that are explicitly
described in theCLOCK_DELAY construct. In Figure 10,CLK4must
be specified as an explicit leaf pin.

Normally, the logic beyond an explicit leaf pin is part of a larger clock
distribution network, or the leaf pin is a normal clock input pin on a
register. In certain cases, the circuit beyond the leaf pin uses the clock
signal as if it were a data signal. Thedata_leafconstruct should be used
to identify these cases.

When modeling hierarchical clock trees, each GCF must only specify a
CLOCK_DELAY construct for the highestclock_delay_root contained
within the portion of the design described by the GCF. An error message
will be given if aclock_delay_rootfor aCLOCK_DELAY construct lies in
the transitive fanout of aclock_delay_root for anotherCLOCK_DELAY
construct.

144 Version 1.4

Timing Exceptions

Figure 10 Hierarchical Clock Tree

For example, in the circuit shown in Figure 10, the GCF used for doing
analysis on theH1 level of hierarchy must specifyCLK2 as the
clock_delay_root, while the GCF used for doing analysis on theTOPlevel
of hierarchy must specifyCLK1 as theclock_delay_root.

Insertion delays specified in theCLOCK_DELAY construct describe the
insertion delay from theclock_delay_rootall the way to the primitive leaf
pins, even when the clock tree is constructed hierarchically.

In the circuit shown in Figure 10, theCLOCK_DELAY construct in the
GCF used for doing analysis on theH1 level of hierarchy should describe
the nominal insertion delay fromCLK2 to the clock input pins onFF1 and
FF2. TheCLOCK_DELAY construct in the GCF used for doing analysis
on theTOPlevel of hierarchy should describe the nominal insertion delay
from CLK1 to the clock input pins onFF1, FF2, FF3, andFF4.

Syntax

clock_delay_spec::= (label?CLOCK_DELAY
clock_delay_root leaf_spec+)

clock_delay_root::= untyped_port_instance
||= (cell_instance input_port output_port)
||= waveform_name

If a port_instanceis specified for theclock_delay_root, it indicates the pin
that is the source of the network. Insertion delay and skew are measured

CLK1

CLK3CLK2

FF3

H2

FF4FF1

H1

FF2

C1

C2

C3

C4 C8 C9

C6

C7

C5C5

TOP

CLK4

Timing Exceptions

Version 1.4 August 17, 1999 145

from that pin to each of the leafport_instances.

If a cell_instanceis specified for theclock_delay_root, it gives the instance
name of a cell that drives the network. Insertion delay is measured from the
specifiedinput_port through theoutput_port to each of the leaf
port_instances.

If a waveform_name is specified for aclock_delay_root, it affects both
internal and external clock networks associated with the waveform. When
awaveform_name is used, no leafport_instances may be specified.

Internal clock networks are contained within the current GCF cell. When
awaveform_name is specified for theclock_delay_root, the
CLOCK_DELAY construct defines default values for all of the internal
clock networks that are associated with that waveform. Insertion delay,
skew, and slew may be specified for internal clock networks.

TheCLOCK construct is used to associate awaveform_name with the
port_instancethat is the root of an internal clock network. When a
waveform_name is used for theclock_delay_root, the corresponding
CLOCK construct must precede theCLOCK_DELAY construct in the
GCF file.

The default values specified by aCLOCK_DELAY with awaveform_name
clock_delay_rootcan be overridden for a particular internal clock network
by anotherCLOCK_DELAY construct that explicitly specifies the root
port_instance or cell_instance.

External clock networks are not contained within the current GCF cell. The
CLOCK_DELAY construct for an external clock network must only
specify insertion delay. Insertion delay on an external clock network
affects the effective offset of the reference waveform edge forARRIVAL
andREQUIRED constructs.

Skew within an external clock network, or between an external clock
network and internal clock networks, must be specified using the
CLOCK_UNCERTAINTY construct.

Slew is not relevant for external clock networks, because the leaf pins for
an external clock network are not visible within the current GCF cell.

146 Version 1.4

Timing Exceptions

Syntax

leaf_spec ::= clock_mode_value
||= default_leaf_spec
||= explicit_leaf_spec

default_leaf_spec::= (default_leaf_option+)

default_leaf_option::= insertion_delay_spec
||= clock_skew_spec
||= clock_slew_spec

explicit_leaf_spec::= (explicit_leaf_option* clock_delay_leaf+)

explicit_leaf_option ::= insertion_delay_spec
||= internal_insertion_delay_spec
||= clock_slew_spec

clock_delay_leaf::= clock_leaf
||= data_leaf

data_leaf ::= (DATA port_instance+)

insertion_delay_spec::= (INSERTION_DELAY
insertion_delay_value)

internal_insertion_delay_spec::= (INTERNAL_INSERTION_DELAY
insertion_delay_value)

clock_skew_spec::= (SKEW skew_value)

clock_slew_spec::= (SLEW slew_value)

insertion_delay_value::= rise_fall_min_max
skew_value::= rise_fall_min_max
slew_value ::= rise_fall_min_max

Thedefault_leaf_spec describes the default nominal insertion delay, the
default nominal slew at the leaf pins, and the nominal skew for the network
as a whole.

An explicit_leaf_specoverrides thedefault_leaf_specvalues for particular
clock_leafs. In particular, anexplicit_leaf_speccan override the insertion
delay to aclock_leaf and the nominal slew at theclock_leaf. When an
explicit_leaf_spec is used to override the insertion delay to aclock_leaf,
thatclock_leaf is not included in skew computations for the network as a
whole.

When specified in aCLOCK_DELAY construct for a particular internal
clock network, theclock_modeoverrides any default clock mode specified
using theCLOCK_MODE construct. An error message will be given if a
clock_mode is specified for an external clock network. Since the logic in
the external clock network is not visible within the current design, the
analysis of external clock networks is alwaysIDEAL .

Thedata_leafform is used when an output from the clock network is used
as a data signal. Normally, the logic beyond an explicit leaf pin is part of a
larger clock distribution network, or the leaf pin is a normal clock input pin

Timing Exceptions

Version 1.4 August 17, 1999 147

on a register. In certain cases, the circuit beyond the leaf pin uses the clock
signal as if it were a data signal. Thedata_leafconstruct should be used to
identify these cases. Leaf pins listed in thedata_leaf construct are part of
the clock network and are treated like any other explicit leaf pins; only the
analysis of the logic beyond the leaf pin is affected.

The internal_insertion_delay_spec can be used when aclock_leaf is an
input on a hierarchical block and a timing model is used for the block.
Generally the timing model should describe the internal insertion delay
within the hierarchical block, from the input port to the network leaf pins
within the block. When the timing model does not include the internal
insertion delay, it can be specified in the GCF instead. Values specified in
the GCF override values in the timing model.

The default insertion delay and any explicit insertion delays represent the
complete insertion delay from theclock_delay_rootto all of the primitive
leaf pins, even when those primitive leaf pins are contained within a
hierarchical block and a timing model is used for that block.

Therefore, the partial insertion delay from theclock_delay_root to the
input of a hierarchical block is the difference between the complete
insertion delay and the internal insertion delay within the hierarchical
block. When the input of a hierarchical block is specified as aclock_leaf
in anexplicit_leaf_spec, the insertion delay still represents the complete
insertion delay, not the partial insertion delay up to that input.

insertion_delay_value, skew_value, andslew_value are time values and
must be specified in the units defined by thetime_scale. They follow the
convention forrise_fall_min_maxdescribed in “Value Types” on page 48,
as well as the semantics for operating points described in “Min/Max
Values and Operating Conditions” on page 51.

As a special case, it is legal to specify place-holders for all of the
insertion_delay_value fields or all of theslew_value fields in an
explicit_leaf_spec. When place-holders are used for all of the fields, it
indicates that the insertion delay or slew is unconstrained for that
clock_leaf; thedefault_leaf_spec does not apply. Ordinarily, if an
INSERTION_DELAY construct is specified in adefault_leaf_spec, it
applies to all primitive leaf pins, includingclock_leafs that are listed in
explicit_leaf_specs that do not specify anINSERTION_DELAY .

The rise fields ininsertion_delay_value, skew_value, andslew_value
correspond to the rising transition of the clock at the primitive leaf pins.
The rise fields inskew_value represent the nominal skew between the

148 Version 1.4

Timing Exceptions

rising transitions at any pair of primitive leaf pins. Similarly, the fall fields
correspond to the falling transition at the primitive leaf pins.

In GCF 1.4, only a single operating point can be modeled with the
OPERATING_CONDITIONS construct. This leads to ambiguities because
insertion_delay_value, skew_value, andslew_valueall support minimum
and maximum fields for historical reasons that are no longer valid.

A future version of GCF is expected to support multiple operating points,
and at that time, the minimum fields will correspond to best case operating
conditions while the maximum fields will correspond to worst case
operating conditions.

For GCF 1.4, in general

■ The mininimum and maximum fields ininsertion_delay_valueshould
both be set to the same value:

❑ The nominal insertion delay expected at the operating point
specified in theOPERATING_CONDITIONS construct.

The minimum insertion delay will be used for the source clock delay
in hold checks, and for the target clock delay in setup checks.

The maximum insertion delay will be used for the source clock delay
in setup checks, and for the target clock delay in hold checks.

■ The minimum and maximum fields inskew_value should both be set
to the same value:

❑ The largest skew expected between any pair ofclock_leafs at the
operating point specified in theOPERATING_CONDITIONS
construct.

The minimum skew will be added to the target clock delay for hold
checks.

The maximum skew will be subtracted from the target clock delay for
setup checks.

■ The minimum and maximum fields inslew_valueshould both be set to
the same value:

❑ The nominal slew expected at the operating point specified in the
OPERATING_CONDITIONS construct.

The minimum slew will be used in calculating minimum delays
downstream of theclock_leafs.

The maximum slew will be used in calculating maximum delays
downstream of theclock_leafs.

Timing Exceptions

Version 1.4 August 17, 1999 149

Often only one transition of the signal is relevant for a particular
clock_leaf, or for all of the leaf pins in the network. In that case, asterisks
should be used as place-holders for the values associated with the other
transition.

For example, all of the leaf pins of a clock network may be clock inputs on
rising edge-triggered flip flops. In that case, asterisks should be used for
the fall min and max entries in theinsertion_delay_value, skew_value, and
slew_value.

If the default_leaf_spec gives values for both the rising and falling
transitions, only the values for the relevant transition are used for each
default leaf pin.

For an explicit leaf pin, the relevant edges are determined by the values
given in theexplicit_leaf_specand thedefault_leaf_spec. If place-holders
are given for an edge in theexplicit_leaf_spec, then that edge is treated as
not relevant for the leaf pin, even if values are given for both edges in the
default_leaf_spec.

When theclock_delay_root is aport_instance or acell_instance, the
skew_value is treated as an uncertainty that only applies when analyzing
paths between registers within the same clock network. This uncertainty
has higher precedence than target-based uncertainty or inter-clock
uncertainty for those paths (see “Inter-Clock Uncertainty” on page 151).

When theclock_delay_root is awaveform_name, theskew_value treated
as an uncertainty that only applies when analyzing paths between registers
within the same clock network, for each of the clock networks that
distribute that waveform. Theskew_value does not apply for paths
between registers in different clock networks, even if both clock networks
distribute the same waveform. In addition, the skew_value does not apply
to any external clock networks implied byARRIVAL or REQUIRED
constructs that reference thewaveform_name.

When the analysis mode for the network driving a leaf pin is ideal, the slew
values at the leaf pin will be determined using the following precedence
order:

■ The slew specified explicitly by anINTERNAL_SLEW construct

■ The slew specified in anexplicit_leaf_spec for the leaf pin

■ The slew specified in adefault_leaf_spec for aCLOCK_DELAY
construct that includes the pin as an implicit leaf pin

■ The defaultINTERNAL_SLEW

Precedence Rules

150 Version 1.4

Timing Exceptions

■ The defaultINPUT_SLEW

■ 0

When the analysis mode for the network driving a leaf pin is to use actual
delays, the slew values at the leaf pin will be determined using the
following precedence order:

■ The slew specified explicitly by anINTERNAL_SLEW construct

■ The calculated slew

Example

(CLOCK_DELAY

// root
clk1

// defaults (apply to all leaf pins)
(

(INSERTION_DELAY 5.0 6.0 * *)
(SKEW 1.0 1.3 * *)
(SLEW 0.5 0.7 * *)

)
// explicit leaf pins, rising edge, default values
(clk_out)

// explicit leaf pins, both edges active
(

(INSERTION_DELAY 5.0 6.0 4.0 5.0)
(SLEW 0.5 0.7 0.3 0.4)
a/dsp/cp

)

// explicit leaf pins, rising edge, overriding default
(

(INSERTION_DELAY 4.0 4.5 * *)
a/ff3/cp
a/ff4/cp

)

// data leaf pin, both edges active
(

(INSERTION_DELAY 5.0 6.0 4.0 5.0)
(SLEW 0.5 0.7 0.3 0.4)
clock_active/a

)

) // clock_delay

Timing Exceptions

Version 1.4 August 17, 1999 151

This example specifies a complicated clock network with a primary input
port instance as a root and a mixture of default, explicit, and data leaf pins.

The default insertion delay for the rising edge at the leaf pins is 5.0 ns at
the minimum operating point, and 6.0 ns at the maximum operating point.

The explicit leaf pins areclk_out, a/dsp/cp, a/ff3/cp, a/ff4/cp. In addition,
clock_active/ais a data leaf, where logic beyond that pin is treated as data
logic rather than clock logic.

In general, there is always some skew between when the launching clock
edge arrives at a source register and when the capturing clock edge arrives
at a target register.

If both the source register and the target register are contained within the
portion of the design described by the GCF, and they are both driven by
the same clock network, then the nominal skew can be described directly
using theCLOCK_DELAY construct. Once the real clock network has
been added to the design, the actual skew can be computed by analyzing
just the portion of the clock network that is visible within the current GCF
cell.

If the source and target clocks are derived from a common oscillator, but
only a portion of the clock network relating the clocks is visible within the
current GCF cell, then the skew between the clocks is affected by insertion
delays both internal and external to the current GCF cell.

External insertion delays can be described with theCLOCK_ARRIVAL
construct. The nominal internal insertion delays can be described with the
CLOCK_DELAY construct. Once the real clock network has been added
to the design, the actual internal insertion delays can be computed.

However, when the design is partially complete both the external and
internal insertion delays may not be known. The designer may expect to be
able to balance the insertion delays between different clock sub-trees as
well as minimize skew within each clock sub-tree. In this case, the
expected difference between the insertion delays may be known, but the
insertion delays themselves may not.

The designer may also want to add some margin in the analysis to account
for any incremental changes that may be necessary, or specify that there is
some uncertainty associated with the insertion delays specified in the
CLOCK_ARRIVAL andCLOCK_DELAY constructs.

TheCLOCK_UNCERTAINTY construct is used to specify these types of
skew, uncertainty, and margin.

Inter-Clock Uncertainty

152 Version 1.4

Timing Exceptions

Syntax

clock_uncertainty_spec::= (label?CLOCK_UNCERTAINTY
clock_uc_option*
clock_uc_value
clock_uc_item)

clock_uc_option::= clock_uc_calc_option
||= clock_uc_mode_option

clock_uc_calc_option::= ABSOLUTE
||= INCREMENT

clock_uc_mode_option::= IDEAL
||= ACTUAL

clock_uc_value::= r_min_max

clock_uc_item::= target_clock_uc_item+
||= target_clock_uc_item_edge
||= inter_clock_uc_item

target_clock_uc_item::= waveform_name
||= typed_waveform_list
||= clock_root
||= clock_leaf
||= clock_leaf_instance

clock_leaf_instance::= cell_instance

target_clock_uc_item_edge::= (waveform_edge target_clock_uc_item+)

inter_clock_uc_item::= (BETWEEN
inter_clock_from
inter_clock_to)

inter_clock_from ::= (FROM inter_clock_from_to_item)

inter_clock_to ::= (TO inter_clock_from_to_item)

inter_clock_from_to_item::= waveform_name
||= waveform_edge

waveform_edge::= (waveform_edge_identifier waveform_name)

Theclock_uc_value follows the conventions forr_min_max described in
“Value Types” on page 48, as well as the semantics for operating points
described in “Min/Max Values and Operating Conditions” on page 51.

In GCF 1.4, only a single operating point can be modeled with the
OPERATING_CONDITIONS construct. This leads to ambiguities because
clock_uc_value supports both minimum and maximum fields, for
compatibility with a future version of GCF that is expected to support
multiple operating points. At that time, the minimum fields will
correspond to best case operating conditions while the maximum fields
will correspond to worst case operating conditions.

Timing Exceptions

Version 1.4 August 17, 1999 153

For GCF 1.4, in general the mininimum and maximum fields in
clock_uc_valueshould both be set to the same value:

❑ The largest uncertainty expected at the operating point specified in
theOPERATING_CONDITIONS construct.

The minimum uncertainty will be added to the target clock delay for hold
checks.

The maximum uncertainty will be subtracted from the target clock delay
for setup checks.

The uncertainty described by theclock_uc_valuecan either override or add
to any skew that is computed from the insertion delays to the source and
target registers.

■ When theABSOLUTE keyword is specified, theclock_uc_value
overrides computed skew, and the insertion delays to the source and
target registers are ignored.

■ When theINCREMENT keyword is specified, theclock_uc_value is
added to the skew computed from the insertion delays.

■ If neither option is specified, the default isINCREMENT .

Theclock_uc_mode_optionis used to specify different uncertainty values
to be used based on the analysis mode for the source and target clock
networks:

■ The uncertainty value specified in aCLOCK_UNCERTAINTY
construct with theIDEAL clock_uc_mode_option is used when the
analysis mode for either the source or the target clock network is ideal.

■ The uncertainty value specified in aCLOCK_UNCERTAINTY
construct with theACTUAL clock_uc_mode_option is used when the
actual delays are used for both the source and target clock networks.

If no clock_uc_mode_option is specified, the uncertainty value applies to
both modes.

Target-based uncertainty is specified using thetarget_clock_uc_item and
target_clock_uc_item_edge forms. Target-based uncertainty affects all
paths where data is captured by the clock edges referenced by the
target_clock_uc_item or target_clock_uc_item_edge.

For thetarget_clock_uc_itemform, the uncertainty affects both rising and
falling capturing edges. For thetarget_clock_uc_item_edge form, the
uncertainty only affects the specified type of capturing edge.

Target-Based
Uncertainty

154 Version 1.4

Timing Exceptions

When awaveform_nameis specified, the uncertainty value affects paths to
registers in the transitive fanout of theclock_roots associated with the
waveform. It also affects paths to theport_instances that have a
REQUIRED time referenced to the waveform.

When aclock_root is specified fortarget_clock_uc_item, the uncertainty
value affects paths to all of the data inputs of registers in the transitive
fanout of theclock_root.

When a clock input pin of a register is specified using theclock_leafform
of target_clock_uc_item, the uncertainty value affects paths to the related
data inputs of that register.

When a register is specified using theclock_leaf_instance form of
target_clock_uc_item, the uncertainty value affects paths to all of the data
inputs of that register.

Inter-clock uncertainty is specified using theinter_clock_uc_itemform.
The uncertainty affects paths between

■ Source registers in the transitive fanout of theclock_roots associated
with theinter_clock_sourcewaveform

■ Target registers in the transitive fanout of theclock_roots associated
with theinter_clock_target waveform.

Inter-clock uncertainty also affects paths fromport_instancesthat have an
ARRIVAL time referenced to theinter_clock_sourcewaveform, and paths
to port_instances that have aREQUIRED time referenced to the
inter_clock_target waveform.

When awaveform_edge is specified for theinter_clock_source, only the
paths that are launched from that edge are affected. When a
waveform_edgeis specified for theinter_clock_target, only the paths that
are captured by that edge are affected.

■ Intra-tree uncertainty specified in theCLOCK_DELAY construct
always has the highest precedence for paths between source and target
registers that are both driven by that tree.

■ Edge-specific uncertainty has higher precedence than non-edge-
specific uncertainty. For inter-clock skew,TO edge specifications have
higher precedence thanFROM edge specifications.

■ Uncertainties specified using theCLOCK_DELAY SKEW construct or
theCLOCK_UNCERTAINTY construct are added to uncertainty due
to jitter specified usingWAVEFORM or DERIVED_WAVEFORM .

Inter-Clock
Uncertainty

Precedence Rules

Timing Exceptions

Version 1.4 August 17, 1999 155

■ The precedence between different target-based uncertainties of the
same edge type is (in decreasing order):clock_leaf, clock_root,
waveform_name.

Example

(CLOCK_UNCERTAINTY
ABSOLUTE
IDEAL
1.0 1.3
"wave"

)
(CLOCK_UNCERTAINTY

INCREMENT
ACTUAL
0.1
"wave"

)

In this example, different target-based clock uncertainties are specified for
IDEAL mode andACTUAL mode. When ideal insertion delays are used
for either the source or target clock network, the first clock uncertainty
overrides the skew computed from the insertion delays of the clock
networks.

■ 1.3 ns of uncertainty is subtracted from the target clock edge for setup
checks.

■ 1.0 ns of uncertainty is added to the target clock edge for hold checks.

When actual insertion delays are used for both the source and target clocks,
a margin of 0.1 ns is added to the skew computed from the actual insertion
delays:

■ 0.1 ns of uncertainty is subtracted from the target clock edge for setup
checks

■ 0.1 ns of uncertainty is added to the target clock edge for hold checks.

156 Version 1.4

Timing Exceptions

Example

(CLOCK_UNCERTAINTY
* 1.3
clk2

)
(CLOCK_UNCERTAINTY

* 0.7
(BETWEEN

(FROM (posedge "wave1"))
(TO (negedge "wave2"))

)
)

In this example, both a target-based and an inter-clock uncertainty are
specified. The target-based clock uncertainty affects setup checks on paths
to registers in the transitive fanout of the clock rootclk2. The inter-clock
uncertainty affects setup checks on paths launched by the rising edge of
waveformwave1 and captured by the falling edge of waveformwave2.

Assuming thatwave2is associated withclk2, the inter-clock uncertainty
has higher precedence for target registers in the transitive fanout ofclk2
that have a falling capturing edge. Therefore, for setup checks on paths
from a flip flop triggered by the rising edge ofwave1 to a falling edge-
triggered flip flop in the transitive fanout ofclk2, an uncertainty of 0.7 will
be subtracted from the target clock edge.

For setup checks at a rising edge-triggered flip flop in the transitive fanout
of clk2, an uncertainty of 1.3 will be subtracted from the target clock edge
The same will be true for setup checks at falling edge-triggered flip flops
in the transitive fanout ofclk2where the source register is not triggered by
the rising edge ofwave1.

The constructs in this example do not affect the uncertainty used for hold
checks.

The timing exceptions can be case-dependent.

Syntax

timing_exception_case::= (CASE IDENTIFIER
timing_exception_case_spec+)

timing_exception_case_spec::= timing_exception_spec_0
||= timing_exception_no_case_1

Timing Exception
Cases

Timing Exceptions

Version 1.4 August 17, 1999 157

Example

(EXCEPTIONS
(level 1

(case normal
(multi_cycle (setup 4) (from reg1))

)
(case throttled

(multi_cycle (setup 2) (from reg1))
)

)
)

In this example, the number of cycles required for paths starting atreg1
depends on whether the clock provided to the chip is being throttled.

158 Version 1.4 Archaic Constructs

Timing Exceptions Archaic Constructs

This section describes archaic constructs, which are supported in this
version of GCF for backward compatibility, but may be dropped in the
next major version.

In general, tools are expected to be able to read any version of GCF starting
with 1.0, including the following constructs when used in a GCF file with
a VERSION string containing 1.4 and lower. However, the following
constructs may not be supported when used in a GCF file with aVERSION
string containing 2.0 or higher.

The Level 1thru_edge_spec construct is archaic and has been replaced by
from_to_thru_path_spec. Thethru_edge_spec construct constrains all
paths that pass through a givenport_instance, and it affects only the
transitions through those paths that result in the given edge at that
port_instance.

The semantics of which paths are constrained when theport_instanceis on
a flip flop or a latch are the same as for the Level 0thru_spec construct,
except that only the specified edges of those paths are constrained.

Syntax

thru_edge_spec ::= (THRU port_instance_edge) (archaic)

Example

(THRU (negedge ff1.SN))

This example constrains all paths through the preset input of a flip flop.
Only the transitions through those paths that result in a falling transition at
the preset input are affected.

The Level 1arc_edges_spec is archaic and has been replaced by
from_to_thru_path_spec. Thearc_edges_spec constrains certain edges of
all paths that pass through twoport_instances, including paths that start or
end at the arc. Theport_instances must be contiguous in the path (either
an input to output connection on a cell, or an output to input connection on
a net).

Syntax

arc_edges_spec ::= (ARC
port_instance_edge
port_instance_edge) (archaic)

Example

(ARC (posedge DRVR_A.Z) (posedge RCVR_A.A))

Archaic Timing
Exception Constructs

Level 1 Port Instance
Edge Specification
(Archaic)

Level 1 Arc Edges
Specifications
(Archaic)

Archaic Constructs Timing Exceptions

Version 1.4 August 17, 1999 159

This example constrains all paths that pass through the output of a tristate
bus driver, DRVR_A.Z, then back through the input of a tristate bus
receiver, RCVR_A.A. Only the rising edge at the twoport_instances is
affected; the falling edge at the twoport_instances is not affected.

The Level 1thru_all_spec construct is archaic and has been replaced by
from_to_thru_path_spec. Thethru_all_spec constrains all paths that pass
through all of the listedport_instances. These ports do not have to be
contiguous in the paths, but they must be listed in the order in which they
would be encountered in traversing each path from the source to the target.

Syntax

thru_all_spec ::= (THRU_ALL
port_instance
port_instance+) (archaic)

Example

(THRU_ALL
IN1
X.A
Y.A

)

This example constrains all paths that start at a primary input (IN1) then
pass throughport_instances X.A and Y.A. All transitions through these
paths are affected.

The Level 1thru_all_edges_spec construct is archaic and has been replaced
by from_to_thru_path_spec. Thethru_all_edges_spec constrains paths that
go through all of a set ofport_instances, which do not have to be
contiguous in the paths. Only the transitions through the constrained paths
that result in the specified edge at each of theport_instances are affected.

Syntax

thru_all_edges_spec ::= (THRU_ALL
port_instance_edge
port_instance_edge+) (archaic)

Example

(THRU_ALL
(posedge IN1)
(posedge X.A)
(negedge Y.A)

)

Level 1 Thru All
Specification
(Archaic)

Level 1 Thru All
Edges Specification
(Archaic)

160 Version 1.4 Archaic Constructs

Timing Exceptions Archaic Constructs

This example constrains all paths that start at a primary input (IN1) then
pass throughport_instancesX.A and Y.A. Only the transitions through the
path that result in a rising edge at IN1 and X.A and a falling edge at Y.A
are affected.

Thedisable_edges_spec_1 construct construct is archaic and has been
replaced bydisable_from_to_thru_spec_0. Thedisable_edges_spec_1
construct disables selected timing checks on a set of paths. If theSETUP
or HOLD keyword is specified, only the late (maximum) or the early
(minimum) timing checks must be disabled; otherwise, both the early and
late timing checks are disabled.

Syntax

disable_edges_spec_1 ::= (label? DISABLE
disable_edges_path_spec+
timing_check?) (archaic)

disable_edges_path_spec::= thru_edge_spec
||= arc_edges_spec
||= thru_all_edges_spec (archaic)

See pages 158-159 for details on the types of paths that can be constrained
by thethru_edge_spec, thearc_edges_spec, and thethru_all_edges_spec.

For each of these cases, if theHOLD or SETUPkeyword is specified as the
timing_check, only the early (minimum) or the late (maximum) timing
checks must be disabled. Otherwise, both the early and late timing checks
are disabled.

In Level 1, the constrained paths can be specified in additional ways. The
multi_cycle_thru_spec_1 construct is archaic and has been replaced by the
multi_cycle_from_to_thru_spec_0 construct.

Syntax

multi_cycle_spec_1::= multi_cycle_thru_spec_1 (archaic)

Themulti_cycle_thru_spec_1 construct is archaic and has been replaced by
themulti_cycle_from_to_thru_spec_0 construct.

Syntax

multi_cycle_thru_spec_1 ::= (label? MULTI_CYCLE
multi_cycle_option+
multi_cycle_thru_path_spec_1+)

(archaic)

multi_cycle_thru_path_spec_1 ::= arc_spec
||= thru_spec
||= thru_all_spec (archaic)

Disabling Paths Through
Edges (Archaic)

Level 1
Multi-Cycle Paths

Multi-Cycle Paths With Ar c
and Thru (archaic)

Archaic Constructs Timing Exceptions

Version 1.4 August 17, 1999 161

Example

(LEVEL 1
(MULTI_CYCLE (SETUP 3 SOURCE) (THRU and1.in1))

)

The multi-cycle path specification in this example has the following
effects on all paths throughand1.in1:

■ For the setup check on both rising and falling data edges, the active
edge at the source is three source clock cycles earlier than the default.
The default active edge at the target is unchanged.

■ The hold check on both rising and falling data edges at the target is
implicitly affected by the setup adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair,
which is used without adjustment in the hold check.

Example

(LEVEL 1
(MULTI_CYCLE (HOLD 1 TARGET) negedge

(THRU_ALL nor2.in1 and3.in2))
)

The multi-cycle path specification in this example has the following
effects on all paths through bothnor2.in1 andand3.in2:

■ The setup check on falling data edges at the target is not affected by the
specification. However, this setup check does establish the default
setup edge pair used by the hold check.

■ The hold check on falling data edges at the target is affected by the hold
adjustment. The two hold conditions are considered with respect to the
default setup edge pair to determine the new default hold edge pair.

The hold adjustment is then applied, resulting in the hold active edge
at the target being one target clock cycle earlier than in the default hold
edge pair, while the hold active edge at the source is the same as in the
default hold edge pair.

■ The setup and hold checks on rising data edges at the target are not
affected by the multi-cycle specification.

162 Version 1.4 Archaic Constructs

Timing Exceptions Archaic Constructs

In Level 1, the constrained paths can be specified in additional ways.

Syntax

path_delay_spec_1 ::= path_delay_path_spec_1 (archaic)

Thepath_delay_path_spec_1 construct is archaic and has been replaced by
thepath_delay_from_to_thru_spec_0 construct.

Syntax

path_delay_path_spec_1 ::= (label? PATH_DELAY
path_delay_value
path_delay_path_spec_1+) (archaic)

path_delay_path_spec_1 ::= arc_spec
||= thru_spec
||= thru_all_spec (archaic)

Example

(PATH_DELAY 3.0 * 2.7 *
(ARC ff1.clk ff1.q)

)

(PATH_DELAY 4.5 * 4.3 *
(ARC ff1.clk ff1.qn)

)

This example specifies the combinational delay for all paths that start at
ff1.clk and go through eitherff1.q or ff1.qn. The constraints are different
based on the output of the flip flop.

For each path that goes through theq output, the delay of the transitions
that result in a rising transition at the target (which will be either a register
data input or a primary output) must be greater than 3.0 ns at the minimum
operating point. The delay for a falling transition at the target must be
greater than 2.7 ns. The late (maximum) delays are unconstrained.

For each path that goes through theqnoutput, the delay of the transitions
that result in a rising transition at the target (which will be either a register
data input or a primary output) must be greater than 4.5 ns at the minimum
operating point. The delay for a falling transition at the target must be
greater than 4.3 ns. The late (maximum) delays are unconstrained.

Level 1
Path Delays

Archaic Constructs Timing Exceptions

Version 1.4 August 17, 1999 163

TheMAX_TRANSITION_TIME construct is archaic. It only allows specifying
a maximum constraint value. The preferred construct,SLEW_LIMIT ,
allows both a maximum and a minimum.

Syntax

max_transition_time_spec ::= (label? MAX_TRANSITION_TIME
rise_fall
port_instance*) (archaic)

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified, theslew_value represents by
default the time required to transition between the 10 and 90 percent points
of the power supply voltage.

Therise_fallparameter is a time value and it follows the same conventions
for units and thresholds as theslew_value in SLEW_LIMIT . The same
values apply for all operating points.

Example

(MAX_TRANSITION_TIME 1.5 1.8 ff1.d)

This example constrains the maximum slew (transition time) atff1.d. The
slew must be less than 1.5 ns for the rising transition, and less than 1.8 ns
for the falling transition.

Max Transition
Time

164 Version 1.4 Archaic Constructs

Timing Exceptions Archaic Constructs

Parasitics Subset
Parasitics Subset Header

Parasitics Environment

Parasitics Constraints

5

Parasitics Subset Header

Version 1.4 August 17, 1999 167

Parasitics Subset Header

The parasitics subset of each cell entry in the GCF file includes the
following:

■ Information about the parasitics in the environment in which the cell is
intended to operate

■ Constraints on the parasitics within the cell

This chapter describes the parasitic environment and parasitic constraints.
For information on other constructs, refer to “Extensions” on page 41,
“Meta Data” on page 44, and “Include Files” on page 46.

Syntax

parasitics_subset::= (SUBSET PARASITICS
 parasitics_subset_body)

parasitics_subset_body::= parasitics_subset_spec+
||= include

parasitics_subset_spec::= parasitics_environment
||= parasitics_constraints
||= extension
||= meta_data

Example

(CELL (CELLTYPE "WORKLIB" "ALU")
(SUBSET PARASITICS

(ENVIRONMENT
 . . .

)
(CONSTRAINTS

 . . .
)

)
)

Figure 11 below summarizes the different types of parasitic environment
and constraint specifications.

168 Version 1.4

Parasitics Subset Header

Figure 11 Parasitics Environment and Constraints

A represents the external load on an input interface net of the current GCF
cell, which is an environment condition specified using the
EXTERNAL_LOAD construct. The external load affects the delay
calculation on the interface net.

B represents the internal load on an input interface net of the current GCF
cell, which is a constraint specified using theINTERNAL_LOAD
construct. The internal load constraint affects optimization tools, which
will try to ensure that the actual load within the boundaries of the current
GCF cell meets the constraint.

C represents the load on a net which is entirely contained within the current
GCF cell, which is a constraint specified using theLOAD construct. The
load constraint affects optimization tools, which will try to ensure that the
actual load meets the constraint.

D represents the internal load on an output interface net of the current GCF
cell, which is a constraint specified using theINTERNAL_LOAD
construct. The internal load constraint affects optimization tools, which
will try to ensure that the actual load within the boundaries of the current
GCF cell meets the constraint.

E represents the external load on an output interface net of the current GCF
cell, which is an environment condition specified using the
EXTERNAL_LOAD construct. The external load affects the delay
calculation on the interface net.

A B

C

ED

Parasitics Environment

Version 1.4 August 17, 1999 169

Parasitics Environment

The parasitics environment of a cell describes a number of conditions
external to the cell that affect its timing behavior. This version of GCF
includes only the external capacitance on nets connected to the cell
interface pins.

Syntax

parasitics_environment::= (ENVIRONMENT
parasitics_env_spec+)

parasitics_env_spec::= parasitics_env_spec_0
||= parasitics_env_spec_1

parasitics_env_spec_0::= external_load_spec
||= extension

parasitics_env_spec_1::= (LEVEL 1 parasitics_env_1+)

parasitics_env_1::= parasitics_env_no_case_1
||= parasitics_env_case

parasitics_env_no_case_1::= external_fanout_spec
::= external_wire_load_model_spec
::= wire_load_model_spec
||= meta_data_1

The following sections describe external loading, external fanout, and
parasitic environment cases.

For an interface net that is connected to a primary port on the current GCF
cell, theEXTERNAL_LOAD construct specifies the actual value of the
portion of the capacitance which is not contained within the current GCF
cell, including the pin capacitance of any pins connected to the net outside
of the current GCF cell.

INTERNAL_LOAD specifies the capacitance allowed inside the current
GCF cell, whileEXTERNAL_LOAD specifies the capacitance that exists
outside the current GCF cell.

Syntax

external_load_spec::= (label?EXTERNAL_LOAD
capacitance_value
 port_instance*)

capacitance_value::= min_max

The capacitance can be specified for both input and output ports. If no
port_instance is specified, the specification applies by default to all

External Loading

170 Version 1.4

Parasitics Environment

primary ports. Thecapacitance value follows the conventions for
min_max described in “Value Types” on page 48.

The external load is added to the capacitance within the cell when
computing the delay of the interface net.

For an interface net that is connected to a primary port on the current GCF
cell, theEXTERNAL_FANOUT construct specifies the number of ports
connected to the net outside of the current GCF cell. This, combined with
a wire load model named in theEXTERNAL_WIRE_LOAD_MODEL
construct, specifies the portion of the capacitance on the interface net
which is not contained within the current GCF cell.

INTERNAL_FANOUT specifies the number of ports that are allowed to be
connected to the net inside the current GCF cell.EXTERNAL_FANOUT
specifies the number of ports which are connected to the net outside the
current GCF cell.

This construct is a Level 1 construct because it requires a separate source
of wire load models for proper interpretation. The wire load models are not
defined in GCF, simply referenced by name.

Syntax

external_fanout_spec::= (label?EXTERNAL_FANOUT num_loads
port_instance*)

num_loads::= min_max

The number of external fanouts can be specified for both input and output
ports. If noport_instanceis specified, the specification applies by default
to all primary ports. Thenum_loads value follows the conventions for
min_max described in “Value Types” on page 48.

The external load computed from the external fanout is added to the
capacitance within the cell when computing the delay of the interface net

.For an interface net that is connected to a primary port on the current GCF
cell, theEXTERNAL_WIRE_LOAD_MODEL construct specifies the
name of the wire load model which should be used in conjunction with the
EXTERNAL_FANOUT construct to compute the external load
capacitance.

This construct is a Level 1 construct because it requires a separate source
of wire load models for proper interpretation. The wire load models are not
defined in GCF, simply referenced by name.

External Fanout

External Wire Load
Model

Parasitics Environment

Version 1.4 August 17, 1999 171

Syntax

external_wire_load_model_spec::=
(label?EXTERNAL_WIRE_LOAD_MODEL

library_name? wire_load_model_name port_instance*)

wire_load_model_name::= QSTRING

Example

(parasitics
(environment

(level 1
(external_wire_load_model “custom_wlms” “chip_wlm”

out1)
)

)
)

In this example, the external wire load model “chip_wlm” from the
“custom_wlms” library is assigned to output pinout1.

.A wire load model can also be assigned for the nets contained within
particular instances or cell types, using theWIRE_LOAD_MODEL
construct.

This construct is a Level 1 construct because it requires a separate source
of wire load models for proper interpretation. The wire load models are not
defined in GCF, simply referenced by name.

Syntax

wire_load_model_spec::= (label?WIRE_LOAD_MODEL
library_name? wire_load_model_name
cell_instance+)

||= (label?WIRE_LOAD_MODEL
library_name? wire_load_model_name
cell_id)

Example

(parasitics
(environment

(level 1
(wire_load_model “small_wlm” a/b a/c)
(wire_load_model “medium_wlm” (CELLTYPE “FSM2”))

)
)

)

In this example, the wire load model “small_wlm” is assigned to instances
a/banda/c, and the wire load model “med_wlm” is assigned to the master
cell type “FSM2”.

Wire Load Model

172 Version 1.4

Parasitics Environment

The parasitics environment can be case-dependent.

Syntax

parasitics_env_case::= (CASE IDENTIFIER
parasitics_env_case_spec+)

parasitics_env_case_spec::= parasitics_env_spec_0
||= parasitics_env_no_case_1

Example

(environment
(level 1

(case board
(external_load 50.0 out1)

)
(case tester

(external_load 100.0 out1)
)

)
)

In this example, the external capacitance on pinout1depends on whether
the chip is mounted on the board or whether it is being tested.

Parasitics Environment
Cases

Parasitics Constraints

Version 1.4 August 17, 1999 173

Parasitics Constraints

This version of GCF includes only the parasitics constraints on the nets
within a cell. Two forms of constraints are currently supported. The
constraint form depends on whether the net is connected to a primary port
on the cell.

Syntax

parasitics_constraints::= (CONSTRAINTS parasitics_constraint+)

parasitics_constraint::= parasitics_cnstr_spec_0
||= parasitics_cnstr_spec_1

parasitics_cnstr_spec_0::= internal_load_spec
||= load_spec
||= extension

parasitics_cnstr_spec_1::= (LEVEL 1 parasitics_cnstr_1+)

parasitics_cnstr_1::= parasitics_cnstr_no_case_1
||= parasitics_cnstr_case

parasitics_cnstr_no_case_1::= internal_fanout_spec
||= fanout_spec
||= meta_data_1

The following sections describe internal loading, loading, internal fanout,
fanout, and parasitic constraint cases.

For an interface net that is connected to a primary port on the current GCF
cell, theINTERNAL_LOAD construct specifies a constraint on the portion
of the net capacitance that is contained within the current GCF cell.

INTERNAL_LOAD specifies the capacitance allowed inside the current
GCF cell, whileEXTERNAL_LOAD specifies the capacitance that exists
outside the current GCF cell.

Syntax

internal_load_spec::= (label?INTERNAL_LOAD capacitance_value
 port_instance*)

The INTERNAL_LOAD constraint can be specified for both input and
output ports. If noport_instance is specified, the specification applies by
default to all primary ports. Thecapacitance_value follows the
conventions formin_max described in “Value Types” on page 48.

The load limit, or constraint on the capacitance, of a net that is entirely
contained within the current GCF cell (not connected to any primary ports
of the current GCF cell) can be specified in terms of an explicit capacitance

Internal Loading

Loading

174 Version 1.4

Parasitics Constraints

value using theLOAD construct. Thecapacitance_value follows the
conventions formin_max described in “Value Types” on page 48.

Syntax

load_spec::= (label?LOAD capacitance_value
 port_instance_or_master*)

The constraint on the capacitance of a non-interface net can be specified
on any port connected to the net. A default load limit can be specified by
omitting port instances, and it applies to all nets entirely contained within
the current GCF cell.

A master-based default load limit can also be specified using the
port_master form ofport_instance_or_master. The master-based default
load limit applies to all nets which are entirely contained within the current
GCF cell and are connected to an occurrence of a port corresponding to the
port_master.

Precedence Rules

■ Usually, the load limit is specified in the library. If the load limit is
specified in both the library and the GCF file, the more restrictive
constraint will be used.

■ Explicit load limits have higher precedence than master-based default
load limits, which have higher precedence than normal default load
limits.

■ If different constraints affect several ports connected to the same net,
the most restrictive constraint will be used.

For an interface net that is connected to a primary port on the current GCF
cell, theINTERNAL_FANOUT construct specifies a constraint on the
number of ports which may be connected to the net inside of the current
GCF cell.

INTERNAL_FANOUT specifies the number of ports that are allowed to be
connected to the net inside the current GCF cell.EXTERNAL_FANOUT
specifies the number of ports which are connected to the net outside the
current GCF cell.

Syntax

internal_fanout_spec::= (label?INTERNAL_FANOUT num_loads
port_instance*)

The number of internal fanouts can be specified for both input and output
ports. If noport_instanceis specified, the specification applies by default
to all primary ports. Thenum_loads value follows the conventions for
min_max described in “Value Types” on page 48.

Internal Fanout

Parasitics Constraints

Version 1.4 August 17, 1999 175

The constraint on the capacitance of a net that is entirely contained within
the current GCF cell (not connected to any primary ports of the current
GCF cell) can be specified in terms of terms of the number of loads
allowed using theFANOUT construct. Thenum_loads value follows the
conventions formin_max described in “Value Types” on page 48.

Syntax

fanout_spec::= (label?FANOUT num_loads
port_instance*)

The number of fanouts can be specified on any port connected to the net.
If different constraints are specified on several ports connected to the same
net, the most restrictive constraint will be used. If noport_instance is
specified, the specification applies by default to all nets entirely contained
within the current GCF cell.

The parasitics constraints can be case-dependent, although it usually
makes sense to specify the tightest constraint across all of the cases instead.

Syntax

parasitics_cnstr_case::= (CASE IDENTIFIER
parasitics_cnstr_case_spec+)

parasitics_cnstr_case_spec::= parasitics_cnstr_spec_0
||= parasitics_cnstr_no_case_1

Fanout

Parasitics Constraint
Cases

176 Version 1.4

Parasitics Constraints

Area Subset
Area Subset Header

Area Constraints

6

Area Subset Header

Version 1.4 August 17, 1999 179

Area Subset Header

The area subset of each cell entry in the GCF file includes the following:

■ Constraints on the area of the cell

■ Constraints on the area of the primitives instantiated within the cell

This chapter describes the primitive area constraints, total area constraints,
cell porosity, and area constraint cases. For information on other
constructs, refer to “Extensions” on page 41, “Meta Data” on page 44,
and “Include Files” on page 46.

Syntax

area_subset::= (SUBSET AREA area_subset_body)

area_subset_body::= area_cnstr_spec+
||= include

area_cnstr_spec::= area_cnstr_spec_0
||= area_cnstr_spec_1

area_cnstr_spec_0::= primitive_area_spec
||= total_area_spec
||= extension

area_cnstr_spec_1::= (LEVEL 1 area_cnstr_1+)

area_cnstr_1::= area_cnstr_no_case_1
||= area_cnstr_case

area_cnstr_no_case_1::= porosity_spec
||= meta_data_1

Example

(CELL (CELLTYPE "WORKLIB" "ALU")
(SUBSET AREA

(PRIMITIVE_AREA 5000)
(TOTAL_AREA 5500)

)
)

180 Version 1.4

Area Constraints

Area Constraints

The cumulative area of the leaf-level primitive cells that are instantiated
either directly within a cell or within its descendents can be specified using
thePRIMITIVE_AREA construct. The primitive area does not include any
physical overhead such as routing and power distribution which affect the
total area of the cell.

Syntax

primitive_area_spec::= (label?PRIMITIVE_AREA area_value)

area_value ::= min_max

Thearea_valuefollows the conventions formin_maxdescribed in “Value
Types” on page 48.

Example

(PRIMITIVE_AREA 0 5000)

Assuming that thearea_scale is set so that area values in the GCF file(s)
are specified in square microns, the example specifies that the total
primitive area within the current cell must be less than or equal to 5000
square microns.

The total area of a cell (including physical overhead) can be specified
using theTOTAL_AREA construct.

Syntax

total_area_spec::= (label?TOTAL_AREA area_value)

Thearea_valuefollows the conventions formin_maxdescribed in “Value
Types” on page 48.

Example

(TOTAL_AREA 0 5500)

Assuming that the area_scale is set so that area values in the GCF file(s)
are specified in square microns, this example specifies that the total area of
the current cell must be less than or equal to 5500 square microns.

ThePOROSITY construct is a Level 1 construct and specifies the porosity
of a cell.

Porosity is the percentage of the total primitive area that is available for
over-the-cell routing. The total primitive area is the sum across all of the

Primitive Area

Total Area

Porosity

Area Constraints

Version 1.4 August 17, 1999 181

leaf-level primitive cells which are instantiated either directly within the
current cell or within its descendents.

Syntax

porosity_spec::= (label?POROSITY porosity_value)

porosity_value::= min_max

Theporosity_value follows the conventions formin_max described in
“Value Types” on page 48.

Example

(POROSITY 40 *)

In this example, at least 40 percent of the primitive area within the current
cell must be available for over-the-cell routing.

The area constraints can be case-dependent, although it usually makes
sense to specify the tightest constraint across all of the cases instead.

Syntax

area_cnstr_case::= (CASE IDENTIFIER area_cnstr_case_spec+)

area_cnstr_case_spec::= area_cnstr_spec_0
||= area_cnstr_no_case_1

Area Constraint Cases

182 Version 1.4

Area Constraints

Power Subset
Power Subset Header

Power Constraints

7

Power Subset Header

Version 1.4 August 17, 1999 185

Power Subset Header

The power subset of each cell entry in the GCF file includes the following:

■ Constraints on the average power consumed by the cell and the
primitives instantiated within it

■ Constraints on the power consumed by particular nets

This chapter describes the average cell power constraints, average net
power constraints, and power constraint cases. For information on other
constructs, refer to “Extensions” on page 41, “Meta Data” on page 44, and
“Include Files” on page 46.

Syntax

power_subset::= (SUBSET POWERpower_subset_body)
power_subset_body::= power_cnstr_spec+

||= include

power_cnstr_spec::= power_cnstr_spec_0
||= power_cnstr_spec_1

power_cnstr_spec_0::= average_cell_power
||= average_net_power
||= extension

power_cnstr_spec_1::= (LEVEL 1 power_cnstr_1+)
power_cnstr_1::= power_cnstr_case

||= meta_data_1

Example

(CELL ()
(SUBSET POWER

(AVG_CELL_POWER * 50 a/b)
)

)

186 Version 1.4

Power Constraints

Power Constraints

The average power consumed by a cell instance can be specified using the
AVG_CELL_POWER construct.

Syntax

average_cell_power::= (label?AVG_CELL_POWER power_value)
power_value::= min_max

Thepower_value follows the conventions formin_max described in
“Value Types” on page 48.

Example

(AVG_CELL_POWER * 50.0)

Assuming that thepower_scale is set so that power values in the GCF
file(s) are specified in milliwatts, the example specifies that the average
power consumed by the current cell instance must be less than or equal to
50 milliwatts.

The average power dissipated by the capacitance in a net can be specified
using theAVG_NET_POWER construct. This construct is generally only
used for clock nets.

Syntax

average_net_power::= (label?AVG_NET_POWER power_value
port_instance)

The power is specified for the physical net as a whole, although the net is
identified using one of theport_instances connected to the net. The
power_value follows the conventions formin_max described in “Value
Types” on page 48.

Example

(AVG_NET_POWER * 1000.0 CLKBUF.OUT)

Assuming that thepower_scale is set so that power values in the GCF
file(s) are specified in milliwatts, the example specifies that the average
power consumed by the specified net must be less than or equal to 1 watt.

Average Cell Power

Average Net Power

Power Constraints

Version 1.4 August 17, 1999 187

The power constraints can be case-dependent, although it usually makes
sense to specify the tightest constraint across all of the cases instead.

Syntax

power_cnstr_case::= (CASE IDENTIFIER
power_cnstr_case_spec+)

power_cnstr_case_spec::= power_cnstr_spec_0

Power Constraint Cases

188 Version 1.4

Power Constraints

Syntax of GCF

GCF File Characters

Syntax Conventions

GCF File Syntax

8

GCF File Characters

Version 1.4 August 17, 1999 191

GCF File Characters

The legal GCF character set and the method of including comments in
GCF files are described in this section.

The characters you can use in an GCF file are the following:

■ Alphanumeric characters – the letters of the alphabet, all the numbers,
and the underscore ‘_’ character.

■ Special characters – any character other than alphanumeric characters
(which includes the underscore as defined above) is a special character.
The following is a list of special characters:
! " # $ % & ´ () * + , - . / : ; < = > ? @ [\] ^ ` { | } ~

■ Syntax characters – these are special characters required by the syntax.
Examples are: () " * : [] ? and the hierarchy delimiter character
but see also the definitions of GCF operators, etc.

■ The escape character – to use any special character in anIDENTIFIER,
prefix it with the escape character, a backslash ‘\’. This includes the
backslash character itself: two consecutive backslashes are used to
represent a single backslash in the originalIDENTIFIER.

See “Variables” on page 193 for a description of anIDENTIFIER. Note
that if the character would normally have any special meaning in an
IDENTIFIER, this is lost when the character is escaped.

■ Hierarchy delimiter character – either the period ‘.’ or the slash ‘/’ can
be established as the hierarchy delimiter character. This character only
has this special meaning in anIDENTIFIER. An escaped hierarchy
delimiter character loses its meaning as a hierarchy delimiter.

■ Left index delimiter character - the left bracket ‘[‘, left parenthesis ‘(‘,
or left angle bracket ‘<‘ can be established as the left index delimiter
character. The left index delimiter is used as the first delimiter in a bit-
spec. This character only has this special meaning in anIDENTIFIER.
used as the name of a port or cell instance. An escaped left index
delimiter character loses its meaning as a left index delimiter.

■ Right index delimiter character - the right bracket ‘]‘, right parenthesis
‘)‘, or right angle bracket ‘>’ can be established as the right index
delimiter character. The right index delimiter is used as the last
delimiter in a bit-spec. This character only has this special meaning in
anIDENTIFIER used as the name of a port or cell instance. An escaped
right index delimiter character loses its meaning as a right index
delimiter.

GCF Characters

192 Version 1.4

GCF File Characters

■ White space characters – tabs, spaces and newlines are considered
white space. Use white space to separate lexical tokens.

Keywords,IDENTIFIERs, characters, and numbers must be delimited
either by syntax characters or by white space.

Comments can be placed in GCF files using either “C” or “C++” styles.

“C”-style comments begin with /* and end with */. Nesting of “C”-style
comments is not permitted. The places in an GCF file where it is legal to
put “C”-style comments are not defined by this specification. Different
annotators can have different capabilities in this regard.

“C++”-style comments begin with // and continue until the end of the
current line (the next newline character). Annotators should ignore the
double-slash and any text after them on any line in the file.

Comments

Syntax Conventions

Version 1.4 August 17, 1999 193

Syntax Conventions

The notation used in presenting the syntax of GCF are as follows:

item item is a symbol for a syntax construct item.

item ::= definition the BNF symbolitem is defined asdefinition.

item ::= definition1 the BNF symbolitem is defined either asdefinition1 or asdefinition2.
||= definition2 (any number of alternative syntax definitions can appear)

item? item is optional in the definition (it can appear once or not at all).

item* item can appear zero or any number of times.

item+ item can appear one or more times (but cannot be omitted).

KEYWORD is a keyword and appears in the file as shown. Keywords are shown in
uppercase bold for easy identification but are case insensitive.

VARIABLE is a symbol for a variable. Variable symbols are shown in uppercase for
easy identification. Some variables are defined as one of a number of
discrete choices (e.g.HCHAR, which is either a period or a slash). Other
variables represent user data such as names and numbers.

This section defines the user data variables used in GCF. Variables which
must be one of a number of choices (enumerations) are defined in the main
syntax definition which follows.

QSTRING is a string of any legal GCF characters and spaces, excluding tabs and
newlines, enclosed by double-quotes. Except for the double-quote itself,
special characters lose their special meaning in aQSTRING. To embed a
double-quote within a QSTRING, escape it with a backslash.

NUMBER is a non-negative (zero or positive) real number, for example: 0, 1, 0.0, 3.4,
.7, 0.3, 2.4e2, 5.3e-1, 8.2E+5

RNUMBER is a positive, zero or negative real number, for example: 0, 1, 0.0, -3.4, .7,
-0.3, 2.4e2, -5.3e-1, 8.2E+5

DNUMBER is a non-negative integer number, for example: +12, 23, 0

INUMBER is an integer number, for example: -5, 10, 0, +7

IDENTIFIER is the name of an object in the design. This could be an instance of a design
block or cell or a port depending on where theIDENTIFIER occurs in the
GCF file. Identifiers can be up to 1024 characters long.

Notation

Variables

194 Version 1.4

Syntax Conventions

The following characters can be used in an identifier:

■ Alphanumeric characters – the letters of the alphabet, all the numbers,
and the underscore ‘_’ character.IDENTIFIERs are case-sensitive, i.e.
uppercase and lowercase letters are considered different.

■ Bit specs – to indicate an object selected from an array of objects, for
example a single port selected from a bus port or an instance from an
array of instances, use a “bit spec” at the end of theIDENTIFIER of the
array (with no separating white space). A bit spec consists of the left
and right index delimiters (‘[’ and ‘]’, by default) enclosing a range.

To select a single object, the range should be a single positive integer,
for example, [4].

To select a contiguous group of objects, the range should be a pair of
positive integers separated by a colon (‘:’), for example, [3:31] and
[15:0].

To select all objects in the array, the range should be theWILDCARD,
an asterisk (‘*’). For example, [*].

■ Hierarchy delimiter character – see “PATH” below.

■ The escape character ‘\’ – if you want to use a non-alphanumeric
character as a part of anIDENTIFIER it must be escaped by being
prefixed with the ‘\’ character. Examples are shown below.
Note– thisescapingmechanismis differentfrom Verilog HDL where
the entireIDENTIFIER is escaped by placing one escape character (\)
before theIDENTIFIER and a white space after theIDENTIFIER.
Characters that have special meaning in identifiers, such as the left and
right index delimiters and the hierarchy delimiter, lose that special
meaning when escaped.

■ Do not use white space (spaces, tabs or newlines) in anIDENTIFIER.

Examples of correctIDENTIFIERs are:

AMUX\+BMUX

Cache_Row_\#4

mem_array\[0\:1023\]\(0\:15\) ; From a language where square
; brackets indicates arrays
; parentheses indicates bit specs

pipe4\-done\&enb[3] ; Unescaped square brackets
; represent a bit spec

Syntax Conventions

Version 1.4 August 17, 1999 195

PATH is a hierarchicalIDENTIFIER. The names of levels in the design hierarchy
must be separated by the hierarchy delimiter character. A path is always
interpreted relative to a particular region of the design (which can be the
top level cell in the design), so a leading hierarchy delimiter character
should not be used. The hierarchy delimiter character must not be escaped
or it loses its meaning as a hierarchy delimiter. See “Delimiters” on page
34 for details on how the hierarchy delimiter character is established.

PATH_EXPR is a PATH that can also contain one or more WILDCARD characters, to
match arbitrary substrings between hierarchy delimiters. As with PATH,
the names of levels in the design hierarchy must be separated by the
hierarchy delimiter character, and a WILDCARD only matches names
within that level of the design hierarchy, not across levels of the design
hierarchy. A path expression is always interpreted relative to a particular
region of the design (which can be the top level cell in the design), so a
leading hierarchy delimiter character should not be used. The
WILDCARD character must not be escaped or it loses its meaning as a
matching character.

PARTIAL_PATH is either an IDENTIFIER or a PATH. A partial path is used in combination
with aprefix_id to reduce the file size when many PATHs contain a
common prefix. See “Design References” on page 70 for details on how a
prefix_id is established.

HCHAR is the hierarchy delimiter character.

LI_CHAR is the left index delimiter character.

RI_CHAR is the right index delimiter character.

COLON is the colon character (‘:’).

WILDCARD is the asterisk character (‘*’).

196 Version 1.4

GCF File Syntax

GCF File Syntax

The formal syntax definition for the General Constraint Format is given
here. It is not possible, using the notation chosen, to clearly show how
white-space must be used in the GCF file. Some explanations and
comments are included in the formal descriptions. A double-slash (//)
indicates comments which are not part of the syntax definition.

constraint_file ::= (GCF header section+)

header ::= (HEADER version header_info*)

section ::= globals
||= cell_spec
||= extension
||= meta_data
||= include

version ::= (VERSION QSTRING)

header_info ::= design_name
||= date
||= program
||= delimiters
||= time_scale
||= cap_scale
||= res_scale
||= length_scale
||= area_scale
||= voltage_scale
||= power_scale
||= current_scale
||= extension

design_name ::= (DESIGN QSTRING)

date ::= (DATE QSTRING)

program ::= (PROGRAM program_name program_version program_company)

program_name ::= QSTRING
program_version ::= QSTRING

program_company ::= QSTRING

delimiters ::= (DELIMITERS QSTRING)

GCF File Syntax

Version 1.4 August 17, 1999 197

time_scale ::= (TIME_SCALE multiplier)
cap_scale ::= (CAP_SCALE multiplier)
res_scale ::= (RES_SCALEmultiplier)

length_scale ::= (LENGTH_SCALE multiplier)
area_scale ::= (AREA_SCALE multiplier)

voltage_scale ::= (VOLTAGE_SCALE multiplier)
power_scale ::= (POWER_SCALE multiplier)

current_scale ::= (CURRENT_SCALE multiplier)

multiplier ::= NUMBER

198 Version 1.4

GCF File Syntax

Extensions are defined as follows:

extension ::= (EXTENSION QSTRINGextension_construct+)

extension_construct ::= (user_defined)
||= include

Constraint labels are defined as follows:

label ::= label_id COLON

label_id ::= IDENTIFIER
||= QSTRING

Meta data specifications are defined as follows:

meta_data ::= (LEVEL 1 meta_data_1+)

meta_data_1 ::= (META meta_construct+)

meta_construct ::= precedence
||= meta_reserved
||= include

precedence ::= (PRECEDENCE (label_id label_id+))

meta_reserved ::=(IDENTIFIER reserved_for_future_definition)

Include specifications are defined as follows:

include ::= (INCLUDE QSTRING)

Common types of values used in many constraints are defined as follows:

min_and_max ::= min_number max_number

r_min_and_max ::= r_min_number r_max_number

min_number ::= NUMBER
max_number ::= NUMBER

r_min_number ::= RNUMBER
r_max_number ::= RNUMBER

min_max ::= NUMBER
||= min_value max_value

r_min_max ::= RNUMBER
||= r_min_value r_max_value

Extensions

Labels

Meta Data

Include Specifications

Value Types

GCF File Syntax

Version 1.4 August 17, 1999 199

min_value ::= number_or_place_holder
max_value ::= number_or_place_holder

r_min_value ::= r_number_or_place_holder
r_max_value ::= r_number_or_place_holder

number_or_place_holder ::= NUMBER
||= *

r_number_or_place_holder ::= RNUMBER
||= *

rise_fall ::= NUMBER
||= rise_value fall_value

r_rise_fall ::= RNUMBER
||= r_rise_value r_fall_value

rise_value ::= number_or_place_holder
fall_value ::= number_or_place_holder

r_rise_value ::= r_number_or_place_holder
r_fall_value ::= r_number_or_place_holder

rise_fall_min_max ::= NUMBER
||= rise_value fall_value
||= rise_min_value rise_max_value

fall_min_value fall_max_value

r_rise_fall_min_max ::= RNUMBER
||= r_rise_value r_fall_value
||= r_rise_min_value r_rise_max_value

r_fall_min_value r_fall_max_value

rise_min_value ::= number_or_place_holder
rise_max_value ::= number_or_place_holder
fall_min_value ::= number_or_place_holder
fall_max_value ::= number_or_place_holder

r_rise_min_value ::= r_number_or_place_holder
r_rise_max_value ::= r_number_or_place_holder
r_fall_min_value ::= r_number_or_place_holder
r_fall_max_value ::= r_number_or_place_holder

200 Version 1.4

GCF File Syntax

The globals section is defined as follows:

globals ::= (GLOBALS globals_subset+)

globals_subset ::= env_globals_subset
||= timing_globals_subset
||= extension
||= meta_data

The environment globals are defined as follows:

env_globals_subset ::= (GLOBALS_SUBSET ENVIRONMENT env_globals_body)

env_globals_body ::= env_globals_spec+
||= include

env_globals_spec ::= env_globals_spec_0
||= env_globals_spec_1

env_globals_spec_0::= process
||= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
||= lifetime
||= extension
||= meta_data

process ::= (PROCESSmin_and_max)

voltage ::= (VOLTAGE r_min_and_max)

temperature ::= (TEMPERATURE r_min_and_max)

operating_conditions ::= (label?OPERATING_CONDITIONS
QSTRING
process_value voltage_value temperature_value)

process_value ::= NUMBER
voltage_value ::= RNUMBER

temperature_value ::= RNUMBER

voltage_threshold ::= (label?VOLTAGE_THRESHOLD min_and_max)

lifetime ::= (label?LIFETIME lifetime_value)

lifetime_value ::= min_max

Globals

Environment Globals

GCF File Syntax

Version 1.4 August 17, 1999 201

env_globals_spec_1::= (LEVEL 1 env_globals_1+)

env_globals_1 ::= env_globals_case
||= meta_data_1

env_globals_case ::= (CASE IDENTIFIER env_globals_case_spec+)

env_globals_case_spec::= env_globals_spec_0

The timing globals are defined as follows:

timing_globals_subset ::=(GLOBALS_SUBSET TIMING timing_globals_body)

timing_globals_body ::= timing_globals_spec+
||= include

timing_globals_spec ::= timing_globals_spec_0
||= timing_globals_spec_1

timing_globals_spec_0 ::= slew_mode
||= primary_waveform
||= extension
||= meta_data

slew_mode ::= (label?SLEW_MODE slew_mode_value)

slew_mode_value ::= WORST
||= CRITICAL

primary_waveform ::= (label?WAVEFORM waveform_name
period edge_pair_list)

waveform_name ::= QSTRING

period ::= NUMBER

edge_pair_list ::= pos_pair+
||= neg_pair+

pos_pair ::= pos_edge neg_edge
neg_pair ::= neg_edge pos_edge

pos_edge ::= (POSEDGEedge_position)
neg_edge ::= (NEGEDGE edge_position)

edge_position ::= ideal_edge
||= ideal_edge_with_jitter
||= edge_range

Timing Globals

202 Version 1.4

GCF File Syntax

ideal_edge ::= RNUMBER
||= placeholder

ideal_edge_with_jitter ::= ideal_edge jitter_spec

jitter_spec ::= (JITTER jitter_value)

jitter_value ::= NUMBER
||= neg_jitter pos_jitter

neg_jitter ::= NUMBER
pos_jitter ::= NUMBER

edge_range ::= r_min_and_max (archaic)

timing_globals_spec_1 ::= (LEVEL 1 timing_globals_1+)

timing_globals_1 ::= timing_globals_no_case_1
||= timing_globals_case

timing_globals_no_case_1::= derived_waveform
||= clock_group
||= meta_data_1

derived_waveform ::= (label?DERIVED_WAVEFORM
waveform_name
parent_waveform_name
derived_waveform_option+)

parent_waveform_name::= QSTRING

derived_waveform_option ::= period_multiplier
||= period_divisor
||= derived_edges
||= phase_shift
||= jitter_adjustment
||= invert

period_multiplier ::= (PERIOD_MULTIPLIER period_multiplier_value)

period_divisor ::= (PERIOD_DIVISOR period_divisor_value duty_cycle_value?)

derived_edges ::= (EDGESderived_edge_list)

derived_edge_list ::= derived_pos_pair+
||= derived_neg_pair+

derived_pos_pair ::= derived_pos_edge derived_neg_edge

GCF File Syntax

Version 1.4 August 17, 1999 203

derived_neg_pair ::= derived_neg_edge derived_pos_edge

derived_pos_edge ::= (POSEDGEderived_edge)

derived_neg_edge ::= (NEGEDGE derived_edge)

derived_edge ::= edge_num derived_edge_shift?

derived_edge_shift ::= (PHASE_SHIFT edge_shift_value IDEAL ?)

phase_shift ::= (PHASE_SHIFT phase_shift_value IDEAL ?)

jitter_adjustment ::= (JITTER_ADJUSTMENT edge_pair_list)

invert ::= INVERT

period_multiplier_value ::= DNUMBER
period_divisor_value ::= DNUMBER

duty_cycle_value ::= NUMBER
edge_num ::= DNUMBER

edge_shift_value ::= RNUMBER

phase_shift_value ::= r_rise_fall

clock_group ::= (label?CLOCK_GROUP clock_group_name waveform_name+)

clock_group_name ::= QSTRING

timing_globals_case ::= (CASE IDENTIFIER timing_globals_case_spec+)

timing_globals_case_spec::= timing_globals_spec_0
||= timing_globals_no_case_1

204 Version 1.4

GCF File Syntax

The references to design elements are defined as follows:

name_prefixes ::= (NAME_PREFIXES num_prefixes name_prefix+)

num_prefixes ::= DNUMBER

name_prefix ::= prefix_id QSTRING

prefix_id ::= DNUMBER

cell_instance ::= untyped_cell_instance
||= typed_instance_list

untyped_cell_instance ::= PATH
||= (prefix_id)
||= (prefix_id PARTIAL_PATH)

typed_instance_list ::= (INSTANCE untyped_cell_instance+)

port_instance ::= untyped_port_instance
||= typed_port_instance

untyped_port_instance ::= port
||= PATH HCHARport
||= (prefix_id port)
||= (prefix_id PARTIAL_PATH HCHARport)

/* There should be no white space separating the PATH or PARTIAL_PATH,
 HCHAR, andport components of anuntyped_port_instance */

typed_port_instance ::= typed_port_list
||= typed_pin_list

typed_port_list ::= (PORT untyped_port_instance+)

typed_pin_list ::= (PIN untyped_port_instance+)

net ::= untyped_net
||= typed_net_list

untyped_net ::= PATH
||= (prefix_id)
||= (prefix_id PARTIAL_PATH)

typed_net_list ::= (NET untyped_net+)

typed_waveform_list ::= (WAVEFORM waveform_name+)

Design References

GCF File Syntax

Version 1.4 August 17, 1999 205

typed_instance_expr ::= (INSTANCE_EXPR PATH_EXPR)

typed_port_expr ::= (PORT_EXPR PATH_EXPR)

typed_pin_expr ::= (PIN_EXPR PATH_EXPR)

typed_net_expr ::= (NET_EXPR PATH_EXPR)

port ::= scalar_port
||= bus_port

input_port ::= scalar_port

output_port ::= scalar_port

scalar_port ::= IDENTIFIER
||= IDENTIFIER LI_CHAR DNUMBER RI_CHAR

bus_port ::= IDENTIFIER LI_CHAR DNUMBER COLON DNUMBER RI_CHAR
||= IDENTIFIER LI_CHAR WILDCARD RI_CHAR

cell_id ::= (CELLTYPE cell_name)
||= (CELLTYPE library_name cell_name view_name?)

cell_name ::= QSTRING
library_name ::= QSTRING

view_name ::= QSTRING

port_master ::= (cell_id scalar_port)

port_instance_or_master ::= port_instance
||= port_master

206 Version 1.4

GCF File Syntax

Cell entries are defined as follows:

cell_spec ::= (CELL cell_instance_spec cell_body_spec+)

cell_instance_spec ::= cell_instance_path
||= (cell_instance_path+)
||= ()
||= cell_views

cell_instance_path ::= PATH

cell_views ::= (CELLTYPE cell_name)
||= (CELLTYPE library_name cell_name view_name*)

cell_body_spec ::= name_prefixes
||= subset
||= extension
||= meta_data
||= include

Subset specifications are defined as follows:

subset ::= timing_subset
||= parasitics_subset
||= area_subset
||= power_subset

Cell Entries

Subsets

GCF File Syntax

Version 1.4 August 17, 1999 207

The timing subset is defined as follows:

timing_subset ::=(SUBSET TIMING timing_subset_body)

timing_subset_body ::= timing_subset_spec+
||= include

timing_subset_spec ::= timing_environment
||= timing_exceptions
||= extension
||= meta_data

The timing environment is defined as follows:

timing_environment ::= (ENVIRONMENT timing_env_spec+)

timing_env_spec ::= timing_env_spec_0
||= timing_env_spec_1

timing_env_spec_0 ::= clock_spec
||= clock_arrival_spec
||= arrival_spec
||= required_spec
||= external_delay_spec
||= driver_spec
||= input_slew_spec
||= extension

clock_spec ::= (label?CLOCK waveform_name clock_root+)

clock_root ::= general_port_instance

clock_arrival_spec ::= (label?CLOCK_ARRIVAL
clock_arrival_value
clock_arrival_item+)

clock_arrival_value ::= r_rise_fall_min_max

clock_arrival_item ::= clock_root
||= clock_leaf
||= waveform_name
||= typed_waveform_list

clock_leaf ::= port_instance

arrival_spec ::= (label?ARRIVAL arrival_waveform_edge arrival_value
port_instance*)

arrival_waveform_edge ::=(waveform_edge_identifier waveform_name)

Timing Subset

Timing Environment

208 Version 1.4

GCF File Syntax

arrival_value ::= r_rise_fall_min_max
||= (waveform_edge_identifier r_min_max) (archaic)

required_spec ::= (label? required_keyword
required_waveform_edge
required_value
port_instance*)

required_keyword ::= REQUIRED
||= DEPARTURE

required_waveform_edge::= (waveform_edge_identifier waveform_name)

required_value ::= target_required_value

target_required_value ::= setup_rise_fall hold_rise_fall
||= (waveform_edge_identifier setup_value hold_value) (archaic)

setup_rise_fall ::= r_rise_fall
hold_rise_fall ::= r_rise_fall

setup_value ::= RNUMBER
hold_value ::= RNUMBER

external_delay_spec ::= (label?EXTERNAL_DELAY
external_delay_value endpoints_spec+)

external_delay_value ::= r_rise_fall_min_max
||= (waveform_edge_identifier r_min_max) (archaic)

waveform_edge ::= (waveform_edge_identifier waveform_name)

driver_spec ::= driver_cell_spec
||= driver_strength_spec

driver_cell_spec ::= (label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
port_instance*)

driver_cell_port_spec ::= (cell_id)
||= (cell_id output_port)
||= (cell_id input_port output_port)

driver_cell_options ::= (driver_cell_option+)

driver_cell_option ::= drive_multiplier
||= driver_input_slew
||= waveform_edge_identifier

GCF File Syntax

Version 1.4 August 17, 1999 209

drive_multiplier ::= (PARALLEL_DRIVERS DNUMBER)

driver_input_slew ::= (INPUT_SLEW slew_value input_port*)

slew_value ::= rise_fall_min_max

driver_strength_spec ::= (label?DRIVER_STRENGTH strength_value port_instance*)

strength_value ::= rise_fall_min_max

input_slew_spec ::= (label? INPUT_SLEW slew_value port_instance*)

timing_env_spec_1 ::= (LEVEL 1 timing_env_1+)

timing_env_1 ::= timing_env_no_case_1
||= timing_env_case

timing_env_no_case_1::= constant_spec
||= operating_conditions
||= internal_slew_spec
||= meta_data_1

constant_spec ::= (label?CONSTANT constant_value port_instance+)

constant_value ::= 0
||= 1

internal_slew_spec ::= (label? INTERNAL_SLEW slew_value port_instance*)

timing_env_case ::= (CASE IDENTIFIER timing_env_case_spec+)

timing_env_case_spec::= timing_env_spec_0
||= timing_env_no_case_1

The timing exceptions are defined as follows:

timing_exceptions ::= (EXCEPTIONS timing_exception_spec+)

timing_exception_spec ::= timing_exception_spec_0
||= timing_exception_spec_1

timing_exception_spec_0::= disable_spec_0
||= multi_cycle_spec_0
||= path_delay_spec_0
||= slew_limit_spec
||= max_transition_time_spec (archaic)
||= extension

timing_exception_spec_1::= (LEVEL 1 timing_exception_1+)

Timing Exceptions

210 Version 1.4

GCF File Syntax

timing_exception_1 ::= timing_exception_no_case_1
||= timing_exception_case

timing_exception_no_case_1::= disable_spec_1
||= multi_cycle_spec_1
||= path_delay_spec_1
||= borrow_limit_spec
||= clock_mode_spec
||= clock_delay_spec
||= clock_uncertainty_spec
||= meta_data_1

timing_exception_case ::= (CASE IDENTIFIER timing_exception_case_spec+)

timing_exception_case_spec::= timing_exception_spec_0
||= timing_exception_no_case_1

thru_spec ::= (THRU port_instance)

arc_spec ::= (ARC port_instance port_instance)

endpoints_spec ::= from_spec
||= to_spec
||= (BETWEEN? from_spec to_spec)

from_spec ::= (FROM from_to_item+)
to_spec ::= (TO from_to_item+)

from_to_item ::= port_instance
||= cell_instance
||= waveform_name
||= typed_waveform_name_list
||= typed_port_expr
||= typed_pin_expr
||= typed_instance_expr

from_to_thru_spec ::= (PATHS from_to_thru_item+)

from_to_thru_item ::= from_opt_edge_spec
||= to_opt_edge_spec
||= thru_all_items_spec

from_opt_edge_spec::= from_spec
||= (FROM from_item_edge+)

to_opt_edge_spec::= to_spec
||= (TO to_item_edge+)

GCF File Syntax

Version 1.4 August 17, 1999 211

from_item_edge ::= (edge_identifier from_to_item+)
to_item_edge ::= (edge_identifier from_to_item+)

thru_all_items_spec ::= (THRU_ALL thru_any_item_spec+)

thru_any_item_spec ::= thru_item
||= (THRU_ANY thru_item+)

thru_item ::= port_instance
||= net
||= typed_port_expr
||= typed_pin_expr
||= typed_net_expr
||= port_instance_edge

port_instance_edge ::= (edge_identifier port_instance)

disable_spec_0 ::= disable_item_spec_0
||= disable_endpoints_spec_0
||= disable_from_to_thru_spec_0

disable_item_spec_0 ::= label?DISABLE disable_item_0+)

disable_item_0 ::= port_instance
||= cell_instance
||= typed_port_expr
||= typed_pin_expr
||= typed_instance_expr
||= arc_spec
||= preset_clear_spec
||= reentrant_paths_spec

preset_clear_spec ::= (PRESET_CLEAR_ARCS true_false)

reentrant_paths_spec ::= (REENTRANT_PATHS true_false)

true_false ::= TRUE
||= FALSE

disable_endpoints_spec_0::= (label?DISABLE endpoints_spec+ disable_option*)

disable_option ::= timing_check
||= edge_identifier

timing_check ::= SETUP
||= HOLD

disable_from_to_thru_spec_0::= (label?DISABLE from_to_thru_spec+ disable_option*)

212 Version 1.4

GCF File Syntax

disable_spec_1 ::= disable_cell_spec_1
||= disable_edges_spec_1 (archaic)

disable_cell_spec_1 ::= (label?DISABLE disable_cell_path_spec+)

disable_cell_path_spec::= disable_instance_spec
||= disable_master_spec

disable_instance_spec::= (INSTANCE untyped_cell_instance+)

disable_master_spec::= (MASTER cell_id)

multi_cycle_spec_0 ::= multi_cycle_endpoints_spec_ 0
||= multi_cycle_from_to_thru_spec_0

multi_cycle_spec_0 ::= (label?MULTI_CYCLE multi_cycle_endpoints_param_list)

multi_cycle_endpoints_param_list::= endpoints_spec+ multi_cycle_option+
||= multi_cycle_option+ endpoints_spec+

multi_cycle_option ::= timing_check_offset
||= edge_identifier

timing_check_offset ::= (timing_check num_cycles reference_clock?)

reference_clock ::= SOURCE
||= TARGET

num_cycles ::= INUMBER

multi_cycle_from_to_thru_spec_0::= (label?MULTI_CYCLE
multi_cycle_from_to_thru_param_list)

multi_cycle_from_to_thru_param_list::= from_to_thru_spec+ multi_cycle_option+
||= multi_cycle_option+ from_to_thru_spec+

path_delay_spec_0 ::= path_delay_endpoints_spec_ 0
||= path_delay_from_to_thru_spec_0

path_delay_endpoints_spec_0::= (label?PATH_DELAY
path_delay_value
endpoints_spec+)

path_delay_value ::= rise_fall_min_max
||= path_delay_single_value (archaic)

path_delay_from_to_thru_spec_0::= (label?PATH_DELAY path_delay_value from_to_thru_spec+)

slew_limit_spec ::= (label?SLEW_LIMIT slew_value port_instance_or_master*)

GCF File Syntax

Version 1.4 August 17, 1999 213

borrow_limit_spec ::= (label?BORROW_LIMIT NUMBER borrow_item*)

borrow_value ::= NUMBER

borrow_item ::= port_instance
||= cell_instance
||= waveform_name

clock_mode_spec ::= (label?CLOCK_MODE clock_mode_value)

clock_mode_value ::= IDEAL
||= ACTUAL

clock_delay_spec ::= (label?CLOCK_DELAY
clock_delay_root leaf_spec+)

clock_delay_root ::= untyped_port_instance
||= (cell_instance input_port output_port)
||= waveform_name

leaf_spec ::= clock_mode_value
||= default_leaf_spec
||= explicit_leaf_spec

default_leaf_spec ::= (default_leaf_option+)

default_leaf_option ::= insertion_delay_spec
||= clock_skew_spec
||= clock_slew_spec

explicit_leaf_spec ::= (explicit_leaf_option* clock_delay_leaf+)

explicit_leaf_option ::= insertion_delay_spec
||= internal_insertion_delay_spec
||= clock_slew_spec

clock_delay_leaf ::= clock_leaf
||= data_leaf

data_leaf ::= (DATA port_instance+)

insertion_delay_spec ::= (INSERTION_DELAY
insertion_delay_value)

internal_insertion_delay_spec::= (INTERNAL_INSERTION_DELAY
insertion_delay_value)

clock_skew_spec ::= (SKEW skew_value)
clock_slew_spec ::= (SLEW slew_value)

214 Version 1.4

GCF File Syntax

insertion_delay_value ::= rise_fall_min_max
skew_value ::= rise_fall_min_max
slew_value ::= rise_fall_min_max

clock_uncertainty_spec ::= (label?CLOCK_UNCERTAINTY
clock_uc_option*
clock_uc_value
clock_uc_item)

clock_uc_option ::= clock_uc_calc_option
||= clock_uc_mode_option

clock_uc_calc_option ::= ABSOLUTE
||= INCREMENT

clock_uc_mode_option ::= IDEAL
||= ACTUAL

clock_uc_value ::= r_min_max

clock_uc_item ::= target_clock_uc_item+
||= target_clock_uc_item_edge
||= inter_clock_uc_item

target_clock_uc_item ::= waveform_name
||= typed_waveform_list
||= clock_root
||= clock_leaf
||= clock_leaf_instance

clock_leaf_instance ::= cell_instance

target_clock_uc_item_edge::= (waveform_edge target_clock_uc_item+)

inter_clock_uc_item ::= (BETWEEN inter_clock_from inter_clock_to)

inter_clock_from ::= (FROM inter_clock_from_to_item)
inter_clock_to ::= (TO inter_clock_from_to_item)

inter_clock_from_to_item ::= waveform_name
||= waveform_edge

waveform_edge ::= (waveform_edge_identifier waveform_name)

waveform_edge_identifier ::= POSEDGE
||= NEGEDGE

GCF File Syntax

Version 1.4 August 17, 1999 215

edge_identifier ::= POSEDGE
||= NEGEDGE
||= ANYEDGE
||= 0z
||= z1
||= 1z
||= z0

The archaic timing exceptions are defined as follows:

thru_edge_spec ::= (THRU port_instance_edge) (archaic)

arc_edges_spec ::= (ARC port_instance_edge port_instance_edge) (archaic)

thru_all_spec ::= (THRU_ALL port_instance port_instance+) (archaic)

thru_all_edges_spec ::= (THRU_ALL port_instance_edge
port_instance_edge+) (archaic)

disable_edges_spec_1 ::= (label? DISABLE disable_edges_path_spec+
timing_check?) (archaic)

disable_edges_path_spec ::= thru_edge_spec
||= arc_edges_spec
||= thru_all_edges_spec (archaic)

multi_cycle_spec_1 ::= multi_cycle_thru_spec_1 (archaic)

multi_cycle_thru_spec_1 ::= (label? MULTI_CYCLE
multi_cycle_option+
multi_cycle_thru_path_spec_1+) (archaic)

multi_cycle_thru_path_spec_1 ::= arc_spec
||= thru_spec
||= thru_all_spec (archaic)

path_delay_single_value ::= (timing_check waveform_edge_identifier NUMBER)

path_delay_spec_1 ::= path_delay_path_spec_1 (archaic)

path_delay_path_spec_1 ::= (label? PATH_DELAY
path_delay_value
path_delay_path_spec_1+) (archaic)

path_delay_path_spec_1 ::= arc_spec
||= thru_spec
||= thru_all_spec (archaic)

Archaic Timing
Exceptions

216 Version 1.4

GCF File Syntax

max_transition_time_spec ::= (label? MAX_TRANSITION_TIME
rise_fall port_instance*) (archaic)

GCF File Syntax

Version 1.4 August 17, 1999 217

The parasitics subset is defined as follows:

parasitics_subset ::=(SUBSET PARASITICS parasitics_subset_body)

parasitics_subset_body::= parasitics_subset_spec+
||= include

parasitics_subset_spec::= parasitics_environment
||= parasitics_constraints
||= extension
||= meta_data

The parasitics environment is defined as follows:

parasitics_environment ::= (ENVIRONMENT parasitics_env_spec+)

parasitics_env_spec ::= parasitics_env_spec_0
||= parasitics_env_spec_1

parasitics_env_spec_0::= external_load_spec
||= extension

external_load_spec ::= (label?EXTERNAL_LOAD capacitance_value port_instance*)

capacitance_value ::= min_max

parasitics_env_spec_1::= (LEVEL 1 parasitics_env_1+)

parasitics_env_1 ::= parasitics_env_no_case_1
||= parasitics_env_case

parasitics_env_no_case_1::= external_fanout_spec
::= external_wire_load_model_spec
::= wire_load_model_spec
||= meta_data_1

external_fanout_spec ::= (label?EXTERNAL_FANOUT num_loads port_instance*)

num_loads ::= min_max

external_wire_load_model_spec::= (label?EXTERNAL_WIRE_LOAD_MODEL
library_name? wire_load_model_name
port_instance*)

wire_load_model_name ::= QSTRING

wire_load_model_spec ::= (label?WIRE_LOAD_MODEL
library_name? wire_load_model_name
cell_instance+)

Parasitics Subset

Parasitics Environment

218 Version 1.4

GCF File Syntax

||= (label?WIRE_LOAD_MODEL
library_name? wire_load_model_name
cell_id)

parasitics_env_case ::= (CASE IDENTIFIER parasitics_env_case_spec+)

parasitics_env_case_spec::= parasitics_env_spec_0
||= parasitics_env_no_case_1

The parasitics constraints are defined as follows:

parasitics_constraints ::= (CONSTRAINTS parasitics_constraint+)

parasitics_constraint ::= parasitics_cnstr_spec_0
||= parasitics_cnstr_spec_1

parasitics_cnstr_spec_0 ::= internal_load_spec
||= load_spec
||= extension

internal_load_spec ::= (label? INTERNAL_LOAD capacitance_value port_instance*)

load_spec ::= (label?LOAD capacitance port_instance_or_master*)

parasitics_cnstr_spec_1 ::= (LEVEL 1 parasitics_cnstr_1+)

parasitics_cnstr_1 ::= parasitics_cnstr_no_case_1
||= parasitics_cnstr_case

parasitics_cnstr_no_case_1::= internal_fanout_spec
||= fanout_spec
||= meta_data_1

internal_fanout_spec ::= (label? INTERNAL_FANOUT num_loads port_instance*)

fanout_spec ::= (label?FANOUT num_loads port_instance*)

parasitics_cnstr_case ::= (CASE IDENTIFIER parasitics_cnstr_case_spec+)

parasitics_cnstr_case_spec::= parasitics_cnstr_spec_0
||= parasitics_cnstr_no_case_1

Parasitics Constraints

GCF File Syntax

Version 1.4 August 17, 1999 219

The area subset is defined as follows:

area_subset ::= (SUBSET AREA area_subset_body)

area_subset_body ::= area_cnstr_spec+
||= include

area_cnstr_spec ::= area_cnstr_spec_0
||= area_cnstr_spec_1

area_cnstr_spec_0 ::= primitive_area_spec
||= total_area_spec
||= extension

primitive_area_spec ::= (label?PRIMITIVE_AREA area_value)

total_area_spec ::= (label?TOTAL_AREA area_value)

area_value ::= min_max

area_cnstr_spec_1 ::= (LEVEL 1 area_cnstr_1+)

area_cnstr_1 ::= area_cnstr_no_case_1
||= area_cnstr_case

area_cnstr_no_case_1::= porosity_spec
||= meta_data_1

porosity_spec ::= (label?POROSITY porosity_value)

porosity_value ::= min_max

area_cnstr_case ::= (CASE IDENTIFIER area_cnstr_case_spec+)

area_cnstr_case_spec::= area_cnstr_spec_0
||= area_cnstr_no_case_1

Area Subset

220 Version 1.4

GCF File Syntax

The power subset is defined as follows:

power_subset ::= (SUBSET POWERpower_subset_body)

power_subset_body ::= power_cnstr_spec+
||= include

power_cnstr_spec ::= power_cnstr_spec_0
||= power_cnstr_spec_1

power_cnstr_spec_0 ::= average_cell_power
||= average_net_power
||= extension

average_cell_power ::= (label?AVG_CELL_POWER power_value)

average_net_power ::= (label?AVG_NET_POWER power_value port_instance)

power_value ::= min_max

power_cnstr_spec_1 ::= (LEVEL 1 power_cnstr_1+)

power_cnstr_1 ::= power_cnstr_case
||= meta_data_1

power_cnstr_case ::= (CASE IDENTIFIER power_cnstr_case_spec+)

power_cnstr_case_spec::= power_cnstr_spec_0

Power Subset

Version 1.4 August 17, 1999 221 of 230

Index

A
annotator 25

where to apply data in design 78
ARC keyword

syntax 210, 215
usage 113, 158

AREA keyword
syntax 219
usage 179

area subset
example 179
syntax 219
usage 179

AREA_SCALE keyword
syntax 35, 197

ARRIVAL keyword
syntax 207
usage 91

arrival time
formal syntax description 207
syntax 207
usage 86, 91

Asynchronous resets
disabling paths through preset and clear 123

average cell power
example 186

average net power
example 186

AVG_CELL_POWER keyword
syntax 220
usage 186

AVG_NET_POWER keyword
syntax 220
usage 186

B
BETWEEN keyword

usage 114
Bidirectional pins

Disabling reentrant paths 123
bit-specs

usage 194
BORROW_LIMIT keyword

syntax 213
usage 141

C
Cadence Design Systems

headquarters 12
CAP_SCALE keyword

example 36
syntax 35, 197

capacitance
usage 169

capacitance_value
syntax 217

CASE keyword
syntax 156, 203, 209, 210, 218, 219, 220
usage 172, 175, 181, 187

case-dependent constraints
area

syntax 219
usage 181

parasitics constraints
syntax 218
usage 175

parasitics environment
example 171, 172
syntax 218
usage 172

power
syntax 220
usage 187

timing environment
example 108
syntax 203, 209, 219

timing exceptions
example 157

Cases
usage 39

Cell Entries
usage 77

CELL keyword
syntax 206
usage 77

cell_id
definition 75

cell_instance
definition 71
syntax 204

Version 1.4 August 17, 1999 222 of 230

CELLTYPE keyword
syntax 205, 206
usage 75, 79

characters
escape character 191
hierarchy delimiter character 78, 191
left index delimiter character 191
legal in GCF files 191
right index delimiter character 191
white space 192

Clear
Disabling paths through 123

clock
formal syntax description 207

CLOCK keyword
syntax 207
usage 85

clock root 85
CLOCK_ARRIVAL keyword

syntax 207
usage 86

CLOCK_DELAY keyword
syntax 213
usage 144

CLOCK_GROUP keyword
example 68
syntax 203
usage 68

CLOCK_MODE keyword
syntax 213
usage 142

CLOCK_UNCERTAINTY keyword
syntax 152, 214

Combinational Delays 135
CONSTANT keyword

syntax 209
usage 106

Constant Propagation
Disables 121

Constraint Forum
acknowledgements 13

constraints
in forward-annotation 27

CONSTRAINTS keyword
syntax 218
usage 173

CRITICAL keyword
syntax 58, 201

CURRENT_SCALE keyword
syntax 35, 197

D
DATA keyword

syntax 213
usage 146

DATE keyword
example 33
syntax 196
usage 33

DELIMITERS keyword
example 34
syntax 196

DEPARTURE keyword
syntax 208
usage 95

departure times
see required times 95

DERIVED_WAVEFORM keyword
example 65, 66, 67
syntax 202
usage 63

DESIGN keyword
syntax 196
use, see design name entry

Design References
usage 70

Disable
asynchronous preset and clear 123
between endpoints 125
from, to, thru 126
INSTANCE and MASTER 128
port instances, cell instances, and arcs 122
reentrant bidirectional paths 123
through edges 160

DISABLE keyword
syntax 211, 212, 215
usage 122, 125, 126, 128, 160

Disables
Constant Propagation 121
Slew Propagation 121

DRIVER_CELL keyword
syntax 208
usage 102

DRIVER_STRENGTH keyword
syntax 104, 209

Version 1.4 August 17, 1999 223 of 230

E
EDGES keyword

syntax 202
usage 63

ENVIRONMENT keyword
syntax 200, 207, 217
usage 84, 169

EXCEPTIONS keyword
syntax 209
usage 109

expressions
instance name 74
net name 74
pin name 74
port name 74

EXTENSION keyword
syntax 198
usage 41

Extensions
usage 41

external fanout
formal syntax description 217

external load
formal syntax description 217
usage 169

EXTERNAL_DELAY keyword
syntax 208
usage 99

EXTERNAL_FANOUT keyword
syntax 217
usage 170

EXTERNAL_LOAD keyword
syntax 217
usage 169

EXTERNAL_WIRE_LOAD_MODEL keyword
syntax 217
usage 171

F
FALSE keyword

syntax 211
usage 122

fanout
formal syntax description 218

FANOUT keyword
syntax 218
usage 175

forward-annotation 27
FROM keyword

syntax 210
usage 114

G
GCF creator 24
GCF files

introduction to 11
GCF keyword

syntax 196
use 31

GLOBALS keyword
syntax 200
usage 52

GLOBALS_SUBSET keyword
example 53, 57, 58, 69
syntax 200, 201
usage 52, 58, 3

H
Header

usage 32
HEADER keyword

syntax 196
use 32

hierarchical path
formal syntax description 195

HOLD keyword
syntax 211

I
IDEAL keyword

syntax 203
usage 64

identifiers
formal syntax description 193

Include Files
usage 46

INCLUDE keyword
syntax 198
usage 46

INPUT_SLEW keyword
syntax 102, 209
usage 105

INSERTION_DELAY keyword
syntax 213
usage 146

Version 1.4 August 17, 1999 224 of 230

INSTANCE keyword
syntax 204, 212
usage 71, 128

INSTANCE_EXPR keyword
syntax 205
usage 74

internal fanout
formal syntax description 218

internal load
formal syntax description 218
usage 173

INTERNAL_FANOUT keyword
syntax 218
usage 174

INTERNAL_INSERTION_DELAY keyword
syntax 213
usage 146

INTERNAL_LOAD keyword
syntax 218
usage 173

INTERNAL_SLEW keyword
syntax 209
usage 107

INVERT keyword
syntax 203
usage 64

J
jitter

modeling in WAVEFORM 61, 64, 65, 66
JITTER keyword

syntax 202
usage 60

K
KEYWORD

notation in syntax description 193

L
Labels

usage 47
LENGTH_SCALE keyword

syntax 35, 197
Level 1 constraints

area constraints
usage 179

parasitics constraints
syntax 218

usage 173
parasitics environment

syntax 169, 217
power

syntax 220
usage 185

timing environment
syntax 209
usage 84

timing exceptions
syntax 209
usage 109

LEVEL keyword
syntax 58, 198, 202, 209, 217, 218, 219, 220
usage 38, 39, 45, 84, 109, 169, 173, 179, 185

Levels
Usage 37

LIFETIME keyword
syntax 200
usage 56

load
formal syntax description 218
usage 174

LOAD keyword
syntax 218
usage 174

M
MASTER keyword

syntax 212
usage 128

MAX_TRANSITION_TIME keyword
syntax 216
usage 163

Meta Data
usage 44

META keyword
syntax 198
usage 45

MULTI_CYCLE keyword
syntax 212, 215
usage 131, 134, 160

Multi-Cycle
Arc and Thru 160
between endpoints 130, 131, 137
Level 1 Constructs 160

Version 1.4 August 17, 1999 225 of 230

N
NAME_PREFIXES keyword

usage 70
NAMEPREFIX keyword

syntax 204
NEGEDGE keyword

syntax 201, 203
usage 60, 63

net
definition 73
syntax 204

NET keyword
syntax 204
usage 73

NET_EXPR keyword
syntax 205
usage 74

notation used in syntax descriptions 193

O
OPERATING_CONDITIONS keyword

syntax 200
usage 54

P
PARALLEL_DRIVERS keyword

syntax 102, 209
parasitics constraints

formal syntax description 218
usage 173

parasitics environment
formal syntax description 217

PARASITICS keyword
syntax 217
usage 167

parasitics subset
example 167
formal syntax description 217
usage 167

Path Delay
Arc, Thru, Thru All 139
between endpoints 137
From, To, Thru 138
Level 1 Constructs 162

PATH_DELAY
Usage 135

PATH_DELAY keyword

syntax 212, 215
usage 137, 138, 162

PATH_EXPR
formal syntax description 195

PERIOD_DIVISOR keyword
syntax 202
usage 63

PERIOD_MULTIPLIER keyword
syntax 202
usage 63

PHASE_SHIFT keyword
syntax 203
usage 63, 64, 203

PIN keyword
syntax 204
usage 71

PIN_EXPR keyword
syntax 205
usage 74

porosity
example 181

POROSITY keyword
syntax 219
usage 181

PORT keyword
syntax 204
usage 71

PORT_EXPR keyword
syntax 205
usage 74

port_instance
definition 71
syntax 204

port_instance_or_master
definition 76, 205

port_master
definition 75, 205

POSEDGE keyword
syntax 201, 203
usage 60, 63

power
average cell power

syntax 220
usage 186

average net power
syntax 220
usage 186

POWER keyword

Version 1.4 August 17, 1999 226 of 230

syntax 220
usage 185

power subset
example 185
syntax 220
usage 185

power values
syntax 220
usage 186

POWER_SCALE keyword
syntax 35, 197

PRECEDENCE keyword
syntax 198
usage 45

Precedence Rules 43
Preset

Disabling paths through 123
PRESET_CLEAR_ARCS keyword

syntax 211
usage 122

primitive area
example 180, 4
syntax 219
usage 180

PRIMITIVE_AREA keyword
syntax 219
usage 180

PROCESS keyword
syntax 200
usage 53

PROGRAM keyword
example 34
syntax 196
usage 33

R
Reentrant paths

Disabling paths through 123
REENTRANT_PATHS keyword

syntax 211
usage 122

REQUIRED keyword
syntax 208
usage 95

required time
syntax 208
usage 95

RES_SCALE keyword

syntax 35, 197

S
SETUP keyword

syntax 211
SKEW keyword

syntax 213
usage 146

SKEW_ADJUSTMENT keyword
syntax 203
usage 64

SLEW keyword
syntax 213
usage 146

Slew Propagation
Disables 121

SLEW_LIMIT keyword
syntax 212
usage 139

SLEW_MODE keyword
example 59
syntax 58, 201

SOURCE keyword
syntax 212
usage 131

SUBSET keyword
syntax 207, 217, 219, 220
usage 83, 167, 179, 185

Subsets
usage 80

T
TARGET keyword

syntax 212
usage 131

TEMPERATURE keyword
syntax 200
usage 54

THRU keyword
syntax 210, 215
usage 110, 158

THRU_ALL keyword
syntax 215
usage 159

TIME_SCALE keyword
syntax 35, 197

timing environment
formal syntax description 207

Version 1.4 August 17, 1999 227 of 230

usage 84
timing exceptions

formal syntax description 209
usage 109

TIMING keyword
syntax 201, 207
usage 83

timing subset
example 83
formal syntax description 207
usage 83

TO keyword
syntax 210
usage 114

total area
example 180
syntax 219
usage 180

TOTAL_AREA keyword
syntax 219
usage 180

TRUE keyword
syntax 211
usage 122

typed_instance_expr
definition 74
syntax 205

typed_instance_list
definition 71
syntax 204

typed_net_expr
definition 74
syntax 205

typed_net_list
definition 73
syntax 204

typed_pin_expr
definition 74
syntax 205

typed_pin_list
definition 71
syntax 204

typed_port_expr
definition 74
syntax 205

typed_port_instance
definition 71
syntax 204

typed_port_list
definition 71
syntax 204

typed_waveform_list
syntax 204

typed_waveform_name_list
definition 73

U
uncertainty region

in WAVEFORM construct 61
untyped_cell_instance

definition 71
syntax 204

untyped_net
definition 73
syntax 204

untyped_port_instance
definition 71
syntax 204

V
Value Types

usage 48
VARIABLE

notation in syntax description 193
VERSION keyword

example 32
syntax 196
usage 32

VOLTAGE keyword
syntax 200
usage 53

VOLTAGE_SCALE keyword
syntax 35, 197

VOLTAGE_THRESHOLD keyword
syntax 200
usage 55

W
WAVEFORM keyword

example 62, 65, 66
syntax 201, 204
usage 60, 73

WIRE_LOAD_MODEL keyword
syntax 217, 218
usage 171

WORST keyword

Version 1.4 August 17, 1999 228 of 230

syntax 58, 201

Version 1.4 August 17, 1999 229 of 230

230 of 230 August 17, 1999 Version 1.4

Cadence-Specific Extensions

Appendix 1

Version 1.4 August 17, 1999 3

The locations of the Timing Library Format (TLF) files that are to be used
for a design are specified through GCF using an extension within the
environment globals subset.

Syntax

env_globals_subset::= (GLOBALS_SUBSET ENVIRONMENT
 env_globals_body)

env_globals_body::= env_globals_spec+
||= include

env_globals_spec::= env_globals_spec_0
||= env_globals_spec_1

env_globals_spec_0::= process
||= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
||= tlf_files_extension
||= extension
||= meta_data

tlf_files_extension::= (EXTENSION “TLF_FILES”
(file_name+))

||= (EXTENSION “CTLF_FILES”
(file_name+))

file_name := IDENTIFIER

TheTLF_FILES extension name is preferred; theCTLF_FILES extension
name is supported for backward compatibility. For either extension name,
the list of files can refer to files containing clear text, compiled, or
encrypted forms of TLF.

The file names can be relative or absolute path names. For GCF 1.3 and
higher, relative path names are interpreted with respect to the GCF file
which contains the extension, not with respect to the directory in which the
program which is reading the GCF is invoked.

Previous versions of GCF were with respect to the directory in which the
program which was reading the GCF was invoked.

TLF Files

4 Version 1.4

Example

(GLOBALS_SUBSET ENVIRONMENT
(EXTENSION “CTLF_FILES”

(lib/mylib.ctlf
 lib/ram1.ctlf
 lib/ram2.ctlf
 ../lib2/ram3.ctlf
)

)
)

	General Constraint Format Specification
	Introduction
	Introduction
	Published by Cadence Design Systems

	Acknowledgements
	Version History
	Version 1.4 - August 17, 1999
	Version 1.3 - June 25, 1998
	Version 1.2 - August 22, 1997
	Version 1.1 - July 8, 1997
	Version 1.0 - March 21, 1997
	Version 0.7 - January 24, 1997
	Version 0.6 - November 15, 1996
	Version 0.5 - April 15, 1996
	Version 0.4 - April 8, 1996

	GCF in the Design Process
	GCF in the Design Process
	Sharing of Constraint Data
	Using Multiple GCF Files in One Design
	Timing Environment
	Timing Constraints
	Parasitic Constraints
	Parasitic Environment
	Area Constraints
	Power Constraints
	The GCF Creator
	The Annotator
	Consistency Between GCF File and Design Description
	Consistency Between GCF File and Analysis

	Forward-Annotation of Constraints for Design Synthesis

	Using GCF
	GCF File Content
	Syntax

	Header Section
	Syntax
	GCF Version
	Syntax
	Example

	Design Name
	Syntax

	Date
	Syntax
	Example

	Program
	Syntax
	Example

	Delimiters
	Syntax
	Example

	Scaling Factors
	Syntax
	Example

	Levels
	Level 0
	Level 1
	Usage
	Syntax

	Cases
	Syntax
	Constant Values

	Extensions
	Syntax
	Example

	Precedence Rules
	Normal Precedence Rules

	Meta Data
	Precedence Overrides
	Other Meta Data
	Usage
	Syntax
	Example

	Include Files
	Syntax

	Labels
	Syntax
	Example

	Value Types
	Syntax
	Min and Max
	Syntax

	Min, Max, or both Min and Max
	Syntax

	Rise, Fall, or both Rise and Fall
	Syntax

	Rise Min/Max, Fall Min/Max
	Min/Max Values and Operating Conditions

	Globals
	Syntax
	Environment Globals
	Syntax
	Example

	Process
	Syntax
	Example

	Voltage
	Syntax
	Example

	Temperature
	Syntax
	Example

	Operating Conditions
	Syntax
	Example

	Voltage Threshold
	Syntax
	Example

	Lifetime
	Syntax
	Example

	Environment Globals Case
	Syntax
	Example

	Timing Globals
	Syntax
	Example

	Slew Mode
	Syntax
	Example

	Primary Waveform
	Syntax
	Modeling Jitter
	Example
	Example
	Example
	Example (archaic)

	Derived Waveform
	Syntax
	Uniform Scaling
	Example
	Edge Selection
	Example
	Uniform Phase Shift
	Jitter Adjustments
	Example

	Clock Groups
	Syntax
	Example

	Timing Globals Case
	Example

	Design References
	Name Prefix
	Syntax

	Cell Instance
	Syntax

	Port Instance
	Syntax
	Example
	Example
	Example

	Net
	Syntax
	Example

	Typed Waveform
	Syntax
	Example

	Instance, Port, Pin, and Net Expressions
	Syntax
	Example
	Example
	Example

	Cell Type
	Syntax
	Example
	Example

	Port Master
	Syntax
	Example

	Port Instance or Master
	Syntax

	Cell Entries
	Syntax
	Example
	Cell Instance Spec
	Syntax
	Example
	Syntax
	Example

	Subsets
	Syntax

	Timing Subset
	Timing Subset Header
	Syntax
	Example

	Timing Environment
	Syntax
	Clock Specifications
	Syntax
	Example

	Clock Arrival
	Syntax
	Example
	Example

	Arrival Time
	Syntax
	Example
	Example
	Example

	Required Time
	Syntax
	Example
	Example

	External Delay
	Syntax
	Like ARRIVAL and REQUIRED constructs, the effect of multiple EXTERNAL_DELAY constructs for the sa...
	Example

	Driver Specification
	Syntax
	Precedence Rules
	Driver Cell
	Syntax

	Driver Strength
	Syntax

	Input Slew
	Syntax

	Constant Values
	Syntax

	Operating Conditions
	Internal Slew
	Syntax

	Timing Environment Cases
	Syntax
	Example

	Timing Exceptions
	Syntax
	Path Specifications
	Level 0
	THRU Specifications
	Syntax
	Example
	Level 0 port_instance Specifications
	Level 0 cell_instance Specifications
	Level 0
	Arc Specifications
	Syntax
	Example
	Example
	Level 0 Endpoint Specifications
	Syntax
	Disable And Multi-Cycle 0 Endpoint Specifications
	Path Delay Endpoint Specifications
	Level 0 From, To, Thru Specification
	Syntax
	Example
	Example
	Example
	Example

	Precedence Rules for Exceptions
	Disable Specifications
	Slew Propagation and Disables
	Constant Propagation and Disables
	Level 0 Disables
	Syntax
	Syntax
	Disabling Port Instances, Cell Instances, and Arcs
	Example
	Example
	Example
	Disabling Paths Through Asynchronous Preset and Clear Arcs
	Example
	Disabling Reentrant Bidirectional Paths
	Example
	Disabling Paths Between Endpoints
	Syntax
	Example
	Example
	Disabling Paths With From, To, and Thru
	Syntax
	Example
	Example
	Example
	In Level 1, there are several additional ways in which to specify paths that are to be disabled.

	Level 1 Disables
	Syntax
	Disabling Cell Instances and Cell Types
	Syntax
	Example
	Example

	Multi-Cycle Paths
	Default Definition
	Overriding the Default
	Level 0 Multi-Cycle Paths
	Syntax
	Multi-Cycle Paths Between Endpoints
	Syntax
	Example
	Example
	Multi-Cycle Paths With From, To, and Thru
	Syntax
	Example
	Example

	Combinational Delays
	Level 0 Combinational Path Delays
	Syntax
	Path Delays Between Endpoints
	Syntax
	Example
	Path Delays With From, To, and Thru
	Syntax
	Example
	Path Delays With Arc, Thru, and Thru All (archaic)

	Slew Limit
	Syntax
	Precedence Rules
	Example
	Example

	Latch-Based Borrowing
	Syntax
	Example

	Clock Mode
	Syntax

	Clock Delay
	CLOCK_DELAY Scope
	Syntax
	Syntax
	Precedence Rules
	Example

	Inter-Clock Uncertainty
	Syntax
	Target-Based Uncertainty
	Inter-Clock Uncertainty
	Precedence Rules
	Example
	Example

	Timing Exception Cases
	Syntax
	Example

	Archaic Timing Exception Constructs
	Level 1 Port Instance Edge Specification
	(Archaic)
	Syntax
	Example
	Level 1 Arc Edges Specifications
	(Archaic)
	Syntax
	Example
	Level 1 Thru All Specification (Archaic)
	Syntax
	Example
	Level 1 Thru All Edges Specification (Archaic)
	Syntax
	Example
	Disabling Paths Through Edges (Archaic)
	Syntax
	Level 1 Multi-Cycle Paths
	Syntax
	Multi-Cycle Paths With Arc and Thru (archaic)
	Syntax
	Example
	Example
	Level 1 Path Delays
	Syntax
	Syntax
	Example

	Max Transition Time
	Syntax
	Example

	Parasitics Subset
	Parasitics Subset Header
	Syntax
	Example

	Parasitics Environment
	Syntax
	External Loading
	Syntax

	External Fanout
	Syntax

	External Wire Load Model
	Syntax
	Example

	Wire Load Model
	Syntax
	Example

	Parasitics Environment Cases
	Syntax
	Example

	Parasitics Constraints
	Syntax
	Internal Loading
	Syntax

	Loading
	Syntax
	Precedence Rules

	Internal Fanout
	Syntax

	Fanout
	Syntax

	Parasitics Constraint Cases
	Syntax

	Area Subset
	Area Subset Header
	Syntax
	Example

	Area Constraints
	Primitive Area
	Syntax
	Example

	Total Area
	Syntax
	Example

	Porosity
	Syntax
	Example

	Area Constraint Cases
	Syntax

	Power Subset
	Power Subset Header
	Syntax
	Example

	Power Constraints
	Average Cell Power
	Syntax
	Example

	Average Net Power
	Syntax
	Example

	Power Constraint Cases
	Syntax

	Syntax of GCF
	GCF File Characters
	GCF Characters
	Comments

	Syntax Conventions
	Notation
	Variables

	GCF File Syntax
	Extensions
	Labels
	Meta Data
	Include Specifications
	Value Types
	Globals
	Environment Globals
	Timing Globals
	Design References
	Cell Entries
	Subsets
	Timing Subset
	Timing Environment
	Timing Exceptions
	Archaic Timing Exceptions
	Parasitics Subset
	Parasitics Environment
	Parasitics Constraints
	Area Subset
	Power Subset

	Index
	Cadence-Specific Extensions
	TLF Files
	Syntax
	Example

