General Constraint
Format
Specification

Version 1.4

August 17, 1999

Cadence Design Systems, Inc.

cadence

1 Introduction 9

Introduction 11
Acknowledgements 13
Version History 14

2 GCFintheDesign Processiiiiinnenon 21

GCF in the Design Process 23

Sharing of Constraint Data 23

Using Multiple GCF Files in One Design 23
Timing Environment 23

Timing Constraints 23

Parasitic Constraints 24

Parasitic Environment 24

Area Constraints 24

Power Constraints 24

The GCF Creator 24

The Annotator 25

Consistency Between GCF File and Design Description 25
Consistency Between GCF File and Analysis 26

Forward-Annotation of Constraints for Design Synthesis 27

3 Using GCF 29

Version 1.4

GCF File Content 31
Header Section 32

GCF Version 32
Design Name 33
Date 33

Program 33
Delimiters 34
Scaling Factors 35

Levels 37

Level 0 37
Level 1 37
Usage 38

Cases 39

Constant Values 40

Extensions 41
Precedence Rules 43

Normal Precedence Rules 43

August 17, 1999

iif

Meta Data 44
Precedence Overrides 44
Other Meta Data 44
Usage 45

Include Files 46
Labels 47

Value Types 48
Min and Max 48
Min, Max, or both Min and Max 49
Rise, Fall, or both Rise and Fall 49
Rise Min/Max,
Fall Min/Max 50

Globals 52
Environment Globals 52
Process 53
Voltage 53
Temperature 54
Operating Conditions 54
Voltage Threshold 55
Lifetime 56
Environment Globals Case 57
Timing Globals 58
Slew Mode 58
Primary Waveform 59
Derived Waveform 63
Clock Groups 67
Timing Globals Case 68

Design References 70
Name Prefix 70
Cell Instance 71
Port Instance 71
Net 72
Typed Waveform 73
Instance, Port, Pin, and Net Expressions 74
Cell Type 75
Port Master 75
Port Instance or Master 76

Cell Entries 77
Cell Instance Spec 78

Subsets 80

4 Timing Subset

Timing Subset Header 83
Timing Environment 84

v August 17, 1999

Version 1.4

Clock Specifications 85
Clock Arrival 86

Arrival Time 91
Required Time 95
External Delay 99

Driver Specification 101
Driver Cell 101
Driver Strength 104
Input Slew 105

Constant Values 106
Operating Conditions 106
Internal Slew 106

Timing Environment Cases 107

Timing Exceptions 109
Path Specifications 110
Precedence Rules for Exceptions 120

Disable Specifications 120
Level O Disables 122
Level 1 Disables 128

Multi-Cycle Paths 129
Default Definition 129
Overriding the Default 130

Combinational Delays 135
Slew Limit 139
Latch-Based Borrowing 140
Clock Mode 141

Clock Delay 142
Precedence Rules 149
Inter-Clock Uncertainty 151

Timing Exception Cases 156
Archaic Timing Exception Constructs 158
Max Transition Time 163

5 Parasitics Subset

Version 1.4

Parasitics Subset Header 167

Parasitics Environment 169
External Loading 169
External Fanout 170
External Wire Load Model 170
Wire Load Model 171
Parasitics Environment

August 17, 1999

Cases 172

Parasitics Constraints 173

Internal Loading 173

Loading 173

Internal Fanout 174

Fanout 175

Parasitics Constraint Cases 175

6 Area Subset

Area Subset Header 179
Area Constraints 180

Primitive Area 180

Total Area 180

Porosity 180

Area Constraint Cases 181

7 Power Subset

Power Subset Header 185
Power Constraints 186

Average Cell Power 186
Average Net Power 186
Power Constraint Cases 187

8 Syntax of GCF

GCF File Characters 191
GCF Characters 191
Comments 192

Syntax Conventions 193
Notation 193
Variables 193

GCF File Syntax 196

Vi

Extensions 198

Labels 198

Meta Data 198

Include Specifications 198
Value Types 198

Globals 200

Environment Globals 200
Timing Globals 201
Design References 204
Cell Entries 206

Subsets 206

Timing Subset 207

August 17, 1999

Version 1.4

Timing Environment 207
Timing Exceptions 209
Archaic Timing Exceptions 215
Parasitics Subset 217
Parasitics Environment 217
Parasitics Constraints 218
Area Subset 219

Power Subset 220

O INAEX . . . 221

10 Cadence-Specific Extensions
TLF Files 3

Version 1.4 August 17, 1999 Vil

viii August 17, 1999 Version 1.4

Introduction

Introduction
Acknowledgements

Version History

Introduction

Introduction

The General Constraint Format (GCF) file is intended to be used for
interchanging constraint data associated with a design between EDA tools
used at any stage in the design process. The data in the GCF file is
represented in a tool-independent way and can currently include

= Timing environment: intended operating timing environment

= Timing constraints

= Parasitics constraints

= Parasitics environment: intended operating parasitics environment

= Area constraints

= Power constraints

= Design/instance-specific or type/library-specific data

Cadence Design Systems expects that other types of constraint data will be
added to the GCF specification in the future, such as

= Analog constraints

= Noise and signal integrity constraints

A particular GCF file can contain all of these types of constraints, or it can
contain only certain types of constraints.

GCF is not intended to represent detailed constraints such as the timing
checks described in the Standard Delay Format (SDF), as SDF is already
well-defined for this information. Instead, GCF covers many types of
constraints for which no standard currently exists.

The name of each GCF file is determined by the EDA tool. There are no
conventions for naming GCF files.

Version 1.4 August 17, 1999 11

Introduction

Published by Cadence Cadence Design Systems has developed this GCF specification to enable
Design Systems accurate and unambiguous transfer of constraint data between tools that
require this informationAll parties utilizing the GCF should interpret
and manipulate constraint data according to this specificatiolease
direct questions and corrections to:

Mark Hahn

Cadence Design Systems

555 River Oaks Parkway, MS 2B1
San Jose, CA 95134

Tel: (408) 428-5399
Fax: (408) 428-5959
internet e-mail: mhahn@cadence.com

Cadence Design Systems, Inc. makes no warranties whatsoever with
respect to the completeness, accuracy, or applicability of the information
in this document to a user’s requirements.

Cadence Design Systems reserves the right to make changes to the
General Constraint Format Specification at any time without notice.

12 Version 1.4

Acknowledgements

Acknowledgements

The Constraint Forum working group of Cadence Design Systems
acknowledges the individual and team efforts invested in establishing this
version of the GCF specification:

Mark Hahn (primary author)
Ria Simons-Arnout (editor)
Suzanne Thomas (editor)
Henry Chang

Edoardo Charbon

James Cherry

Geoffrey Ellis

Theo Kelessoglou

Anandi Krishnamurthy
Enrico Malavasi

Ed Martinage

Dave Noice

Sherry Solden

Ted Vucurevich

The SDF 3.0 specification developed by Open Verilog International has
strongly influenced GCF. The organization and format of the GCF
document and the contents of a number of sections are borrowed loosely
from SDF. The intent is to build upon this excellent previous work as a
foundation for a broader description of the designer’s intent, particularly
with respect to timing.

Version 1.4 August 17, 1999 13

Version History

Version History

Version 1.4 -
August 17, 1999

14

General Changes

Introduced the notion of archaic constructs, which are supported in this
version of GCF for backward compatibility, but may be dropped in the
next major version. Classified a number of timing exceptions as
archaic and grouped these into a separate section.

Modified most constructs to allow the use of an asterisk as a place-
holder forNUMBER or RNUMBER values that are unset.

Expanded the Value Types section and consolidated definitions for the
semantics of each value type. Added a description of the semantics for
min/max value pairs, given a single operating point assumption.

Clarified the Normal Precedence Rules to avoid conflicts with specific
precedence rules for individual constructs.

Added constructs to support explicitly specifying the types of ports,
pins, instances, nets, and waveforms. In most cases, wherever an
ambiguous name could be specified before, an explicitly typed name
can be specified instead. Untyped names are still allowed for backward
compatibility.

Added constructs to support specifying ports, pins, instances, and nets
using an expression including one or more asterisks as wildcards. In
GCF 1.4, expressions are only allowed withinDh®ABLE ,
MULTI_CYCLE , PATH_DELAY , andEXTERNAL_DELAY

constructs. This may be expanded to other constructs in a future
version.

Signal Integrity Changes

Added aLIFETIME construct to the environment globals subset, to
model the required lifetime for the design.

Timing Analysis Changes

Added aSLEW_MODE construct to select the algorithm used in
merging slews.

Enhanced th&/AVEFORM construct to more precisely describe the
ideal edges and jitter for the waveform.

Enhanced th®ERIVED WAVEFORM construct to includéNVERT
andPERIOD_DIVISOR options.

Version 1.4

Version History

Added arEDGES option to select particular edges from the master
waveform and specify their phase shift.

Replaced th6KEW_ADJUSTMENT construct with
JITTER_ADJUSTMENT for consistency with th&/ AVEFORM
enhancements.

Added separateHASE_SHIFT values for rise and fall.

Added an option to control whether tRHASE_SHIFT affects the
ideal edge position or the effective edge position.

Revised the semantics of tRERIOD_MULTIPLIER option for
improved compatibility.

Added an option to specify the duty cycle when using
PERIOD_DIVISOR.

= Added aCLOCK_ARRIVAL construct to describe external insertion
delay leading up to @ock_root

» AddedREQUIRED as a synonym foDEPARTURE, and modified the
semantics to use required time as the preferred terminology over
departure time.

= Modified the description of thtNTERNAL_SLEW construct to use a
slew_valuewhich is arise_fall_min_maxfour values), rather than
justrise_fall (two values). There was an inconsistency in GCF 1.3
between the main description of the construct and the BNF summary;
the BNF was correct.

= Added aSLEW_LIMIT construct as the preferred way to specify
transition time constraints (both min and max). Included the ability to
specify theSLEW_LIMIT on a master basis by giving the cell type and
the port on that cell type.

TheMAX_TRANSITION_TIME construct is still supported but
archaic.

» Greatly expanded the discussion of the various types of path
specifications.

= Added an optionaBETWEEN keyword to improve clarity in
endpoints_spec

= Added afrom_to_thru_spepath specification to handle mixing from,
to, and through options.

= Added precedence rules to handle cases where several timing
exceptions affect the same path.

= Added a description of the semantics of the relationship between
disables and slew and constant propagation.

Version 1.4 August 17, 1999 15

Version History

16

Addedcell_instanceandwaveform_namas possible items for
BORROW_LIMIT .

Added aDATA_LEAF option toCLOCK_DELAY to handle cases
where a clock signal is distributed to logic where it is treated as a data
signal.

Modified the semantics descriptionrege_fall_min_mawalues in
CLOCK_DELAY .

Added aCLOCK_UNCERTAINTY construct that specifies target-
based and inter-clock ske®I(OCK_DELAY specifies intra-tree
skew).

Added aCLOCK_MODE construct to specify the default analysis
mode (DEAL or ACTUAL) for the clock networks within the design.

Added a capability of overriding the defaGtOCK_MODE on
specific clock networks using tl& OCK_DELAY construct.

Parasitics Changes

Added sEXTERNAL_WIRE_LOAD_MODEL construct that specifies
the names of wire load models that are to be used for primary i/o ports.

Added awIRE_LOAD_MODEL construct that specifies the names of
wire load models that are to be used for module instances and master
cell types.

Modified theLOAD limit construct to allow the limit to be specified on
a master basis by giving the cell type and the port on that cell type.

Power Changes

Modified theTOTAL_AREA , PRIMITIVE_AREA , POROSITY,
AVG_CELL_POWER, andAVG_NET_POWER constraints to use the
same convention as the other standard value types, where a single
value represents both the min and max values (a range of a single
point).

- For the area and power constraints, a single value previously
represented just the max endpoint of the range, and the min
value was implicitly 0. The old semantics can be emulated by
explicitly specifying 0 or by using an asterisk as a place-holder
for the min value.

- For the porosity constraint, a single value previously represented
just the min endpoint of the range, and the max value was
unspecified. The old semantics can be emulated by using an
asterisk as a place-holder for the max value.

Version 1.4

Version 1.3 -
June 25, 1998

Version 1.4

Version History

These changes were done for future consistency and are expected to
have little impact because these constraints were not yet supported.

Modified the semantics of tidAX_TRANSITION_TIME construct
to allow the constraint to be specified on input ports as well as output
and bidirectional ports.

Modified the syntax and semantics of thieOCK_DELAY construct
to allow using avaveform_nam# specifiy insertion delay and skew
for external clock networks (virtual clocks).

Modified the syntax of th€LOCK_DELAY construct to use a
rise_fall_min_mawalue forSKEW.

Modified the semantics of theLOCK_DELAY construct to explicitly
specify the interpretation of insertion delay and skew.

Specified the semantics of delay calculation on interface nets given
DRIVER_CELL , DRIVER_STRENGTH, INPUT_SLEW, and
EXTERNAL_LOAD specifications, and the relationship between this
and howARRIVAL , DEPARTURE, andEXTERNAL_DELAY values
should be set.

Corrected typographical errors in, and clarified the semantics
description for th&XTERNAL_LOAD , INTERNAL_LOAD ,
EXTERNAL_FANOUT , andINTERNAL_FANOUT constructs.

Added an option tdisable_spec_@0 control whether paths through
preset and clear inputs on registers are disabled, as well as an option to
control whether reentrant bidirectional paths are disabled.

Added an explicit statement in the precedence rules that default values
propagate down through the hierarchy when specified on a non-leaf
GCEF cell, and the default can be overridden at lower levels in the
hierarchy.

Fixed several incorrect examples and added some diagrams.

Clarified the definition of the starting points and ending points for
endpoint-based false and multi-cycle exceptions, which are implicitly
determined when waveform names or register names are specified as
theFROM or TO item.

Modified a number of places in the grammar whereta_dataa level

1 construct, was included as an option where only level O constructs
should be used, to provide the same capability as option within the
corresponding clauses where level 1 constructs should be used. This
affects the way the grammar is organized, but doesn’t change the GCF
syntax itself.

August 17, 1999 17

Version History

Version 1.2 -
August 22, 1997

Version 1.1 -
July 8, 1997

Version 1.0 -
March 21, 1997

18

Modified the syntax and semantics of tiNeVEFORM construct to
allow edge times to be negative numbers.

Modified the semantics of tHBEPARTURE_TIME construct to
directly correspond to setup and hold times of a virtual register
connected to the output.

Added arEXTERNAL_DELAY construct that describes purely
combinational delays external to a cell.

Modified thePATH_DELAY construct semantics to reflect the
EXTERNAL_DELAY construct, and to allow cell instances and
waveform names to be specified as endpoints.

Added a section on default precedence rules, as well as a number of
specific precedence rules for particular constraints and sets of
constraints.

Added internal slew and clock slew constructs.

Modified theCLOCK_DELAY construct to allow the leaf pins to be
omitted, in which case all primitive clock input pins reachable from the
specified root are implied.

Modified thePATH_DELAY construct to allow each of the rise min,
rise max, fall min, fall max delays to be specified independently.

Updated théORIVER_CELL , DRIVER_STRENGTH, and

INPUT_SLEW constructs to explicitly state that if nqmort_instances
specified, then the construct applies by default to all primary input and
bidirectional pins.

Fixed conflicting statements about whetherARRIVAL and
DEPARTURE constructs allow internal pins to be specified as well as
primary i/0’s. The statements have been corrected to indicate that
internal pins are allowed.

Added the ‘<’ and ‘>’ characters as legal bus delimiters.

Added the syntax description fdisable_cell_spec , Wwhich was
missing in Version 1.0.

Fixed minor inconsistencies.
Extensive editing to improve readability.

Added operating conditions and voltage thresholds to the environment
globals. Added the ability to override the operating conditions for part
of the design in Level 1.

Changed the semantics of the process, voltage, and temperature
constructs to specify the range of operating conditions over which the
design is intended to operate.

Version 1.4

Version History

= Modified the default voltage thresholds to be 10% and 90% instead of
20% and 80%.

= Added a restriction on clock waveforms to only allow a single pair of
edges.

= Added arr_rise_fall_min_maxwalue type, which allows for negative
arrival and departure times, andIBIvMBER variable, which
represents a possibly negative integer.

= Dropped the delay offset construct.

= Moved fanout-based parasitics constructs to Level 1, since these
require wire load models to interpret.

= Updated the driver cell construct to allow distinguishing between the
cell types that should be used for each type of edge.

= Modified the CLOCK_TREE construct and renamed it to
CLOCK_DELAY.

= Modified name prefixes to include the number of prefixes, and to
require that the id numbers be sequential starting at O.

= Modified the max transition time check to refer to output pins, rather
than load pins.

= Significantly modified the disables section to eliminate problems with
overloading several different types of disables into a single syntax.

Xersion 02-1 -1997 = Significantly expanded the description of the multi-cycle constraint
anuary 24, semantics and modified them to better match existing tools.

= Modified the syntax to allow Level 1 constraints to be grouped
together within a GCF section.

= Fixed many minor inconsistencies between different sections of the
document.

Version 0.6 - = Added many new kinds of information:
November 15, 1996
0 Case-dependent constraints
0 Constant signal specifications
0 Clock domains
0 Process, voltage, and temperature specifications
0 Area and power constraints.
0 Meta data describing the precedence between alternate constraints.

= Significantly revised many of the timing constraints to better match the
semantics of existing tools.

Version 1.4 August 17, 1999 19

Version History

Version 0.5 -
April 15, 1996

Version 0.4 -
April 8, 1996

20

Separated constraints into several levels of support.

Modified the syntax to reduce verboseness and eliminate ambiguities
when using yacc as the basis for parsing.

Incorporated feedback from internal review.

Initial formal version for internal review.

Version 1.4

GCF in the Design Process

GCF in the Design Process

Forward-Annotation of Constraints for Design Synthesis

GCF in the Design Process

GCF in the Design Process

Sharing of
Constraint Data

Using Multiple GCF
Files in One Design

Figure 1

Timing
Environment

Timing
Constraints

Version 1.4

By accessing a GCF file, EDA tools are assured of consistent, accurate,
and up-to-date data. This means that EDA tools can use data created by
other tools as input to their own processes. By sharing data in this way,
estimation, synthesis, floorplanning, analysis, and layout tools can all use
a consistent set of design constraints with well-defined semantics.

The EDAtools create, read (to update their design), and write to GCF files.

GCEF files support hierarchical constraint annotation. A design hierarchy
might include several different ASICs (and/or cells or blocks within
ASICs), each with its own GCF file as illustrated in Figure 1.

Multiple GCF Files in a Hierarchical Design

GCF File
for System
Interconnect

GCF File
for ASIC 2

GCF File
for ASIC 1

System Module\ :
Y X

ASIC 1 ASIC 2

GCF includes constructs for describing the intended timing environment in
which a design will operate. For example, you can specify the waveform
to be applied at clock inputs and the arrival time of primary inputs.

Some of the timing environment information is also covered by SDF 3.0.
You should use SDF to pass delay data and detailed path constraints
between tools and use GCF to pass high-level timing constraints and the
timing environment description between tools.

GCF contains aricher description of the environment, particularly in terms
of the information required for doing delay calculation on interface nets. It
also supports many types of timing constraints which are not covered by
SDF.

GCF contains constructs for describing special cases within a sequential
circuit, such as false and multi-cycle paths. It also contains constructs

August 17, 1999 23 1

GCF in the Design Process

Parasitic
Constraints

Parasitic
Environment

Area Constraints

Power Constraints

The GCF Creator

24

which allow constraints to be applied on combinational or asynchronous
parts of a circuit.

GCF contains constructs for describing constraints on the parasitics within
a circuit, such as a limit on the internal capacitance of interface nets. These
constraints would typically be used by synthesis and layout tools.

GCF includes constructs for describing the parasitics in the environment in
which a design will operate. For example, you can specify the external
capacitance for interface nets.

GCF contains constructs for constraining the primitive area and the total
area of a cell, as well as the porosity of the cell.

GCF includes constructs for constraining the average power consumed by
a cell and the average power dissipated by the capacitance in a net.

One or more tools can be responsible for generating the GCF file. For
example, a synthesis tool or a dedicated constraint management tool can
capture constraint information from the designer and then write out this
data in GCF. To do this, it will examine the specific design for which it has
been instructed to generate constraint data. Tools which create GCF files
must locate, within the design, each region for which constraint data exists
and calculate values for the parameters of those constraints.

Many types of constraints, such as clock waveform descriptions, apply
throughout the design process. Other types of constraints, such as parasitic
constraints on an interconnection, can be derived from high-level timing
constraints. GCF supports describing both high-level and derived
constraints in the same file. Thus, GCF is suitable for both prelayout and
postlayout applications.

There are provisions in the GCF specification for adding meta data
associated with constraints in a later revision. This meta data can be used
in many ways; some planned uses include describing relationships
between constraints, and describing the relative importance of each
constraint. The meta data will refer to constraints through a utdabeé

which can be associated with each constraint.

Many tools only need a description of the constraints themselves, and do
not require any of the meta data. However, tools which create GCF files
should not make assumptions about the requirements of the tools which

Version 1.4

The Annotator

Consistency
Between GCF File
and Design
Description

Version 1.4

GCF in the Design Process

will read the GCF file. To prevent the need for multiple GCF files with
different sets of meta data for a given design, a tool which creates GCF
files should include as much meta data as possible. Each reader is expected
to filter out the meta data it does not require. Tools which create GCF files
can make judicious use of timeludeconstruct to make this filtering

efficient.

GCF imposes no restrictions on the precision which is used to represent the
data in a GCF file. Therefore, the accuracy of the data in the GCF file will
depend on the accuracy of the constraint generator and the information
made available to it.

The GCFfile is brought into a reader tool through an annotator. The job of
the annotator is to match data in the GCF file with the design description.
Each region in the design identified in the GCF file must be located.
Constraints in the GCF file for this region must be applied to the
appropriate parameters of the design.

The annotator can be instructed to apply the data in the GCF file to a
specific region of the design, other than at the top level of the design
hierarchy. In this case, it will search for regions identified in the GCF file
starting at this point in the hierarchy. The file must clearly have been
prepared with this in mind, otherwise the annotator will be unable to match
what it finds in the file with the design viewed from this point.

The foregoing implies that the annotator must have access to the design
description. Frequently, this will be via the internal representations
maintained by the reader tool. The annotator will then be a part of the tool.
As an alternative, the annotator can operate independently of the reader
tool and convert the data in the GCF file into a format suitable for the tool
to read directly. If such an annotator is unable to match the GCF file to the
design description, then the effect of inconsistencies is unpredictable.
Also, certain constructs of GCF cannot be supported without access to the
design description (for example, wildcard cell instance specifications and
wildcard bit specifications).

A GCF file contains constraint data for a specific design. The contents of
the file identifies regions of the design and provides constraints that apply
to various properties of that region. The analysis tool or annotator cannot
operate if the regions identified in the GCF file do not correspond exactly
with the design description. Therefore, changes to the design sometimes
require writing a new GCF file, depending on the types of changes and
constraints. A future version of GCF might provide a mechanism for
describing incremental changes to an existing GCF file.

Of equal importance to the logic of the design is the naming of design
objects. Even if the same cells are present and are connected in the same
way, annotation cannot operate if the names by which these cells and nets

August 17, 1999 25 1

GCF in the Design Process

Consistency
Between GCF File
and Analysis

26

are known differ in the GCF file and the design description. The naming
of objects must be consistent in these two places.

During annotation, inconsistencies between the GCF file and the design
description are considered errors.

GCF includes a description of a standard semantics for many kinds of
constraints. Some tools might not support all of the types of constraints in
GCF, or might restrict the semantics for some types of constraints. For
example, a layout tool might handle disabling of false paths where a single
port is specified, but not handle disabling of false paths where multiple
ports are specified.

The constraints of GCF are divided into a number of subsets, where each
subset contains constraints associated with a particular aspect of a circuit,
such as timing or parasitics. When a tool reads a GCF file, it can choose to
read one or more of these subsets. During the annotation of each subset a
tool reads, unsupported constraints or unsupported semantics for a
constraint are considered to be warnings. However, a tool should not warn
about unsupported constraints in other subsets.

Version 1.4

Forward-Annotation of Constraints for Design Synthesis

Forward-Annotation of Constraints for Design Synthesis

Version 1.4

Figure 2

In addition to the use of constraint data for analysis and estimation, GCF
supports the forward-annotation of constraints to design synthesis tools.
(In this context, we use the term “synthesis” in its broad sense of
construction, thus including not only logic synthesis, but also
floorplanning, layout and routing.) Constraints are “requirements” for the
design’s overall properties and are often modified and broken down by
previous steps in the design process. Figure 2 shows a typical scenario of
the use of GCF in a design synthesis environment.

GCF Files in Constraint Forward-Annotation

Analysis user
Tool constraints

GCF File
(synthesis

constraints)

Synthesis Tool
(logic synthesis,
layout, etc.)

Constraints can also be originated by an analysis tool alone. For example,
a timing budgeting tool might be able to propagate the high-level timing
constraints specified by a designer down to each hierarchical module in the
design, setting arrival time and departure time constraints on each module
port automatically.

August 17, 1999 27 1

Forward-Annotation of Constraints for Design Synthesis

28 Version 1.4

Using GCF

GCF File Content
Header Section
Levels

Cases
Extensions

Meta Data
Include Files
Labels

Value Types
Globals

Design References
Cell Entries

Subsets

GCF File Content |

GCF File Content

Version 1.4

GCF files are ASCII text files. Every GCF file contains a header section
followed by one or more additional sections. A GCF file can contain zero
cell entries.

Syntax

constraint_file ::= (GCF header section+)

section ::= globals
[|= cell_spec
||= extension
[|= meta_data
[|I= include

Theheadersection contains information relevant to the entire file such as
the design name, the tool used to generate the GCF file, and scaling factors
for the values in the file (see “Header Section” on page 32).

Theglobalssection describes information that is common to all cells in §
design.

Each cell constructell_specidentifies part of the design (aegion” or
“scope”) and contains data for the constraints on that part of the design (see
“Cell Entries” on page 77). Rell can be a physical primitive from the |
ASIC library, a modeling primitive for a specific analysis tool or some
user-created part of the design hierarchycel can encompass the entire
design.

Extensions provide a mechanism to extend the standard GCF format with
user-defined portions.

Meta data describes relationships between constraints.

This chapter describes the header, globals, cell-spec, and a number of
GCF-specific concepts (such as levels, cases, labels, include files, value
types, and design references). The following chapters describe specific
subsets in GCF. For each part of the file, the purpose is discussed, the
syntax is specified, and an example is presented. A complete, formal
definition of the file syntax is contained in Chapter 8, “Syntax of GCF.”
You can refer to that chapter for precise definitions of some of the
abbreviated syntax descriptions given here.

August 17, 1999 31 |

Header Section

Header Section

GCF Version

32

The header section of a GCF file contains information that relates to the
file as a whole. Except for the GCF version, entries are optional, so that it
is possible to omit most of the header section.

The design name, date, and program entries are for documentation
purposes and do not affect the meaning of the data in the rest of the file.
However, the version, delimiters, and scaling factors do affect how the
data in the file is interpreted.

Syntax
header ::
header_info::

(HEADER version header_info}

design_name
date

program
delimiters
time_scale
cap_scale
res_scale
length_scale
area_scale
voltage_scale
power_scale
current_scale
extension

The version construct identifies the version of the GCF specification to

which the file conforms.
Syntax

version ::= (VERSION QSTRING)

QSTRINGIs a character string in double quotes. The first substring within
QSTRING,which consists of just numeric characters and a period,
identifies the GCF version. Other characters before and after this substring
are permitted and will be ignored by readers when determining the GCF

version.

Example

(VERSION “Cadence Version 1.4")

Readers of GCF files can use the GCF version construct to adapt to the
differences in file syntax between versions. If the file does not contain a
GCF version construct, or one is present butQRERINGfield does not

contain a numeric substring, the GCF reader will give an error message.

Version 1.4

Design Name

Date

Program

Version 1.4

Header Section |

The design name construct specifies the name of the design to which the
constraints in the GCF file apply. This construct is for documentation
purposes only.
Syntax

design_name:= (DESIGN QSTRING)

QSTRINGis a name that identifies the design. Although this construct is
not used by the annotator, it is recommended that, if it is included, the
name should be the name given to the top level of the design description.
This is analogous to theELLTYPE construct, and in fact, the same name
would be used in a cell construct for the entire design. It must not be the
instance name of the design in a test-bench; this would instead be used as
part of the cell instance path in ttNSTANCE entries for all cells.

The date construct indicates how current the data in the file is. This
construct is for documentation purposes only.

Syntax
date ::= (DATE QSTRING)

The QSTRINGepresents the date or time when the data in the GCF file was
generated or last modified.

Example
(DATE “Friday, June 6, 1997 - 7:30 p.m."”)

The program name construct indicates the name of the program that
created or last modified the file. This construct is for documentation
purposes only.

Syntax

program ::= (PROGRAM
program_name program_version
program_company

program_name::= QSTRING
program_version::= QSTRING
program_company.:= QSTRING
The QSTRING parameters contain (respectively)
= The name of the program used to generate or modify the GCF file
= The version number of that program
= The company that produced the program

August 17, 1999 33 1

Header Section

Delimiters

34

Example

(PROGRAM “GCF writer” “2.0” “Cadence”)

The delimiters construct specifies the characters that are used as delimiters
in design names.

Syntax
delimiters ::= (DELIMITERS QSTRING)

The QSTRING always contains three characters:

= Thefirst character is referred to as the hierarchy delimiter character, or
HCHAR, and must be either a period (.) or a slash (/). If there is no
delimitersconstruct in the GCF file, tH¢CHAR defaults to a period.

= The second character is referred to as the left index character, or
LI_CHAR, and must be either a left bracket ([), a left parenthesis ((), or
a left angle bracket (<). If there is delimitersconstruct in the GCF
file, theLI_CHAR defaults to a left bracket.

= The third character is referred to as the right index character, or
RI_CHAR, and must be either a right bracket (]), a right parenthesis ()),
or a right angle bracket (>). If there is @elimitersconstruct in the
GCF file, theRl_CHAR defaults to a right bracket.

Example
(DELIMITERS “/()")

" (INSTANCE a/b/c(3))

In this example, the hierarchy delimiter is specified to be the slash (/)
character, so the hierarchical paths use the slash (rather than the period) to
separate elements. In addition, the left and right index characters are set to
be parentheses, so that bit-specs for selecting elements from instance
arrays or buses are specified using parentheses (rather than brackets).

Hierarchical delimiters can be used in ®@ENTIFIER and aPATH. Index
characters can be used inIBENTIFIER. For more information, see
“Variables” on page 193.

Version 1.4

Scaling Factors

Version 1.4

Header Section |

A scaling factor entry specifies the multiplier to be used to scale the values
for the specified physical property.
Syntax
time_scale::= (TIME_SCALE multiplier)
cap_scale::= (CAP_SCALE multiplier)
res_scale::= (RES_SCALE multiplier)
length_scale::= (LENGTH_SCALE multiplier)
area_scale::= (AREA_SCALE multiplier)
voltage_scale::= (VOLTAGE_SCALE multiplier)
power_scale::= (POWER_SCALE multiplier)
current_scale::= (CURRENT_SCALE multiplier)
multiplier ::= NUMBER

The default time scale is 1 secondirtie_scaldas specified, the GCF
reader will multiply all delay numbers in the GCF file by the specified
value, which is in seconds. For example, a multiplier of 1.0E-12
corresponds to delay values in ps.

The default capacitance scale is 1 Faradal§_scales specified, the GCF
reader will multiply all capacitance numbers in the GCF file by the
specified value, which is in Farads. For example, a multiplier of 1.0E-12
corresponds to capacitance values in pF.

The default resistance scale is 1 ohme# scalas specified, the GCF
reader will multiply all resistance numbers in the GCF file by the specified
value, which is in ohms. For example, a multiplier of 1.0E-3 corresponds
to resistance values in milli-ohms.

The default length scale is 1 metenrelfigth_scalas specified, the GCF
reader will multiply all length numbers in the GCF file by the specified
value, which is in meters. For example, a multiplier of 1.0E-6 corresponds
to length values in microns.

The default area scale is 1 square meteatdfa_scales specified, the GCF
reader will multiply all area numbers in the GCF file by the specified
value, which is in square meters. For example, a multiplier of 1.0E-12
corresponds to area values in square microns.

The default voltage scale is 1 voltvifltage scales specified, the GCF
reader will multiply all voltage numbers in the GCF file by the specified
value, which is in volts. For example, a multiplier of 1.0E-3 corresponds
to voltage values in millivolts.

August 17, 1999 35 1

Header Section

36

The default power scale is 1 wattptbwer_scalas specified, the GCF
reader will multiply all power numbers in the GCF file by the specified
value, which is in watts. For example, a multiplier of 1.0E-3 corresponds
to power values in milliwatts.

The default current scale is 1 ampereuifrent_scalds specified, the

GCF reader will multiply all current numbers in the GCF file by the
specified value, which is in amperes. For example, a multiplier of 1.0E-3
corresponds to current values in milliamps.

Example

(CAP_SCALE 1.0E-12)

Version 1.4

Levels |

Levels

Level O

Level 1

Version 1.4

GCF provides a mechanism for interchanging constraint data between
many different kinds of tools. The capabilities of each tool affect the types
of constraints that the tool can support.

It is desirable to standardize as many types of constraints as possible to
ensure that the tools that support each constraint do so in a consistent way.
However, this presents a dilemma to a designer who is using GCF: What
constraints can be used successfully given the set of tools that the designer
must use?

GCEF divides the constraints into several levels of support. In this version
of GCF, two levels have been identified. In this document, all constraints
are Level 0 unless otherwise specified.

Level 0 provides a baseline capability to which most tools will conform. It
includes the mostimportant basic constraints. These constraints are widely
supported already, and the algorithms required to support the constraints
are well understood and relatively straightforward to implement.

A designer or a flow developer might choose to use only the Level O
constraints so that the GCF file is widely portable across different tools.

Tool vendors should state whether their tools comply with Level 0 on a
subset-by-subset basis. For example, a timing analysis tool vendor might
state that the tool fully supports GCF Level O (Timing and Parasitics
subsets).

Level 1 includes additional constraints that are less widely supported but
are viewed as important for certain design styles or methodologies. These
constraints generally allow a more precise description of the intended
operation of the circuit than can be expressed using just the Level 0
constraints.

Level 1 constraints might require more complex algorithms that affect thp
performance of a tool. On the other hand, a tool might achieve better
quality results or perform a more accurate analysis when Level 1
constraints are used.

August 17, 1999 37 1

| Levels

Usage

A designer or a flow developer can choose to use some or all of the Level
1 constraints. This decision is necessarily more difficult than choosing to
use only Level O constraints. It requires careful analysis of at least the
following:

= The performance versus accuracy trade-off
= The tools that support the desired Level 1 constraints
= The resulting effect if not all of the tools support all of the constraints

Even when some aspect of the design behavior can’'t be expressed properly
by using Level O constraints, itis likely that a designer still needs to specify
Level O constraints (which are overly restrictive) so that tools that only
support Level 0 can produce correct results.

In a flow that mixes tools supporting Level 0 and Level 1 constraints, it is
desirable to specify the Level 1 constraints as well. If both constraints are
specified in the same GCF file, it is ambiguous which constraints will be
used by a Level 1 tool. In this case, HRECEDENCE construct can be

used to describe the relationship between the constraints (see “Meta Data”
on page 44).

It is desirable that every tool can read a GCF file containing both Level O
and Level 1 constraints, so that a single GCF can be used throughout a
flow. The syntax for GCF has been defined in a way that allows tools that
only support Level O to easily ignore Level 1.

Level O constraints are not explicitly identified as belonging to Level 0,
while Level 1 and higher constraints must appear withitete
construct.

The general form for the level construct is shown below. There are a
number of variations of the level construct, where each variation restricts
the types of level-specific constraints that can appear at a particular point
in the GCF file.

Syntax
level ::= (LEVEL NUMBER construct+)

A precise description of each type of level specification is included in
Chapter 8, “Syntax of GCF.”

For this version of GCHRUMBER must be set to 1.

Version 1.4

Cases |

Cases

Version 1.4

With some design styles, itis either necessary or convenient to separate the
constraints into several different cases. For example, you can use cases

= To distinguish between major modes of operation (such as, normal
mode versus test mode and reset mode)

= To describe the circuit behavior when several clocks are muxed
together

= To describe the effect of gating clocks

Some tools do not support case-dependent constraints, some tools handle
each case separately without considering the interactions between them,
and some tools can look at each case separately, as well as consider the
interactions between them.

Because not all tools support case-dependent constraints, these constraints
are included in GCF Level 1, but notin Level 0. However, given that there
are a number of tools that do support case analysis, there is value in bejpg
able to describe the cases in a consistent way.

Cases are identified in GCF using a unique identifier. Unless they appear
within thecaseconstruct, all constraints in a GCF belong todba&ault
case. The nam#efaultcannot be used to identify other cases.

The general form for case specifications is shown below. The description
of a case-dependent constraint depends on the context in which it is used.
Syntax

case_spec:= (CASE IDENTIFIER
case_dependent_constrain}+

Each case is likely to be described using a number of diffeasit spec
constructs in different places in the GCF. The unique identifier for the case
must be used in each of tikase_speconstructs associated with the case.

A precise description of each type of case specification is included in
Chapter 8, “GCF File Syntax.”

August 17, 1999 39 1

Cases

Constant Values

40

In addition to allowing constraints to be separated into different cases,
GCF also allows specifying that certain signals have a constant value in a
given case. In this respect, case-dependent constraints are similar to state-
dependent delays. However, state-dependent delays are commonly
expressed using Boolean expressions on signal values. In GCF, there is an
implicit AND of the constant values specified for a given state.

Constant specifications appear within the timing subset for the cell that
contains theort_instancgsee “Timing Environment” on page 84).

Version 1.4

Extensions |

Extensions

Version 1.4

There are a number of cases in which it is desirable to extend a standard
format such as GCF in unofficial ways:

= For preliminary testing of official proposals for new versions of the
format

= For early versions of evolving portions of the format

= Forrepresenting company-specific, flow-specific, or tool-specific data
thatis not suitable for standardization but is strongly related to the dajja
in the standard (Often, a separate data format is appropriate for these
cases, but in some cases having a separate data format would require
duplicating much of the information)

However, there are also several concerns with unofficial extensions:

= Unofficial extensions might be used indefinitely for data that should
become part of the official standard.

= Without a built-in mechanism for extensions, most GCF readers would
not be able to read a GCF file containing an extension. This would
greatly limit the use of extensions because all of the readers in a
particular design flow would have to be modified for each extension.
With a built-in mechanism for extensions, only tools requiring the data
included in the extension would need to be modified.

To overcome the latter concern, GCF includes a built-in mechanism for
unofficial extensions, and establishes a policy restricting the syntax of
those extensions.

Syntax

extension::= (EXTENSION QSTRING

extension_constructy

extension_construct= (user_defined
[|I= include

The QSTRINGcontains the name of the extension. Extension names must
be unique. For example, an extension name might include the name of the
tools that support it. I

Extensions must conform to the GCF syntax for parenthesized constructs
and strings to enable every GCF reader to ignore the extension by
searching for a matching right parenthesis that is not embedded within a
quoted string.

August 17, 1999 41]

| Extensions

Except for these restrictions, the format for the extension is flexible. Any
keywords can be used, including existing GCF keywords. There is no limit
on the number of the parenthesized constructs associated with an
extension, and extension constructs can be arbitrarily nested.

Extensions must not be inserted at arbitrary points in a GCF file. They can
only be included where explicit provisions were made in the GCF syntax.

Example

(EXTENSION “color”
(PACKAGE_COLOR “white” “grey” “black”)

)

In this example, an extension is defined for a constraint on the possible
colors of the package containing the design, where the color must be one
of the listed values.

| 42 Version 1.4

Precedence Rules |

Precedence Rules

Normal Precedence
Rules

Version 1.4

Some types of constraints can be expressed in several similar forms. Each
of these forms results in different degrees of accuracy. Ideally, only the
most accurate form would be included in the GCF, and all tools would
support this form.

For example, the effect of an external driver on delay calculation for an
interface signal can be described by identifying the cell and its drive
strength or by specifying an input slew. Identifying the cell is the most
accurate approach in most cases.

Unfortunately, not all the tools in a given flow support the same forms of
a constraint. In this case, it isn’t possible to create a single GCF file with
only one form of a constraint and go through the flow successfully.

GCF allows multiple forms of a constraint to be included in a single GCF
file. For tools that only support one form of the constraint, there isn’t any
guestion about what the tool will do. But for tools that support several

forms of the constraint, a set of default precedence rules are defined in
order to make it clear which form will be applied. There is also a capability
in Level 1 to explicitly override the default precedence rules; see “Met

Data” on page 44. 1

In the absence of any explicit precedence overrides, the following general
precedence rules are used. Specific precedence rules are also given for
particular constructs and sets of constructs in the section of the
specification that describes those constructs.

= Avalue thatis given explicitly for a particular design element alway
overrides a default value. Another way to say this is that the default
value only applies to design elements for which a value was not
explicitly specified.

= [ftwo different values are given explicitly for the same design elemen
the value that appears later in the GCF file is used.

= If a place-holder (“*”) is given for a value in one construct, and the
same type of value is given explicitly in another construct of the sa
type, the explicit value is used.

= If a place-holder (“*”) is given for a value in one construct, and the
same type of value is given as a default in another construct of the sahe
type, the default value is used.

s Default values affect the current GCF cell and all of its hierarchical
descendents, unless overridden for a lower level cell.

= [ftwo different default values are given at the same hierarchical level,
the default value that appears later in the GCF file is used. I

August 17, 1999 43 |

Meta Data

Meta Data

Precedence Overrides

Other Meta Data

44

This version of GCF primarily describes basic constraint data. Meta data
is information about the relationships between constraints or about how to
apply the constraints. Meta data is only supported in Level 1.

The supported form of meta data describes the precedence among several
related constraints. The precedence meta data construct allows the user to
explicitly override the default precedence for a set of several constraints.
A tool that supports the precedence meta data applies just one constraint
from the set. The chosen constraint will be the highest precedence
constraint that the tool supports; the remaining constraints in the set are
ignored.

There are many other types of meta data that might be added to GCF in
future versions. For example, tools often convert constraints of one type
into constraints of another type. The meta data might include a description
of the transformation algorithm that should be used or the parameters used
in the transformation.

Another example is constraint propagation (decomposing high-level
constraints on a design into lower-level constraints on each portion of the
design). The meta data might include a description of the dependency
between the high-level constraint and the lower-level constraints.

Often it is not strictly necessary to satisfy every individual constraint. It
might be acceptable to make trade-offs between different constraints.
Failing to meet a particular constraint might not be catastrophic.

For example, capacitance constraints can be budgeted for each net in a
design. Even though a number of nets fail to meet their constraints, the
circuit can still function properly if other nets more than satisfy their
constraint. Meta data could describe which constraints must be strictly
satisfied (such as the cycle time) and which constraints are only goals that
help to ensure that the strict constraints are satisfied.

A designer often sets constraints on a number of different aspects of a
circuit, such as area, timing, and power. If not all of these constraints can
be satisfied, the designer can use meta data to describe the relative
importance of each aspect.

Version 1.4

Meta Data |

Meta data usually must refer to constraints. To allow constraint references,
the constraints must be uniquely labeled. For more information, see
“Labels” on page 47.

Usage

Syntax
meta_data::= (LEVEL 1 meta_data_14)
meta_data_1::= (META meta_construct4)

meta_construct:= precedence
||= meta_reserved
[|I= include

precedence:= (PRECEDENCE (label_id label_id+))
meta_reserved:= (IDENTIFIER reserved_for_future_definitior)

Constraints must be listed in tRRECEDENCE construct in decreasing
order of precedence: the first label in the list is the most preferred
constraint.

Example
(META (PRECEDENCE (labell label2)))

This example describes the precedence between two different constraints
identified adabellandlabel2 The description of these constraints must
precede thMETA construct in the GCF file. If a tool supports the
constraint referenced bgbell, it will apply that constraint. Otherwise, if

it supports the constraint referencedalgel?, it will apply that constraint.

If it doesn’t support either constraint, the tool will give a warning.

Version 1.4 August 17, 1999 45 |

Include Files

Include Files

46

GCF is intended to be the basis for describing a broad range of different
types of constraints of varying levels of detail, as well as meta data
associated with those constraints. Therefore, it is likely that a complete
GCF file for a design will be fairly large.

The GCF syntax organizes related data by cell type, subsets, extensions,
and meta data. By creating separate files for each cell type, subset,
extension, or type of meta data, a GCF writer can make it as efficient as
possible for reader applications to find and read just the relevant data. This
has to be weighed against the cost of reading from multiple files and the
additional complexity for the user of maintaining multiple files.

If a file is not found in any of the directories listed in the search path, the
GCF reader will give an error message.

Syntax
include ::= (INCLUDE QSTRING)

The QSTRING specifies the name of the file to be included. GCF writers
will use relative file names to allow a set of GCF files to be copied from
one location to another. Relative file names are interpreted with respect to
the file that contains the include specification, not with respect to the
current working directory of a reader.

The GCF syntax describes explicitly where the include construct can be
used. An include file that is referenced at a particular point in the GCF
must contain only data that would, if substituted directly at that point,
conform to the GCF specification. The intent of these restrictions is to
make it possible for a reader application to easily identify those include
files that it does not have to read at all because they can only contain data
that is not relevant to the reader.

Version 1.4

Labels |

Labels

Version 1.4

Labels can be used to identify constraints within a GCF file. Consequently,
each label within a GCF file must be unique. The label must be an
identifier or a quoted string if the label is a GCF keyword.

There is a provision for a label in every basic constraint construct of GCF.

Syntax
label ::= label_id COLON

label_id ::= IDENTIFIER
= QSTRING

A simple and compact approach for a GCF writer is to assign consecutive
integers as labels. If desired, more information can be conveyed in the
label by using a quoted string.

Example

(27: INTERNAL_LOAD 10.0 outé)

In this example, the label is 27, and it uniquely identifies a constraint on
the internal load of the net connected to quité.

August 17, 1999 47 1

Value Types

Value Types

Min and Max

48

Most constraints take one or more values, and there are similar restrictions
on the types of values that are legal. This section describes a number of
basic value types that are used in other constructs.

The semantics for values that require both a minimum and a maximum

value depends on the type of operating conditions that are specified for
analysis. See “Min/Max Values and Operating Conditions” on page 51 for
a description of the different interpretations that are possible.

Syntax

min_and_max::
r_min_and_max:
min_number::

min_number max_number
r_min_number r_max_number
NUMBER

NUMBER

RNUMBER

RNUMBER

max_number::

r_min_number::

r_max_number::

Two values must be specified for thien_and_mayxandr_min_and_max
value types. The first represents the min value, while the second represents
to the max value. Place-holders are not allowed for either value in the
min_and_maandr_min_and_maxalue types.

NUMBER is a non-negative (zero or positive) real number, for example: 0,
1,0.0,34,.7,0.3, 2., 2.4e2, 5.3e-1, 8.2E+5

RNUMBER is a positive, zero or negative real number, for example: 0, 1,
0.0,-34,.7,-0.3, 2., 2.4e2, -5.3e-1, 8.2E+5

Version 1.4

Value Types |

Min, Max, or both Min Syntax
and Max min_max::= NUMBER
[|[= min_value max_value
r_min_max::= RNUMBER
[|= r_min_value r_max_value
min_value ::= number_or_place_holder

max_value::= number_or_place_holder
r_min_value::= r_number_or_place_holder
r_max_value::= r_number_or_place_holder
number_or_place_holder.= NUMBER

=~

r_number_or_place_holder.= RNUMBER

=~

One or two values can be specified for then_maxandr_min_maxvalue
types. When one value is specified, it applies to both the min and the m@x
values. When two values are specified, the first represents the min valfie,
while the second represents to the max.

Both value types allow an asterisk to be used as a place-holder for eitliger
the min or the max value. Whenever an asterisk is used as a place-holder,
the corresponding value is treated as unspecified. Whenever several
number_or_place holderrnumber_or_place holderalues appear in a

row (as inmin_may, at least one of the values must not be an asterisk.

Rise, Fall, or both Rise Syntax
and Fall rise_fall := NUMBER
||= rise_value fall_value
r_rise_fall ::= RNUMBER
[|= r_rise_value r_fall_value
rise_value::= number_or_place_holder
fall_value ::= number_or_place_holder
r_rise_value::= r_number_or_place_holder
r_fall_value ::= r_number_or_place_holder

Therise_fallandr_rise_fall value types represent a pair of times, one fo
a rise edge and one for a fall edge.

One or two values can be specified. If a single value is specified, it applids
to both the rise and fall edges. If two values are specified, the first val
represents the rise edge, and the second value represents the fall edgg.
When two values are specified, at least one of them must not be an astesk.

Version 1.4 August 17, 1999 49 1

| Value Types

I Rise Min/Max, Syntax
Fall Min/Max rise_fall_min_max::= NUMBER
||= rise_value fall_value
||= rise_min_value rise_max_value
fall_min_value fall_max_value

r_rise_fall_min_max::= RNUMBER
[|= r_rise_value r_fall_value
||= r_rise_min_value r_rise_max_value
r_fall_min_value r_fall_max_value

rise_min_value::= number_or_place_holder
rise_max_value::= number_or_place_holder
fall_min_value ::= number_or_place_holder
fall_max_value::= number_or_place_holder
r_rise_min_value::= r_number_or_place_holder
r_rise_max_value:= r_number_or_place_holder
r_fall_min_value::= r_number_or_place holder
r_fall_max_value::= r_number_or_place_holder

Therise_fall_min_mayandr_rise_fall_min_mawalue types represent a
range of times for a rising edge and a range of times for a falling edge.

One, two, or four values can be specified. If a single value is specified, it
applies to all four of the edge times.

If two values are specified, the first value applies to both the rise minimum
and the rise maximum values, and the second value applies to both the fall
minimum and the fall maximum values. In the two value forms, if an
asterisk is used as a place-holder for the first value, the rise minimum and
rise maximum values are unset. If an asterisk is used as a place-holder for
the second value, the fall minimum and fall maximum values are unset. At
least one of the two values must not be an asterisk.

When four values are specified, the order of the values is rise minimum,
rise maximum, fall minimum, and fall maximum.

The minimum values must be less than or equal to the maximum values for
the same transition.

| 50 Version 1.4

Value Types |

Min/Max Values and Most constraints and environment specifications in GCF allow a min/m
Operating Conditions pair of valuesi_min_may, or min/max value pairs for rising and falling
transitions {_min_max_rise_fa)l

In GCF 1.4, theDPERATING_CONDITIONS construct supports a single
operating point. Therefore, the semantics for min/max values are defingd
as follows:

= A min/max value for a constraint represents the allowable variation
the constrained parameter, measured at the operating point

= A min/max value for an environment specification represents the
extremes of the parameter expected at the operating point.

A future version of GCF is expected to support multiple operating pointg,
in which case the semantics for min/max values will depend on whetherfla
single operating point or multiple operating points are given.

Version 1.4 August 17, 1999 51 |

Globals

Globals

Environment Globals

52

The globals section describes the constraint data that applies to multiple
cells within the design. Use of the globals section avoids duplication of
constraint data within each cell. The globals section must appear before
anycell_specsections.

Syntax
globals ::= (GLOBALS globals_subset

globals_subset:= env_globals_subset
[|= timing_globals_subset
||= extension
||= meta_data

This version of the GCF defines two types of global data: the environment
globals subset and the timing globals subset.

The environment globals subset describes the operating conditions for a
design, including process, temperature, and voltage values. There are two
types of specifications: a range specification, which describes the range of
values over which the design is intended to operate, and an operating point
specification, which describes a particular process, voltage, and
temperature point for which analysis or optimization is to be done.

The environment globals subset also describes the voltage thresholds used
for the slew specifications and maximum transition constraints in other
parts of the GCF.

In Level 1, the operating conditions can be case-dependent.

Syntax

env_globals_subset= (GLOBALS_SUBSET ENVIRONMENT
env_globals_body

env_globals_body:= env_globals_spec+
[|I= include

env_globals_spec:= env_globals_spec 0
[|= env_globals_spec_1

env_globals_spec_0= process
[|= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
[|= lifetime
||= extension
||= meta_data

Version 1.4

Process

Voltage

Version 1.4

Globals |

env_globals_spec_1= (LEVEL 1env_globals_1+

env_globals_1::= env_globals_case
||= meta_data_1

env_globals_case:= (CASE IDENTIFIER
env_globals_case_speg+

env_globals_case_spec= env_globals_spec_0

Example

(GLOBALS_SUBSET ENVIRONMENT
(voltage 4.5 5.5)
(operating_conditions “fastest” 0.8 3.1 -25.0)

)

In this example, only the voltage range is specified, and the process corner
to be used for analysis corresponds to the fastest delays.

Theprocessonstruct specifies the range of process derating factors over
which the design is intended to operate. This range restricts the
process_valuéhat can be specified for the operating conditions. I

Syntax
process::= (label?PROCESSmin_and_may

Example
(process 0.8 1.2)

In this example, assuming that 1.0 represents a nominal process, the
process derating factor used for analysis can vary by plus or minus 20
percent.

Thevoltageconstruct specifies the range of voltages over the design is
intended to operate. This range restrictsvibleage_valuehat can be I
specified for the operating conditions.

Syntax
voltage ::= (label?VOLTAGE r_min_and_may

Ther_min_and_mayparameter specifies minimum and maximum voltages.

Example
(voltage 2.9 3.1)

In this example, assuming that the voltage scaling factor is set to 1.0, the
design is intended to operate with a supply voltage between 2.9 and 3.1
volts.

August 17, 1999 53 |

| Globals

Thetemperatureconstruct specifies the range of temperatures over which
the design is intended to operate. This range restricts the
| temperature_valughat can be specified for the operating conditions.

Temperature

Syntax
temperature::= (label? TEMPERATURE r_min_and_may

Ther_min_and_mayarameter specifies the minimum and maximum
operating ambient temperatures in degrees Celsius (centigrade).

Example
(temperature -25.0 85.0)

In this example, the design is intended to operate between -25.0 and 85.0
degrees Celsius.

Operating Conditions Theoperating_conditionsonstruct specifies an environmental corner—a
particular combination of process, voltage, and temperature derating
points —for which analysis or optimization is to be done.

Syntax

operating_conditions::= (label? OPERATING_CONDITIONS
QSTRING
process_value
voltage value
temperature_valug

process_value:= NUMBER
voltage value::= RNUMBER
temperature_value:= RNUMBER

The QSTRING parameter specifies a name for the environment corner,
which is used in some libraries to obtain the models for converting the
process, voltage, and temperature derating points into delay multipliers.

Theprocess_valuspecifies the process derating point. The interpretation
and the units of the derating factor are library-dependent. The process
derating point is used to compute a multiplier for scaling delays to reflect
the impact of variations in the process. Usually the derating point is
interpreted as an index into a linear model that defines the delay multiplier.

If the GFC file contains processconstruct that defines a range of
allowable process derating points, fh@cess_valuenust fall within that
range. There is no default range.

Thevoltage valuespecifies the voltage derating point, which has units
specified by theroltage scaleThe voltage derating point is used to

I 54 Version 1.4

Voltage Threshold

Version 1.4

Globals |

compute a multiplier for scaling delays to reflect the impact of variations
in the supply voltage. Usually the derating point is interpreted as an index
into a linear model that defines the delay multiplier.

If the GFC file contains woltageconstruct that defines a range of
allowable voltages, theoltage valuenust fall within that range. There is
no default range.

Thetemperature_valuspecifies the temperature derating point in degrees
Celsius (centigrade). The temperature derating point is used to compute a
multiplier for scaling delays to reflect the impact of variations in the
ambient temperature. Usually the derating point is interpreted as an index
into a linear model that defines the delay multiplier.

If the GFC file contains eemperatureconstruct that defines a range of
allowable temperatures, the operatiegiperature_valumust fall within
that range. There is no default range.

The operating conditions defined in the global environment subset apply
by default to all cells in the design. In Level 1, this can be overridden for
particular cells by including amperating_conditionspecification in the
timing subset for a cell.

Example
(operating_conditions “slowest” 1.2 2.9 85.0)

In this example, the environment corner is set to reflect derating points that
result in the analysis or optimization being based on the slowest delay§.

Thevoltage_threshol@onstruct specifies the measurement points on a
waveform that were used in calculating the slews (transition times) in t
GCF file.

The measurement points are defined as a percentage of the change i
voltage from the start of the transition to the end of the transition. If no
voltage thresholds are specified in a GCF file, the default values for sl
measurement are 10% and 90%.

Syntax

voltage_threshold:= (label? VOLTAGE_THRESHOLD
min_and_may

Themin_and_mayarameter specifies the minimum and maximum
measurement points for slews as numbers between 0 and 100.

August 17, 1999 55 |

| Globals

Example
(voltage_threshold 20.0 80.0)

| In this example, the measurement points on the waveform for slew are at
the 20% and 80% points with respect to the change in voltage associated
with the transition.

Lifetime Thelifetime construct specifies the required operating lifetime for the
design, which is used in some types of signal integrity and reliability
analysis.

Syntax

(label?LIFETIME lifetime_value)

lifetime_value::= min_max

lifetime ::

Thelifetime_valuespecifies the required lifetime in years. Although this is
a time value, it is not scaled by ttie_scalewhich is usually intended
to scale time values to be in units of ns or ps.

In GCF 1.4, only a single operating point can be modeled with the
OPERATING_CONDITIONS construct. This leads to ambiguities because
lifetime_valuesupports both minimum and maximum fields, for
compatibility with a future version of GCF that is expected to support
multiple operating points. At that time, the minimum fields will
correspond to best case operating conditions while the maximum fields
will correspond to worst case operating conditions.

For GCF 1.4, in general the mininimum and maximum fields in
lifetime_valueshould both be set to the same value:

0 The minimum required lifetime expected at the operating point
specified in theOPERATING_CONDITIONS construct.

Tools will generally use the minimum field.

Example
(lifetime 3)

In this example, the design must operate successfully for at three years at
the given operating point.

| 56 Version 1.4

Globals

Environment Globals The environment globals can be case-dependent.

Case Syntax
env_globals_spec_1= (LEVEL 1 env_globals_1+
env_globals_1::= env_globals_case

env_globals_case:= (CASE IDENTIFIER
env_globals_case_speg¢+

env_globals_case_spec= env_globals_spec_0

Example

(GLOBALS_SUBSET ENVIRONMENT
(level 1
(case board1
(voltage 4.5 5.5)
)
(case board2
(voltage 3.1 3.5)
)
)
)

In this example, the voltage range depends on the board in which the
design is used.

Version 1.4 August 17, 1999 57

| Globals

Timing Globals

Slew Mode

The timing globals subset defines waveforms, derived waveforms, and
clock domains. Waveforms and their derivatives can be referenced by each
cell, as needed. A clock domain is a group of clocks that are synchronous
with respect to each other.

Syntax
timing_globals_subset= (GLOBALS_SUBSET TIMING
timing_globals_body
timing_globals_body::= timing_globals_spec+
[|I= include
timing_globals_spec:= timing_globals_spec_0
||= timing_globals_spec_1
timing_globals_spec_0:= slew_mode
||= primary_waveform

||= extension
||= meta_data

timing_globals_spec_1:= (LEVEL 1timing_globals_1+)
timing_globals_1::= timing_globals_no_case 1
||= timing_globals_case
timing_globals_no_case 1= derived_waveform

||= clock_group
[|= meta_data_1

The following sections describe how operating points are specified for use
in delay calculation and timing analysis, primary waveforms, derived
waveforms, clock groups, and case-dependent timing globals.

Example

(GLOBALS_SUBSET TIMING
(include “global_timing.gcf”)
)

In this example, the global timing constraints are described in a separate
file, global_timing.gcf, which must located in a directory along the search
path.

TheSLEW_MODE construct specifies how slews should be propagated
through the design.

Syntax

slew_mode::= (label?SLEW_MODE
slew_mode_valug
slew_mode_value:= WORST
[|= CRITICAL

The default isVORST.

Version 1.4

Globals |

Example
(SLEW_MODE CRITICAL)

When theSLEW_MODE is set toWORST,

= The smallest of the minimum incoming slews for each timing arc will
be used in computing the minimum delays for SDF and the earlies
clock and data arrival times for timing checks.

= The largest of the maximum incoming slews for each timing arc wil
be used in computing the maximum delays for SDF and the latest clogk
and data arrival times for timing checks.

= The average of the typical incoming slews for each timing arc will b
used in calculating the typical delays for SDF.

When theSLEW_MODE is set toaCRITICAL

= The minimum slew of the earliest transition arriving at the start of eac
timing arc will be used in computing the minimum delays for SDF an
the earliest clock and data arrival times for timing checks.

= The maximum slew of the latest transition arriving at the start of eac
timing arc will be used in computing the maximum delays for SDF an
the latest clock and data arrival times for timing checks.

= The average of the typical incoming slews for each timing arc will b
used in calculating the typical delays for SDF.

Primary Waveform The primary waveform construct defines an abstract periodic waveforng,
which is not necessarily associated with any particular signal in the portion
of the design described by the GCF file. A waveform typically is used to
define one or more clock signals.

The following example uses a waveform that isn’t associated with any
signal. The GCF file for a chip might need to refer to the waveform of an
off-chip clock in a constraint on the arrival time at an input pin of the chip,
but that clock itself might not be supplied to the chip.

The primary and derived waveform constructs allow multiple pairs of
edges. However, when a waveform description is used to define a clock or
is used as a reference for an arrival or departure time, the waveform must
only have a single pair of edges.

Version 1.4 August 17, 1999 59 1]

Globals

60

Syntax

primary_waveform::= (label?WAVEFORM waveform_name
period edge_pair_lis}

waveform_name:= QSTRING
period ::= NUMBER
edge_pair_list::= pos_pair+
[|= neg_pair+
pos_pair ;= pos_edge neg_edge
neg_pair ::= neg_edge pos_edge
pos_edge::= (POSEDGEedge_positior)
neg_edge::= (NEGEDGE edge_positior)

edge_position::= ideal_edge
||= ideal_edge_with_jitter

||= edge_range

ideal_edge::= RNUMBER

||= placeholder
ideal_edge_with_jitter::= ideal_edge jitter_spec

jitter_spec ::= (JITTER jitter_value)
jitter_value ::= NUMBER
[|= neg_jitter pos_jitter
neg_jitter ::= NUMBER
pos_jitter ::= NUMBER
edge_range::= r_min_and_max (archaic)

The name of the waveform must be unique. The period describes the
interval at which the waveform repeats, and it is in units of time.

All waveforms are described with respect to an implicit reference point in
time. When a circuit contains several clock domains (see “Clock Groups”
on page 67), there is one implicit reference point for each clock domain
that applies to all of the clocks in that domain. The clock waveforms within
a clock domain must be described relative to the implicit reference point,
so that known skew between related clocks is reflected in the respective
waveform edge positions.

There is no relationship between the reference points for different clock
domains.

edge_pair_listdescribes a single period of the waveform. It consists of a
list of edge pairs, which can be eithepas_edgeonstruct followed by a
neg_edgeonstruct or meg_edgeonstruct followed by pos_edge
construct. Thus, the total number of edges in the list will be even and the
edges will alternate betwe®OSEDGE andNEGEDGE.

Version 1.4

Modeling Jitter

Version 1.4

Globals |

In addition to the direction of the transition, each edge gives the time at
which the transition takes place relative to the start of each period. Offsets
must increase monotonically throughout gage pair_liseand must not
exceed the period. The edge times may be negative, in which case care
must be taken to correctly define the period, which is always a positive
number.

The offset of each edge can be specified in three different ways. The
simplest form is to specify only the ideal offset. Given an ideal clock
waveform that has no uncertainty, the rising and falling edges will
modeled as always occuring at exactly the same offset within every clogk
cycle.

Placeholders must only be used in EeRIVED_WAVEFORM construct
for anideal_edgePlaceholders must not be used fordwal_edgdn a
WAVEFORM construct.

External factors in the environment such as crosstalk can introduce
variation called jitter in the actual offset for a clock edge from cycle to
cycle. The second form for thexlge_positioshould be used to model the
peak jitter that may occur, where peak jitter is the maximum difference i
any cycle between the actual offset for an edge and the ideal position for
the edge.

Theneg_jittervalue is subtracted from thdeal edgeand thepos_jitter
value is added to thieleal_edgeo create an uncertainty region, where the
actual edge position in a particular cycle may lie anywhere within the
uncertainty region. For argdge_positiorthat has an uncertainty region,
tools will assume that a single transition of the specified direction occufs
somewhere in the uncertainty region but will not make any assumptio
about the exact location. Tools unable to model uncertainty will issue
warning message and use itleal _edgeposition instead.

When the edge positions of two waveforms are compared in order to
establish the relationship between the waveformsgibal _edges always
used.

When a waveform edge is used as a reference for an arrival or departfire
time, jitter on the waveform edge extends the uncertainty region for th
arrival or departure time.

Ther_min_and_maskorm of theedge_positions archaic and has been
replaced by th&leal_edge_with_jitteform. The uncertainty region is
treated the same with both forms, but intthein_and_maxorm the
ideal_edges defined as the mean of the two endpoints, rather than
represented explicitly. Computing the mean is subject to floating point
arithmetic inaccuracies that can affect the comparison between
ideal_edgesTwo waveforms intended to have the sadeal_edgeand

August 17, 1999 61 |

Globals

62

uncertainty regions with different sizes may not have exactly the same
computeddeal _edgeposition.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)
)

In this example, a waveform is defined with a 50% duty cycle and a 10 ns
period (assuming that the time_scale construct specifies that delay values
in the file are in ns).

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0 (JITTER 0.2))
(NEGEDGE 5.0 (JITTER 0.2))

)

In this example, a waveform is defined with a jitter of 0.2 ns on both the
rising and falling edges. This creates an uncertainty window of 0.4 ns
around each edge. The earliest possible transition for the rising edge in any
machine cycle is expected to be at an offset of -0.2 ns from the implicit
reference point. The latest possible transition for the falling edge in any
machine cycle is expected to be at an offset of 5.2 ns from the implicit
reference point.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0 (JITTER 0.1 0.2))
(NEGEDGE 5.0 (JITTER 0.3 0.4))

)

In this example, a waveform is defined to have different positive and
negative jitter values for each edge. The earliest possible transition for the
rising edge is expected to be at an offset of -0.1 ns, while the latest possible
transition is at 0.2 ns. The earliest possible transition for the falling edge is
expected to be at an offset of 4.7 ns, while the latest possible transition is
at 5.4 ns.

Example (archaic)

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE -0.2 0.2) (NEGEDGE 4.8 5.2)

)

This example illustrates using the archaic uncertainty range form to
describe jitter of 0.2 ns. Thdeal _edgeposition is determined as the mean

Version 1.4

Derived Waveform

Version 1.4

Globals |

of the two endpoints for each edge, so the riglegl_edgewill be at
approximately 0.0 ns, and the fallindeal _edgewill be at approximately
5.0 ns.

The derived waveform construct defines a waveform that is harmonical
related to a previously defined waveform (the “parent” waveform, whic
might itself be a derived waveform). Derived waveforms can only be
specified in Level 1.

Derived waveforms are commonly used in a multi-phase, single-frequency
clocked system. A single abstract waveform is defined, and other phases
are derived from it.

Another example of when this is useful is when clock multipliers or
dividers are used to convert one clock waveform into another waveform
with a different but related frequency. By defining the output waveform of
a divider as a derived waveform, a change to the definition of the period of
the parent waveform will automatically affect the output waveform.

Syntax
derived_waveform:= (label? DERIVED_WAVEFORM
waveform_name
parent_waveform_name
derived_waveform_optiony |
parent_waveform_name= QSTRING
derived_waveform_optioni= period_multiplier
||= period_divisor
||= derived_edges
||= phase_shift
[|= jitter_adjustment
[|= invert
period_multiplier ::= (PERIOD_MULTIPLIER
period_multiplier_valug
period_divisor ::= (PERIOD_DIVISOR
period_divisor_value duty_cycle_valug?
derived_edges:= (EDGESderived_edge_list
derived_edge_list:= derived_pos_pair+
||= derived_neg_pair+
derived_pos_pair.:= derived_pos_edge derived_neg_edge
derived_neg_pair::= derived_neg_edge derived_pos_edge
derived_pos_edge= (POSEDGEderived_edgé
derived_neg_edge= (NEGEDGE derived_edgé
derived_edge:= edge_num derived_edge_shift?
derived_edge_shift:= (PHASE_SHIFT edge_shift_valutDEAL ?)

August 17, 1999 63 |

| Globals

Uniform Scaling

phase_shift::= (PHASE_SHIFT phase_shift_valubDEAL ?)
(JITTER_ADJUSTMENT

jitter_adjustment::

edge_pair_lis)
invert ;= INVERT
period_multiplier_value::= DNUMBER
period_divisor_value::= DNUMBER
duty cycle value:= NUMBER
edge_num::= DNUMBER
edge_shift_ value:= RNUMBER

phase_shift_value:= r_rise_fall

The basic relationshipship between the edges in the parent waveform and
the edges in the derived waveform can be specified in two different ways:

= using theperiod_multiplierand/or theperiod_divisorconstructs to
scale the period and edge positions of the parent waveform

= using thederived_edgesonstruct to select specific edges by number
from multiple cycles of the parent waveform

These two approaches cannot be combineddéheed_edgesonstruct
cannot be used in combination wjgariod_multiplieror period_divisor

If a period_multiplieris specified, the period of the derived waveform is
obtained by multiplying the period of the parent waveform by the
period_multiplier_value.

= [f the period_multipleris a power of two, the positions of each of the
edges in the derived waveform will be set to the position of successive
rising edges across multiple periods of the parent waveform, starting
with the first rising edge in the first period.

= If the period_multiplieris not a power of two, the position of each
waveform edge in the parent is multiplied fgriod_multiplierto
determine the corresponding edge position in the derived waveform.

If a period_divisoris specified, the period of the derived waveform is
obtained by divided the period of the parent waveform by the
period_divisor_valueTheduty cycle valueepresents the percentage (0
to 100) of the derived period that the derived waveform is high. If

duty cycle_valués not specified, the position of each waveform edge in
the parent is also divided, to determine the corresponding edge position in
the derived waveform.

If duty _cycle valués specified, only the first edge position in the parent
is used in determining the edge positions in the derived waveform, which

Version 1.4

Edge Selection

Version 1.4

Globals |

will always have just two edges, regardless of how many edges there §re
in the parent waveform. The position of the first waveform edge in the
parent is divided by thperiod_divisor_valu¢o obtain the position of the

first derived waveform edge. Then tthety cycle valués applied to the
derived period to determine the second edge position.

= Ifthe firstwaveform edge in the parentis a rising edge, or if itis fallin
and theNVERT keyword is specified, then the second edge positio
will be at time

0 first_edge_time + ({uty_cycle_valué 100.0) * derived_period)

= Ifthe firstwaveform edge in the parentis a falling edge, or ifitis risin
and theNVERT keyword is specified, then the second edge positio
will be at time

0 first_edge_time + (((100duty_cycle_valug/ 100.0) *
derived_period)

Both aperiod_multiplierand aperiod_divisorcan be specified, for cases
where the period of the derived waveform is a rational multiple of the
parent waveform’s period. The multiplier is applied first, then the divisor.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)

)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”
(period_multiplier 2)
)
)

In this example, which models a clock divider, the period of the derive
waveform is multiplied by 2 (and the frequency is divided by 2). The risin
edge of the derived waveform is at 0, and the falling edge of the deriv
waveform is at 10.

If derived_edgess specified, the edge positions in the derived wavefor
are obtained by selecting particular edges by number from multiple cyclgs
of the parent waveform. Each derived edge can then be shifted by a unigue
amount usinglerived_edge_shift

By default, the ideal edge position is the same as the ideal edge positiorfin
the parent, and thderived _edge_shii treated as insertion delay. If the
IDEAL keyword is specified in theéerived_edge_shiftonstruct, the
derived_edge_shifs included in the ideal edge position.

August 17, 1999 65 |

| Globals

The edge numbers in the parent waveform are consecutive integers starting
at 1 and incrementing on each transition.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)
)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”
(edges (posedge 1) (negedge 3))
)
)

For example, for a parent waveform with edges at O (rising) and 5 (falling)
and a period of 10, specifying edge numbers 1 anddenived_pos_pair
will result in a waveform with edges at 0 (rising) and 10 (falling).

Uniform Phase Shift If phase_shifts specified, all of the edges of the derived waveform are
computed by adding the specified value(s) to the corresponding edge
positions specified in the parent waveform or to the computed edge

positions ifperiod_multiplier, period_divisomr derived_edges

specified.

= [fthe INVERT keyword is not specified, the rigghase_shift_valuis
added to th@os_edgedges, while the fajphase_shift_valuis added
to theneg_edgedges.

= [fthe INVERT keyword is specified, the rigghase_shift_valuis
added to th@eg_edgedges, while the fajphase_shift_valus added
to thepos_edgesdges.

= Ifbothphase_shifandderived _edge_shifire specified, the sum of the
two is used in computing ttaerived_edgeosition.

Jitter Adjustments If jitter_adjustments not specified, the derived waveform will have the
same jitter as the parent waveform.

If jitter_adjustments specified, it overrides the jitter from the parent
waveform. Within thgitter_adustmentonstruct, a placeholder must be
used to represent eaateal edgeposition, since the actual offset of each
ideal_edgewill be computed from the other specifications.

When a combination gderiod_multiplier period_divisorderived_edges,
phase_shiftorjitter_adjustmentonstructs are specified, first the ideal
edge positions for the derived waveform are computed, using the
period_multiplieror period_divisorif specified.

| 66 Version 1.4

Clock Groups

Version 1.4

Globals |

aphase_shifif specified. Finally, the uncertainty around each effective
edge position is determined from ftjiteer _adjustmentf specified

The waveform resulting from the calculations must be valid: offsets must
increase monotonically throughout theége pair_lisand must not exceed
the adjusted period.

If the INVERT option is specified, the derived waveform is inverted with
respect to its parent.

When the edge positions of a derived waveform are compared agains
another waveform in order to establish the relationship between the
waveforms, the comparison is done using the ideal edges for the derived
waveform.

When theMULTI_CYCLE construct (see “Multi-Cycle Paths” on page
129) is used for a parent waveform, it has no effect on any waveforms
derived from that parent; any adjustments must be specified independently
for each derived waveform.

Then the effective edge positions are computed, considering the effecIof

Example

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”
(period_multiplier 2)
)
)

In this example, a waveform is defined with a 50% duty cycle and a 20 ns
period by deriving from a previously defined parent waveform.

By default, all clocks are assumed to be derived from a common source
clock and to have harmonically related frequencies, so that it is meaningful
to perform timing checks on paths between any pair of registers.

In both Level 0 and Level 1, by default all clock waveforms are assigndd
to the same default clock domain. In Level 1, itis possible to describe cages
where not all of the clocks are derived from the same source by separatihg
the waveforms into groups of related clocks or “clock domains.” If any
clock domains are specified, only paths between clock waveforms in tie
same group are constrained.

Clock waveforms in different domains are assumed to be asynchrono
There is no default constraint on the delay of paths that start in one clgck
domain and end in a different one, although an explicit combinational
delay constraint could be specified as an exception. A synchronizer must
usually be used for these paths.

August 17, 1999 67 1

Globals

Syntax

clock_group::= (label?CLOCK_GROUP
clock_group_name waveform_nampg+

clock_group_name:= QSTRING

The clocks within the group are identified by their waveform names, and
the definitions of the waveforms must precedecibek group_spec
Usually derived waveforms will be in the same clock group as their parent
waveform, but this must be specified explicitly.

Including the same waveform name in multiple clock groups is not
allowed because doing so implies that the clock is asynchronous with
respect to itself.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)
)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”
(period_multiplier 2)
)
(CLOCK_GROUP “groupl”
“100 MHz 50/50” “50 MHz 50/50”

)
)

Timing Globals Case The timing globals can be case-dependent.

Syntax

timing_globals_case:= (CASE IDENTIFIER
timing_globals_case_speg+

timing_globals_case_spee timing_globals_spec 0
||= timing_globals_no_case_1

68 Version 1.4

Version 1.4

Globals

Example

(GLOBALS_SUBSET TIMING
(level 1
(case board
(WAVEFORM “100 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)
)
)

(case tester
(WAVEFORM “20 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)
)
)
)
)

In this example, the clock waveform supplied to the chip depends on
whether it is mounted on the board or is being tested.

August 17, 1999 69

Design References

Design References

Name Prefix

70

GCF allows three types of design preferences: name prefixes, cell and port
instances, and cell types.

Constraints generally refer to the properties of specific objects within a
design (for example, cell instances or port instances). In GCF, it is only
possible to refer to these objects by their name. However, the full
hierarchical name of a design object can be a fairly long string, and many
design objects have similar names.

To reduce the size of GCF files, GCF allows the use of name prefixes. A
name prefix is a short alias to be created for an initial portion of a
hierarchical path name. When the full hierarchical names of many design
objects share a common initial prefix, the use of name prefixes can
substantially reduce the size of a GCF file.
Syntax
name_prefixes:= (NAME_PREFIXES num_prefixes
name_prefix+)
num_prefixes::= DNUMBER
name_prefix::= prefix_idQSTRING
prefix_id ::= DNUMBER

To optimize reading a GCF file, theum_prefixeparameter must specify
the exact number of name prefixes that follow, andptedix_idsmust be
consecutive integers starting at O.

Name prefixes are defined within a cell specification. A GCF writer can
choose to use any set of strings for use as name prefixes, or can choose to
not define any prefixes at all. One possible choice for the name prefixes is
the instance names of primitives instantiated as descendents of the cell.

Once a name prefix has been defined, it can be used to identify cell
instances or port instances within the current cell instance. The definition
of the name prefix must precede any usage of the prefix.

When a name prefix is used, it is interpreted as the initial portion of a
relative path name beginning at the context of the current cell instance.

Since the name prefix and tRARTIAL_PATH are simply concatenated
without interpretation to form the fuRATH for the cell instance, the name
prefix must use the hierarchy delimiter charadt®THAR, to separate each
level of hierarchy in the name.

Version 1.4

Design References |

The cell instance construct is used to identify a particular instance of a cell
within the design. In early versions of GCF, the cell instance construct wis
untyped. In some constructs, it was ambiguous without access to the netist
whether a given string @refix_idrepresented an cell instance name or
port name or a pin name. Tiyged_cell_instanceonstruct can be used to
avoid this ambiguity, but for backward compatibility it is not required.

Cell Instance

Syntax
cell_instance::= untyped_cell_instance
[|I= typed_instance_list
untyped_cell_instance= PATH
[|= (prefix_id)
l|= (prefix_id PARTIAL_PATH)

typed_instance_list:= (INSTANCE untyped_cell_instange)

Port Instance The portinstance construct is used to identify either a top level port on the
current GCF cell, a pin on a primitive contained within the current GC
cell or its descendents, or a pin on a hierarchical module contained within
the current GCF cell or its descendents (a “hierarchical pin”).

Not all tools reading GCF support hierarchical pins, because doing so
requires access to a hierarchical netlist, while some tools only read a
flattened netlist. Constraints originally specified on hierarchical pins m
need to be “flattened”, or propagated to primitive pins at certain points i
a design flow.

In early versions of GCF, the port instance construct was untyped. In sorpe
constructs, it was ambiguous without access to the netlist whether a givien
string orprefix_idrepresented an cell instance name or a port name or
pin name. Théyped_port_instanceonstruct can be used to avoid this
ambiguity, but for backward compatibility it is not required.

Syntax

port_instance::= untyped_port_instance
[|= typed_port_instance

untyped_port_instance:= port
[|= PATH HCHARport
[|= (prefix_id port)
[|= (prefix_idPARTIAL_PATH HCHARport)

typed_port_instance:= typed_port_list
[|= typed_pin_list

typed_port_list::= (PORT untyped_port_instanee)
typed_pin_list::= (PIN untyped_port_instanee)

Version 1.4 August 17, 1999 71 1

Design References

Example

(CELLY()
(SUBSET *“timing”
(EXCEPTIONS
(SLEW_LIMIT 1.0 2.0 3.0 4.0 a.b.c.d.IN1)
(SLEW_LIMIT 5.0 6.0 7.0 8.0 a.b.c.e.IN1)

)
)
)

In this example, a slew limit (transition time) constraint on two primitive
pins is specified using thentyped_port_instancerm.

Example

(CELL()
(SUBSET “timing”
(EXCEPTIONS
(SLEW_LIMIT 1.0 2.0 3.0 4.0 (PIN a.b.c.d.IN1))
(SLEW_LIMIT 5.0 6.0 7.0 8.0 (PIN a.b.c.e.IN1))

)
)
)

In this example, the same constraint is specified usintypeel_pin_list
form.

Example

(CELL()
(NAME_PREFIXES 2
0 “a.b.c.d.”
1“a.b.c.e.”
)
(SUBSET “timing”
(EXCEPTIONS
(SLEW_LIMIT 1.0 2.0 3.0 4.0 (1 IN1))
(SLEW_LIMIT 5.0 6.0 7.0 8.0 (2 IN1))

)
)
)
In this example, the same constraint is specified using the name prefixes
form.

Net The net construct is used to identify a particular net contained within the
current GCF cell or its descendents. In most GCF constructs, nets are
identified implicitly by specifying one of the pins connected to the net.
However, in several constructs a net name can be used directly.

Generally, the name of a net that connects through several levels of
hierarchy is ambiguous, as the net will have a different local name, or alias,

72 Version 1.4

Design References |

within each level of hierarchy. Applications that interpret net names
generally need to have access to all of the net aliases in order to find a §et
referenced in the GCF.

The net name can be typed or untyped, for consistency with cell instarfce
and port instance. The typed form is preferred.

Syntax
net ::= untyped_net
||= typed_net_list
untyped_net:= PATH
[|= (prefix_id)
[|= (prefix_idPARTIAL_PATH)
typed_net_list::= (NET untyped_net)
Example
(CELL()
(SUBSET “timing”
(EXCEPTIONS
(DISABLE
(PATHS
(THRU_ALL
(NET netl)
(NET net2)

In this example, all paths through baotitlandnet2are disabled.

Typed Waveform For consistency witkell_instanceandport_instancethere is an explicitly
typed form for waveforms. Thigped waveform_listan be used for
clarity, although there isn’t any ambiguity between waveforms and othgr
design objects, since waveform names must be enclosed in quotes.

Syntax
typed_waveform_list:= (WAVEFORM waveform_name)

Example

(WAVEFORM *“wavel”)

Version 1.4 August 17, 1999 73 1

Design References

Instance, Port, Pin, and
Net Expressions

74

In certain GCF constraints, to reduce the GCF file size it is possible to
specify an expression including th¢LDCARD character, “*”, that
matches a set of cell instance names, port names, or pin names.

Syntax
typed_instance_expr= (INSTANCE_EXPR PATH_EXPR)
typed_port_expr:= (PORT_EXPR PATH_EXPR)
typed_pin_expr::= (PIN_EXPR PATH_EXPR)
typed_net_expr:= (NET_EXPR PATH_EXPR)

PATH_EXPR is the same as PATH (see “Variables” on page 193), with
the addition of the wildcard character. TW&LDCARD character matches
any substring within a single level of a hierarchical name, but it does not
match across hierarchy boundaries.

Example

(CELL()
(SUBSET *“timing”
(EXCEPTIONS
(DISABLE (PIN_EXPR a.*.c.*.IN1))

)
)
)

In this example, given that the current GCF cell contains the pins
a.b.c.d.in1, a.b.c.e.inl, and a.b.c.e.f.in1, only first two pins will be
disabled. The third pin would be matched by

(PIN_EXPR a.*.c.*.*.inl)
Example

(CELLY()
(SUBSET *“timing”
(EXCEPTIONS
(DISABLE (PIN_EXPR *.IN1))
)
)
)

In this example, only the IN1 pins on instances that are direct children
within the current GCF cell are matched, not all of the IN1 pins on any
instance contained within the current GCF cell and its descendents.

Version 1.4

Cell Type

Port Master

Version 1.4

Design References |

Example

(CELLY()
(SUBSET *“timing”
(EXCEPTIONS
(DISABLE (FROM (PORT_EXPR SCAN_DATA_*)))

)
)
)

In this example, 8CAN_DATA bus port in the original netlist has been
mapped into individual ports in the current netlist, replacing the bus
delimiters with underscores. TIR®ORT EXPR construct is used to match
all of the ports corresponding to the original bus port.

Thecell_id construct is used to refer to exactly one type of cell.

Syntax

cell_id ::= (CELLTYPE cell_nameg
|= (CELLTYPE
library _name cell_name view_namg?

library_name ::= QSTRING
cell_name::= QSTRING
view_name::= QSTRING
The library name indicates the library that contains the cell. The view nanje
specifies a particular view of the cell.

Example

(CELLTYPE "AN2")

This example specifies the AN2 cell type. Since the library is not specifieq,
the effect of this ambiguous if there are several libraries used in the desifn
that include different cells named AN2.

Example

(CELLTYPE "REFLIB" "AN2")

This example specifies the AN2 cell from the REFLIB library.

Theport_masteisymbol is used to refer to a port on a particular type of
cell. This is generally used to establish a master-based default for a
constraint on alport_instanceshat correspond to thmort_master

Syntax
port_master::= (cell_id scalar_por

The library name indicates the library that contains the cell. The view nange
specifies a particular view of the cell.

August 17, 1999 75 1

Design References

Port Instance or Master

76

Example
((CELLTYPE "REFLIB" "AN2") IN1)

This example specifies the IN1 port on the AN2 cell from the REFLIB
library.

Theport_instance_or_masterymbol is used to refer to either a specific
port_instanceor to allport_instanceshat correspond tof@ort_master

Syntax

port_instance_or_master.= port_instance
||= port_master

Version 1.4

Cell Entries |

Cell Entries |

A cell construct identifies a particular “region” or “scope” within a design
and contains constraint data to be applied to that region.

For example, a cell construct might identify a unique occurrence of a user-
defined cell or block and provide constraints on the interface ports of that
block. Or, it might identify a unique occurrence of an ASIC physical
primitive (such as a flip-flop) in the design and define constraints specific
to that occurrence (such as a multi-cycle path constraint on all paths
starting at that flip-flop). Besides identifying such design-specific regions,
cell entries can identify all occurrences of a particular user-defined cell or
an ASIC library physical primitive, such as a certain type of gate or flip-
flop. Data is applied to all such regions in the design.

Syntax
cell_spec::= (CELL cell_instance_spec cell_body spec+

cell_instance_spec.= cell_instance_path
||= (cell_instance_path+)
II= ()

[|= cell_views
cell_instance_path:= PATH

cell_body_spec:= name_prefixes
[|= subset
||= extension
||= meta_data
[|= include

Thecell_instance_speidentifies one or more regions of the design. The
cell_body specontains the constraint data for that region. These will be
discussed in detail in the following chapters.

Example

(CELL al.bl.cl1
(SUBSET PARASITICS
(INTERNAL_LOAD 5.0 7.5 IN1)

)
)

A GCF file can contain any number of cell entries (including zero). The
order of the cell entries is significant only if they have an overlapping
effect, where data from two different cell entries applies to the same
constraint in the design. In this situation, the cell entries are processed
strictly from the beginning to the end of the file, and the data they contain

Version 1.4 August 17, 1999 77 1

| Cell Entries

is applied in sequence to whatever region is appropriate to that cell
construct. Where data is applied to a constraint previously referenced by
the same GCF file, the new data will be applied over the old.

This interpretation supports the definition of a set of default constraints for
all instances of a cell, then overriding those constraints for particular cell
instances.

Cell Instance Spec Thecell_instance_speidentifies the parts of the design to which the
constraints in the cell construct apply.

Syntax

cell_instance_spec.= cell_instance_path
||= (cell_instance_path+)
II= ()

[|= cell_views
cell_instance_path:= PATH

The first form of thecell_instance_spedentifies a unique occurrence in
the design. Theell_instance_patimust be relative to the level in the
design at which the annotator is instructed to apply the GCF file (see “The
Annotator” on page 25). Frequently, this is the topmost level.

Thecell_instance_patis extended down through the hierarchy by
specifying a hierarchical path name with the name of each hierarchical
level separated by the hierarchy delimiter charaetleHAR. The
hierarchical path name must not start with the hierarchy delimiter
character. Name prefixes cannot be used icétieinstance_path.

Example

(CELL al.bl.cl

)

In this example, the relative hierarchical path is specified.as.c1

The region identified is cell or bloak within blockb1, which is in turn

within blocka1, which must be contained within the level at which the
GCF is applied. The period character separates levels or elements of the
path. The example assumes that the delimiters construct in the GCF header
specified the hierarchy delimiter as the period character or, since period is
the default, the construct was absent.

The second form of theell_instance_speidentifies several occurrences
of the cell to which the same constraints must be applied.

The () form of thecell_instance_spdaodicates that the constraints defined
inthecell_body_speapply to the hierarchical level in the design at which

| 78 Version 1.4

Version 1.4

Cell Entries |

the annotator is instructed to apply the GCF file. This is typically used to
specify constraints on the top-level cell in the design.

Thecell_viewsform of the cell instance list indicates that the constraints
defined within thecell_body_speeapply to all occurrences of the given
type of cell that are instantiated under the hierarchical level at which th
GCF is applied.

Syntax

cell_views::= (CELLTYPE cell name
[|= (CELLTYPE
library_name cell_name view_namg*

library_name ::= QSTRING
cell_ name::= QSTRING
view_name::= QSTRING

The library name indicates the library that contains the cell, while the viey
name can be used to specify which views of the cell are affected.

Example
(CELL (CELLTYPE “WORKLIB” "ALU")
)

The effect of this example is to apply the constraints to every instance of
every view of the ALU cell from the WORKLIB library.

August 17, 1999 79 1

| Subsets

Subsets

GCF is organized into a number of subsets of related constraint data. The
| intent of this is to allow tools to efficiently access only the data that is
relevant to them.

Syntax

subset::= timing_subset
||= parasitics_subset
||= area_subset
||= power_subset

| 80 Version 1.4

Timing Subset

Timing Subset Header
Timing Environment

Timing Exceptions

Timing Subset Header ||

Timing Subset Header

The timing subset of each cell entry in the GCF file includes information
about the following:

= The timing environment in which the cell is intended to operate
= The constraints on the timing characteristics of the cell
This chapter describes the timing environment and timing exceptions. For

information on other constructs, refer to “Extensions” on page 37, “Meta
Data” on page 40, and “Include Files” on page 42.

Syntax
timing_subset::= (SUBSET TIMING timing_subset_body |
timing_subset_body:= timing_subset_spec+
[|= include

timing_subset_spec= timing_environment
[|= timing_exceptions
||= extension
||= meta_data

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(SUBSET TIMING
(ENVIRONMENT

)
(EXCEPTIONS

)

)
)

Version 1.4 August 17, 1999 83 1

| Timing Environment

Timing Environment

The timing environment of a cell describes a number of conditions external
to the cell that affect its timing behavior. The following conditions are
included:

= Clock waveforms used by the cell

Arrival and required times of signals at the cell ports

= Information about the external drivers connected to the input ports of
the cell

This section describes clock specifications, arrival time, driver cell, driver
strength, input slew, constant values, operating conditions, and timing
environment cases. Chapter 5, “Parasitics Subset,” includes additional
information that affects the cell’s timing behavior.

Syntax
timing_environment:= (ENVIRONMENT timing_env_specy

timing_env_spec:=
II=
timing_env_spec_0:=
|I=

|I=

|I=

|I=

|I=

|I=

1=
timing_env_spec_1.=
timing_env_1::

|
timing_env_no_case 1=
|I=

|I=

1=

Version 1.4

timing_env_spec_0
timing_env_spec_1

clock _spec
clock_arrival_spec
arrival_spec
required_spec
external_delay_spec
driver_spec
input_slew_spec
extension

(LEVEL 1 timing_env_14

timing_env_no_case_1
timing_env_case

constant_spec
operating_conditions
internal_slew_spec
meta_data_1

Timing Environment ||

Each clock that is applied to the cell (or generated internally by the cell
itself) is described by relating a waveform (see “Timing Globals” on page
50) to aport_instancdthe source of that waveform within the cell). These
port_instancesre usually the roots of a clock network and are referred t
as clock roots.

Clock
Specifications

Syntax

(label?CLOCK waveform_name
clock_root+) I

clock_root ::= port_instance

clock_spec:

If the waveform was not previously defined, an error message will be
given. Although th&VAVEFORM construct generally allows more than
one pair of edges, clock waveforms must only have a single pair of edges.

Theclock_rootcan be a primary input port, an output of a primitive
instance within the current GCF cell, or a hierarchical output pin on a
lower level cell.

An error message will be given ifdock_rootfor aCLOCK construct lies
in the transitive fanout of elock_rootfor anotheICLOCK construct.
When modeling hierarchical clock trees, each GCF must only specify t
highestclock _rootcontained within the portion of the design described b

the GCF.

Figure 3 Simple Clock Tree
TOP

FF1 FF2

/\ /\

CZZ } Cs
C1
CLK 4{ CLK2

Example

(CLOCK “100 MHz 50/50" CLK)

In Figure 3, theCLK input portis eclock_rootthat is the source of the “100
MHz 50/50” waveform within th& OP module. The clock network

Version 1.4 August 17, 1999 85 1

Timing Environment

Clock Arrival

86

distributes that waveform to the clock input pinsFdfl andFF2, as well
as to the output por€GLK2.

TheCLOCK_ARRIVAL construct specifies external insertion delay that
should be included in the effective offset for certain clock edges.

Syntax
clock_arrival_spec::

(label?CLOCK_ARRIVAL
clock_arrival_value
clock_arrival_item+)

clock_arrival_value::= r_rise_fall_min_max

clock_arrival_item::= clock_root
[|= clock_leaf
||= waveform_name
[|I= typed_waveform_list

clock_leaf::= port_instance

Theclock_arrival_valuds a time value and must be specified in the units
defined by theéime_scalelt follows the ordering convention for
r_rise_fall_min_maxdescribed in “Value Types” on page 48, as well as
the semantics for operating points described in “Min/Max Values and
Operating Conditions” on page 51.

When the current GCF cell is part of a larger design, the current GCF cell
may contain only a portion of a larger clock distribution network. The
characteristics of the overall clock network are important when the current
GCF cell contains two different subtrees. In that case, the relationship
between clock edges at registers in different subtrees depends on the
external insertion delay from the root of the overall clock network up to
each subtree’slock_root This external insertion delay should be
specified using th€eLOCK_ARRIVAL construct.

Generally, the effective offset of a clock edge at a register clock input

includes:

= the offset of the clock edge within the waveform

= external insertion delay specified in theOCK_ARRIVAL

= internal insertion delay between ttleck rootand the register clock
input.

Similar factors also affect clock edges that are used as a reference for
ARRIVAL andREQUIRED times. In that case, the whole clock network
lies outside the current GCF cell, and the effective offset of the reference
clock edge includes:

Version 1.4

Timing Environment

= the offset of the clock edge within the waveform

= a portion of the overall external insertion delay specified using a
waveform name in thELOCK_ARRIVAL construct

= a portion of the overall external insertion delay specified using a
waveform name in thELOCK_DELAY construct

Separating the overall external insertion delay into two parts can be
valuable when the same clock waveform is used for both internal and
external registers.

When a higher level subtree in the clock distribution network is not yet
implemented, there may be uncertainty in the clock arrival time. Since t
min/max range for thelock _arrival_valuas used to model different

operating points, it must not be used to describe the uncertainty in the
higher level subtree. Instead, the uncertainty should be modeled using
CLOCK_SKEW construct (see “Inter-Clock Uncertainty” on page 151).

For aclock_root theclock arrival_valueaffects the effective offset of
clock edges at the registers in the transitive fanout from the clock_roo

For aclock_leaftheclock_arrival_valueaffects the effective offset of the
clock edge at thgtort_instancewhich must be the clock input of a
register.

For awaveform_nameheclock_arrival_valueaffects the effective offset
of the clock edges at the registers in the transitive fanout from each
clock_rootassociated with the waveform. It also affects the effective offs
of the clock edges used as a referend&RRIVAL andREQUIRED
constructs.

Version 1.4 August 17, 1999 87

Timing Environment

88

Figure 4

Hierarchical Clock Tree

TOP
CURRENT
FF1 FF2
& :
CLK2 GCLK2
L\ L |
CLK I |
ENABLE
Example
(CELL ()

(SUBSET TIMING
(CLOCK "WAVE" CLK2 GCLK2)
(CLOCK_ARRIVAL 0.5 0.6 0.4 0.5 CLK2)
(CLOCK_ARRIVAL 0.6 0.7 0.5 0.6 GCLK2)

)
)

In Figure 4, theCLK input port on thelf OPlevel module is thelock_root
when the entire design is being analyzed.

However, for a GCF that is intended to describeQU&RRENTmModule,
CLK2 andGCLK2 are theclock_roots Since they are derived from a
common waveform, they can be listed in the s@n@CK construct.
However, the partial insertion delay from @EK input port at th& OP
level to theCLK2input is different than the partial insertion delay from the
CLK input port to thé5CLK2input.

This difference in the top level insertion delays affects the effective
constraint on paths betweBf1 andFF2. In this example, the clock
arrival time atGCLK2is 100 ps later than &i_K2. This causes the
effective setup constraint on paths betwEEft andFF2 to be 100 ps
looser than if the clock arrival times were the same.

Version 1.4

Version 1.4

Timing Environment ||

Figure 5 External Clock Trees and Arrival/Required Times
TOP
SOURCE CURRENT TARGET
FF1 FF2 FF3
O] K e
CLK1 CLK2 CLK3
|
CLK |
Example

(GLOBALS
(GLOBALS_SUBSET TIMING
(WAVEFORM "WAVE" 10 (NEGEDGE 0) (POSEDGE 5))

)
)
(CELL ()
(SUBSET TIMING
(ENVIRONMENT
(CLOCK "WAVE" CLK2)
(CLOCK_ARRIVAL 0.5 0.7 0.4 0.6 "WAVE")
(ARRIVAL (POSEDGE "WAVE") 5.0 6.5 4.0 5.2 IN)
(REQUIRED (POSEDGE "WAVE") 4.0 2.7 3.0 2.0 OUT)
)
(EXCEPTIONS
(CLOCK_DELAY "WAVE" (INSERTION_DELAY 2.0 2.6))

)
)
)

In a GCF for theCURRENTmModule in Figure 5CLK2 is theclock_root
for the internal clock network. The top level clock tree affects the arriv
time of the clock edge at the CLK2 input. The top level clock tree also
affects the arrival time of the clock edge at CLK1 and CLK3, which in tur
affects the arrival time dN and the required time &UT.

August 17, 1999 89

Timing Environment

90

Specifying the waveform name in t8&€OCK_ARRIVAL construct is a
convenient way to describe a balanced top level clock network, where the
partial insertion delay is the same fr@hK to CLK1, CLK2, andCLK3.

Specifying the waveform name in tieOCK_DELAY construct is a
convenient way to describe balanced lower level clock networks, where
the partial insertion delay within each of the lower level modules is the
same.

The effective minimum offset of the rising clock edge at the clock input of
FF2is

5.0 (waveform edge offset) +

0.5 (external insertion delay froBLOCK_ARRIVAL) +

2.0 (internal insertion delay fro@LOCK_DELAY)

=75

The effective maximum offset of the rising clock edge at the clock input of
FF2is

5.0 (waveform edge offset) +

0.7 (external insertion delay froBLOCK_ARRIVAL) +

2.6 (internal insertion delay fro@LOCK_DELAY).

The effective offsets of the reference clock edges used ®WRR&/AL
andREQUIRED time constructs are computed similarly, except that the
CLOCK_ARRIVAL construct describes the top level portion of the
external clock network, and tli OCK_DELAY construct describes the
lower level portion of the external clock network.

The earliest arrival time of the falling edgelBthas a total offset from the
implicit reference point of

5.0 (waveform edge offset) +

0.5 (partial external insertion delay frabhOCK_ARRIVAL) +

2.0 (partial external insertion delay frabhOCK_DELAY) +

4.0 (arrival time)

=115

The latest time (as an offset from the implicit reference point) by which the
rising data edge must rea@tJT for single-cycle operation is

10.0 (cycle time) +

5.0 (waveform edge offset) +

0.7 (partial external insertion delay frabhOCK_ARRIVAL) +

2.6 (partial external insertion delay frabhOCK_DELAY) -

4.0 (required setup time)

=14.3

Version 1.4

Arrival Time

Version 1.4

Timing Environment ||

The earliest time (as an ofset from the implicit reference point) that th
falling data edge must not rea®tJT before is

5.0 (waveform edge offset) +

0.5 (partial external insertion delay frabhOCK_ARRIVAL) +

2.0 (partial external insertion delay frabhOCK_DELAY) +

2.0 (required hold time)

=95

TheARRIVAL construct defines ranges of time in which signal transition
can occur at gort_instancehat includes register data inpus in its
transitive fanout. Arrival times are usually specified only for primary input
and bidirectional ports, but they can also be specified for internal input and
bidirectional pins on primitives, and for hierarchical pins on lower level
modules or blocks. When specified on internal or hierarchical pins, theI
arrival time overrides any propagated arrival time.

Syntax
arrival_spec ::= (label? ARRIVAL
arrival_waveform_edge
arrival_value
port_instance®

arrival_waveform_edge:= (waveform_edge_identifier waveform_name

arrival_value .:= source_arrival_value
source_arrival_value::= r_rise_fall_min_max
[|I= (waveform_edge_identifier
r_min_max) (archaic)

If no port_instancds specified, the arrival time applies by default to all
primary input and bidirectional ports on the cell except those that have]
been identified as clock inputs.

Thearrival_waveform_edgspecification, which identifies a waveform
and an edge of that waveform, is required. The effective offset of the
waveform edge implicitly includes any external insertion delay specifie
for the waveform using theLOCK_ARRIVAL construct, as well as the
offset of the edge specified in the waveform definition.

If the waveform was not previously defined, an error message will be
given. Although th&VAVEFORM construct generally allows more than
one pair of edges, clock waveforms used for arrival times must have o
a single pair of edges.

Thearrival_valueis interpreted as a positive offset from the effective
position of the waveform edge, and it affects all partial paths starting at tije
specifiedport_instances

August 17, 1999 91 |

Timing Environment

92

Thearrival_valueis a time value and must be specified in the units defined
by thetime_scalelt follows the ordering conventions for
r_rise_fall_min_maxandr_min_maxdescribed in “Value Types” on page
48, as well as the semantics described in “Min/Max Values and Operating
Conditions” on page 51.

Ther_rise_fall_min_maxalue type is the preferred form for the
source_arrival_value

The secondource_arrival_valudorm, waveform_edge_identifier

r_min_max, is archaic. It is more easily and consistently specified using the
r_rise_fall_min_maxorm with asterisks as place-holders.

The arrival time at an input pin should include

= The portion of the external insertion delay of the clock network to the
source register specified using theOCK_ARRIVAL construct

This is implicitly included in the effective offset of the waveform edge,
and should not be included in thgival_valueitself.

= The portion of the external insertion delay of the clock network to the
source register specified using theOCK_DELAY construct

This is implicitly included in the effective offset of the waveform edge,
and should not be included in thgival_valueitself.

= The CLK->Q delay of the source register

= The delay from the output of the source register up to the input of the
driver of the interface net connected to the input pin

= The intrinsic delay of the driver of the interface net.

The delay computed for the partial path starting at the input pin includes
= The load-dependent delay of the driver
= The interconnect delay of the interface net

= The delay from the input of the receiver on the interface net up to the
input of the target register

= The setup time (subtracted) or hold time (added) of the target register

= The portion of the insertion delay of the clock network to the target
register that is internal to the current GCF cell, specified using the
CLOCK_ARRIVAL construct (subtracted)

= The portion of the insertion delay of the clock network to the target
register that is external to the current GCF cell, specified using the
CLOCK_DELAY construct (subtracted)

Version 1.4

Timing Environment ||

Figure 6 Arrival Time

A B
S T
Gl G2
E T 3
JAN EL JAN

CK CK
CLK1 CLK2
Example

In Figure 6, the arrival time set on pin IN of block B should include

= A/CLK1 source clock arrival
(implicit in waveform edge)
= A/CLK1to S/CK source insertion delay
(implicit in waveform edge) I
= A/S/CK to A/SIQ clk->q delay
= A/S/Q to AIG1/W combinational delay
= A/G1/W to A/G1/X intrinsic delay

The delay computed for the partial path starting at B/IN includes

= A/G1/Wto A/IG1/X load-dependent delay
= A/G1l/Xto B/IG2/Y interconnect delay

= B/G2/Y to B/T/D combinational delay

= B/T/D to B/T/CK setup/hold time

= B/CLK2 to B/T/CK target insertion delay
= B/CLK2 target clock arrival

EL is the external load specified on the input pin, and it is included whdn
computing the load-dependent delay and interconnect delay.

Multiple ARRIVAL constructs can be defined for the same port. Each
ARRIVAL construct can reference a differevdeiveform_edgéelhe arrival
times associated with a given referemeeveform_edgare independent of

Version 1.4 August 17, 1999 93 1

Timing Environment

94

the arrival times associated with any other referemaeeform_edgeand
analysis will be done separately for each refereveneeform_edge

If severalARRIVAL constructs appear in a GCF file, and each construct
specifies arrival times for the same port instance with respect to the same
referencevaveform_edgehe effect is cumulative and overriding. For
example, assume there are two arrival constructs for the same port instance
with respect to the same referencaveform_edge

= Ifthe first construct specifies only t®OSEDGEarrival times and the
second construct specifies only tREGEDGE arrival times, the result
is that both theOSEDGE andNEGEDGE arrival times are set.

= If the first construct specifies boBHOSEDGE andNEGEDGE arrival
times and the second construct specifies onlWE@EDGE arrival
times, the result is that the values of (@ SEDGE arrival times come
from the first construct, while the values of MEGEDGE arrival
times come from the second construct.

Example

(ENVIRONMENT
(ARRIVAL (POSEDGE “50 MHz 50/50")
10.0 14.0 12.0 16.0 D[*])

)

This example specifies the arrival times for all input pins referenced by the
bit-specD[*]. Assuming that the time scale is in ns, rise transitions will
occur no sooner than 10 ns and no later than 14 ns after the rising edge of
the reference clock. Fall transitions will occur no sooner than 12 ns and no
later than 16 ns after the clock edge.

Example

(ENVIRONMENT
(ARRIVAL (NEGEDGE “100 MHz 50/50”)
4.0%2.0%A)
)

This example specifies the arrival times for the input pilA&suming that

the time scale is in ns, rise transitions will occur no sooner than 4.0 ns and
fall transitions will occur no sooner than 2.0 ns after the falling edge of the
reference clock. The latest time at which either rise transitions or fall
transitions will occur is unspecified.

Version 1.4

Required Time

Version 1.4

Timing Environment ||

The REQUIRED construct defines ranges of time in which signal
transitions must occur af@ort_instancehat includes register data outputs

in its transitive fanin. These ranges of time are commonly referred to a
required times. Earlier versions of GCF were based on a less commonryy
used terminology, departure times, which had the same semantics. T
DEPARTURE keyword is still allowed as a synonymous keyword for the
REQUIRED construct for backward compatibility.

Required times are usually specified only for primary output and
bidirectional ports, but they can also be specified for internal output and
bidirectional pins on primitives, and for hierarchical pins on lower level
modules or blocks. When specified on internal or hierarchical pins, the
required time overrides any propagated required time.

Syntax

required_spec::= (label? required_keyword
required_waveform_edge
required_value

port_instance®
required_keyword::= REQUIRED
||= DEPARTURE
required_waveform_edge= (waveform_edge_identifier waveform_name
required_value::= target_required_value
target_required_value:= setup_rise_fall hold_rise_fall
[|I= (waveform_edge_identifier

setup_value
hold_value) (archaic)
setup_rise_fall::= r_rise_fall
hold_rise_fall ::= r_rise_fall
setup_value::= RNUMBER
hold_value::= RNUMBER

If no port_instancas specified, the required time applies by default to all
primary output and bidirectional ports on the cell.

Therequired_waveform_edgpecification, which identifies a waveform
and an edge of that waveform, is required. The effective offset of the
waveform edge implicitly includes any external insertion delay specifie
for the waveform using theLOCK_ARRIVAL construct, as well as the
offset of the edge specified in the waveform definition.

If the waveform was not previously defined, an error message will be
given. Although th&VAVEFORM construct generally allows more than

August 17, 1999 95]

Timing Environment

96

one pair of edges, clock waveforms used for required times must have only
a single pair of edges.

The required times are target-based, andaiget_required_valueare
interpreted as setup and hold constraints.

Specifying a target-based required time is equivalent to adding a register
with corresponding setup and hold constraints at the output.

= The holdrequired_values added to the effective offset of the
required_waveform_edga the hold check clock cycle.

» the setupequired_valudas subtracted from the effective offset of the
required_waveform_edga the setup check clock cycle.

See “Default Definition” on page 129 for a description of how the setup
and hold check clock cycles are normally determined.

All partial paths from the specifigubrt_instanceso the target registers
clocked by a particular waveform edge must be considered in setting the
target-based required times related to that waveform edge.

= Forthe earliest (minimum) required time, the delay of each partial path
must be subtracted from the hold time of the target register, and the
earliest required time must be set to the largest (most positive)
resulting value. Since the partial path delays will generally be larger
than the hold time of the target registers, the earliest required time will
usually be a negative number.

= For the latest (maximum) required time, the setup time of the target
register must be added to the delay of each partial path, and the latest
required time must be set to the largest resulting value.

Therequired_valuas a time value and must be specified in the units
defined by tha¢ime_scalelt follows the ordering conventions for
r_rise_fall_min_mavandr_rise_falldescribed in “Value Types” on page
48, as well as the semantics for operating points described in “Min/Max
Values and Operating Conditions” on page 51.

Thefirsttarget_required_valutorm, setup_rise_fall hold_rise_falis the
preferred form.

The secondarget_required_valuéorm, waveform_edge_identifier
setup_value hold_value, is archaic. It is more easily and consistently
specified using the first form with asterisks as place-holders.

The required time at an output pin should include

Version 1.4

Version 1.4

Timing Environment ||

The delay from the input of the receiver on the interface net up to the
input of the target register

The setup time (subtracted) or hold time (added) of the target register

The portion of the external insertion delay of the clock network to th
target register specified using t@eOCK_ARRIVAL construct
(subtracted)

This is implicitly included in the effective offset of the waveform edge,
and should not be included in trexjuired_valudtself.

The portion of the external insertion delay of the clock network to th
target register specified using tieOCK_DELAY construct
(subtracted)

This is implicitly included in the effective offset of the waveform edge,
and should not be included in trexjuired_valuatself.

The delay computed for the partial path ending at the output pin includes

The portion of the insertion delay of the clock network to the sourc
register that is internal to the current GCF cell, specified using the
CLOCK_ARRIVAL construct

The portion of the insertion delay of the clock network to the sourc
register that is external to the current GCF cell, specified using the
CLOCK_DELAY construct

The CLK->Q delay of the source register

The delay from the output of the source register up to the input of the
driver of the interface net connected to the input pin

The intrinsic delay of the driver of the interface net.
The load-dependent delay of the driver

The interconnect delay of the interface net

August 17, 1999 97 1

Timing Environment

98

required Time

A
S T
Gl G2
@[W OouT YN\Z D
TIT T
JAN EL JAN

CK CK
CLK1 CLK2
Example

In Figure 7, the required time set on pin OUT of block A should include

= B/G2/Y to B/T/D
= B/T/Dto B/T/ICK
= B/CLK2 to B/T/CK

= B/CLK2

combinational delay
setup/hold time

target insertion delay
(implicit in waveform edge)

target clock arrival
(implicit in waveform edge)

The delay computed for the partial path ending at A/OUT includes

= A/CLK1

= A/CLK1 to S/CK
= A/SICK to A/SIQ
= A/SIQ to AIGLIW
= A/GLW to AIGL/X
= A/GLW to AIGL/X
= A/GL/X to BIG2/Y

source clock arrival

source insertion delay
clk->q delay
combinational delay
intrinsic delay
load-dependent delay

interconnect delay

EL is the external load specified on the output pin, and itis included when
computing the load-dependent delay and interconnect delay.

Multiple REQUIRED constructs can be defined for the same port. Each
REQUIRED construct can reference a differerdveform_edgerhe
required times associated with a given referemaeeform_edgare
independent of the required times associated with any other reference

Version 1.4

External Delay

Version 1.4

Timing Environment ||

waveform_edgeand analysis will be done separately for each reference
waveform_edge

Like ARRIVAL constructs, the effect of multipREQUIRED constructs ||
is cumulative and overriding.

Example

(ENVIRONMENT
(REQUIRED (NEGEDGE “50 MHz 50/50") |
12.0 18.0 -8.0 -14.0 A[15:0])

)

This example specifies required times for each of the 16 output pins |
A[15:0] and that the falling edge is the active edge of the target clock.
Assuming that the time scale is in ns, rising transitions must occur no later
than 12.0 ns before the setup active edge and no earlier than 8.0 ns before
the hold active edge. Falling transitions must occur no later than 18.0 ns
before the setup active edge and no earlier than 14.0 ns before the hold
active edge.

TheEXTERNAL_DELAY construct is used with tHATH_DELAY
construct to constrain purely combinational portions of a design.

ThePATH_DELAY construct describes constraints on the combinational
delay through a portion of the design, while EMTERNAL_DELAY

construct describes purely combinational delays that are external to thjt
portion of the design. The external delays are added to the computed path
delays within that portion of the design before comparing to the path delay
constraint.

internal port instances. If no external delay is specified for a port instanc
that is an endpoint of RATH_DELAY constraint, the external delay
defaults to O.

External delays can be specified on both primary interface ports and ol
s

Syntax

external delay_spec:= (label?EXTERNAL_DELAY
external_delay value endpoints_spéc+
external_delay value:= r_rise_fall_min_max |
[|I= (waveform_edge_identifier
r_min_max) (archaic)

Theendpoints_speis described in “Path Specifications” on page 110. |
External delays specified using theROM keyword are to be added to
combinational paths that start at the given endpoints, while external deldys
specified using th&O keyword are to be added to combinational paths

August 17, 1999 99 1

Timing Environment

100

that end at the given endpoints. A given internal port instance or primary
bidirectional port can appear in two different external delay specifications,
one using thEROM keyword and one using th® keyword.

Theexternal_delay_valuis a time value and must be specified in the units
defined by tha¢ime_scalelt follows the ordering conventions for
r_rise_fall_min_maxandr_min_maxdescribed in “Value Types” on page
48, as well as the semantics for operating points described in “Min/Max
Values and Operating Conditions” on page 51.

Ther_rise_fall_min_maxalue type is the preferred form for the
external_delay value

The seconéxternal_delay_ valuBorm, waveform_edge_identifier
r_min_max, is archaic. It is more easily and consistently specified using the
r_rise_fall_min_maxorm with asterisks as place-holders.

The transitions for both forms are with respect to the given endpoints, and
the minimum values must be less than or equal to the maximum values for
the same transition.

The values specified for external delay should reflect the delay
computation on the interface net, which is handled the same as for the
ARRIVAL andREQUIRED constructs.

Like ARRIVAL andREQUIRED constructs, the effect of multiple
EXTERNAL_DELAY constructs for the same port instance is cumulative
and overriding.

Example

(SUBSET TIMING
(ENVIRONMENT
(EXTERNAL_DELAY 5.0
(FROM IN[0])
)
(EXTERNAL_DELAY 3.0 *2.0 1.0
(TO OUT[0])
)
)
(EXCEPTIONS
(PATH_DELAY 10.0
(BETWEEN (FROM IN[0]) (TO OUTI[0]))
)
)

Assuming that time values are in ns, this example specifies that

Version 1.4

Driver
Specification

Driver Cell

Version 1.4

Timing Environment ||

= An external combinational delay of 5 ns should be added to the
computed delay of any purely combinational path startimg[@t

= Anexternal combinational delay of 3 ns should be added to the rise miin
computed delay of any purely combinational path endirato].

= Anexternal combinational delay of 2 ns should be added to the fall m
and fall max computed delays of any purely combinational path endi
atouT[o].

= No value is specified for the rise max external delag@tio] , so this
IS not constrained.

= The effective min combinational delay constraint for paths starting @t
IN[0] and ending with a rise transition@bT[0] is 2 ns (the 10 ns
PATH_DELAY constraint minus external delays of 5.0 and 3.0).

= The effective min combinational delay constraint for paths starting §t
IN[0] and ending with a fall transition @uT[0] is 3 ns (the 10 ns
PATH_DELAY constraint minus external delays of 5.0 and 2.0).

= The effective max combinational delay constraint for paths starting @t
IN[0] and ending with a fall transition @uT[0] is 4 ns (the 10 ns
PATH_DELAY constraint minus external delays of 5.0 and 1.0).

Driver specifications describe information about an external driver that
connected to a primary input or bidirectional port of the cell.

Syntax
driver_spec:.= driver_cell_spec
||= driver_strength_spec |

Precedence Rules

There are several different types of driver specifications, as well as the
ability to directly specify the slew for an input. When several different
constructs appear in a GCF that affect a given port, the following rules aje
used to determine which of the constructs should be used:

= An explicit specification of the driver cell, driver strength, or input
slew for a given port always overrides any of the defaults.

= When there are multiple explicit specifications for the same port, the
last specification given will be used. I

= When there are multiple default specifications, but no explicit
specifications for a given port, the last default specified will be used}

TheDRIVER_CELL construct is used when the cell type of the external
driver is known. For example, for a user-defined block within a chip, the

August 17, 1999 101 |

Timing Environment

102

external driver is usually a cell within another user-defined block. The
default driver cell type can be specified for all primary input and
bidirectional ports by not specifying apgrt_instance

Syntax
driver_cell_spec::= (label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
port_instance?
driver_cell_port_spec:= (cell_id)
[|I= (cell_id output_por)
[|I= (cell_id input_port output_port
(driver_cell_option+)
driver_cell_option::= drive_multiplier
||= driver_input_slew
||= waveform_edge_identifier
drive_multiplier ::= (PARALLEL_DRIVERS DNUMBER)
driver_input_slew::= (INPUT_SLEW slew_value input_port}

slew_value::= rise_fall_min_max

driver_cell_options::

If a waveform_edge_identifies specified, the driver cell construct only
applies to delay calculation for that edge.

If multiple buffers of the same type are connected in parallel, the number
of those buffers can be specified usingPARALLEL_DRIVERS

construct. If multiple buffers of different types are connected in parallel,
multiple DRIVER_CELL constructs can be specified. When a driver cell
type is explicitly specified for a primary input and bidirectional port, it
overrides any default; the explicitly specified driver cell is not connected
in parallel with the default driver cell.

Theoutput_portspecifies the port on the driving cell that is connected to
the primary inputs. It must be specified whenever the driving cell has
multiple outputs.

Theinput_portspecifies a single input port on the driving cell that must be
the starting point when doing delay calculation. Ifitiut_portis not
specified, delay calculation is done by computing the worst case across all
inputs ports that are associated with the spectfigdut_port

Input slews can be specified for one or more of the input ports on the
driver. If the input slew is not specified for an input port that is the starting
point for a timing arc considered in delay calculation, a default slew of O
is used.

Version 1.4

Version 1.4

Timing Environment ||

Theslew_valuesre time values that use the convention for
rise_fall_min_maxiescribed in “Value Types” on page 48. They must b
specified in the units defined by thiene_scaleThe voltage thresholds for
measuring the slew are defined by W& TAGE_THRESHOLD

construct (see “Voltage Threshold” on page 48). If no voltage thresholds
are specified, thelew_valuaepresents by default the time required to
transition between the 10 and 90 percent points of the power supply

voltage. |

The information about the driver cell affects the accuracy of the delay
calculation.

= For the most accurate approach, bothitipeit_portand the
output_portmust be provided, along with the slew at thput_port In
general, this is only feasible when there is only one connected input
port. At the time a GCF file is created, it is unknown which input port
is switching, and a worst-case analysis must be done instead.

= For the most accurate worst-case analysisptiygut_porton the
driver cell must be specified, along with the slew at every input.

= For aless accurate worst-case analysis, the slew values for each input
port can be omitted, in which case the default slew is used.

When a driver cell type is specified on a normal (non-clock) input port, it
has three effects on the transition at the inputs of the first stage gates within
the current GCF cell:

= Thetransitionis delayed by the load-dependent delay of the driver cell.
This does not include the intrinsic delay of the cell.

= The transition is delayed by the interconnect delay, which is computed
using the driver cell model in conjunction with the parasitics within the
current GCF cell and the external load.

= The effective capacitance of the parasitics is used to determine the slew
at the output of the driver. The output slew is then degraded at the loads
of the input net to reflect the propagation across the parasitics of the
net, including the external load.

The intrinsic delay of the driver cell is defined as the cell delay computed
using an output capacitance value of 0 and the input slew(s) specified on
the inputs of the driver. The load-dependent delay is the difference
between the cell delay computed with the effective capacitance, and the
intrinsic delay computed without any load.

For a clock input pin, the driver cell specification is ignored when the
nominal values specified by@ OCK_DELAY construct are used instead

August 17, 1999 103 |

Timing Environment

Driver Strength

104

of calculating delays. When the nomi@lOCK_DELAY values are not
used, delays are calculated for clock input pins in the same way as for other
pins.

When the cell type of the external driver is not known, the
DRIVER_STRENGTH construct can be used instead. Specifying the
driver strength is less accurate than specifying the driver cell type, because
the effective drive strength for a given cell may vary depending on the load
it is driving. When the driver cell type is specified, the effective drive
strength can be determined during delay calculation.

Syntax

driver_strength_spec:= (label?DRIVER_STRENGTH strength_value
port_instance®

strength_value::= rise_fall_min_max

The default driver strength can be specified for all primary input and
bidirectional pins by not specifying apprt_instance

Thestrength_valués a resistance value and must be specified in the units
defined by thees_scalelt follows the ordering convention for
rise_fall_min_maxescribed in “Value Types” on page 48, as well as the
semantics for operating points described in “Min/Max Values and
Operating Conditions” on page 51.

When a driver strength is specified on a normal (non-clock) input pin, it
has three effects on the transition at the inputs of the first stage gates within
the module:

= The transition is delayed by a “load-dependent delay”, which is
modeled astrength_valug Ci,.

= Thetransition is delayed by the interconnect delay, which is computed
using the drive strength in conjunction with the parasitics within the
cell and the external load.

= The slew (transition time) at the loads of the input net is also set to
strength_valué C,y,. The voltage thresholds for measuring the slew
are defined by th¥ OLTAGE_THRESHOLD construct. If no voltage
thresholds are specified, the slew represents by default the time
required to transition between the 10 and 90 percent points of the
power supply voltage.

Ciotal IS the sum of the capacitance on the interface net connected to the
input pin, including the external load, the internal interconnect
capacitance, and the load pin capacitances.

Version 1.4

Input Slew

Version 1.4

Timing Environment ||

For a clock input pin, the driver strength specification is ignored when the
nominal values specified by@ OCK_DELAY construct are used instead

of calculating delays. When the nomitdlOCK_DELAY values are not
used, delays are calculated for clock input pins in the same way as for other
pins.

When the cell type of the external driver is not known, theUT_SLEW
construct can be used instead. In generalNRBIT_SLEW construct
should only be used for primary inputs on a chip. For chip-level inputs, the
DRIVER_CELL andDRIVER_STRENGTH constructs would be less
accurate thatNPUT_SLEW, because the on-chip delay modeling would
not properly account for the effects of the board-level interconnect,
package pins, etc.

For inputs on modules within a chip, tb®RIVER_CELL constructis more
accurate thaiNPUT_SLEW, because it takes into account the interaction
between the driver and the interconnect.

Note that theNPUT_SLEW construct can be used both within the context
of aDRIVER_CELL construct and by itself. When used by itself, it
describes the input slew at the primary input of the cell, and a label can be
associated with the construct.

Syntax

input_slew_spec:= (label?INPUT_SLEW slew_value
port_instance®

The default input slew can be specified for all primary input and
bidirectional pins by omitting thport_instances

Theslew_valuas a time value and must be specified in the units defined
by thetime_scalelt follows the convention forise_fall_min_max
described in “Value Types” on page 48, as well as the semantics for
operating points described in “Min/Max Values and Operating
Conditions” on page 51.

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified,dlev_valueepresents by
default the time required to transition between the 10 and 90 percent points
of the power supply voltage.

When an input slew specified on a normal (non-clock) input pin, it has two
effects on the transition at the inputs of the first stage gates within the
module:

August 17, 1999 105 |

Timing Environment

Constant Values

Operating
Conditions

Internal Slew

106

= The transition is delayed by the interconnect delay, which is computed
using an artificial driver model (with zero delay and a fixed output slew
equal to the specified input slew) in conjunction with the parasitics
within the cell and the external load.

= The specified input slew is degraded at the loads of the input net to
reflect the propagation across the parasitics of the net, including the
external load.

There is no modeling of the load-dependent delay of the driver.

For a clock input pin, the input slew specification is ignored when the
nominal values specified byG@LOCK_DELAY construct are used instead

of calculating delays. When the nomii@dlOCK_DELAY values are not
used, delays are calculated for clock input pins in the same way as for other
pins.

In Level 1, GCF allows specifying that certain signals have a constant
value. Often, this is used to describe case-dependent constraints (see
“Cases” on page 35) or to disable a portion of a circuit.

Syntax
constant_spec:= (CONSTANT constant_value port_instancg+

constant_value::= 0
= 1

Constant values are defined in terms of signals but specified using
port_instancesA constant value specified for any of {hat_instances
connected to a signal affects the signal as a whole. An error message will
be given if different constant values are specified ongerd_instances
connected to the same signal.

The operating conditions defined in the global environment subset (see
“Environment Globals” on page 45) apply by default to all cells in the
design. These conditions can be overridden for particular cells by
including anoperating_conditionspecification in the timing subset for a
cell. When applied to a non-leaf cell, the operating conditions are
overridden for that cell and all of its descendents, unless overridden again
by one of the descendents.

TheINTERNAL_SLEW construct is a Level 1 construct and specifies a
slew that overrides the default slew on internal pins (input or bidirectional
pins on primitives). NormallyyNTERNAL_SLEW must not be used for
clock input pins on primitives; th@LEW option of theCLOCK_DELAY
construct must be used instead.

Version 1.4

Timing
Environment
Cases

Version 1.4

Timing Environment ||

Syntax

internal_slew_spec:= (label?INTERNAL_SLEW slew_value |
port_instance®

TheINTERNAL_SLEW construct is normally only used

= Forinput or bidirectional pins that are part of a combinational loop
broken using a disable

= For cases where the slew that would be computed by the normal delay
calculation is known to be inaccurate

The default internal slew can be set by not specifyingoanty instance

Theslew_valueas a time value and must be specified in the units defin
by thetime_scalelt follows the convention farise_fall_min_max
described in “Value Types” on page 48, as well as the semantics for
operating points described in “Min/Max Values and Operating
Conditions” on page 51.

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified,dlev_valueepresents by
default the time required to transition between the 10 and 90 percent poilts
of the power supply voltage.

The internal slew values will be determined using the following
precedence order:

= An explicitINTERNAL_SLEW for the pin

= The calculated slew, if it is possible to calculate one

= The defauiNTERNAL_SLEW , if no slew can be calculated
= The defaulilNPUT_SLEW

= 0

The timing environment can be case-dependent.

Syntax

timing_env_case:= (CASE IDENTIFIER
timing_env_case_speg+

timing_env_case_spec= timing_env_spec_0
[|= timing_env_no_case_1

August 17, 1999 107 1

| Timing Environment

Example

(ENVIRONMENT
(level 1
(case board
(input_slew 2.0 1.0 in1)
)
(case tester
(input_slew 5.0 3.0 in1)
)
)
)

In this example, the input slew of a signal supplied to the chip depends on
whether the chip is mounted on the board or is being tested.

| 108 Version 1.4

Timing Exceptions |

Timing Exceptions

By default, GCF assumes that, a circuit is synchronous. This assumption
implies that there are a set of implicit constraints on the delays of paths
through combinational logic. These constraints are determined by the
clock waveforms provided to source registers and target registers, and by
the arrival and required times specified for ports on the cell. I

Timing exceptions are GCF constructs that can be used to

= Override the implicit synchronous timing constraints for portions of a
design

= Describe explicit constraints on asynchronous portions of a design

This section describes path specifications, disable specifications, multi-
cycle paths, combinational delays, max transition times, internal slew,
latch-based borrowing, clock delay, and timing exception cases.

Archaic timing exception constructs are described starting on page 15§.

Syntax
timing_exceptions:= (EXCEPTIONS timing_exception_specj

timing_exception_spec= timing_exception_spec_0
[|= timing_exception_spec_1

timing_exception_spec :& disable_spec 0
[|[= multi_cycle_spec_0
||= path_delay_spec_0O
[|= slew_limit_spec
||= max_transition_time_spec (archaic) I
||= extension

timing_exception_spec:E (LEVEL 1 timing_exception_14

timing_exception_21:= timing_exception_no_case_1
[|= timing_exception_case

timing_exception_no_case 1= disable_spec_1
[|= multi_cycle_spec_1
||= path_delay spec_1
||= borrow_limit_spec
||= clock_mode_spec
||= clock_delay_spec
||= clock_uncertainty_spec
[|= meta_data_1

Version 1.4 August 17, 1999 109 |

Timing Exceptions

Path
Specifications

Level O
THRU Specifications

110

Many of the timing exceptions require path specifications. This section
describes ways of specifying paths that are common to several types of
timing exceptions.

The Level hru_speaconstruct constrains all paths that pass through a
singleport_instanceincluding those that start or end at fhert_instance

Syntax
thru_spec::= (THRU port_instance

When specified on a flip flop data output, theu_specaconstruct affects
paths from the flip flop clock input through the output, and paths through
asynchronous preset and clear inputs through the output).

When specified on a flip flop data input, tteu_speaconstruct affects
paths ending at the data input.

When specified on a flip flop clock input, theu_specaconstruct affects
paths from the clock input. It does not affect paths ending at the flip flop
data input.

When specified on a latch data output, ttivei_specaconstruct affects

paths from the latch enable input through the output, paths through the
latch data input through the output, and paths through asynchronous preset
and clear inputs through the output). It does not affect borrowing for paths
ending at the latch data input.

When specified on a latch data input, theu_specaonstruct affects paths
ending at the data input and paths through the data input through the
output.

When specified on a latch enable input, ttvei_speaconstruct affects
paths from the enable input. It does not affect paths ending at the latch data
input or paths through the data input through the data output.

Example
(THRU ff1.Q)

This example constrains all paths that go through the Q output of the flip
flop ff1. This includes paths from the clock input through the output and
paths from asynchronous preset or clear inputs through the output.

Version 1.4

Level O port_instance
Specifications

Version 1.4

Timing Exceptions |

When aport_instancds specified by itself (which is only used in the
DISABLE construct), the semantics are different than if the same
port_instancewvas specified within ghru_spe¢from_spegcorto_spec

Starting with GCF 1.4, whenport_instances specified by itself within a
DISABLE construct, it disables

= Slewsthatwould otherwise propagate througlpibit_instanceluring
delay calculation

= constants that would otherwise propagate througpdhte instance
during delay calculation

= timing checks on paths that pass throughptbr¢_instanceduring
timing analysis.

When aport_instances specified within @hru_spe¢from_spegcor
to_spedISABLE, only the timing checks are disabled. In earlier version
of GCF, this was also true for the case whepeet_instancavas specified
by itself within aDISABLE construct.

When aport_instanceon a combinational gate is specified, it affects all
paths through thport_instance

When a flip flop data output is specified, it affects paths from the relat
flip flop clock input through the output, as well as paths through
asynchronous preset and clear inputs through the output.

When a flip flop data input is specified, it does not affect paths ending ht
the data input.

When a flip flop clock input is specified, it affects all paths to, from, or
through the flip flop.

When a latch data output is specified, it affects paths from the related latgh
enable input through the output, paths through the latch data input throufgh
the output, and paths through asynchronous preset and clear inputs throfigh
the output. It also affects borrowing for paths ending at the latch data inpft.

When a latch data input is specified, it disables borrowing between th
paths ending at the data input and paths starting at the latch enable, bjit it
does not otherwise affect those paths.

When a latch enable input is specified, it affects all paths to, from, or
through the latch.

August 17, 1999 111 |

Timing Exceptions

Level O cell_instance
Specifications

112

When acell_instances specified by itself (which is only used in the
DISABLE construct), the semantics are different than if the same
cell_instancavas specified within #fom_specto_spec¢or
disable_instance_spec

Starting with GCF 1.4, wheneell_instances specified by itself within a
DISABLE construct, it disables

= slews that would otherwise propagate through the affected pins of the
cell_instanceduring delay calculation, and

= constants that would otherwise propagate through the affected pins of
thecell_instanceduring delay calculation

= timing checks on paths that pass throughctike instanceduring
timing analysis.

When acell_instancas specified within @hru_spe¢from_specor
to_spedISABLE, only the timing checks are disabled. In earlier versions
of GCF, this was also true for the case wheoelh instancevas specified

by itself within aDISABLE construct.

When acell_instancehat is a combinational gate is specified, it affects all
paths through theell_instance

When a flip flop is specified, it disables all paths to, from, or through the
flip flop.

When a latch is specified, it affects paths from the related latch enable
input through the output, paths through the latch data input through the
output, and paths through asynchronous preset and clear inputs through the
output. It also affects borrowing for paths ending at the latch data input.

Version 1.4

Level O
Arc Specifications

Version 1.4

Timing Exceptions |

The Level OARC construct constrains all paths that pass through a pair
port_instancesincluding paths that start or end at the arc. The port
instances must be contiguous in the path (either an input to output
connection on a cell, or an output to input connection on a net). The SBF
IOPATH andINTERCONNECT constructs describe similar arcs.

When the starting point of the arc is an output on a flip flop or latch, th
same paths asthru_speaconstruct with the sanmort_instanceare
considered, and only those paths that also pass through the ending poirg of
the arc are specified.

When the ending point of the arc is an input on a flip flop or latch, the sa
paths as ¢hru_specaonstruct with the sam@ort_instancere considered,

and only those paths that also pass through the starting point of the arc fre
specified.

Starting with GCF 1.4, when amnc_speds specified within &ISABLE
construct, it disables

= slews that would otherwise propagate through the arc during delay
calculation, and

= constants that would otherwise propagate through the arc during delfy
calculation

= timing checks on paths that pass through the arc during timing analygs.

Syntax
arc_spec::= (ARC port_instance port_instange

Example
(ARC orl.a orl.z)

This example constrains all paths that go through the A input and the
output oforl.

Example
(ARC ffl.clk ff1.9)

This example constrains all paths that start at the clock input and go
through theg output offfl. If there is an inverting outpugyn, paths through
it are not affected.

August 17, 1999 113 |

| Timing Exceptions

Level 0 Endpoint
Specifications

N\ Caution

N,

Disable And Multi-Cycle
Endpoint Specifications

B 114

(

The Level Oendpoints_speconstruct specifies paths in terms of their
endpoints.

Syntax
endpoints_spec:= from_spec
||= to_spec
[|I= (BETWEEN? from_spec to_spgc
from_spec::= (FROM from_to_item+)
to_spec::= (TO from_to_item+)

from_to_item::= port_instance
||= cell_instance
||= waveform_name
[|I= typed_waveform_name_list
||I= typed_port_expr
||I= typed_pin_expr
||= typed_instance_expr

If only FROM items are specified, they refer to a set of starting points for
paths, and all paths that start at any of those points and end at either register
data inputs or primary output/bidirectional ports are constrained.

If only TO items are specified, they refer to a set of ending points for paths,
and all paths that end at any of those points and start at either register clock
inputs or primary input/bidirectional ports are constrained.

If both FROM andTO items are specified using tBETWEEN form, they

refer to a set of starting points and endpoint points for paths, and all paths
between any of those starting points and any of those ending points are
constrained. ThBETWEEN keyword is optional for backward
compatibility with earlier versions of GCF, but it can be included for
clarity.

Some of the exception constructs allow multighelpoint_specdn this

case, if bottFROM andTO items are specified in differeethdpoint_specs
(without using theBETWEEN form), the effect is to constrain all paths
from the starting points, as well as (separately) all paths to the ending
points. This will generally constrain more paths than specifying the same
FROM andTO items within 8BBETWEEN construct.

See “Disabling Paths Between Endpoints” on page 125, and “Multi-Cycle
Paths Between Endpoints” on page 131 for details on how the
endpoints_speconstruct is used in these cases.

FROM items used in aandpoints_spefor a Level ODISABLE or
MULTI_CYCLE construct must be waveform names, primary input or

Version 1.4

Version 1.4

Timing Exceptions

bidirectional ports, registers, register clock inputs, or register data outpu
A port_instanceon an intermediate level of hierarchy may also be
specified as &ROM item, when the internal net is driven directly by a
register.

Combinationaport_instancesr cell_instancesre not allowed aSROM
items in GCF 1.4.

When waveform names, registersport_instancesn intermediate levels
of hierarchy are specified &R0M items, they implicitly refer to a set of
register clock inputs, and/or a set of primary input or bidirectional port
which are the actual starting points for the paths described by the
endpoints_spec

For a primary input or bidirectional port, the port itself is the the
starting point.

For a register clock input, the input itself is the starting point.

For a waveform name, the starting points are the register clock inpuis

in the transitive fanout of each clock pin to which the waveform is
assigned, as well as any primary input or bidirectional ports that ha
an arrival time referenced to that waveform.

For a register name, the starting points are the clock inputs on that
register.

For aport_instanceon an intermediate level of hierarchy, the starting
point is the clock input on the register that drives the internal net.

When atyped_port_expityped_pin_exprortyped_instance_exjs used
as aFROM item, the expression is expanded to refer to the set of ports
pins, or instances that both match the expression and would also be |
FROM items for the constraint.

TO items used in aandpoints_spefor a Level ODISABLE or
MULTI_CYCLE construct must be waveform names, primary output or
bidirectional ports, registers, register data inputs, or register clock inpuls.
A port_instanceon an intermediate level of hierarchy may also be
specified as a0 item, when the internal net directly drives a register.

Combinationaport_instance®r cell_instancesre not allowed asO
items in GCF 1.4.

When waveform names, registersport_instancesn intermediate levels
of hierarchy are specified a® items, they implicitly refer to a set of

register data inputs, and/or a set of primary output or bidirectional port§,

August 17, 1999 115

al

Timing Exceptions

Path Delay Endpoint
Specifications

116

which are the actual ending points for the paths described by the
endpoints_spec

= For a primary output or bidirectional port, the port itself is the the
ending point.

= For aregister data input, the input itself is the ending point.

= For awaveform name, the ending points are the register data inputs on
registers whose clock input is in the transitive fanout of each clock pin
to which the waveform is assigned, as well as any primary output or
bidirectional ports that have a required time referenced to that
waveform.

= For aregister name, the ending points are the data inputs on that
register.

= For aport_instanceon an intermediate level of hierarchy, the ending
point is the clock input on the register that is driven by the internal net.

When atyped_port_expityped_pin_exprortyped_instance_exs used

as aro item, the expression is expanded to refer to the set of ports, pins,
or instances that both match the expression and would also be@egal
items for the constraint.

See “Combinational Delays” on page 135 for details on how the
endpoints_speconstruct is used with tHATH_DELAY construct.

FROM items used in aandpoints_spefor a Level OPATH_DELAY
construct can be any of the types that are allowed fa*fAh8E and
MULTI_CYCLE constructs, with the same rules for implicitly determining
the actual starting points for the constrained paths. In addHRIDIV

items can be internal port instances on combinational logic (input, output,
or bidirectional) or output port instances on registers.

TO items used in aandpoints_spefor a Level OPATH_DELAY

construct can be any of the types that are allowed fa*fAh8E and
MULTI_CYCLE constructs, with the same rules for implicitly determining
the actual ending points for the constrained paths. In addititems
can be internal port instances on combinational logic (input, output, or
bidirectional).

Version 1.4

Level 0 From, To, Thru
Specification

Version 1.4

Timing Exceptions |

The Level Ofrom_to_thru_speconstruct constrains paths that start at th
FROM endpoints (if given), pass through theRU_ALL points (if

given), and end at thEO endpoints (if given). The affected transitions
through the constrained paths can be specified using edges at each pdint.

Syntax
from_to_thru_spec:= (PATHS from_to_thru_item+)
from_to_thru_item::= from_opt_edge_spec
||= to_opt_edge_spec
[|= thru_all_items_spec
from_opt_edge_spec= from_spec
[I= (FROM from_item_edge+
to_opt_edge_spec= to_spec
[|I= (TO to_item_edge+
from_item_edge:= (edge_identifier from_to_itemj
to_item_edge::= (edge_identifier from_to_itemj-
thru_all_items_spec:= (THRU_ALL
thru_any_item_specy
thru_any_item_spec:= thru_item
|= (THRU_ANY thru_item+)
thru_item ::= port_instance
[|I= net
[|= typed_port_expr
[|= typed_pin_expr
||= typed_net_expr
||= port_instance_edge
port_instance_edge:= (edge_identifier port_instange

Thefrom_to_thru_spemust include at most one of each type of
from_to_thru_iten{one set oFROM endpoints, one set ®HRU_ALL
points, and/or one set @0 endpoints).

In thefrom_opt_edge_speamnd theo_opt_edge spetheFROM andTO
endpoints follow the same conventions as in the Leesldpoints_spec.
See “Level 0 Endpoint Specifications” on page 114 for details on the typds
of endpoints that are allowed and the paths that are constrained.

When aredge_identifieis specified for thérom_opt_edge_speonly
that transition through each of the constrained paths is affected.

When aredge_identifieis specified for théo_opt_edge_speonly that
transition at the endpoint of each constrained path is affected.

August 17, 1999 117 |

Timing Exceptions

118

When atyped_port_exprtyped_pin_exprortyped_net_expis used as a
thru_item the expression is expanded in place to refer to the set of ports,
pins, or nets that match the expression. Therefore, the expression affects
paths that gdHRU_ANY one of the ports, pins, or nets, not paths that go
THRU_ALL of the ports, pins, or nets.

When aport_instance_edges specified for dhru_item only the
transitions through each of the constrained paths that result in the specified
edge at thaport_instanceare affected.

If the thru_all_items_speis given, each constrained path must go through
at least one of ththru_itemdisted in each of théhru_any_item_speacin

the order in which théhru_any_items_speese listed. Theéhru_itemsn
thethru_any_item_spea$o not have to be contiguous in the paths.

Example

(PATHS
(FROM ffl.clk)
(THRU_ALL
ff1.qg
andl.a

)
(TO f2.d)

)

This example constrains all paths that start at efifieclk, go throughfl.q
followed byandl.a then end aff2.d. All transitions through the
constrained paths are affected.

Example

(PATHS
(THRU_ALL
andl.a

)
)

This example constrains all transitions through all paths that go through
andl.a

Version 1.4

Timing Exceptions |

Example

(PATHS
(THRU_ALL
and2
(posedge and3.a)
(negedge and4.a)

)
)

This example constrains all paths that go through the cell instz@:
followed byand3.a thenand4.a Only the transitions through the
constrained paths that result in a rising edgerat3.aand a falling edge at
and4.aare affected.

Example

(PATHS
(FROM (negedge inl in2))
(THRU_ALL
andl.a
(posedge and2.a)
(THRU_ANY and3.a (hegedge and4.a))

)
(TO (posedge ff1.d ff2.d))

)

This example constrains all paths that start at eiitieor in2, go through

andl.afollowed byand?2.a then go through eitheand3.aor and4.3 then

end at eitheff1.d or ff2.d.

Only certain transitions through the constrained paths are affected:

= a falling transition ainl orin2 that results in a

= rising transition atind2.athat results in a

» falling transition aand4.a(or either transition a&nd3.9 that results
ina

= rising transition aff1.d or ff2.d

Version 1.4 August 17, 1999 119 |

| Timing Exceptions

In generalDISABLE , MULTI_CYCLE , andPATH_DELAY exceptions
should be viewed as modifying the default analysis based on either the
early (minimum) delay or the late (maximum) delay of a particular
transition propagating through a particular path in the circuit.

Precedence Rules
for Exceptions

The following precedence rules are used in the order given when several
exceptions affect the analysis for the same type of delay (early or late) for
the same transition propagating through the same path in the circuit:

= DISABLE has the highest precedence
= PATH_DELAY has higher precedence thdbLTI_CYCLE

= A PATH_DELAY (MULTI_CYCLE) construct that includes a
port_instanceas arom_itemhas higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

= A PATH_DELAY (MULTI_CYCLE) construct that includes a
port_instanceas ao_itemhas higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

= A PATH_DELAY (MULTI_CYCLE) constructthatincludestaru_all
specification has higher precedence th&AaH_DELAY
(MULTI_CYCLE) construct that does not.

= A PATH_DELAY (MULTI_CYCLE) construct that includes a
waveform_namas afrom_itemhas higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

= A PATH_DELAY (MULTI_CYCLE) construct that includes a
waveform_namas ato_itemhas higher precedence than a
PATH_DELAY (MULTI_CYCLE) construct that does not.

= ThePATH_DELAY or MULTI_CYCLE construct that specifies the
tightest constraint on the delay of the transition through the path is
used.

Disable Disabling paths is important for the following reasons:
Specifications » To break combinational feedback loops

= To eliminate false paths (paths that will never be activated during
normal operation of the circuit)

= To eliminate paths that are only active during certain modes of circuit
operation (for example, paths associated with testability logic)

TheDISABLE construct identifies a set of paths for which selected timing
checks must be suppressed.

The timing checks that might be affected are separated into two groups:

B 120 Version 1.4

Slew Propagation and
Disables

Constant Propagation an

Disables

Version 1.4

Timing Exceptions |

= The early (minimum) timing checks are hold, removal, and the holdj
portion of no-change checks. When theLD keyword is specified in
a disable construct, it refers generically to all of the early timing ||
checks.

= The late (maximum) timing checks are setup, recovery, and the setjip
portion of no-change checks. When 8&TUP keyword is specified in
a disable construct, it refers generically to all of the late timing checkp.

In the context of disabled paths, the phrase “all timing checks” means both
early and late timing checks, but not skew, period, or pulse width checfs.

In GCF 1.4 and above, some types of disables affect slew propagatio
Normally during delay calculation and timing analysis, the slew at a pin i
computed from the slew propagated through the timing arcs that end at
pin, and the slew at the pin is then propagated through the timing arcs t
start at the pin. When a pin is specified inplogt_instancorm or an
output pin is implied by theell_instancdorm ofdisable_item_spec, 0
slews will not be propagated through the timing arcs that start at the pifp.

When thearc_spedorm of disable_item_spec i used, slews will not be
propagated through any timing arcs between the endpoints afthepec

Similarly, when preset and clear arcs on registers are disabled using
preset_clear_specthe slews at the preset or clear input pin will not be
propagated through the timing arcs that start at the pin.

Other types of disables, such asibentrant_paths_speand the
disable_from_to_thru_spedo not affect slew propagation during delay
calculation for SDF generation. The effect of these other types of disablgs
on slew propagation during the delay calculation used for timing analys
is unspecified in GCF 1.4; some tools may disable slew propagation i
these cases, while other tools may not. The behavior is expected to b
explicitly specified in a subsequent version of GCF.

In GCF 1.4 and above, some types of disables affect constant propagatipn.
Normally, constant values specified using @@NSTANT construct are
propagated through the circuit, causing additional pins to have a consthnt
value. When a pin is specified in thert_instancdorm or an output pin
is implied by thecell_instancdorm ofdisable_item_spec, @onstant
values will not be propagated through the pin.

When thearc_spedorm ofdisable_item_spec i6 used, constants will
not be propagated through any timing arcs between the endpoints of tije
arc_spec

August 17, 1999 121 |

Timing Exceptions

Level O Disables

Disabling Port Instances,
Cell Instances, and Arcs

122

Similarly, when preset and clear arcs on registers are disabled using
preset_clear_speconstants will not be propagated through the timing
arcs that start at the pin.

Other types of disables do not affect constant propagation.

In Level 0, the paths can be identified by a single port instance, a cell
instance, the path endpoints, or by a set of from, to, and through items.

Syntax
disable_spec_Q:= disable_item_spec_0
||= disable_endpoints_spec_ 0
||= disable_from_to_thru_spec 0

The simplest form of thBISABLE constructdisable_item_spec, 0
disables all timing checks associated with a set of paths, and in some cases,
slew propagation and constant propagation along those paths.

Syntax
disable_item_spec_@= (label?DISABLE disable_item_0+)
disable_item_0::= port_instance
||= cell_instance
[|= typed_port_expr
[|= typed_pin_expr
||= typed_instance_expr
||= arc_spec
||= preset_clear_spec
||= reentrant_paths_spec
preset_clear_spec.= (PRESET_CLEAR_ARCStrue_false)
reentrant_paths_spec= (REENTRANT_PATHS true_false)

true_false::= TRUE
||= FALSE

All timing checks associated with the constrained paths are disabled. For
details on the paths constrained by poet_instancecell_instanceand
arc_spedorms, refer to “Path Specifications” on page 110.

Note that the Level 6ell_instancdorm is not the same as the Level 1
disable_instance_spgwhich disables all paths associated with the
instance (from, to, or through). Theell_instancdorm only disables paths
through the outputs.

Example

(DISABLE ff1.Q)

Version 1.4

Disabling Paths Through
Asynchronous Preset and
Clear Arcs

Disabling Reentrant
Bidirectional Paths

Version 1.4

Timing Exceptions |

This example disables all paths that go through the Q output of the flip fl
ff1. This includes paths from the clock input through the output and pat
from asynchronous preset or clear inputs through the output.

Example

(DISABLE ff1)

This example constrains all paths that go through the data outputs of the
flip flop ff1.

Example

(DISABLE (ARC or1.A orl.2))

This example disables all paths that go through the A input and the Z
output of orl.

If the preset_clear_speconstruct is used, it specifies whether delay arc
starting at preset or clear inputs on registers in the current GCF cell should
be disabled. Disabling these arcs suppresses paths that go through prset
or clear inputs, but does not suppress timing checks associated with those
inputs.

When applied to a non-leaf GCF cell, theeset_clear_spesetting applies
to all registers within that cell and all of its descendents, unless overridden
by apreset_clear_spefor one of the descendents.

The default is that the delay arcs starting at preset and clear inputs are
disabled.

Example
(DISABLE (PRESET_CLEAR_ARCS FALSE))

This example enables paths that go through asynchronous preset and gear
inputs.

If the reentrant_paths_speaonstruct is given, it specifies whether
reentrant bidirectional paths should be disabled within the current GCF
cell. By default, these reentrant paths are disabled.

There are two types of reentrant bidirectional paths:

= Paths through nets connected to primary bidirectional ports on the
current GCF cell, as shown in Figure 8.

August 17, 1999 123 |

| Timing Exceptions

I 124

= Pathsthrough primitives that have a bidirectional pin, where the timing
arcs to and from the bidirectional pin form a reentrant connection, as
shown in Figure 9.

Reentrant Paths for Primary Bidirectional Ports

CELL1 CELL2
FF1 FF1
A A
EN Bl EN B1
FF2 FF2
A A

In Figure 8, Bl is a primary bidirectional port for both CELL1 and CELL2.
Normally, for a bidirectional port like B1, there will be paths from source
registers within the cell to target registers outside the cell, as well as paths
from source registers outside the cell to target registers inside the cell. The
reentrant_paths_spatisable affects reentrant paths, where both the
source and target registers are within the cell.

In both CELL1 and CELL2, the paths from FF1 to FF2 are reentrant.
Whether it makes sense to analyze the timing of these paths depends on the
design style. In CELL1, using complementary enables on the tri-state
buffers ensures that the paths from FF1 to FF2 can never be activated. For
this design style, reentrant paths should be disabled. In CELL2, the paths
from FF1 to FF2 can be activated, so reentrant paths should not be
disabled.

Version 1.4

Timing Exceptions |

Figure 9 Reentrant Paths Through a Bidirectional Primitive
CELL3

FF1 FF3
BIBUF1 BIBUF2

EN EN1
SO
EN2) EN2

In Figure 9, whether analyzing the reentrant path from FF1 to FF2 through
the bidirectional primitive BIBUF1 makes sense depends on the design
style. If complementary enables are connected to EN1 and EN2 on
BIBUF1, then the reentrant path will never be active. The reentrant path
from FF3 to FF4 through BIBUF2 is similar. The paths from FF1 to FF4,
and from FF3 to FF2 are not reentrant, and are not affected by the
reentrant_paths_spec

Example
(DISABLE (REENTRANT_PATHS FALSE))

This example enables reentrant paths.

Disabling Paths Thedisable_endpoints_speccBnstruct disables selected timing checks

Between Endpoints on a set of paths that are identified by their from, to, or both from and t
endpoints. See “Level 0 Endpoint Specifications” on page 114 for detalls
on the types of endpoints that are allowed and the paths that are affeced.

Syntax
disable_endpoints_spec_0= (label? DISABLE
endpoints_spec+ disable_optioh*
disable_option::= timing_check
||= edge_identifier

If the HOLD or SETUP keyword is specified as@isable_optiononly the
early (minimum) or late (maximum) timing checks will be disabled,;
otherwise, both the early and late timing checks will be disabled.

If an edge_identifie(for example POSEDGE or NEGEDGE) is specified
as adisable_optiononly the timing checks on the rising or falling data

Version 1.4 August 17, 1999 125]

Timing Exceptions

Disabling Paths With
From, To, and Thru

126

transitions at the path target will be disabled. Otherwise, both the rising
and falling timing checks will be disabled.

Example

(DISABLE
(BETWEEN (FROM ff1.clk) (TO ff2.d ff3.d))

)

The disable specification in this example affects all paths betfi@emd
eitherff2 or ff3.

Example

(DISABLE
(FROM ff1.clk) setup posedge

)

This example disables setup checks for the rising edge at the target for all
paths starting dt1.clk

Thedisable_from_to_thru_spec donstruct disables all paths that start at
theFROM endpoints (if given), pass through theéRU_ALL points (if
given), and end at thEO endpoints (if given). See “Level 0 From, To,
Thru Specification” on page 117 for details on the types of items that can
be specified fofrom_to_thru_speand the paths that are affected.

Syntax

disable_from_to_thru_spec_0= (label? DISABLE
from_to_thru_spec+ disable_option*

If the HOLD or SETUP keyword is specified as@disable _optiononly the
early (minimum) or late (maximum) timing checks will be disabled.
Otherwise, both the late and early timing checks will be disabled.

If an edge_identifie(for example POSEDGE or NEGEDGE) is specified

as adisable_optiononly the timing checks on the rising or falling data
transitions at the path target will be disabled. Otherwise, both the rising
and falling timing checks will be disabled.

Theedge_identifielas adisable optiorapplies in general to all of the
endpoints implied by thttom_to_thru_specThe generatdge_identifier
has a lower precedence thanealge_identifiespecified explicitly for a
particularto_itemwithin thefrom_to_thru_spec

Version 1.4

Version 1.4

Timing Exceptions

Example

(DISABLE
(PATHS
(FROM ffl.clk)
(THRU_ALL
(THRU_ANY andl.a and2.a)
(THRU_ANY and3.a and.a)
mux.a
)
(TO ff2.d)
)
)

This example disables all paths that staftlatlk go through either
andl.aor and?2.3 followed byand3.aor and4.a followed bymux.g then
end afff2.d. The intermediate thru points do not have to be contiguous
the path.

Example

(DISABLE
(PATHS
(FROM (posedge inl))
(THRU_ALL
(THRU_ANY andl.a and2.a)
and3.z
)
(TO ff2)
)
)

This example disables the rising transition propagating through all pat
that start ain1, go through eitheandl1.aor and2.g followed byand3.z
then end aftf2. The intermediate thru points do not have to be contiguou
in the path.

Example

(DISABLE
(PATHS
(FROM (posedge ffl.clk)
(THRU_ALL
andl.a

)
(TO ff2.d)

)
hold

negedge

)

August 17, 1999 127 |

Timing Exceptions

Level 1 Disables

Disabling Cell Instances
and Cell Types

This example disables early timing checks for all paths that stéitt.atk
and go througlandl.a for the transitions through each path that start with
a rising transition on the clock #i.clkand end with a falling data
transition aff2.d

In Level 1, there are several additional ways in which to specify paths that
are to be disabled.
Syntax
disable_spec_1:= disable_cell_spec 1
||= disable_edges_spec_1 (archaic)

Thedisable_cell_spec_@onstruct disables all timing checks associated
with all paths associated with one or more cell instances, including the
following:

= All timing checks associated with paths to, from, or through the
instance

= All timing checks associated with paths contained within the instance

Disabling a cell type affects all instances of that cell within either the
current GCF cell instance or its descendents. All timing checks associated
with all paths associated with any of those instances are disabled.

If a cell type is disabled within the GCF section for the top-level cell of a
design, the cell type is disabled throughout the entire design.

Syntax
disable_cell_spec_1:= (label?DISABLE disable_cell_path_specj

disable cell _path_spec= disable_instance_spec
||= disable_master_spec

disable_instance_sper= (INSTANCE untyped cell_instancej
disable_master_spec= (MASTER cell_id)

Example

(DISABLE (INSTANCE vco))
This example disables all paths associated witlv¢bénstance.
Example

(DISABLE (MASTER (CELLTYPE DUMMY))

This example disables all paths associated with all occurrences of the
DUMMY cell.

Version 1.4

Multi-Cycle Paths

Default Definition

Version 1.4

Timing Exceptions |

TheMULTI_CYCLE constructidentifies the paths for which setup or holdj
checks must use a different set of active clock edges rather than the default.
This construct is commonly used to describe paths whose data can
propagate to the target register over multiple clock cycles by not clocking
the target every cycle.

By default, timing checks are computed with respect to the active edges of
the source and target clocks.For flip-flops, the active clock edge is the
triggering clock edge. For level-sensitive latches, the active edges are the
opening clock edge for sources and the closing clock edge for targets.

When the source and target clocks have the same frequency and phase, the
following rules are commonly used to determine the active edges:

= Setup checks are computed between an active edge at the source in one
cycle and the active edge at the target in the next cycle.

= Hold checks are computed between an active edge at the source in one
cycle and the active edge at the target in the same cycle.

When the source and target clocks have different frequencies or phases, or
when multiple cycles are allowed for a path, these rules can no longer be
used. A more precise definition of the process for choosing the default
active edges is used in GCF.

The clock root that drives the source of a path is called the source clock
root, and the waveform edge at the source clock root that triggers the
source of a path is called the source root edge.

The clock root that drives the target of a path is called the target clock root,
and the waveform edge at the target clock root that triggers the target of a
path is called the target root edge.

If the clock signal is inverted between the clock root and the clock input of
aregister or latch, the root edge is different than the triggering edge of the
register.

The relationship between particular source and target root edges
determines which active edges are used for setup and hold checks.

August 17, 1999 129 |

Timing Exceptions

Overriding the Default

Level 0 Multi-Cycle Paths

130

Multiple cycles of the source and target clocks are considered in
identifying the source and target root edges for a timing check.

The setup check ensures that the expected data signals reach the target
registers in time to be latched correctly. If no multi-cycle specification
affects a path, the following rules are used for the setup check:

= Each target root edge and the nearest source root edge that precedes it
are called a setup edge pair.

= The default source and target root edges are defined to be the setup
edge pair with the smallest positive difference between the target root
edge and the source root edge. The default active edges are the
propagated versions of the root edges, measured at the source and
target.

The hold check ensures that data does not reach the target registers early
enough to be latched in the wrong cycle of the target clock. If no multi-
cycle specification affects a path, every setup edge pair is considered for
the hold check. For each setup edge pair, the root edges define the current
cycle at the source and at the target. Two conditions must be satisfied with
respect to these cycles:

= Datatriggered by the current cycle at the source must not be latched by
the previous cycle at the target. This condition defines a hold edge pair
in which the hold source root edge is the same as the setup source root
edge, and the hold target root edge is one cycle earlier than the setup
target root edge.

= Data triggered by the next cycle at the source must not be latched by
the current cycle at the target. This condition defines a hold edge pair
in which the hold source root edge is one cycle later than the setup
source root edge, and the hold target root edge is the same as the setup
target root edge.

These conditions are both checked by choosing the hold edge pair with the
most positive difference between the target root edge and the source root
edge (note that the difference can still be negative). The default active
edges for the hold check are the propagated versions of the root edges,
measured at the source and target.

TheMULTI_CYCLE construct allows changing the active edges that are
chosen for specific paths or for all paths between a given source and target
clock pair.

In Level 0, multi-cycle paths can be identified by the path endpoints, or by
a set of from, to, and through items.

Version 1.4

Multi-Cycle Paths
Between Endpoints

Version 1.4

Timing Exceptions |

Syntax

multi_cycle_spec_0:= multi_cycle_endpoints_spec_ 0
[|= multi_cycle_from_to_thru_spec_0

See “Level 0 Endpoint Specifications” on page 114 for a description of t
types of endpoints that are allowed and the paths that are affected.

When both the source and target endpoints are specified using wavefdgrm
names, the effect is to change the default relationship between the
waveforms.

Syntax

multi_cycle_endpoints_spec_0= (label?MULTI_CYCLE
multi_cycle_endpoints_param_list

multi_cycle_endpoints_param_list= multi_cycle_option+ endpoints_spec+

[|= endpoints_spec+ multi_cycle option+
multi_cycle_option::= timing_check_offset
||= edge_identifier
timing_check_offset:= (timing_check num_cycles
reference_clock?

reference_clock:= SOURCE
= TARGET

num_cycles::= INUMBER

At least ondiming_check_offsetnd at least onendpoints_spemust be
specified in thenulti_cycle_endpoints_param_list

Thetiming_check_offsetvhich specifies the number of cycles to be
allowed for a path, is used to adjust the active edges for the timing checks
for all paths between the specified endpoints.

The following procedure is used to determine the setup edge pair:

= For all paths affected byMULTI_CYCLE construct (whether
SETUP,HOLD, or bothSETUPandHOLD adjustments are specified),
a default setup edge pair is chosen in the same way as for normal
timing checks.

= Multiple cycles of the source and target clocks are still considered
when determining the default setup edge pair. The pair with the
smallest positive difference between the target root edge and the source
root edge is selected.

= [f the SETUPtiming check is specified, then the corresponding
num_cycleparameter is used to determine an adjusted setup edge pair
as follows:

August 17, 1999 131 |

Timing Exceptions

132

0 By default, or fTARGET is specified, the setupum_cycles
parameter affects the target root edge. Instead of the default target
root edge, the edge that arrivesitfh_cycles 1) cycles later is
used.

0 If SOURCE is specified, the setupum_cycleparameter affects
the source root edge. Instead of the default source root edge, the
edge that arrives\im_cycles 1) cycles earlier is used.

= The adjusted active edges for the setup check are the propagated
versions of the adjusted root edges, measured at the source and target.

The default hold edge pair is chosen differently for paths affected by a
MULTI_CYCLE construct than for paths that are not. For normal timing
checks, the hold edge pair is chosen by considering the two hold conditions
with respect to all possible setup edge pairs.

For all paths affected byMULTI_CYCLE construct, the default hold

edge pair is chosen by considering the two hold conditions only with
respect to a single setup edge pair, rather than by considering them with
respect to every setup edge pair.

The following procedure is used to determine the hold edge pair:

= [f the SETUP option is specified, then the default hold edge pair is
chosen with respect to the adjusted setup edge pair. H@h® option
is specified but th6€ ETUP option is not, then the default hold edge pair
is chosen with respect to the default setup edge pair.

= The default hold edge pair is chosen to reflect the more restrictive of
the two hold conditions (the most positive difference between the
target root edge and the source root edge).

= Anadjusted hold edge pair is always determined, regardless of whether
theHOLD option is specified. If th&éiOLD option is not specified, the
holdnum_cycleparameter is set to 0. HOLD option is specified and
the SETUP option is not.

0 By default, or fSOURCE is specified, the holdum_cycles
parameter affects the source root edge. Instead of the default source
root edge, the edge that arrivaan_cyclegycles later is used.

0 If TARGET is specified, the holdum_cycleparameter affects the
target root edge. Instead of the default target root edge, the edge
that arrivesnum_cyclegycles earlier is used.

= The adjusted active edges for the hold check are the propagated
versions of the adjusted root edges, measured at the source and target.

Version 1.4

Version 1.4

Timing Exceptions |

Adjustments can be made independently to the active edges of the setup
check and hold check. However, the hold check root edges are defined
with respect to the setup check root edges, so a setup offset will implicitly
cause a change in the active edges used in the hold check.

When both a setup and hold offset are specified, the setup offset is
interpreted first, establishing a new default hold edge pair. The hold offset
is then applied to the edges of that pair.

If anedge_identifiers given, it specifies which data edge at the path target
is affected by the changes in the active edges of the clock. If no edge is
specified, both the rising and falling data edges at the target are affected.

Example

(TIMING
(ENVIRONMENT
(CLOCK “100 MHz 50/50” clk1)
(CLOCK “50 MHz 50/50" divider.clkout)

)
(EXCEPTIONS

(MULTI_CYCLE (SETUP 3 SOURCE) (HOLD 1) posedge
(BETWEEN
(FROM “100 MHz 50/50")
(TO “50 MHz 50/50")

)
)
)
)

The multi-cycle path specification in this example has the following

effects on all paths between registers whose source clock originatks at

and registers whose target clock originatedivatier.clkout l
at

= Forthe setup check on rising data edges at the target, the active edg
the source is two source clock cycles earlier than the default. The
default active edge at the target is unchanged.

= The hold check onrising data edges at the target is affected by the setup
adjustment as well as the hold adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair.
This will generally cause the source edge of the default hold edge pair
to be two cycles earlier than if no setup adjustment was specified.

The hold adjustment is then applied, resulting in the hold active edge
at the source being one source clock cycle later than in the default hold
edge pair, while the hold active edge at the target is the same as in the
default hold edge pair.

August 17, 1999 133 |

| Timing Exceptions

= The setup and hold checks on falling data edges at the target are
unaffected by the multi-cycle specification.

Example

(MULTI_CYCLE (SETUP 2)
1 (BETWEEN (FROM ff1.clk) (TO ff2.d ff3.d))

)

The multi-cycle path specification in this example has the following
| effects on all paths that startftit and end at eithdf2 or ff3:

= For the setup check on both rising and falling data edges, the active
edge at the target is one target clock cycle later than the default. The
default active edge at the source is unchanged.

= The hold check on both rising and falling data edges at the target is
implicitly affected by the setup adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair,
which is used without adjustment in the hold check.

Multi-Cycle Paths With Themulti_cycle_from_to_thru_spec cdnstruct constrains all paths that
From, To, and Thru start at theFROM endpoints (if given), pass through theRU_ALL
points (if given), and end at tA® endpoints (if given). See “Level 0
From, To, Thru Specification” on page 117 for details on the types of items
that can be specified fdrom_to_thru_speand the paths that are affected.

Syntax
multi_cycle_from_to_thru_spec_0= (label?MULTI_CYCLE
multi_cycle_from_to_thru_param_liyt
multi_cycle_from_to_thru_param_list= from_to_thru_spec+ multi_cycle_option+
[|= multi_cycle_option from_to_thru_spec+

At least ondiming_check offsetnd at least onfom_to_thru_spemust
be specified in thenulti_cycle_from_to_thru_param_list

Example

(MULTI_CYCLE
(SETUP 2)
(PATHS
(FROM ff1)
(THRU_ALL
(posedge andl.a)
)
(TO ff2)
)
)

I 134 Version 1.4

Timing Exceptions |

The multi-cycle path specification in this example has the following
effects on all paths that startféit, go throughandl1.g and end atf2 or ff3:

= For the setup check on the data edge(s) at the target that result frofn a
rising transition aand1.g the active edge at the target is one target
clock cycle later than the default. The default active edge at the sourge
is unchanged.

= The hold check on the data edge(s) at the target that result from a risifg
transition andl.ais implicitly affected by the setup adjustment. After
applying the setup adjustment, the two hold conditions are considergd
with respect to the adjusted setup edge pair to determine the new
default hold edge pair, which is used without adjustment in the hol
check.

Example

(MULTI_CYCLE
(SETUP 2 SOURCE)
(PATHS
(FROM (posedge inl))
(THRU_ALL
(THRU_ANY andl.a and2.a)
and3.z

)
(TO #2)

)
)

The multi-cycle path specification in this example has the following
effects on all paths that startial, go through eitheandl.aorand2.a
followed byand3.z then end aff2:

= For the setup check on the data edge(s) at the target that result fropn a
rising transition ainl, the active edge at the source is one source cloc
cycle earlier than the default. The default active edge at the target
unchanged.

= The hold check on the data edge(s) at the target that result from a risifg
transition atndl.as implicitly affected by the setup adjustment. After
applying the setup adjustment, the two hold conditions are considergd
with respect to the adjusted setup edge pair to determine the new
default hold edge pair, which is used without adjustment.

Combinational ThePATH_DELAY construct specifies constraints on the delay of path
Delays through non-sequential parts of the design, such as the following:

= Paths through combinational logic
= Connections between hierarchical blocks

Version 1.4 August 17, 1999 135 |

| Timing Exceptions

I 136

= Paths between asynchronous clock domains

ThePATH_DELAY construct describes constraints on the combinational
delay through a portion of the design, while EMTERNAL_DELAY

construct describes purely combinational delays that are external to that
portion of the design. The external delays are added to the computed path
delays within that portion of the design before comparing to the path delay
constraint.

Some forms of theATH_DELAY construct allow the starting points for
the constrained paths to be unspecified. When the starting points are
unspecified, all paths that start at a register clock input or a primary input/
bidirectional port instance and go through the other logic specified in the
PATH_DELAY construct are constrained.

Some forms of theATH_DELAY construct allow the ending points for
the constrained paths to be unspecified. When the ending points are
unspecified, all paths that go through the other logic specified in the
PATH_DELAY construct and end at a register data input or a primary
output/bidirectional port instance are constrained.

The paths through combinational logic constrained B BH_DELAY
constructs cannot go through a data input on a latch, through a transparent
arc, then through a data output. However, the constrained paths can start at
a clock input on a flip flop or an enable input on a latch, then go through a
data output. WheRRESET_CLEAR_ARCS are enabled (see page 123),

the constrained paths can also go through an asynchronous preset or clear
input, then through a data output.

Thepath_delay_valués a time value and must be specified in the units
defined by tha¢ime_scalelt follows the ordering conventions for
rise_fall_min_maxlescribed in “Value Types” on page 48, as well as the
semantics for operating points described in “Min/Max Values and
Operating Conditions” on page 51.

When a path constrained byPATH_DELAY construct starts or ends at a
sequential pin, the combinational delay constraint for that path will be
implicitly adjusted to include the effect of clock skew and timing checks:

» For paths starting at clock inputs or data outputs of a sequential
element, the clock insertion delay to the sequential element will be
added to the combinational delay of the path before comparing against
the constraint.

For early (minimum) delay constraints, the minimum clock insertion
delay will be added.

Version 1.4

Timing Exceptions |

For late (maximum) delay constraints, the maximum clock insertio
delay will be added.

= For paths ending at data inputs of a sequential element, the clock
insertion delay to the sequential element will be added to the constrat
value before comparing against the constraint.

For early (minimum) delay constraints, the maximum clock insertio
delay will be added.

For late (maximum) delay constraints, the minimum clock insertion
delay will be added.

= For paths ending at data inputs of a sequential element, the setup ¢nd
hold times will be used to adjust the constraint value before compari
against the constraint.

For early (minimum) delay constraints, the hold time will be added.
For late (maximum) delay constraints, the setup time will be
subtracted.

ThePATH_DELAY construct must not be used to define clock tree
insertion delays. ThELOCK_DELAY construct must be used instead (se
“Clock Delay” on page 142).

Level 0 Combinational In Level O, combinational path delays can be identified by the path
Path Delays endpoints, or by a set of from, to, and through items.
Syntax

path_delay spec_ 0= path_delay _endpoints_spec_ 0
||= path_delay_from_to_thru_spec_0O

Path Delays Between See “Level 0 Endpoint Specifications” on page 114 for a description of t
Endpoints types of endpoints that are allowed and the paths that are affected.
Syntax

path_delay_endpoints_spec_:6- (label?PATH_DELAY
path_delay value
endpoints_specy
rise_fall_min_max
path_delay_single_value(archaic)
(timing_check
waveform_edge_identifier
NUMBER)(archaic)

path_delay value:
|

path_delay_single value ::

Therise_fall_min_maxalue type is the preferred form for the
path_delay value

Version 1.4 August 17, 1999 137 1

| Timing Exceptions

The second formyath_delay_single_value, is archaic. It is more easily and
consistently specified using tmse_fall_min_maorm with asterisks as
place-holders.

Example

(PATH_DELAY 4.05.5**
(BETWEEN
(FROM scan_di)
(TO ff1.d)

)
)

This example specifies the combinational delay for certain transitions
through all paths betweestan_diandff1.d Becausédfl.dis an input on a
sequential element, the effects of clock skew and timing checks will be
considered in the constraint.

Suppose that ideal clock insertion delays have been defined such that the
minimum clock insertion delay il is 1.0 ns, the maximum clock

insertion delay is 1.3 ns, the hold time for the rising transitidifilatlis 0.4

ns, and the setup time for the rising transitiofilat is 0.6 ns.

In that case,

= the effective early (minimum) delay constraint is
40+1.0+04=54ns

= the effective late (maximum) delay constraint is
55+1.3-0.6=6.2ns.

= These constraints affect only the transitions through the constrained
paths that result in a rising transitiorffdtd. The delay for other
transitions is unconstrained.

Path Delays With Thepath_delay_from_to_thru_speccOnstruct constrains all paths that

From, To, and Thru start at the&=ROM endpoints, pass through tlEiRU points, and end at the
TO endpoints. See “Level 0 From, To, Thru Specification” on page 117 for
details on the types of items that can be specifiettdan_to_thru_spec
and the paths that are affected.

Syntax

path_delay_from_to_thru_spec_0= (label?PATH_DELAY
path_delay value from_to_thru_speg+

| 138 Version 1.4

Slew Limit

Version 1.4

Timing Exceptions |

Example

(PATH_DELAY 3.04.02.52.9
(PATH
(FROM andl.a)
(THRU_ALL and2.a and3.a)
(TO and4.a)

)
)

This example specifies the combinational delay for all paths that start gt
andl.g go throughand2.athenand3.g then end aand4.a

The delay through each path of the transitions resulting in a rising
transition atand4.amust be greater than 3.0 ns and less than 4.0 ns.

The delay through each path of the transitions resulting in a falling
transition atand4.amust be greater than 2.5 ns and less than 2.9 ns.

TheSLEW_LIMIT construct is the preferred way to specify a constrain
on edge transition time as measured at a specified port (input, output @r
bidirectional). The relateBlAX_TRANSITION_TIME construct is archaic.

Syntax

slew_limit_spec::= (label?SLEW_LIMIT slew_value
port_instance_or_masten*

Theslew_valueas a time value and must be specified in the units defin
by thetime_scalelt follows the convention farise_fall_min_max
described in “Value Types” on page 48, as well as the semantics for
operating points described in “Min/Max Values and Operating
Conditions” on page 51.

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified,dlev_valueepresents by
default the time required to transition between the 10 and 90 percent poilts
of the power supply voltage.

Eachport_instancanust be a port on a cell contained within the current
GCEF cell. The default slew limit, which can be set by omitting the
port_instancesapplies to all ports on all cells contained within the curren
GCF cell.

A master-based default slew limit can also be specified ysany master

The master-based default slew limit applies to all occurrences of the
scalar_porton cell instances of typeell_id.

August 17, 1999 139 |

Timing Exceptions

Latch-Based
Borrowing

140

Precedence Rules

= Usually, the slew limit is specified in the library. If the slew limit is
specified in both the library and the GCF file, the more restrictive
constraint will be used.

= Explicit slew limits have higher precedence than master-based default
slew limits, which have higher precedence than normal default slew
limits.

= TheSLEW_LIMIT construct and th®IAX_TRANSITION_TIME
construct (archaic) have the same precedence for the maximum slew

limit. If both are specified in the same GCF file, the last one given will
be used.

Example
(SLEW_LIMIT 2.0 3.0 2.5 3.5 outl)

This example specifies that the slew (transition timeuét must be
between 2.0 and 3.0 ns for the rising transition, and between 2.5 and 3.5 ns
for the falling transition.

Example

(SLEW_LIMIT *1.5*1.8
((CELLTYPE dff) d)

)

This example constrains the maximum slew (transition time) ad thput

of all instances of thdff cell type within the current GCF cell and its
descendents. The slew must be less than 1.5 ns for the rising transition, and
less than 1.8 ns for the falling transition.

TheBORROW_LIMIT construct specifies the maximum amount of time
that can be borrowed by one cycle from the next cycle when using level-
sensitive latches. This construct is a Level 1 construct.

Data normally starts propagating from a source latch at the opening edge
of the source clock. It must arrive at the target latch data input before the
opening edge of the target clock, thereby ensuring consistency across
multiple cycles.

Time borrowing allows data to arrive at a target latch during the active
portion of the target’s clock. To ensure consistency across multiple clock
cycles, the delay allowed for paths starting at that latch must be reduced by
the difference between the actual arrival time at the latch and the opening
edge of the clock (the time borrowed by paths in the previous cycle).

Version 1.4

Clock Mode

Version 1.4

Timing Exceptions |

The default limit on time borrowing for a given latch is the active pulse
width of the clock minus the setup time of the latch. bbeow _limit
construct can only be used to specify a smaller limit; larger limits are
ignored. Theborrow_valueapplies for all operating points. I

Syntax
borrow_limit_spec::= (label?BORROW_LIMIT NUMBER

borrow_item*)
borrow_value ::= NUMBER

borrow_item ::= port_instance
||= cell_instance
||= waveform_name
||= typed_waveform_list

If no borrow_itemsare specified, borrowing will be restricted for all level-
sensitive latches within the current GCF cell and its descendents.

If a port_instancdhat was identified as a clock (through @ieOCK
construct—see “Clock Specifications” on page 85) is specified, borrowi
will be restricted for all data inputs of all level-sensitive latches in the
transitive fanout of that clock. Otherwise, thert_instancesnust be data
input pins or clock input pins of level-sensitive latches. When a clock inp
is specified, it affects the borrowing for all of the related data inputs on' t
latch.

If a cell_instancas specified, it must be a level-sensitive latch, and
borrowing is restricted on all data inputs of the latch.

If a waveform_names specified, borrowing will be restricted for all data
inputs on level-sensitive latches in the transitive fanout of the clocks
associated with that waveform.

When several borrow limits specified in different ways affect the same
data input, the tightest limit is used.

Example
(BORROW_LIMIT 3.0 latch1.clk)

This example constrains borrowing for all data inputs on latchl related
clk to use no more than 3.0 ns of the available portion of the pulse wid

TheCLOCK_MODE construct is used to specify the default clock mod
which affects computation of

= the insertion delay betweetock_rootsspecified inCLOCK
constructs) and primitive clock input pins

August 17, 1999 141 |

| Timing Exceptions

Clock Delay

CLOCK_DELAY

Scope

I 142

= the slew at primitive clock input pins.

Syntax

clock_mode_spec= (label?CLOCK_MODE
clock_mode_valug

clock_mode_value:= IDEAL
[|= ACTUAL

The default clock mode for the current GCF cell and its descendents can
be explicitly specified using theLOCK_MODE construct. When the

clock mode is specified at several levels in the design hierarchy, the mode
specified at the lowest level has precedence. If no clock mode is specified,
the default clock mode IDEAL .

The default clock mode applies to all clock paths startimipak_roots
within the current GCF cell, including the primary inputs of the cell. The
default clock mode can be overridden for particular clock networks by
specifying the clock mode explicitly iInGLOCK_DELAY construct.

TheCLOCK_DELAY construct is used to specify the following
constraints:

= The insertion delay through a clock distribution network

= The skew in the insertion delay between different leaf pins of the
network

= The slew of the clock at the leaf pins of the network

TheCLOCK_DELAY constraints describe the worst case characteristics of
the network, and they are often used in constructing the final version of the
network.

In addition, the constraints are used for worst case analysis of the design
before the final network is created. In the early stages of the design flow,
the design will often contain a preliminary network. To ensure that the
design will still perform correctly once the final network is created,
analysis tools may ignore the preliminary network, using the worst case
characteristics from theLOCK_DELAY constraints instead.

The scope of the clock distribution network includes the root, the leaf pins,
and the cells and nets between the root and the leaf pins. Leaf pins lie on
the boundary of the clock network; no logic beyond a leaf pin is included
in the clock network.

Each leaf pin must be reachable by tracing forward from the root through
interconnect, buffers, inverters, and possibly combinational logic gates.

Version 1.4

Version 1.4

Timing Exceptions |

An error will be reported if the leaf pin is reachable by tracing forward
through any non-unate timing arcs.

Generally there will only be one path between the root and a given leaf pilp,
but in certain cases (such as parallel buffers driving an internal net with

a clock tree, or a clock mesh) there may be several paths. An error will §e
reported if two paths through the clock distribution network to a given le

pin to have different unateness (either positive unate or negative unate fire
allowed, but not both).

Leaf pins fall into three categories:

» Defaultleaf pins. These are all of the clock input pins on primitives th
are reachable from the root without tracing through any explicit lea
pins. In Figure 10, the clock inputs on FF1, FF2, FF3, and FF4 are
default leaf pins.

Default leaf pins must be identified in the library as clock pins. The
relevant edges of the clock at a default leaf pin are determined eithr
explicitly from additional attributes on the pin, or implicitly from the
timing checks and delay arcs related to the pin. When specified, th
additional attributes indicate whether the pin is rising or falling edg
triggered, or active low or high level-sensitive.

= Explicit leaf pins. These are port instances (pins on primitives or
primary output/bidirectional pins on the cell) that are explicitly
described in th€LOCK_DELAY construct. In Figure 10;LK4 must
be specified as an explicit leaf pin.

Normally, the logic beyond an explicit leaf pin is part of a larger cloc
distribution network, or the leaf pin is a normal clock input pin on a
register. In certain cases, the circuit beyond the leaf pin uses the clogk
signal as if it were a data signal. THata_leafconstruct should be used

to identify these cases.

When modeling hierarchical clock trees, each GCF must only specify
CLOCK_DELAY construct for the highestock delay rootontained

within the portion of the design described by the GCF. An error messafe
will be given if aclock_delay rootor aCLOCK_DELAY constructliesin

the transitive fanout of @ock_delay_roofor anothelICLOCK_DELAY
construct.

August 17, 1999 143 |

| Timing Exceptions

Figure 10 Hierarchical Clock Tree
TOP
H1 H2
FF1 FF2 FF3 FF4
/\ /\ /\ VAN
c4f > C5 csf > CZ
C3 C7
CLK2 | CLK3 |
A A
C1
CLK1] CLK4
|

For example, in the circuit shown in Figure 10, the GCF used for doing
analysis on théll level of hierarchy must specifyLK2 as the
clock_delay_roqgtwhile the GCF used for doing analysis on #@Plevel

of hierarchy must specif@LK1 as theclock _delay_roaot

Insertion delays specified in tid OCK_DELAY construct describe the
insertion delay from thelock_delay_rooall the way to the primitive leaf
pins, even when the clock tree is constructed hierarchically.

In the circuit shown in Figure 10, tlee OCK_DELAY construct in the
GCF used for doing analysis on thd level of hierarchy should describe
the nominal insertion delay fro@LK2to the clock input pins offF1 and
FF2. TheCLOCK_DELAY construct in the GCF used for doing analysis
on theTOPIlevel of hierarchy should describe the nominal insertion delay
from CLK1 to the clock input pins oRF1, FF2, FF3, andFFA4.

Syntax
clock_delay spec:= (label?CLOCK_DELAY
clock delay_root leaf _spec+

clock_delay root::= untyped_port_instance
||= (cell_instance input_port output_port
[|= waveform_name

If a port_instancas specified for thelock _delay_roqtt indicates the pin
that is the source of the network. Insertion delay and skew are measured

Version 1.4

Timing Exceptions |

from that pin to each of the lepbrt_instances

If a cell_instances specified for thelock _delay_roqtit gives the instance
name of a cell that drives the network. Insertion delay is measured from tIe
specifiedinput_portthrough theoutput_portto each of the leaf
port_instances

If a waveform_names specified for alock_delay_roqtit affects both I
internal and external clock networks associated with the waveform. When
awaveform_names used, no legbort_instancesnay be specified.

Internal clock networks are contained within the current GCF cell. Wh
awaveform_names specified for thelock _delay_roqtthe
CLOCK_DELAY construct defines default values for all of the internal
clock networks that are associated with that waveform. Insertion delay
skew, and slew may be specified for internal clock networks.

port_instancedhat is the root of an internal clock network. When a
waveform_names used for thelock delay_roqtthe corresponding

CLOCK construct must precede tbeOCK_DELAY construct in the
GCF file.

The default values specified bych OCK_DELAY with awaveform_name
clock_delay_rootan be overridden for a particular internal clock networ
by anothelCLOCK_DELAY construct that explicitly specifies the root
port_instanceor cell_instance

External clock networks are not contained within the current GCFcell. T
CLOCK_DELAY construct for an external clock network must only
f@or

TheCLOCK construct is used to associateaveform_nameith the l

specify insertion delay. Insertion delay on an external clock network
affects the effective offset of the reference waveform edgaRRIVAL
andREQUIRED constructs.

Skew within an external clock network, or between an external clock
network and internal clock networks, must be specified using the
CLOCK_UNCERTAINTY construct.

Slew is not relevant for external clock networks, because the leaf pins
an external clock network are not visible within the current GCF cell.

Version 1.4 August 17, 1999 145 |

Timing Exceptions

146

Syntax
leaf_spec::= clock_mode_value
[|= default_leaf spec
[|= explicit_leaf spec
default_leaf_spec:= (default_leaf_option+)
default_leaf_option::= insertion_delay_spec
[|= clock_skew_spec
[|= clock_slew_spec
explicit_leaf _spec::= (explicit_leaf_option* clock_delay_leafy
explicit_leaf_option::= insertion_delay_spec
[|= internal_insertion_delay spec
[|= clock_slew_spec
clock_delay_leaf::= clock_leaf
||= data_leaf
data_leaf ::= (DATA port_instance)
insertion_delay_spec:= (INSERTION_DELAY
insertion_delay_valug
internal_insertion_delay_spec= (INTERNAL_INSERTION_DELAY
insertion_delay_valug
clock_skew_spec:= (SKEW skew_valug
clock_slew_spec:= (SLEW slew_valug
insertion_delay_value:= rise_fall_min_max
skew_value::= rise_fall_min_max
slew_value::= rise_fall_min_max

Thedefault_leaf spedescribes the default nominal insertion delay, the
default nominal slew at the leaf pins, and the nominal skew for the network
as a whole.

An explicit_leaf_speoverrides thelefault_leaf speealues for particular
clock_leafsIn particular, arexplicit_leaf _specan override the insertion
delay to aclock_leafand the nominal slew at tlebock leaf When an
explicit_leaf_specs used to override the insertion delay wack leaf
thatclock _leafis not included in skew computations for the network as a
whole.

When specified in @LOCK_DELAY construct for a particular internal
clock network, thelock_modeverrides any default clock mode specified
using theCLOCK_MODE construct. An error message will be given if a
clock_modas specified for an external clock network. Since the logic in
the external clock network is not visible within the current design, the
analysis of external clock networks is alw#yEAL .

Thedata_leafform is used when an output from the clock network is used
as a data signal. Normally, the logic beyond an explicit leaf pin is part of a
larger clock distribution network, or the leaf pin is a normal clock input pin

Version 1.4

Timing Exceptions |

on aregister. In certain cases, the circuit beyond the leaf pin uses the cldick
signal as if it were a data signal. THata_leafconstruct should be used to
identify these cases. Leaf pins listed in dia¢a_leafconstruct are part of

the clock network and are treated like any other explicit leaf pins; only th
analysis of the logic beyond the leaf pin is affected.

Theinternal_insertion_delay_speman be used whencéock_leafis an

input on a hierarchical block and a timing model is used for the block.
Generally the timing model should describe the internal insertion dela
within the hierarchical block, from the input port to the network leaf pin
within the block. When the timing model does not include the internal
insertion delay, it can be specified in the GCF instead. Values specified n
the GCF override values in the timing model.

The default insertion delay and any explicit insertion delays represent tRe
complete insertion delay from ttdbock _delay rooto all of the primitive

leaf pins, even when those primitive leaf pins are contained within a
hierarchical block and a timing model is used for that block.

Therefore, the partial insertion delay from theck delay rooto the

input of a hierarchical block is the difference between the complete
insertion delay and the internal insertion delay within the hierarchical
block. When the input of a hierarchical block is specified @eak _leaf

in anexplicit_leaf_speche insertion delay still represents the complete
insertion delay, not the partial insertion delay up to that input.

insertion_delay valueskew_valugandslew_valueare time values and
must be specified in the units defined by tinge_scaleThey follow the
convention forise_fall_min_maxiescribed in “Value Types” on page 48,
as well as the semantics for operating points described in “Min/Max
Values and Operating Conditions” on page 51.

As a special case, it is legal to specify place-holders for all of the
insertion_delay_valuéelds or all of theslew_valudields in an
explicit_leaf _specWhen place-holders are used for all of the fields, it
indicates that the insertion delay or slew is unconstrained for that
clock_leaf thedefault_leaf spedoes not apply. Ordinarily, if an
INSERTION_DELAY construct is specified indefault_leaf spedt
applies to all primitive leaf pins, includirgjock _leafghat are listed in
explicit_leaf _specthat do not specify alNSERTION_DELAY .

The rise fields innsertion_delay_valueskew_valugandslew_value

correspond to the rising transition of the clock at the primitive leaf pins
The rise fields irskew_valueepresent the nominal skew between the

Version 1.4 August 17, 1999 147 1

Timing Exceptions

148

rising transitions at any pair of primitive leaf pins. Similarly, the fall fields
correspond to the falling transition at the primitive leaf pins.

In GCF 1.4, only a single operating point can be modeled with the
OPERATING_CONDITIONS construct. This leads to ambiguities because
insertion_delay valueskew_valugandslew_valueall support minimum
and maximum fields for historical reasons that are no longer valid.

A future version of GCF is expected to support multiple operating points,
and at that time, the minimum fields will correspond to best case operating
conditions while the maximum fields will correspond to worst case
operating conditions.

For GCF 1.4, in general

= The mininimum and maximum fields insertion_delay_valushould
both be set to the same value:

0 The nominal insertion delay expected at the operating point
specified in theODPERATING_CONDITIONS construct.

The minimum insertion delay will be used for the source clock delay
in hold checks, and for the target clock delay in setup checks.

The maximum insertion delay will be used for the source clock delay
in setup checks, and for the target clock delay in hold checks.

= The minimum and maximum fields skew_valueshould both be set
to the same value:

0 The largest skew expected between any pastank leafsat the
operating point specified in tt@PERATING_CONDITIONS
construct.

The minimum skew will be added to the target clock delay for hold
checks.

The maximum skew will be subtracted from the target clock delay for
setup checks.

= The minimum and maximum fields slew_valueshould both be set to
the same value:

0 The nominal slew expected at the operating point specified in the
OPERATING_CONDITIONS construct.

The minimum slew will be used in calculating minimum delays
downstream of thelock_leafs

The maximum slew will be used in calculating maximum delays
downstream of thelock_leafs

Version 1.4

Precedence Rules

Version 1.4

Timing Exceptions |

Often only one transition of the signal is relevant for a particular
clock_leaf or for all of the leaf pins in the network. In that case, asterisk
should be used as place-holders for the values associated with the othger
transition.

For example, all of the leaf pins of a clock network may be clock inputs o
rising edge-triggered flip flops. In that case, asterisks should be used fpr
the fall min and max entries in thiesertion_delay_valueskew_valugand
slew_value

If the default_leaf_spegives values for both the rising and falling
transitions, only the values for the relevant transition are used for eac
default leaf pin.

For an explicit leaf pin, the relevant edges are determined by the valu
given in theexplicit_leaf_speand thedefault_leaf spedf place-holders
are given for an edge in thexplicit_leaf _spedhen that edge is treated as
not relevant for the leaf pin, even if values are given for both edges in t
default_leaf spec

When theclock delay roots aport_instanceor acell_instancethe
skew_values treated as an uncertainty that only applies when analyzin
paths between registers within the same clock network. This uncertain
has higher precedence than target-based uncertainty or inter-clock
uncertainty for those paths (see “Inter-Clock Uncertainty” on page 151}.

When theclock _delay_roots awaveform_nameheskew_valudreated

as an uncertainty that only applies when analyzing paths between registers
within the same clock network, for each of the clock networks that
distribute that waveform. Thekew_valualoes not apply for paths

between registers in different clock networks, even if both clock networ
distribute the same waveform. In addition, the skew_value does not apdly
to any external clock networks implied BRRIVAL or REQUIRED

constructs that reference thvaveform_name

When the analysis mode for the network driving a leaf pin isideal, the sle
values at the leaf pin will be determined using the following precedenc
order:

= The slew specified explicitly by aNTERNAL_SLEW construct
= The slew specified in aexplicit_leaf spedor the leaf pin

= The slew specified in default_leaf spefor aCLOCK_DELAY
construct that includes the pin as an implicit leaf pin

= The defauiNTERNAL_SLEW

August 17, 1999 149 |

Timing Exceptions

= The defaullNPUT_SLEW
= 0

When the analysis mode for the network driving a leaf pin is to use actual
delays, the slew values at the leaf pin will be determined using the
following precedence order:

= The slew specified explicitly by aNTERNAL_SLEW construct
= The calculated slew

Example
(CLOCK_DELAY

/I root
clkl

/I defaults (apply to all leaf pins)
(
(INSERTION_DELAY 5.0 6.0 * *)
(SKEW 1.01.3* %)
(SLEW 0.5 0.7 * %)
)
/I explicit leaf pins, rising edge, default values
(clk_out)

/I explicit leaf pins, both edges active

(
(INSERTION_DELAY 5.0 6.0 4.05.0)
(SLEW 0.50.7 0.3 0.4)
a/dsp/cp

)

/I explicit leaf pins, rising edge, overriding default
(

(INSERTION_DELAY 4.0 4.5 * %)

a/ff3/cp

a/ffalcp

)

/I data leaf pin, both edges active

(
(INSERTION_DELAY 5.0 6.0 4.0 5.0)

(SLEW 0.50.7 0.3 0.4)
clock_active/a

)

) Il clock_delay

150 Version 1.4

Inter-Clock Uncertainty

Version 1.4

Timing Exceptions

This example specifies a complicated clock network with a primary inp
port instance as a root and a mixture of default, explicit, and data leaf pi

The default insertion delay for the rising edge at the leaf pins is 5.0 ns
the minimum operating point, and 6.0 ns at the maximum operating poi

The explicit leaf pins arelk_out a/dsp/cp a/ff3/cp a/ff4/cp In addition,
clock_active/as a data leaf, where logic beyond that pin is treated as da
logic rather than clock logic.

In general, there is always some skew between when the launching cl
edge arrives at a source register and when the capturing clock edge arri
at a target register.

If both the source register and the target register are contained within
portion of the design described by the GCF, and they are both driven
the same clock network, then the nominal skew can be described dire
using theCLOCK_DELAY construct. Once the real clock network has
been added to the design, the actual skew can be computed by analy
just the portion of the clock network that is visible within the current GC
cell.

If the source and target clocks are derived from a common oscillator,
only a portion of the clock network relating the clocks is visible within th
current GCF cell, then the skew between the clocks is affected by inserti
delays both internal and external to the current GCF cell.

External insertion delays can be described withcih@ CK_ARRIVAL
construct. The nominal internal insertion delays can be described with t
CLOCK_DELAY construct. Once the real clock network has been add
to the design, the actual internal insertion delays can be computed.

However, when the design is partially complete both the external and
internal insertion delays may not be known. The designer may expect to
able to balance the insertion delays between different clock sub-trees
well as minimize skew within each clock sub-tree. In this case, the
expected difference between the insertion delays may be known, but t
insertion delays themselves may not.

The designer may also want to add some margin in the analysis to acco
for any incremental changes that may be necessary, or specify that ther
some uncertainty associated with the insertion delays specified in the
CLOCK_ARRIVAL andCLOCK_DELAY constructs.

TheCLOCK_UNCERTAINTY construct is used to specify these types of
skew, uncertainty, and margin.

August 17, 1999 151

Timing Exceptions

Syntax
clock_uncertainty_spec= (label? CLOCK_UNCERTAINTY
clock_uc_option*
clock_uc_value
clock_uc_item
clock_uc_option::= clock _uc_calc_option
||= clock_uc_mode_option
clock_uc_calc_option:= ABSOLUTE
[|= INCREMENT

clock_uc_mode_optiom= IDEAL
[|= ACTUAL

clock_uc_value::= r_min_max
clock_uc_item::= target_clock uc_item+

||= target_clock uc_item_edge

||= inter_clock _uc_item

target_clock_uc_item:= waveform_name

[|I= typed_waveform_list

||= clock_root

||= clock_leaf

[|= clock_leaf instance

clock_leaf _instance:= cell_instance
target_clock_uc_item_edge= (waveform_edge target clock uc_item+
inter_clock uc_item::= (BETWEEN
inter_clock_from
inter_clock_to)
inter_clock_from::= (FROM inter_clock from_to_item
inter_clock to::= (TO inter_clock_from_to_item
inter_clock from_to_item:= waveform_name
||= waveform_edge

waveform_edge:= (waveform_edge_identifier waveform_name

Theclock uc_valudollows the conventions far min_maxdescribed in
“Value Types” on page 48, as well as the semantics for operating points
described in “Min/Max Values and Operating Conditions” on page 51.

In GCF 1.4, only a single operating point can be modeled with the
OPERATING_CONDITIONS construct. This leads to ambiguities because
clock_uc_valueupports both minimum and maximum fields, for
compatibility with a future version of GCF that is expected to support
multiple operating points. At that time, the minimum fields will
correspond to best case operating conditions while the maximum fields
will correspond to worst case operating conditions.

152 Version 1.4

Timing Exceptions |

For GCF 1.4, in general the mininimum and maximum fields in
clock_uc_valuehould both be set to the same value:

0 The largest uncertainty expected at the operating point specified
the OPERATING_CONDITIONS construct.

The minimum uncertainty will be added to the target clock delay for hol
checks.

The maximum uncertainty will be subtracted from the target clock del
for setup checks.

The uncertainty described by tblck _uc_valuean either override or add
to any skew that is computed from the insertion delays to the source apd
target registers.

= When theABSOLUTE keyword is specified, thelock_uc_value
overrides computed skew, and the insertion delays to the source agd
target registers are ignored.

= When theNCREMENT keyword is specified, thelock_uc_values
added to the skew computed from the insertion delays.

= If neither option is specified, the defauliMCREMENT .

Theclock _uc_mode_optias used to specify different uncertainty values
to be used based on the analysis mode for the source and target cloc
networks:

= The uncertainty value specified ilCAOCK_UNCERTAINTY
construct with theDEAL clock_uc_mode_optiois used when the
analysis mode for either the source or the target clock network is idefl.

= The uncertainty value specified ilCAOCK_UNCERTAINTY
construct with the\CTUAL clock_uc_mode_optiois used when the
actual delays are used for both the source and target clock networ

If no clock_uc_mode_optiois specified, the uncertainty value applies to

both modes.
Target-Based Target-based uncertainty is specified usingtéinget _clock uc_iterand
Uncertainty target_clock _uc_item_edderms. Target-based uncertainty affects all

paths where data is captured by the clock edges referenced by the
target_clock _uc_iterortarget_clock uc_item_edge

For thetarget_clock _uc_iterform, the uncertainty affects both rising and
falling capturing edges. For tharget_clock_uc_item_edderm, the
uncertainty only affects the specified type of capturing edge.

Version 1.4 August 17, 1999 153 |

Timing Exceptions

Inter-Clock
Uncertainty

Precedence Rules

154

When awaveform_namis specified, the uncertainty value affects paths to
registers in the transitive fanout of ttleck rootsassociated with the
waveform. It also affects paths to thert_instanceshat have a
REQUIRED time referenced to the waveform.

When aclock_rootis specified fotarget_clock uc_itepthe uncertainty
value affects paths to all of the data inputs of registers in the transitive
fanout of theclock_root

When a clock input pin of a register is specified usingdluek leafform
of target_clock_uc_itenthe uncertainty value affects paths to the related
data inputs of that register.

When a register is specified using ttieck leaf instancérm of
target_clock_uc_itemrthe uncertainty value affects paths to all of the data
inputs of that register.

Inter-clock uncertainty is specified using theer_clock uc_itenfiorm.
The uncertainty affects paths between

= Source registers in the transitive fanout ofdluek _rootsassociated
with theinter_clock_sourcevaveform

= Target registers in the transitive fanout of theck _rootsassociated
with theinter_clock_targetvaveform.

Inter-clock uncertainty also affects paths frport_instanceshat have an
ARRIVAL time referenced to thater_clock sourcgvaveform, and paths
to port_instanceshat have &EQUIRED time referenced to the
inter_clock_targetvaveform.

When awaveform_edges specified for thénter_clock_sourceonly the
paths that are launched from that edge are affected. When a
waveform_edges specified for thénter_clock_targetonly the paths that
are captured by that edge are affected.

= Intra-tree uncertainty specified in tB&OCK_DELAY construct
always has the highest precedence for paths between source and target
registers that are both driven by that tree.

= Edge-specific uncertainty has higher precedence than non-edge-
specific uncertainty. For inter-clock skeWQ edge specifications have
higher precedence th&ROM edge specifications.

= Uncertainties specified using t&OCK_DELAY SKEW construct or
the CLOCK_UNCERTAINTY construct are added to uncertainty due
to jitter specified usingyAVEFORM or DERIVED_WAVEFORM .

Version 1.4

Version 1.4

Timing Exceptions |

= The precedence between different target-based uncertainties of th
same edge type is (in decreasing orddock_leaf clock _root
waveform_name

Example

(CLOCK_UNCERTAINTY
ABSOLUTE
IDEAL
1.01.3
"wave"

)
(CLOCK_UNCERTAINTY

INCREMENT
ACTUAL

0.1

"wave"

)

In this example, different target-based clock uncertainties are specified fpr

IDEAL mode andrCTUAL mode. When ideal insertion delays are used

for either the source or target clock network, the first clock uncertainty

overrides the skew computed from the insertion delays of the clock

networks.

= 1.3 nsof uncertainty is subtracted from the target clock edge for setdp
checks.

= 1.0 ns of uncertainty is added to the target clock edge for hold checls.

When actual insertion delays are used for both the source and target clogks,
amargin of 0.1 ns is added to the skew computed from the actual insertipn

delays:

= 0.1 ns of uncertainty is subtracted from the target clock edge for setdp
checks

= 0.1 ns of uncertainty is added to the target clock edge for hold checls.

August 17, 1999 155]

| Timing Exceptions

Example

(CLOCK_UNCERTAINTY
*1.3
clk2

)
(CLOCK_UNCERTAINTY

*0.7
(BETWEEN
(FROM (posedge "wavel™))
(TO (negedge "wave2"))
)
)

In this example, both a target-based and an inter-clock uncertainty are
specified. The target-based clock uncertainty affects setup checks on paths
to registers in the transitive fanout of the clock k. The inter-clock
uncertainty affects setup checks on paths launched by the rising edge of
waveformwaveland captured by the falling edge of wavefarave2

Assuming thatvave2is associated withlk2, the inter-clock uncertainty
has higher precedence for target registers in the transitive fandk® of
that have a falling capturing edge. Therefore, for setup checks on paths
from a flip flop triggered by the rising edgewévelto a falling edge-
triggered flip flop in the transitive fanout afk2, an uncertainty of 0.7 will

be subtracted from the target clock edge.

For setup checks at a rising edge-triggered flip flop in the transitive fanout
of clk2, an uncertainty of 1.3 will be subtracted from the target clock edge
The same will be true for setup checks at falling edge-triggered flip flops
in the transitive fanout oflk2 where the source register is not triggered by
the rising edge ofvavel

The constructs in this example do not affect the uncertainty used for hold

checks.
Timing Exception The timing exceptions can be case-dependent.
Cases

Syntax

timing_exception_case= (CASE IDENTIFIER
timing_exception_case_speg+

timing_exception_case_spes timing_exception_spec_0
[|= timing_exception_no_case 1

| 156 Version 1.4

Timing Exceptions |

Example

(EXCEPTIONS
(level 1
(case normal
(multi_cycle (setup 4) (from regl))

)

(case throttled
(multi_cycle (setup 2) (from regl))

)

)
)

In this example, the number of cycles required for paths startieght
depends on whether the clock provided to the chip is being throttled.

Version 1.4 August 17, 1999 157 1

Timing Exceptions

Archaic Timing
Exception Constructs

Level 1 Port Instance
Edge Specification
(Archaic)

Level 1 Arc Edges
Specifications
(Archaic)

158

Archaic Constructs

This section describes archaic constructs, which are supported in this
version of GCF for backward compatibility, but may be dropped in the
next major version.

In general, tools are expected to be able to read any version of GCF starting
with 1.0, including the following constructs when used in a GCF file with
aVERSION string containing 1.4 and lower. However, the following
constructs may not be supported when used in a GCF file WitERSION

string containing 2.0 or higher.

The Level lithru_edge_spec construct is archaic and has been replaced by
from_to_thru_path_sped hethru_edge_spec construct constrains all

paths that pass through a giy@art_instanceand it affects only the
transitions through those paths that result in the given edge at that
port_instance

The semantics of which paths are constrained whepdhte instances on
a flip flop or a latch are the same as for the LevérG_specaconstruct,
except that only the specified edges of those paths are constrained.

Syntax
thru_edge_spec ::= (THRU port_instance_edge) (archaic)

Example
(THRU (negedge ff1.SN))

This example constrains all paths through the preset input of a flip flop.
Only the transitions through those paths that result in a falling transition at
the preset input are affected.

The Level larc_edges_spec is archaic and has been replaced by
from_to_thru_path_spedhearc_edges_spec constrains certain edges of
all paths that pass through tyort_instancesincluding paths that start or
end at the arc. Theort_instancesnust be contiguous in the path (either
an input to output connection on a cell, or an output to input connection on
a net).

Syntax
arc_edges_spec = (ARC
port_instance_edge
port_instance_edge) (archaic)
Example

(ARC (posedge DRVR_A.Z) (posedge RCVR_A.A))

Version 1.4 Archaic Constructs

Level 1 Thru All
Specification
(Archaic)

Level 1 Thru All
Edges Specification
(Archaic)

Version 1.4

Archaic Constructs Timing Exceptions ||

This example constrains all paths that pass through the output of a trist§te
bus driver, DRVR_A.Z, then back through the input of a tristate bus
receiver, RCVR_A.A. Only the rising edge at the paot_instancess
affected; the falling edge at the tywort_instancess not affected.

The Level lthru_all_spec construct is archaic and has been replaced by
from_to_thru_path_sped hethru_all_spec constrains all paths that pass
through all of the listegort_instancesThese ports do not have to be
contiguous in the paths, but they must be listed in the order in which th
would be encountered in traversing each path from the source to the target.

Syntax
thru_all_spec ::= (THRU_ALL
port_instance
port_instance+) (archaic)
Example
(THRU_ALL
IN1
X.A
Y.A

)

This example constrains all paths that start at a primary input (IN1) th
pass througiport_instances(.A and Y.A. All transitions through these
paths are affected.

The Level lthru_all_edges_spec construct is archaic and has been replace

by from_to_thru_path_spe@hethru_all_edges_spec constrains paths that

go through all of a set giort_instanceswhich do not have to be
contiguous in the paths. Only the transitions through the constrained pags
that result in the specified edge at each opitré_instancesre affected.

Syntax
thru_all_edges_spec ::= (THRU_ALL
port_instance_edge
port_instance_edge+) (archaic)

Example

(THRU_ALL
(posedge IN1)
(posedge X.A)
(negedge Y.A)

)

August 17, 1999 159 |

Timing Exceptions

Disabling Paths Through
Edges (Archaic)

Level 1
Multi-Cycle Paths

Multi-Cycle Paths With Ar ¢
and Thru (archaic)

Archaic Constructs

This example constrains all paths that start at a primary input (IN1) then
pass througport_instanceX.A and Y.A. Only the transitions through the
path that result in a rising edge at IN1 and X.A and a falling edge at Y.A
are affected.

Thedisable_edges_spec_1 construct construct is archaic and has been
replaced bydisable_from_to_thru_spec. Thedisable_edges_spec_1
construct disables selected timing checks on a set of paths SETP

or HOLD keyword is specified, only the late (maximum) or the early
(minimum) timing checks must be disabled; otherwise, both the early and
late timing checks are disabled.

Syntax
disable_edges _spec_1 := (label? DISABLE
disable_edges_path_spec+
timing_check?) (archaic)
disable_edges_path_spec::= thru_edge_spec
||= arc_edges_spec
[|= thru_all_edges_spec (archaic)

See pages 158-159 for details on the types of paths that can be constrained
by thethru_edge spethearc_edges_speand thehru_all _edges spec

For each of these cases, if tHOLD or SETUPkeyword is specified as the
timing_checkonly the early (minimum) or the late (maximum) timing
checks must be disabled. Otherwise, both the early and late timing checks
are disabled.

In Level 1, the constrained paths can be specified in additional ways. The
multi_cycle_thru_spec_1 construct is archaic and has been replaced by the
multi_cycle_from_to_thru_spec donstruct.

Syntax
multi_cycle_spec_1:= multi_cycle_thru_spec_1 (archaic)

Themulti_cycle_thru_spec_1 construct is archaic and has been replaced by
themulti_cycle_from_to_thru_spec donstruct.

Syntax
multi_cycle_thru_spec_1 ::

(label? MULTI_CYCLE
multi_cycle_option+
multi_cycle_thru_path_spec_1+)

(archaic)
multi_cycle_thru_path_spec_1 ::= arc_spec
[|= thru_spec
[|= thru_all_spec (archaic)
160 Version 1.4 Archaic Constructs

Version 1.4

Archaic Constructs Timing Exceptions ||

Example

(LEVEL 1
(MULTI_CYCLE (SETUP 3 SOURCE) (THRU and1.in1))

)

The multi-cycle path specification in this example has the following
effects on all paths througindl.int

= For the setup check on both rising and falling data edges, the activ
edge at the source is three source clock cycles earlier than the defafilt.
The default active edge at the target is unchanged.

= The hold check on both rising and falling data edges at the target i
implicitly affected by the setup adjustment. After applying the setu
adjustment, the two hold conditions are considered with respect to tije
adjusted setup edge pair to determine the new default hold edge pair,
which is used without adjustment in the hold check.

Example

(LEVEL 1
(MULTI_CYCLE (HOLD 1 TARGET) negedge
(THRU_ALL nor2.in1 and3.in2))

)

The multi-cycle path specification in this example has the following
effects on all paths through batbr2.inlandand3.in2

= The setup check on falling data edges at the target is not affected by the
specification. However, this setup check does establish the default
setup edge pair used by the hold check.

= The hold check onfalling data edges at the target is affected by the h@ld
adjustment. The two hold conditions are considered with respect to tRe
default setup edge pair to determine the new default hold edge pai

The hold adjustment is then applied, resulting in the hold active edge
at the target being one target clock cycle earlier than in the default h
edge pair, while the hold active edge at the source is the same as in he
default hold edge pair.

= The setup and hold checks on rising data edges at the target are n@t
affected by the multi-cycle specification.

August 17, 1999 161 |

Timing Exceptions

Level 1
Path Delays

162

Archaic Constructs

In Level 1, the constrained paths can be specified in additional ways.

Syntax
path_delay_spec_1 ::= path_delay path spec 1 (archaic)

Thepath_delay_path_spec_1 construct is archaic and has been replaced by
thepath_delay_from_to_thru_speccOnstruct.

Syntax

path_delay path_spec_1:= (label? PATH_DELAY
path_delay_value
path_delay path_spec_1+) (archaic)
path_delay path_spec_1:= arc_spec
[|= thru_spec
[|= thru_all_spec (archaic)

Example

(PATH_DELAY 3.0 * 2.7 *
(ARC ff1.clk ff1.q)
)

(PATH_DELAY 45*4.3*
(ARC ffl.clk ff1.gn)
)

This example specifies the combinational delay for all paths that start at
ff1.clkand go through eithdfl.qor ff1.qn The constraints are different
based on the output of the flip flop.

For each path that goes through gheutput, the delay of the transitions
that result in a rising transition at the target (which will be either a register
data input or a primary output) must be greater than 3.0 ns at the minimum
operating point. The delay for a falling transition at the target must be
greater than 2.7 ns. The late (maximum) delays are unconstrained.

For each path that goes through tireoutput, the delay of the transitions
that result in a rising transition at the target (which will be either a register
data input or a primary output) must be greater than 4.5 ns at the minimum
operating point. The delay for a falling transition at the target must be
greater than 4.3 ns. The late (maximum) delays are unconstrained.

Version 1.4 Archaic Constructs

Archaic Constructs Timing Exceptions ||

TheMAX_TRANSITION_TIME constructis archaic. It only allows specifying

Max Transition a maximum constraint value. The preferred constBIEW _LIMIT ,

Time . -
allows both a maximum and a minimum.
Syntax
max_transition_time_spec ::= (label? MAX_ TRANSITION_TIME
rise_fall
port_instance*) (archaic)

The voltage thresholds for measuring the slew are defined by the
VOLTAGE_THRESHOLD construct (see “Voltage Threshold” on page
48). If no voltage thresholds are specified,dlesv_valueepresents by
default the time required to transition between the 10 and 90 percent poilts
of the power supply voltage.

Therise_fallparameter is a time value and it follows the same conventio
for units and thresholds as thlew_valudgn SLEW_LIMIT . The same
values apply for all operating points.

Example
(MAX_TRANSITION_TIME 1.5 1.8 ff1.d)

This example constrains the maximum slew (transition timéjlad. The
slew must be less than 1.5 ns for the rising transition, and less than 1.8ns
for the falling transition.

Version 1.4 August 17, 1999 163 |

1 Timing Exceptions Archaic Constructs

| 164 Version 1.4 Archaic Constructs

Parasitics Subset

Parasitics Subset Header
Parasitics Environment

Parasitics Constraints

Parasitics Subset Header |

Parasitics Subset Header

The parasitics subset of each cell entry in the GCF file includes the
following:

= Information about the parasitics in the environment in which the cell is
intended to operate

= Constraints on the parasitics within the cell

This chapter describes the parasitic environment and parasitic constraints.
For information on other constructs, refer to “Extensions” on page 41,
“Meta Data” on page 44, and “Include Files” on page 46.

Syntax

parasitics_subset:= (SUBSET PARASITICS
parasitics_subset_body

parasitics_subset_body= parasitics_subset_spec+

[|I= include
parasitics_subset_spec= parasitics_environment

||= parasitics_constraints

||= extension

||= meta_data

Example
(CELL (CELLTYPE "WORKLIB" "ALU")

(SUBSET PARASITICS
(ENVIRONMENT

)
(CONSTRAINTS

)
)
)

Figure 11 below summarizes the different types of parasitic environment
and constraint specifications.

Version 1.4 August 17, 1999 167 1

Parasitics Subset Header

168

Figure 11

Parasitics Environment and Constraints

o>
g
-
hed
e

=0

T

A represents the external load on an input interface net of the current GCF
cell, which is an environment condition specified using the
EXTERNAL_LOAD construct. The external load affects the delay
calculation on the interface net.

B represents the internal load on an input interface net of the current GCF
cell, which is a constraint specified using tNREERNAL_LOAD

construct. The internal load constraint affects optimization tools, which
will try to ensure that the actual load within the boundaries of the current
GCF cell meets the constraint.

C represents the load on a net which is entirely contained within the current
GCEF cell, which is a constraint specified usingltBaD construct. The

load constraint affects optimization tools, which will try to ensure that the
actual load meets the constraint.

D represents the internal load on an output interface net of the current GCF
cell, which is a constraint specified using tNREERNAL_LOAD

construct. The internal load constraint affects optimization tools, which
will try to ensure that the actual load within the boundaries of the current
GCF cell meets the constraint.

E represents the external load on an output interface net of the current GCF
cell, which is an environment condition specified using the
EXTERNAL_LOAD construct. The external load affects the delay
calculation on the interface net.

Version 1.4

Parasitics Environment |

Parasitics Environment

The parasitics environment of a cell describes a number of conditions
external to the cell that affect its timing behavior. This version of GCF
includes only the external capacitance on nets connected to the cell
interface pins.
Syntax
parasitics_environment:;= (ENVIRONMENT
parasitics_env_specy
parasitics_env_spec.= parasitics_env_spec_0
||= parasitics_env_spec_1
parasitics_env_spec_0= external_load_spec
||= extension
parasitics_env_spec_1= (LEVEL 1 parasitics_env_14
parasitics_env_1:= parasitics_env_no_case_1
||= parasitics_env_case
parasitics_env_no_case_:1= external_fanout_spec
external_wire_load_model_spec I

wire_load_model_spec
meta_data_1

The following sections describe external loading, external fanout, and
parasitic environment cases.

External Loading For an interface net that is connected to a primary port on the current GCF
cell, theEXTERNAL_LOAD construct specifies the actual value of the
portion of the capacitance which is not contained within the current GCF
cell, including the pin capacitance of any pins connected to the net outside
of the current GCF cell.

INTERNAL_LOAD specifies the capacitance allowed inside the current
GCF cell, whileEXTERNAL_LOAD specifies the capacitance that exists
outside the current GCF cell.

Syntax
external_load_spec:= (label?EXTERNAL_LOAD
capacitance_value
port_instance®
capacitance_value:= min_max |

The capacitance can be specified for both input and output ports. If no
port_instancds specified, the specification applies by default to all

Version 1.4 August 17, 1999 169 |

| Parasitics Environment

primary ports. Theapacitancevalue follows the conventions for
min_maxdescribed in “Value Types” on page 48.

The external load is added to the capacitance within the cell when
computing the delay of the interface net.

External Fanout For an interface net that is connected to a primary port on the current GCF
cell, theEXTERNAL_FANOUT construct specifies the number of ports
connected to the net outside of the current GCF cell. This, combined with
a wire load model named in tEXTERNAL_WIRE_LOAD_ MODEL
construct, specifies the portion of the capacitance on the interface net
which is not contained within the current GCF cell.

INTERNAL_FANOUT specifies the number of ports that are allowed to be
connected to the net inside the current GCF EXITERNAL_FANOUT
specifies the number of ports which are connected to the net outside the
current GCF cell.

This construct is a Level 1 construct because it requires a separate source
of wire load models for proper interpretation. The wire load models are not
defined in GCF, simply referenced by name.

Syntax

external_fanout_spec= (label?EXTERNAL_FANOUT num_loads
port_instance?

num_loads::= min_max

The number of external fanouts can be specified for both input and output
ports. If noport_instances specified, the specification applies by default
to all primary ports. Thaum_loadsvalue follows the conventions for

I min_maxdescribed in “Value Types” on page 48.

The external load computed from the external fanout is added to the
capacitance within the cell when computing the delay of the interface net

External Wire Load .For an interface net that is connected to a primary port on the current GCF
Model cell, theEXTERNAL_WIRE_LOAD_MODEL construct specifies the
name of the wire load model which should be used in conjunction with the
EXTERNAL_FANOUT construct to compute the external load
capacitance.

This construct is a Level 1 construct because it requires a separate source
of wire load models for proper interpretation. The wire load models are not
defined in GCF, simply referenced by name.

B 170 Version 1.4

Wire Load Model

Version 1.4

Parasitics Environment |

Syntax

external_wire_load_model_spee
(label?EXTERNAL_WIRE_LOAD_MODEL
library_name? wire_load_model_name port_instance*

wire_load_model_name= QSTRING

Example

(parasitics
(environment
(level 1
(external_wire_load_model “custom_wIms” “chip_wlm”
outl)

)
)
)

In this example, the external wire load model “chip_wlm” from the
“custom_wIms” library is assigned to output jpiatl

A wire load model can also be assigned for the nets contained within
particular instances or cell types, using WiRE_LOAD_MODEL
construct.

This construct is a Level 1 construct because it requires a separate soyyce
of wire load models for proper interpretation. The wire load models are n@t
defined in GCF, simply referenced by name.

Syntax

wire_load_model_spec= (label?WIRE_LOAD_ MODEL
library_name? wire_load_model_name
cell_instance+)
||= (label?WIRE_LOAD_MODEL
library_name? wire_load_model_name
cell_id)

Example

(parasitics
(environment
(level 1
(wire_load_model “small_wlm” a/b a/c)
(wire_load_model “medium_wlm” (CELLTYPE “FSM2"))
)
)
)

In this example, the wire load model “small_wIlm” is assigned to instanc
a/banda/c, and the wire load model “med_wIm” is assigned to the mast
cell type “FSM2".

August 17, 1999 171 |

| Parasitics Environment

I Parasitics Environment The parasitics environment can be case-dependent.
Cases Syntax

parasitics_env_case= (CASE IDENTIFIER
parasitics_env_case_speg+
parasitics_env_case_spec parasitics_env_spec_0
||= parasitics_env_no_case 1

Example

(environment
(level 1
(case board
(external_load 50.0 outl)
)

(case tester
(external_load 100.0 outl)

)
)
)

In this example, the external capacitance onquitll depends on whether
the chip is mounted on the board or whether it is being tested.

B 172 Version 1.4

Parasitics Constraints |

Parasitics Constraints

Internal Loading

Loading

Version 1.4

This version of GCF includes only the parasitics constraints on the nets
within a cell. Two forms of constraints are currently supported. The
constraint form depends on whether the net is connected to a primary port
on the cell.

Syntax
parasitics_constraints:= (CONSTRAINTS parasitics_constraint+)
parasitics_constraint.:= parasitics_cnstr_spec_0
||= parasitics_cnstr_spec_1
parasitics_cnstr_spec_@= internal_load_spec
||= load_spec
||= extension
parasitics_cnstr_spec_1= (LEVEL 1 parasitics_cnstr_1+)
parasitics_cnstr_1::= parasitics_cnstr_no_case_1
||= parasitics_cnstr_case
parasitics_cnstr_no_case_:* internal_fanout_spec
||= fanout_spec
||= meta_data_1

The following sections describe internal loading, loading, internal fanout,
fanout, and parasitic constraint cases.

For an interface net that is connected to a primary port on the current GCF
cell, theINTERNAL_LOAD construct specifies a constraint on the portion
of the net capacitance that is contained within the current GCF cell.

INTERNAL_LOAD specifies the capacitance allowed inside the current
GCF cell, whileEXTERNAL_LOAD specifies the capacitance that exists
outside the current GCF cell.

Syntax

internal_load_spec:= (label?INTERNAL_LOAD capacitance_value |
port_instance®

TheINTERNAL_LOAD constraint can be specified for both input and
output ports. If ngort_instancas specified, the specification applies by
default to all primary ports. Theapacitance_valu#llows the
conventions fomin_maxdescribed in “Value Types” on page 48.

The load limit, or constraint on the capacitance, of a net that is entirely
contained within the current GCF cell (not connected to any primary ports
of the current GCF cell) can be specified in terms of an explicit capacitance

August 17, 1999 173 |

| Parasitics Constraints

Internal Fanout

I 174

value using th&€ OAD construct. Theapacitance_valuéllows the
conventions fomin_maxdescribed in “Value Types” on page 48.

Syntax

load_spec::= (label?LOAD capacitance_value
port_instance_or_mastep*

The constraint on the capacitance of a non-interface net can be specified
on any port connected to the net. A default load limit can be specified by
omitting port instances, and it applies to all nets entirely contained within
the current GCF cell.

A master-based default load limit can also be specified using the
port_masterform of port_instance_or_mastemlhe master-based default
load limit applies to all nets which are entirely contained within the current
GCF cell and are connected to an occurrence of a port corresponding to the
port_master.

Precedence Rules

= Usually, the load limit is specified in the library. If the load limit is
specified in both the library and the GCF file, the more restrictive
constraint will be used.

= Explicit load limits have higher precedence than master-based default
load limits, which have higher precedence than normal default load
limits.

= If different constraints affect several ports connected to the same net,
the most restrictive constraint will be used.

For an interface net that is connected to a primary port on the current GCF
cell, theINTERNAL_FANOUT construct specifies a constraint on the
number of ports which may be connected to the net inside of the current
GCF cell.

INTERNAL_FANOUT specifies the number of ports that are allowed to be
connected to the net inside the current GCF EXITERNAL_FANOUT
specifies the number of ports which are connected to the net outside the
current GCF cell.

Syntax

internal_fanout_spec:= (label?INTERNAL_FANOUT num_loads
port_instance®

The number of internal fanouts can be specified for both input and output
ports. If noport_instances specified, the specification applies by default
to all primary ports. Thaum_loadsralue follows the conventions for
min_maxdescribed in “Value Types” on page 48.

Version 1.4

Fanout

Parasitics Constraint
Cases

Version 1.4

Parasitics Constraints |

The constraint on the capacitance of a net that is entirely contained within
the current GCF cell (not connected to any primary ports of the current
GCF cell) can be specified in terms of terms of the number of loads
allowed using thEANOUT construct. Th@um_loadssalue follows the
conventions fomin_maxdescribed in “Value Types” on page 48. I

Syntax

fanout_spec::= (label?FANOUT num_loads
port_instance®

The number of fanouts can be specified on any port connected to the net.
If different constraints are specified on several ports connected to the same
net, the most restrictive constraint will be used. Ipoa_instances

specified, the specification applies by default to all nets entirely contained
within the current GCF cell.

The parasitics constraints can be case-dependent, although it usually
makes sense to specify the tightest constraint across all of the cases instead.
Syntax

parasitics_cnstr_case:= (CASE IDENTIFIER
parasitics_cnstr_case_speg+

parasitics_cnstr_case_spes= parasitics_cnstr_spec_0
||= parasitics_cnstr_no_case_1

August 17, 1999 175 |

| Parasitics Constraints

B 176 Version 1.4

Area Subset

Area Subset Header

Area Constraints

Area Subset Header |

Area Subset Header

The area subset of each cell entry in the GCF file includes the following:
= Constraints on the area of the cell
= Constraints on the area of the primitives instantiated within the cell

This chapter describes the primitive area constraints, total area constraints,
cell porosity, and area constraint cases. For information on other
constructs, refer to “Extensions” on page 41, “Meta Data” on page 44,
and “Include Files” on page 46.

Syntax
area_subset:= (SUBSET AREA area_subset_body

area_subset_body.= area_cnstr_spec+
[|= include

area_cnstr_spec:= area_cnstr_spec_0
||= area_cnstr_spec_1
area_cnstr_spec_0:= primitive_area_spec
||= total_area_spec
||= extension

area_cnstr_spec_1:= (LEVEL 1 area_cnstr_1+4

area_cnstr_1::= area_cnstr_no_case_1
||= area_cnstr_case

area_cnstr_no_case_1= porosity_spec
[|= meta_data_1

Example

(CELL (CELLTYPE "WORKLIB" "ALU")
(SUBSET AREA
(PRIMITIVE_AREA 5000)
(TOTAL_AREA 5500)

)
)

Version 1.4 August 17, 1999 179 1

| Area Constraints

Area Constraints

Primitive Area

Total Area

Porosity

I 180

The cumulative area of the leaf-level primitive cells that are instantiated
either directly within a cell or within its descendents can be specified using
thePRIMITIVE_AREA construct. The primitive area does notinclude any
physical overhead such as routing and power distribution which affect the
total area of the cell.

Syntax
primitive_area_spec:= (label?PRIMITIVE_AREA area_value
area_value::= min_max

Thearea_valudollows the conventions famin_maxdescribed in “Value
Types” on page 48.

Example

(PRIMITIVE_AREA 0 5000)

Assuming that tharea_scalés set so that area values in the GCF file(s)
are specified in square microns, the example specifies that the total
primitive area within the current cell must be less than or equal to 5000
square microns.

The total area of a cell (including physical overhead) can be specified
using theTOTAL_AREA construct.

Syntax
total_area_spec:= (label? TOTAL_AREA area_valug

Thearea_valudollows the conventions famin_maxdescribed in “Value
Types” on page 48.

Example

(TOTAL_AREA 0 5500)

Assuming that the area_scale is set so that area values in the GCF file(s)
are specified in square microns, this example specifies that the total area of
the current cell must be less than or equal to 5500 square microns.

ThePOROSITY constructis a Level 1 construct and specifies the porosity
of a cell.

Porosity is the percentage of the total primitive area that is available for
over-the-cell routing. The total primitive area is the sum across all of the

Version 1.4

Area Constraint Cases

Version 1.4

Area Constraints |

leaf-level primitive cells which are instantiated either directly within the
current cell or within its descendents.

Syntax

porosity_spec::= (label?POROSITY porosity _valug

min_max

porosity value::
Theporosity valudollows the conventions fanin_maxdescribed in
“Value Types” on page 48.

Example

(POROSITY 40 *)

In this example, at least 40 percent of the primitive area within the current
cell must be available for over-the-cell routing.

The area constraints can be case-dependent, although it usually makes
sense to specify the tightest constraint across all of the cases instead.

Syntax
area_cnstr_case:= (CASE IDENTIFIER area_cnstr_case_speg+

area_cnstr_case_spec= area_cnstr_spec_0
||= area_cnstr_no_case 1

August 17, 1999 181 |

| Area Constraints

| 182 Version 1.4

Power Subset

Power Subset Header

Power Constraints

Power Subset Header |

Power Subset Header

The power subset of each cell entry in the GCF file includes the following:

= Constraints on the average power consumed by the cell and the
primitives instantiated within it

= Constraints on the power consumed by particular nets

This chapter describes the average cell power constraints, average net
power constraints, and power constraint cases. For information on other
constructs, refer to “Extensions” on page 41, “Meta Data” on page 44, and
“Include Files” on page 46.

Syntax
power_subset:= (SUBSET POWERpower_subset_body
power_subset_body.= power_cnstr_spec+
[|I= include

power_cnstr_spec:= power_cnstr_spec_0
[|= power_cnstr_spec_1

||= average_net_power

power_cnstr_spec_0.= average_cell_power
||= extension

power_cnstr_spec_1= (LEVEL 1 power_cnstr_1+)
power_cnstr_1::= power_cnstr_case

[|= meta_data_1
Example
(CELL () |
(SUBSET POWER
(AVG_CELL_POWER * 50 a/b) |

)
)

Version 1.4 August 17, 1999 185 |

Power Constraints

Power Constraints

Average Cell Power

Average Net Power

186

The average power consumed by a cell instance can be specified using the
AVG_CELL_POWER construct.

Syntax

(label?AVG_CELL_POWER power_value)
power_value::= min_max

average_cell_power:

Thepower_valudollows the conventions fanin_maxdescribed in
“Value Types” on page 48.

Example
(AVG_CELL_POWER * 50.0)

Assuming that thepower_scal@s set so that power values in the GCF
file(s) are specified in milliwatts, the example specifies that the average
power consumed by the current cell instance must be less than or equal to
50 milliwatts.

The average power dissipated by the capacitance in a net can be specified
using theAVG_NET_POWER construct. This construct is generally only
used for clock nets.

Syntax

average_net_power:= (label?AVG_NET_POWER power_value
port_instance

The power is specified for the physical net as a whole, although the net is
identified using one of theort_instancegonnected to the net. The
power_valudollows the conventions fanin_maxdescribed in “Value
Types” on page 48.

Example
(AVG_NET_POWER * 1000.0 CLKBUF.OUT)

Assuming that thpower_scalas set so that power values in the GCF
file(s) are specified in milliwatts, the example specifies that the average
power consumed by the specified net must be less than or equal to 1 watt.

Version 1.4

Power Constraints |

The power constraints can be case-dependent, although it usually maljes
sense to specify the tightest constraint across all of the cases instead.

Power Constraint Cases

Syntax

power_cnstr_case:= (CASE IDENTIFIER
power_cnstr_case_speg+

power_cnstr_case_spec= power_cnstr_spec_0

Version 1.4 August 17, 1999 187 1

Power Constraints

188

Version 1.4

Syntax of GCF

GCF File Characters
Syntax Conventions
GCF File Syntax

GCF File Characters |

GCF File Characters

GCF Characters

Version 1.4

The legal GCF character set and the method of including comments in
GCEF files are described in this section.

The characters you can use in an GCF file are the following:

= Alphanumeric characters — the letters of the alphabet, all the numbers,
and the underscore ‘_’ character.

= Special characters — any character other than alphanumeric characters
(which includes the underscore as defined above) is a special character.
The following is a list of special characters:
I"#$% & ()*+,-./:;<=>?2@[\]" {]|}~

= Syntax characters —these are special characters required by the syntax.
Examplesare: () " * : [] ? and the hierarchy delimiter character
but see also the definitions of GCF operators, etc.

= The escape character —to use any special charactefEAITIFIER,
prefix it with the escape character, a backslash ‘\'. This includes the
backslash character itself: two consecutive backslashes are used to
represent a single backslash in the origib&NTIFIER.

See “Variables” on page 193 for a description of @ENTIFIER. Note ||
that if the character would normally have any special meaning in an
IDENTIFIER, this is lost when the character is escaped.

= Hierarchy delimiter character — either the period ‘.” or the slash ‘/’ can
be established as the hierarchy delimiter character. This character only
has this special meaning in EDENTIFIER. An escaped hierarchy
delimiter character loses its meaning as a hierarchy delimiter.

= Leftindex delimiter character - the left bracket [, left parenthesis ‘(’,
or left angle bracket ‘<‘ can be established as the left index delimiter
character. The left index delimiter is used as the first delimiter in a bit-
spec. This character only has this special meaning IDENTIFIER.
used as the name of a port or cell instance. An escaped left index
delimiter character loses its meaning as a left index delimiter.

= Rightindex delimiter character - the right bracket ‘', right parenthesis
), or right angle bracket ">’ can be established as the right index
delimiter character. The right index delimiter is used as the last
delimiter in a bit-spec. This character only has this special meaning in
anIDENTIFIER used as the name of a port or cell instance. An escaped
right index delimiter character loses its meaning as a right index
delimiter.

August 17, 1999 191 |

| GCF File Characters

= White space characters — tabs, spaces and newlines are considered
white space. Use white space to separate lexical tokens.

Keywords,IDENTIFIERS, characters, and numbers must be delimited
either by syntax characters or by white space.

Comments can be placed in GCF files using either “C” or “C++" styles.

“C”-style comments begin with /* and end with */. Nesting of “C”-style
comments is not permitted. The places in an GCF file where it is legal to
put “C”-style comments are not defined by this specification. Different
annotators can have different capabilities in this regard.

“C++"-style comments begin with // and continue until the end of the
current line (the next newline character). Annotators should ignore the
double-slash and any text after them on any line in the file.

Comments

192 Version 1.4

Syntax Conventions |

Syntax Conventions

Notation
item

item ::= definition

item ::= definitionl
||=definitior2

iten?
itent
item+

KEYWORD

VARIABLE

Variables

QSTRING

NUMBER

RNUMBER

DNUMBER
INUMBER
IDENTIFIER

Version 1.4

The notation used in presenting the syntax of GCF are as follows:
itemis a symbol for a syntax construct item.
the BNF symboitemis defined aslefinition.

the BNF symboitemis defined either adefinitionlor asdefinition2.
(any number of alternative syntax definitions can appear)

itemis optional in the definition (it can appear once or not at all).
itemcan appear zero or any number of times.
itemcan appear one or more times (but cannot be omitted).

is a keyword and appears in the file as shown. Keywords are shown in
uppercase bold for easy identification but are case insensitive.

is a symbol for a variable. Variable symbols are shown in uppercase for
easy identification. Some variables are defined as one of a number of
discrete choices (e.glICHAR, which is either a period or a slash). Other
variables represent user data such as hames and numbers.

This section defines the user data variables used in GCF. Variables which
must be one of a number of choices (enumerations) are defined in the main
syntax definition which follows.

is a string of any legal GCF characters and spaces, excluding tabs and
newlines, enclosed by double-quotes. Except for the double-quote itself,
special characters lose their special meaningQSERING To embed a
double-quote within a QSTRING, escape it with a backslash.

is a non-negative (zero or positive) real number, for example: 0, 1, 0.0, 3.4,
.7,0.3, 2.4e2, 5.3e-1, 8.2E+5

is a positive, zero or negative real number, for example: 0, 1, 0.0, -3.4, .7,
-0.3, 2.4e2, -5.3e-1, 8.2E+5

IS a non-negative integer number, for example: +12, 23, 0
is an integer number, for example: -5, 10, 0, +7

is the name of an object in the design. This could be an instance of a design
block or cell or a port depending on where DENTIFIER occurs in the
GCEF file. Identifiers can be up to 1024 characters long.

August 17, 1999 193 |

| Syntax Conventions

194

The following characters can be used in an identifier:

Alphanumeric characters — the letters of the alphabet, all the numbers,
and the underscore ‘_’ characttDENTIFIERS are case-sensitive, i.e.
uppercase and lowercase letters are considered different.

Bit specs — to indicate an object selected from an array of objects, for
example a single port selected from a bus port or an instance from an
array of instances, use a “bit spec” at the end of ENTIFIER of the

array (with no separating white space). A bit spec consists of the left
and right index delimiters (‘' and ‘]’, by default) enclosing a range.

To select a single object, the range should be a single positive integer,
for example, [4].

To select a contiguous group of objects, the range should be a pair of
positive integers separated by a colon (*:"), for example, [3:31] and
[15:0].

To select all objects in the array, the range should b&\thé&CARD,
an asterisk (**). For example, [*].

Hierarchy delimiter character — se@ATH” below.

The escape character ‘\" — if you want to use a non-alphanumeric
character as a part of #HHENTIFIER it must be escaped by being
prefixed with the ‘\" character. Examples are shown below.

Note—this escapingnechanisnis differentfrom Verilog HDL where

the entirdDENTIFIER is escaped by placing one escape character (\)
before thed DENTIFIER and a white space after tHEENTIFIER.
Characters that have special meaning in identifiers, such as the left and
right index delimiters and the hierarchy delimiter, lose that special
meaning when escaped.

Do not use white space (spaces, tabs or newlines)IIDENTIFIER.

Examples of corredDENTIFIERS are:

AMUX\+BMUX
Cache_Row_ \#4

mem_array\[0\:1023\]\(0\:15\) ; From a language where square
; brackets indicates arrays
; parentheses indicates bit specs

piped\-done\&enb[3] ; Unescaped square brackets
; represent a bit spec

Version 1.4

Syntax Conventions |

PATH is a hierarchicalDENTIFIER. The names of levels in the design hierarchy
must be separated by the hierarchy delimiter character. A path is always
interpreted relative to a particular region of the design (which can be the
top level cell in the design), so a leading hierarchy delimiter character |
should not be used. The hierarchy delimiter character must not be escaped
or it loses its meaning as a hierarchy delimiter. See “Delimiters” on page
34 for details on how the hierarchy delimiter character is established.

PATH_EXPR is a PATH that can also contain one or more WILDCARD characters,
match arbitrary substrings between hierarchy delimiters. As with PAT
the names of levels in the design hierarchy must be separated by the
hierarchy delimiter character, and a WILDCARD only matches names
within that level of the design hierarchy, not across levels of the desig
hierarchy. A path expression is always interpreted relative to a particulfar
region of the design (which can be the top level cell in the design), so
leading hierarchy delimiter character should not be used. The
WILDCARD character must not be escaped or it loses its meaning as
matching character.

PARTIAL_PATH iseitheran IDENTIFIER or a PATH. A partial path is used in combination
with aprefix_idto reduce the file size when many PATHSs contain a
common prefix. See “Design References” on page 70 for details on howja
prefix_idis established.

HCHAR s the hierarchy delimiter character.
LI CHAR s the left index delimiter character.
RI_CHAR s the right index delimiter character.
COLON s the colon character (*:).
WILDCARD s the asterisk character (**).

Version 1.4 August 17, 1999 195 |

GCF File Syntax

GCF File Syntax

The formal syntax definition for the General Constraint Format is given
here. It is not possible, using the notation chosen, to clearly show how
white-space must be used in the GCF file. Some explanations and
comments are included in the formal descriptions. A double-slash (//)
indicates comments which are not part of the syntax definition.

constraint_file ::= (GCF header section)

header := (HEADER version header_info}
section ::= globals

[|= cell_spec

[|= extension

||= meta_data

[|I= include

version = (VERSION QSTRING)

header_info ::= design_name
||= date

[|= program

[|= delimiters

||= time_scale
||= cap_scale

||= res_scale

[|= length_scale
||= area_scale
||= voltage_scale
||= power_scale
||= current_scale
||= extension

design_name ::= (DESIGN QSTRING)
date := (DATE QSTRING)

(PROGRAM program_name program_version program_compgny

program
program_name ::= QSTRING
program_version ::= QSTRING
program_company ::= QSTRING

delimiters := (DELIMITERS QSTRING)

196 Version 1.4

Version 1.4

time_scale
cap_scale

res_scale ::
length_scale ::
area_scale ::
voltage_scale ::
power_scale ::
current_scale ::

multiplier

(TIME_SCALE multiplier)

(CAP_SCALE multiplier)
(RES_SCALE multiplier)
(LENGTH_SCALE multiplier)
(AREA_SCALE multiplier)
(VOLTAGE_SCALE multiplier)
(POWER_SCALE multiplier)
(CURRENT_SCALE multiplier)

NUMBER

August 17, 1999

GCF File Syntax

197

GCF File Syntax

Extensions Extensions are defined as follows:

extension ::= (EXTENSION QSTRINGextension_constructy

extension_construct ::= (user_defined

[|I= include
Labels Constraint labels are defined as follows:
label ::= label id COLON
label id ::= IDENTIFIER
|= QSTRING
Meta Data Meta data specifications are defined as follows:

meta_data ::= (LEVEL 1 meta data 1)
meta_data_1 ::= (META meta_constructd
meta_construct ::= precedence
||= meta_reserved
[|= include

precedence ::= (PRECEDENCE (label_id label_id+))

meta_reserved X IDENTIFIER reserved for_future_definition

Include Specifications Include specifications are defined as follows:

include := (INCLUDE QSTRING)

Value Types Common types of values used in many constraints are defined as follows:

min_and_max ::= min_number max_number

r_min_and_max ::= r_min_number r_max_number

min_number := NUMBER

max_number ::= NUMBER
r_min_number ::= RNUMBER
r_max_number ::= RNUMBER

min_max := NUMBER
||= min_value max_value

r min_max := RNUMBER
[|[= r_min_value r_max_value

198 Version 1.4

min_value ::=

max_value ::
r_min_value
r_max_value ::=

number_or_place_holder ::

r_number_or_place_holder ::=

rise_fall ::=

r_rise_fall =

rise_value ::=
fall_value ::=
r_rise_value :=
r_fall_value :=

rise_fall_min_max ::=

r_rise_fall_min_max ::=

rise_min_value ::=
rise_max_value ::
fall_min_value
fall_max_value ::
r_rise_min_value ::
r_rise_max_value ::
r_fall_min_value
r_fall_max_value ::=

Version 1.4

number_or_place_holder
number_or_place_holder
r_number_or_place_holder
r_number_or_place_holder

NUMBER

*

RNUMBER

*

NUMBER
rise_value fall_value

RNUMBER
r_rise_value r_fall_value

number_or_place_holder
number_or_place_holder
r_number_or_place_holder
r_number_or_place_holder

NUMBER

= rise_value fall_value
rise_min_value rise_max_value
fall_min_value fall_max_value

RNUMBER
r_rise_value r_fall_value

r_rise_min_value r_rise_max_value
r_fall_min_value r_fall_max_value

number_or_place_holder
number_or_place_holder
number_or_place_holder
number_or_place_holder
r_number_or_place_holder
r_number_or_place_holder
r_number_or_place_holder
r_number_or_place_holder

August 17, 1999

GCF File Syntax

199

| GCF File Syntax

I Giobas The globals section is defined as follows:

globals (GLOBALS globals_subset
globals_subset ::= env_globals_subset

||= timing_globals_subset

||= extension

||= meta_data

Environment Globals The environment globals are defined as follows:

env_globals_subset::= (GLOBALS_SUBSET ENVIRONMENT env_globals_body

env_globals_body ::

env_globals_spec::= env_globals_spec 0
||= env_globals_spec_1

env_globals_spec+
include

env_globals_spec_0::= process
||= voltage
||= temperature
||= operating_conditions
||= voltage_threshold

| ||= lifetime
[|= extension
| [|= meta_data

process ::= (PROCESSmin_and_may
voltage ::= (VOLTAGE r_min_and_may
temperature ::= (TEMPERATURE r_min_and_may
operating_conditions ::= (label? OPERATING_CONDITIONS

QSTRING
process_value voltage_value temperature_value

process_value ::= NUMBER
voltage _value ::= RNUMBER
temperature_value ::= RNUMBER

(label?VOLTAGE_THRESHOLD min_and_may

voltage_threshold ::
lifetime ::= (label?LIFETIME lifetime_value

lifetime_value ::= min_max

200 Version 1.4

env_globals_spec_1::

env_globals_1 ::

env_globals_case ::=

env_globals_case_spec:=

(LEVEL 1env_globals_1+)

env_globals_case
meta_data_1

(CASE IDENTIFIER env_globals_case_speg+

env_globals_spec 0

Timing Globals The timing globals are defined as follows:

GCF File Syntax

timing_globals_subset ::£ GLOBALS_SUBSET TIMING timing_globals_body

timing_globals_body ::
I

timing_globals_spec ::=

timing_globals_spec 0::=
|I=
|I=
|I=

slew_mode ::

slew_mode_value ::

primary_waveform ::

Waveform_name o=

period

edge_pair_list ::=

pos_pair
neg_pair

pos_edge ::
neg_edge :

edge_position ::=
|I=
1=

Version 1.4

timing_globals_spec+
include

timing_globals_spec_0
timing_globals_spec_1

slew_mode
primary_waveform
extension
meta_data

(label?SLEW_MODE slew_mode_value

WORST
CRITICAL

(label?WAVEFORM waveform_name
period edge_pair_lisy

QSTRING
NUMBER

pos_pair+
neg_pair+

pos_edge neg_edge
neg_edge pos_edge

(POSEDGEedge_positior)
(NEGEDGE edge_position

ideal_edge

ideal_edge_with_jitter
edge_range

August 17, 1999

201

GCF File Syntax

ideal_edge :

|
ideal _edge_with_jitter ::=
jitter_spec ::=

jitter_value =

neg_jitter
pos_jitter

edge_range

timing_globals_spec_1::

timing_globals_1 ::
I

timing_globals_no_case 1::=
|I=
1=

derived_waveform ::

parent_waveform_name::

derived_waveform_option ::=

period_multiplier ::=

period_divisor :=

derived_edges ::

derived_edge_list ::

derived_pos_pair ::

202

RNUMBER
placeholder

ideal_edge jitter_spec
(JITTER jitter_value)

NUMBER
neg_jitter pos_jitter

NUMBER
NUMBER

r_min_and_max (archaic)
(LEVEL 1timing_globals_1+)

timing_globals_no_case_1
timing_globals_case

derived_waveform
clock _group
meta_data_1

(label?DERIVED_WAVEFORM
waveform_name
parent_waveform_name
derived_waveform_optiony

QSTRING

period_multiplier

period_divisor

derived_edges

phase_shift

jitter_adjustment

invert

(PERIOD_MULTIPLIER period_multiplier_valug

(PERIOD_DIVISOR period_divisor_value duty_cycle_valug?
(EDGESderived_edge_list

derived_pos_pair+
derived_neg_pair+

derived_pos_edge derived_neg_edge

Version 1.4

GCF File Syntax

derived_neg_pair ::= derived_neg_edge derived_pos_edge

(POSEDGEderived_edge

derived_pos_edge::

derived_neg_edge::= (NEGEDGE derived_edge

edge_num derived_edge_shift?

derived_edge ::

(PHASE_SHIFT edge_shift_valuéDEAL ?)

derived_edge_shift ::

phase_shift ::= (PHASE_SHIFT phase_shift_valutDEAL ?)

jitter_adjustment ::= (JITTER_ADJUSTMENT edge_pair_lis)

invert = INVERT
period_multiplier_value ::= DNUMBER
period_divisor_value ::= DNUMBER
duty_cycle_value ::= NUMBER
edge_num ::= DNUMBER
edge_shift_value ::= RNUMBER
phase_shift_value ::= r_rise_fall

clock_group ::= (label? CLOCK_GROUP clock_group_name waveform_nampe+

clock_group_name ::= QSTRING

timing_globals_case ::= (CASE IDENTIFIER timing_globals_case_speg+

timing_globals_case_spec:

timing_globals_spec_0
timing_globals_no_case_1

Version 1.4 August 17, 1999 203

| GCF File Syntax

Design References The references to design elements are defined as follows:

name_prefixes ;= (NAME_PREFIXES num_prefixes name_prefix+
num_prefixes ::= DNUMBER
name_prefix ::= prefix idQSTRING

prefix_id DNUMBER

cell_instance :

untyped_cell_instance ;.= PATH
[|= (prefix_id)
[|= (prefix_idPARTIAL_PATH)

untyped_cell_instance
typed_instance_list

typed_instance_list ::= (INSTANCE untyped_cell_instanee)

port_instance ::= untyped_port_instance
||= typed_port_instance

untyped_port_instance::= port
[|= PATH HCHARport
[|= (prefix_id port)
[|= (prefix_idPARTIAL_PATH HCHARport)

/* There should be no white space separating the PATH or PARTIAL_PATH,
HCHAR, andport components of anntyped_port_instance

typed_port_instance ::= typed_port_list
||= typed_pin_list

typed_port_list ::

(PORT untyped_port_instanee)

(PIN untyped_port_instanee)

typed_pin_list ::

net untyped_net

typed_net_list

I
untyped_net ::= PATH

[|= (prefix_id)
|I= (prefix_id PARTIAL_PATH)

typed_net_list ::= (NET untyped_net)

typed_waveform_list ::= (WAVEFORM waveform_name)

204 Version 1.4

GCF File Syntax ||

typed_instance_expr::= (INSTANCE_EXPR PATH_EXPR)
typed_port_expr ::= (PORT_EXPR PATH_EXPR)

typed_pin_expr ::= (PIN_EXPR PATH_EXPR)

typed_net_expr ::= (NET_EXPR PATH_EXPR)

port ::= scalar_port

[|= bus_port
input_port ::= scalar_port
output_port ::= scalar_port
scalar_port ::= IDENTIFIER

||= IDENTIFIER LI_CHAR DNUMBER RI_CHAR

bus_port ::= IDENTIFIER LI_CHAR DNUMBER COLON DNUMBER RI_CHAR
||= IDENTIFIER LI_CHAR WILDCARD RI_CHAR

cel_id := (CELLTYPE cell_name
[|= (CELLTYPE library_name cell_name view_namg?
cell_name ::= QSTRING
library_name := QSTRING
view_hame ::= QSTRING

port_master ::= (cell_id scalar_por)

port_instance_or_master::= port_instance
||= port_master

Version 1.4 August 17, 1999 205 |

| GCF File Syntax

Cell entries are defined as follows:

Cell Entries
cell_spec ::= (CELL cell_instance_spec cell_body spec+
cell_instance_spec ::= cell_instance_path
[|= (cell_instance_path+)
II= ()
[|= cell_views
cell_instance_path ::= PATH
cell_views := (CELLTYPE cell_name
||= (CELLTYPE library_name cell_name view_namg*
cell_body_spec ::= name_prefixes
||= subset
[|= extension
||= meta_data
[|I= include
Subsets Subset specifications are defined as follows:
subset ::= timing_subset

[|= parasitics_subset
||= area_subset
[|= power_subset

206 Version 1.4

GCF File Syntax ||

Timing Subset The timing subset is defined as follows:

timing_subset ::=(SUBSET TIMING timing_subset_body

timing_subset_body ::

timing_subset_spec::= timing_environment
[|= timing_exceptions
||= extension
||= meta_data

timing_subset_spec+
include

Timing Environment The timing environment is defined as follows:

timing_environment ::= (ENVIRONMENT timing_env_specy)
timing_env_spec ::= timing_env_spec_0
||= timing_env_spec 1

timing_env_spec_0::= clock spec
||= clock_arrival_spec
||= arrival_spec
||= required_spec
||= external_delay_ spec
||= driver_spec
||I= input_slew_spec
[|= extension

clock_spec ::= (label? CLOCK waveform_name clock_roof+
clock_root ::= general_port_instance
clock_arrival_spec ::= (label?CLOCK_ARRIVAL

clock_arrival_value
clock_arrival_item+)

clock_arrival_value := r_rise_fall_min_max
clock_arrival_item ::= clock_root
||= clock_leaf

||= waveform_name
[|I= typed_waveform_list

clock leaf ::= port_instance

arrival_spec (label? ARRIVAL arrival_waveform_edge arrival_value

port_instance®

arrival_waveform_edge ::£ waveform_edge_identifier waveform_name |

Version 1.4 August 17, 1999 207 |

GCF File Syntax

arrival_value

required_spec ::

required_keyword ::
|

required_waveform_edge::

required_value ::

target_required_value ::

setup_rise_fall ::
hold_rise_fall

setup_value ::=
hold_value :=

external delay_spec ::

external_delay value ::

waveform_edge ::=

driver_spec ::=

driver_cell_spec ::=

driver_cell_port_spec ::=
|I=
|I=

driver_cell_options ::

driver_cell_option ::=
|I=
|I=

208

r_rise_fall_min_max
(waveform_edge_identifier r_min_max)

(label? required_keyword
required_waveform_edge
required_value
port_instance®

REQUIRED
DEPARTURE

(waveform_edge_identifier waveform_name
target_required_value

setup_rise_fall hold_rise_fall
(waveform_edge_identifier setup_value hold_value)

r_rise_fall
r_rise_fall

RNUMBER
RNUMBER

(label?EXTERNAL_DELAY
external_delay value endpoints_spéc+

r_rise_fall_min_max
(waveform_edge_identifier r_min_max)

(waveform_edge_identifier waveform_name

driver_cell_spec
driver_strength_spec

(label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
port_instance?

(cell_id)

(cell_id output_por)

(cell_id input_port output_pont
(driver_cell_option+)
drive_multiplier

driver_input_slew
waveform_edge_identifier

Version 1.4

(archaic)

(archaic)

(archaic)

drive_multiplier ::=

driver_input_slew ::=

slew_value ::

driver_strength_spec ::

strength_value ::

input_slew_spec ::=

timing_env_spec_1::

timing_env_1 ::=

timing_env_no_case_1::=
|I=
|I=
|I=

constant_spec ::=

constant_value ::=

internal_slew_spec ::=

timing_env_case ::

timing_env_case_spec::=

Timing Exceptions
timing_exceptions ::=

timing_exception_spec::=

timing_exception_spec_0::=
||=
||=
||=
||=
||=

timing_exception_spec_1::=

Version 1.4

GCF File Syntax

(PARALLEL_DRIVERS DNUMBER)

(INPUT_SLEW slew_value input_pott)

rise_fall_min_max

(label? DRIVER_STRENGTH strength_value port_instanté
rise_fall_min_max

(label? INPUT_SLEW slew_value port_instante

(LEVEL 1timing_env_14

timing_env_no_case_1
timing_env_case

constant_spec
operating_conditions

internal_slew_spec
meta_data_1

(label? CONSTANT constant_value port_instancg+

0
1

(label?INTERNAL_SLEW slew_value port_instan&e
(CASE IDENTIFIER timing_env_case_speg+

timing_env_spec_0
timing_env_no_case_1

The timing exceptions are defined as follows:

(EXCEPTIONS timing_exception_specj

timing_exception_spec_0
timing_exception_spec_1

disable_spec 0
multi_cycle spec 0
path_delay_spec_ 0
slew_limit_spec
max_transition_time_spec
extension

(LEVEL 1timing_exception_1+%

August 17, 1999

(archaic)

209

| GCF File Syntax

timing_exception_1 ::= timing_exception_no_case_1
||= timing_exception_case

timing_exception_no_case_1.= disable_spec 1
[|= multi_cycle_spec_1
||= path_delay_spec_1
[|= borrow_limit_spec
||= clock_mode_spec
||= clock_delay spec
||= clock_uncertainty_spec
[|= meta_data_1

timing_exception_case::= (CASE IDENTIFIER timing_exception_case_speg+

timing_exception_case_spec:= timing_exception_spec_0
[|= timing_exception_no_case 1

| thru_spec ::= (THRU port_instance
arc_spec ::= (ARC port_instance port_instange
endpoints_spec ::= from_spec
||= to_spec

|l= (BETWEEN?from_spec to_spéc

from_spec ::
to_spec ::

(FROM from_to_item)
(TO from_to_item)

from_to_item ::= port_instance
||= cell_instance
||= waveform_name
[|I= typed_waveform_name_list
||I= typed_port_expr
||I= typed_pin_expr
||= typed_instance_expr

from_to_thru_spec ::= (PATHS from_to_thru_item+)
from_to_thru_item ::= from_opt_edge_spec
||= to_opt_edge_spec

[|= thru_all_items_spec

from_opt_edge_spec::= from_spec
[|= (FROM from_item_edge+

to_opt_edge_spec::= to_spec
[|I= (TO to_item_edge+

210 Version 1.4

GCF File Syntax ||

from_item_edge ::= (edge_identifier from_to_itemj
to_item_edge ::= (edge_identifier from_to_itemj

thru_all_items_spec ::= (THRU_ALL thru_any_item_specy

thru_any_item_spec ::= thru_item
[I= (THRU_ANY thru_item+)

thru_item ::= port_instance
[|I= net
||I= typed_port_expr
||I= typed_pin_expr
[|= typed_net_expr
||= port_instance_edge

(edge_identifier port_instange

port_instance_edge ::

disable_spec_ 0 ::= disable_item_spec 0
||= disable_endpoints_spec 0
||= disable_from_to_thru_spec_0

disable_item_spec_0 := labeDISABLE disable_item_0+

disable_item_0 ::= port_instance
||= cell_instance
||I= typed_port_expr
||I= typed_pin_expr
||= typed_instance_expr
||= arc_spec
||= preset_clear_spec
||= reentrant_paths_spec

preset_clear_spec::= (PRESET_CLEAR_ARCStrue_false
reentrant_paths_spec::= (REENTRANT_PATHS true_false

true_false ::= TRUE
[|= FALSE

(label?DISABLE endpoints_spec+ disable_optioh*

disable_endpoints_spec_Q:

disable_option ::

timing_check ::

disable_from_to_thru_spec_O:

timing_check
edge_identifier

SETUP
HOLD

(label?DISABLE from_to_thru_spec+ disable_option*

Version 1.4 August 17, 1999 211 |

| GCF File Syntax

disable_spec 1 ::

disable_cell_spec 1::

disable_cell_spec 1
disable_edges_spec_1 (archaic)

(label? DISABLE disable_cell path_speck}

disable_cell_path_spec::

disable_instance_spec::= (INSTANCE untyped_cell_instance}

disable_instance_spec
disable_master_spec

disable_master_spec::= (MASTER cell_id)

multi_cycle_spec O ::

|
multi_cycle_spec_0 ::= (label? MULTI_CYCLE multi_cycle_endpoints_param_list

multi_cycle_endpoints_spec_ 0
multi_cycle from_to_thru_spec 0

multi_cycle_endpoints_param_list endpoints_spec+ multi_cycle_option+
[|= multi_cycle_option+ endpoints_spec+

multi_cycle_option ::= timing_check_offset
[|= edge_identifier

timing_check_offset ::= (timing_check num_cycles reference_clogk?

reference_clock ::= SOURCE
||= TARGET
num_cycles ::= INUMBER

multi_cycle from_to_thru_spec :0= (label?MULTI_CYCLE
multi_cycle_from_to_thru_param_list

multi_cycle_from_to_thru_param_list::= from_to_thru_spec+ multi_cycle_option+
[|[= multi_cycle_option+ from_to_thru_spec+

path_delay_endpoints_spec_ 0
path_delay from_to_thru_spec 0

path_delay_spec 0::
|

path_delay endpoints_spec_0:= (label?PATH_DELAY
path_delay value
endpoints_specy

path_delay_value ::= rise_fall_min_max
||= path_delay_single_value (archaic)

path_delay from_to thru_spec 0= (label?PATH_DELAY path_delay value from_to_thru_sper+

slew_limit_spec ::= (label?SLEW_LIMIT slew_value port_instance_or_master*

212 Version 1.4

internal_insertion_delay_spec::

Version 1.4

borrow_limit_spec ::
borrow_value ::=

borrow_item ::=
|I=
1=

clock_mode_spec::=

clock_mode_value ::=

clock _delay_spec ::=

clock_delay_root ::=
|I=
|I=

leaf spec ::=
|I=
1=

default_leaf_spec :

default_leaf_option ::=
|I=
II=

explicit_leaf spec ::=

explicit_leaf_option ::=
|I=
II=

clock_delay_leaf ::=

data_leaf ::

insertion_delay_spec ::=

clock_skew_spec::
clock_slew_spec ::

(label?BORROW_LIMIT NUMBER borrow_item®)

NUMBER

port_instance
cell_instance
waveform_name

(label? CLOCK_MODE clock_mode_valug

IDEAL
ACTUAL

(label? CLOCK_DELAY
clock_delay_root leaf_specy

untyped_port_instance
(cell_instance input_port output_port
waveform_name

clock_mode_value
default_leaf spec
explicit_leaf_spec

(default_leaf_option+)
insertion_delay_spec

clock_skew_spec

clock_slew_spec

(‘explicit_leaf_option* clock_delay leafy
insertion_delay_spec
internal_insertion_delay_spec

clock_slew_spec

clock_leaf
data_leaf

(DATA port_instance)

(INSERTION_DELAY
insertion_delay_valug

(INTERNAL_INSERTION_DELAY
insertion_delay_valug

(SKEW skew_valué
(SLEW slew_value

August 17, 1999

GCF File Syntax

213

GCF File Syntax

insertion_delay value ::=
skew_value ::=
slew_value ::=

clock_uncertainty_spec::=

clock_uc_option ::=

clock_uc_calc_option ::=

clock_uc_mode_option::=

clock_uc_value ::=

clock uc_item ::=
|I=
II=

target_clock_uc_item ::=
I
||=
||=
||=

clock leaf instance ::=

target_clock_uc_item_edge::=
inter_clock _uc_item ::=

inter_clock from ::=
inter_clock to ::=

inter_clock_from_to_item ::=

waveform_edge ::=

waveform_edge_identifier::=

214

rise_fall_min_max

rise_fall_min_max

rise_fall_min_max

(label? CLOCK_UNCERTAINTY
clock_uc_option*
clock_uc_value
clock_uc_item

clock_uc_calc_option
clock_uc_mode_option

ABSOLUTE
INCREMENT

IDEAL
ACTUAL

r_min_max
target_clock_uc_item+
target_clock_uc_item_edge
inter_clock uc_item
waveform_name
typed_waveform_list
clock_root

clock_leaf
clock_leaf_instance
cell_instance
(waveform_edge target_clock_uc_item+

(BETWEEN inter_clock_from inter_clock_tp

(FROM inter_clock _from_to_item
(TO inter_clock_from_to_item

waveform_name
waveform_edge

(waveform_edge_identifier waveform_name

POSEDGE
NEGEDGE

Version 1.4

edge_identifier ::
|I=
|I=
|I=

Archaic Timing
Exceptions

thru_edge_spec
arc_edges_spec
thru_all_spec

thru_all_edges_spec

disable_edges_spec 1

disable_edges_path_spec

multi_cycle_spec_1

multi_cycle_thru_spec_1

multi_cycle_thru_path_spec_1

path_delay_single_value

path_delay spec 1

path_delay path_spec_1

path_delay path_spec_1

Version 1.4

POSEDGE
NEGEDGE
ANYEDGE
0z
z1
1z
z0

The archaic timing exceptions are defined as follows:

(THRU port_instance_edge)
(ARC port_instance_edge port_instance_edge)
(THRU_ALL port_instance port_instance+)

(THRU_ALL port_instance_edge
port_instance_edge+)

(label? DISABLE disable_edges_path_spec+
timing_check?)

thru_edge_spec
arc_edges_spec
thru_all_edges_spec

multi_cycle_thru_spec_1
(label? MULTI_CYCLE
multi_cycle_option+
multi_cycle_thru_path_spec_1+)
arc_spec
thru_spec
thru_all_spec
(timing_check waveform_edge_identifier NUMBER)
path_delay path_spec_1
(label? PATH_DELAY
path_delay_ value
path_delay path_spec_1+)
arc_spec

thru_spec
thru_all_spec

August 17, 1999

GCF File Syntax ||

(archaic)
(archaic)

(archaic)

(archaic)

(archaic)

(archaic)

(archaic)

(archaic)

(archaic)

(archaic)

(archaic)

(archaic)

215 |

| GCF File Syntax

max_transition_time_spec = (label? MAX_TRANSITION_TIME
| rise_fall port_instance*) (archaic)

216 Version 1.4

GCF File Syntax

Parasitics Subset The parasitics subset is defined as follows:

parasitics subset ::=(SUBSET PARASITICS parasitics_subset_body

parasitics_subset_body::

parasitics_subset_spec::= parasitics_environment
||= parasitics_constraints
||= extension
||= meta_data

parasitics_subset_spec+
include

Parasitics Environment The parasitics environment is defined as follows:

parasitics_environment ::= (ENVIRONMENT parasitics_env_specy

parasitics_env_spec::= parasitics_env_spec_0
||= parasitics_env_spec_1

parasitics_env_spec_0::= external_load_spec
[|= extension

external_load_spec ::= (label?EXTERNAL_LOAD capacitance_value port_instancg*

min_max

capacitance_value ::

parasitics_env_spec_1::= (LEVEL 1 parasitics_env_14

parasitics_env_1 ::= parasitics_env_no_case_1
||= parasitics_env_case

parasitics_env_no_case_1:= external_fanout_spec
;.= external_wire_load_model_spec

== wire_load_model_spec
||= meta_data_1

external_fanout_spec::= (label?EXTERNAL_FANOUT num_loads port_instance*

num_loads ::= min_max

external_wire_load_model_spec:= (label?EXTERNAL_WIRE_LOAD_MODEL
library_name? wire_load_model_name
port_instance®

wire_load_model_name:= QSTRING
wire_load_model_spec::= (label?WIRE_LOAD_MODEL

library_name? wire_load_model_name
cell_instancet)

Version 1.4 August 17, 1999 217

GCF File Syntax

parasitics_env_case ::

parasitics_env_case_spec:=

(label?WIRE_LOAD_MODEL
library_name? wire_load_model_name
cell_id)

(CASE IDENTIFIER parasitics_env_case_speg+

parasitics_env_spec_0
parasitics_env_no_case_1

Parasitics Constraints The parasitics constraints are defined as follows:

parasitics_constraints ::

parasitics_constraint ::

parasitics_cnstr_spec_0::=

internal_load_spec ::=

load_spec ::

parasitics_cnstr_spec_1::

parasitics_cnstr_1 ::=

parasitics_cnstr_no_case 1:.:=
|I=
1=

internal_fanout_spec ::=

fanout_spec ::=

parasitics_cnstr_case ::

parasitics_cnstr_case_spec:=

218

(CONSTRAINTS parasitics_constraint4

parasitics_cnstr_spec_0
parasitics_cnstr_spec_1

internal_load_spec

= load_spec

extension

(label? INTERNAL_LOAD capacitance_value port_instancg*
(label? LOAD capacitance port_instance_or_mast@r*
(LEVEL 1 parasitics_cnstr_1+

parasitics_cnstr_no_case_1
parasitics_cnstr_case

internal_fanout_spec

fanout_spec

meta_data_1

(label?INTERNAL_FANOUT num_loads port_instance*
(label? FANOUT num_loads port_instance*

(CASE IDENTIFIER parasitics_cnstr_case_speg+

parasitics_cnstr_spec 0
parasitics_cnstr_no_case 1

Version 1.4

Area Subset

area_subset ::

area_subset_body ::=

area_cnstr_spec ::

area_cnstr_spec_0::=
|I=
1=

primitive_area_spec ::=

total_area_spec ::

area_value ::=

area_cnstr_spec_1::

area cnstr_1 ::=

area_cnstr_no_case_1::=

porosity_spec ::=

porosity value ::

area_cnstr_case ::

area_cnstr_case_spec::=

Version 1.4

GCF File Syntax

The area subset is defined as follows:

(SUBSET AREA area_subset_body

area_cnstr_spec+
include

area_cnstr_spec_0
area_cnstr_spec_1

primitive_area_spec

total_area_spec

extension

(label? PRIMITIVE_AREA area_value
(labe? TOTAL_AREA area_value
min_max

(LEVEL larea cnstr_1+

area_cnstr_no_case_1
area_cnstr_case

porosity_spec
meta_data_1

(label? POROSITY porosity _value
min_max
(CASE IDENTIFIER area_cnstr_case_speg+

area_cnstr_spec_0
area_cnstr_no_case_1

August 17, 1999 219

GCF File Syntax

Power Subset

power_subset ::

power_subset_body::

power_cnstr_spec ::

power_cnstr_spec_0::=
|I=
|I=

average_cell_power ::=

average_net_power ::=

power_value ::=

power_cnstr_spec_1::

power_cnstr_1 ::

power_cnstr_case ::

power_cnstr_case_spec:=

220

The power subset is defined as follows:

(SUBSET POWERpower_subset_body

power_cnstr_spec+
include

power_cnstr_spec_0
power_cnstr_spec_1

average_cell_power

average_net_power

extension

(label? AVG_CELL_POWER power_value

(label? AVG_NET_POWER power_value port_instange
min_max

(LEVEL 1power_cnstr_14)

power_cnstr_case
meta_data_1

(CASE IDENTIFIER power_cnstr_case_speg+

power_cnstr_spec_0

Version 1.4

syntax213
I n d eX usageldl

C
A Cadence Design Systems
headquarterd?2
annotator 25 CAP_SCALE keyword
where to apply data in desigi8 example36
ARC keyword syntax35, 197
syntax210, 215 capacitance
usagell3, 158 usagel69
AREA keyword capacitance_value
syntax219 syntax217
usagel’9 CASE keyword
area subset syntax156, 203, 209, 210, 218, 219, 220
examplel79 usagel72, 175, 181, 187
syntax219 case-dependent constraints
usagel79 area
AREA _SCALE keyword Syntax 219
syntax35, 197 usage 181
ARRIVAL keyword parasitics constraints
syntax207 syntax 218
_usa_ge@l usage 175
arn\;al tlmle d iNtioR07 parasitics environment
ormal syntax descriptio example 171, 172
syntax207
usages6, 91 syntax 218
Asynchronous resets usage 172
disabling paths through preset and cl&a8 power
average cell power syntax 220
example186 usage 187
average net power timing environment
examp|e186 example 108
AVG_CELL_POWER keyword syntax 203, 209, 219
syntax220 timing exceptions
usagel86 example 157
AVG_NET_POWER keyword Cases
syntax220 usage39
usagel86 Cell Entries
usage/ 7
B CELL keyword
BETWEEN keyword syntax206
usagellqd usager’ 7
Bidirectional pins cell_id
Disabling reentrant patik23 definition 75
bit-specs cell_instance
usagel94 definition 71
BORROW_LIMIT keyword syntax204

Version 1.4 August 17, 1999 221 of 230

CELLTYPE keyword
syntax205, 206
usage’/5, 79
characters
escape charactd91
hierarchy delimiter charactét8, 191
left index delimiter charactek91
legal in GCF files 191
right index delimiter character91
white spacel92
Clear
Disabling paths through23
clock
formal syntax descriptio207
CLOCK keyword
syntax207
usage85
clock root85
CLOCK_ARRIVAL keyword
syntax207
usage86
CLOCK_DELAY keyword
syntax213
usageldq
CLOCK_GROUP keyword
example68
syntax203
usageb8
CLOCK_MODE keyword
syntax213
usagel4?2
CLOCK_UNCERTAINTY keyword
syntax152, 214
Combinational Delayd 35
CONSTANT keyword
syntax209
usagel06
Constant Propagation
Disables121
Constraint Forum
acknowledgement$3
constraints
in forward-annotatior27
CONSTRAINTS keyword
syntax218
usagel73
CRITICAL keyword
syntax58, 201

Version 1.4

CURRENT_SCALE keyword
syntax35, 197

D

DATA keyword
syntax213
usagel46
DATE keyword
example33
syntax196
usage33
DELIMITERS keyword
example34
syntax196
DEPARTURE keyword
syntax208
usageds
departure times
see required time35
DERIVED_WAVEFORM keyword
example65, 66, 67
syntax202
usage63
DESIGN keyword
syntax196
use, see design name entry
Design References
usage/0
Disable
asynchronous preset and cld®3
between endpoint$25
from, to, thrul26
INSTANCE and MASTERL28
port instances, cell instances, and dr28
reentrant bidirectional pati23
through edged 60
DISABLE keyword
syntax211, 212, 215
usagel22, 125, 126, 128, 160
Disables
Constant Propagatioh?21
Slew Propagatiod 21
DRIVER_CELL keyword
syntax208
usagel02
DRIVER_STRENGTH keyword
syntax104, 209

August 17, 1999 222 of 230

E

EDGES keyword
syntax202
usageb3
ENVIRONMENT keyword
syntax200, 207, 217
usage84, 169
EXCEPTIONS keyword
syntax209
usagel09
expressions
instance namé&4
net name/4
pin name74
port name/4
EXTENSION keyword
syntax198
usagedl
Extensions
usagedl
external fanout
formal syntax descriptio217
external load
formal syntax descriptio@17
usagel69
EXTERNAL_DELAY keyword
syntax208
usaged9
EXTERNAL_FANOUT keyword
syntax217
usagel70
EXTERNAL_LOAD keyword
syntax217
usagel69
EXTERNAL_WIRE_LOAD_MODEL keyword
syntax217
usagel7l

F

FALSE keyword

syntax211

usagel22
fanout

formal syntax descriptio218
FANOUT keyword

syntax218

usagel75

Version 1.4

August 17, 1999

forward-annotation 27

FROM keyword
syntax210
usagells

G

GCF creator 24
GCF files
introduction tol1
GCF keyword
syntax196
use31
GLOBALS keyword
syntax200
usageb2
GLOBALS_SUBSET keyword
example53, 57, 58, 69
syntax200, 201
usageb2, 58, 3

H

Header
usage32
HEADER keyword
syntax196
use32
hierarchical path
formal syntax descriptiod95
HOLD keyword
syntax211

IDEAL keyword
syntax203
usageb4
identifiers
formal syntax descriptiod93
Include Files
usage46
INCLUDE keyword
syntax198
usage46
INPUT_SLEW keyword
syntax102, 209
usagel05
INSERTION_DELAY keyword
syntax213
usagel46

223 of 230

INSTANCE keyword
syntax204, 212
usage/l, 128
INSTANCE_EXPR keyword
syntax205
usage/4
internal fanout
formal syntax descriptio218
internal load
formal syntax descriptio218
usagel73
INTERNAL_FANOUT keyword
syntax218
usagel74
INTERNAL_INSERTION_DELAY keyword
syntax213
usagel46
INTERNAL_LOAD keyword
syntax218
usagel73
INTERNAL_SLEW keyword
syntax209
usagel07
INVERT keyword
syntax203
usageb4

J
jitter

modeling in WAVEFORM61, 64, 65, 66
JITTER keyword

syntax202
usageb0

K

KEYWORD
notation in syntax descriptioh93

L

Labels
usaged’/
LENGTH_SCALE keyword
syntax35, 197
Level 1 constraints
area constraints
usage 179
parasitics constraints
syntax 218

Version 1.4

August 17, 1999

usage 173
parasitics environment
syntax 169, 217
power
syntax 220
usage 185
timing environment
syntax 209
usage 84
timing exceptions
syntax 209
usage 109
LEVEL keyword
syntax58, 198, 202, 209, 217, 218, 219, 220
usage38, 39, 45, 84, 109, 169, 173, 179, 185
Levels
Usage37
LIFETIME keyword
syntax200
usageb6
load
formal syntax descriptio218
usagel74
LOAD keyword
syntax218
usagel7’4

M

MASTER keyword
syntax212
usagel28
MAX_TRANSITION_TIME keyword
syntax216
usagel63
Meta Data
usaged4
META keyword
syntax198
usage45
MULTI_CYCLE keyword
syntax212, 215
usagel3l, 134, 160
Multi-Cycle
Arc and Thrul60
between endpoint$30, 131, 137
Level 1 Constructd 60

224 of 230

N

NAME_PREFIXES keyword
usage/0

NAMEPREFIX keyword
syntax204

NEGEDGE keyword
syntax201, 203
usage60, 63

net
definition 73
syntax204

NET keyword
syntax204
usage’/3

NET_EXPR keyword
syntax205
usage/4

notation used in syntax descriptioh83

O

OPERATING_CONDITIONS keyword
syntax200
usageb4

P

PARALLEL_ DRIVERS keyword
syntax102, 209
parasitics constraints
formal syntax descriptio218
usagel73
parasitics environment
formal syntax descriptio@17
PARASITICS keyword
syntax217
usagel67
parasitics subset
examplel67
formal syntax descriptio@17
usagel67
Path Delay
Arc, Thru, Thru All139
between endpoints37
From, To, Thrul38
Level 1 Constructd 62
PATH_DELAY
Usagel35
PATH_DELAY keyword

Version 1.4

syntax212, 215
usagel37, 138, 162
PATH_EXPR
formal syntax descriptiod95
PERIOD_DIVISOR keyword
syntax202
usage63
PERIOD_MULTIPLIER keyword
syntax202
usageb3
PHASE_SHIFT keyword
syntax203
usage63, 64, 203
PIN keyword
syntax204
usage/1
PIN_EXPR keyword
syntax205
usage/4
porosity
examplel81
POROSITY keyword
syntax219
usagel81
PORT keyword
syntax204
usage’/1l
PORT_EXPR keyword
syntax205
usage/4
port_instance
definition 71
syntax204
port_instance_or_master
definition 76, 205
port_master
definition 75, 205
POSEDGE keyword
syntax201, 203
usage60, 63
power
average cell power
syntax 220
usage 186
average net power
syntax 220
usage 186
POWER keyword

August 17, 1999 225 of 230

syntax220
usagel85
power subset
examplel85
syntax220
usagel85
power values
syntax220
usagel86
POWER_SCALE keyword
syntax35, 197
PRECEDENCE keyword
syntax198
usagedb
Precedence Rulet3
Preset
Disabling paths through23
PRESET_CLEAR_ARCS keyword
syntax211
usagel22
primitive area
examplel80, 4
syntax219
usagel80
PRIMITIVE_AREA keyword
syntax219
usagel80
PROCESS keyword
syntax200
usageb3
PROGRAM keyword
example34
syntax196
usage33

R

Reentrant paths
Disabling paths through23
REENTRANT_PATHS keyword
syntax211
usagel22
REQUIRED keyword
syntax208
usageds
required time
syntax208
usaged5
RES_SCALE keyword

Version 1.4

syntax35, 197

S

SETUP keyword
syntax211
SKEW keyword
syntax213
usagel46
SKEW_ADJUSTMENT keyword
syntax203
usageb4
SLEW keyword
syntax213
usagel46
Slew Propagation
Disables121
SLEW_LIMIT keyword
syntax212
usagel39
SLEW_MODE keyword
exampleb9
syntax58, 201
SOURCE keyword
syntax212
usagel3l
SUBSET keyword
syntax207, 217, 219, 220
usage83, 167, 179, 185
Subsets
usage80

T

TARGET keyword
syntax212
usagel3l
TEMPERATURE keyword
syntax200
usageb4
THRU keyword
syntax210, 215
usagell0, 158
THRU_ALL keyword
syntax215
usagel59
TIME_SCALE keyword
syntax35, 197
timing environment
formal syntax descriptio207

August 17, 1999 226 of 230

usage84
timing exceptions
formal syntax descriptio209
usagel09
TIMING keyword
syntax201, 207
usage83
timing subset
example83
formal syntax descriptio207
usage83
TO keyword
syntax210
usagellqd
total area
examplel80
syntax219
usagel80
TOTAL_AREA keyword
syntax219
usagel80
TRUE keyword
syntax211
usagel22
typed_instance_expr
definition 74
syntax205
typed_instance_list
definition 71
syntax204
typed_net_expr
definition 74
syntax205
typed_net_list
definition 73
syntax204
typed_pin_expr
definition 74
syntax205
typed_pin_list
definition 71
syntax204
typed_port_expr
definition 74
syntax205
typed_port_instance
definition 71
syntax204

Version 1.4

typed_port_list
definition 71
syntax204
typed_waveform_list
syntax204
typed_waveform_name_list
definition 73

U

uncertainty region
in WAVEFORM construcb1
untyped_cell_instance
definition 71
syntax204
untyped_net
definition 73
syntax204
untyped_port_instance
definition 71
syntax204

Vv

Value Types
usage48
VARIABLE
notation in syntax descriptioh93
VERSION keyword
example32
syntax196
usage32
VOLTAGE keyword
syntax200
usageb3
VOLTAGE_SCALE keyword
syntax35, 197
VOLTAGE_THRESHOLD keyword
syntax200
usageb5

W

WAVEFORM keyword
example62, 65, 66
syntax201, 204
usage60, 73

WIRE_LOAD_MODEL keyword
syntax217, 218
usagel7/1l

WORST keyword

August 17, 1999 227 of 230

syntax58, 201

Version 1.4 August 17, 1999 228 of 230

Version 1.4 August 17, 1999 229 of 230

230 of 230 August 17, 1999 Version 1.4

Appendix 1

Cadence-Specific Extensions

TLF Files

The locations of the Timing Library Format (TLF) files that are to be useq
for a design are specified through GCF using an extension within the
environment globals subset.

Syntax

env_globals_subset:= (GLOBALS_SUBSET ENVIRONMENT

env_globals_body:=
1=
env_globals_spec:=
II=

env_globals_spec_0=

env_globals_body

env_globals_spec+
include

env_globals_spec_0
env_globals_spec 1

process

||= voltage

||= temperature

||= operating_conditions
||= voltage_threshold

[|= tIf_files_extension |
||= extension
||= meta_data

tif_files_extension::= (EXTENSION “TLF_FILES” |

(file_name+))
[|I= (EXTENSION “CTLF_FILES”
(file_name+))

file_name:= IDENTIFIER

TheTLF_FILES extension name is preferred; O€LF_FILESextension
name is supported for backward compatibility. For either extension namg,
the list of files can refer to files containing clear text, compiled, or
encrypted forms of TLF.

The file names can be relative or absolute path names. For GCF 1.3 ahd
higher, relative path names are interpreted with respect to the GCF fil
which contains the extension, not with respect to the directory in which t
program which is reading the GCF is invoked.

Previous versions of GCF were with respect to the directory in which tige
program which was reading the GCF was invoked.

Version 1.4 August 17, 1999 3 1

Example

(GLOBALS_SUBSET ENVIRONMENT
(EXTENSION “CTLF_FILES”
(lib/mylib.ctlf
lib/ram1.ctlf
lib/ram2.ctlf
JNib2/ram3.ctlf
)
)
)

Version 1.4

	General Constraint Format Specification
	Introduction
	Introduction
	Published by Cadence Design Systems

	Acknowledgements
	Version History
	Version 1.4 - August 17, 1999
	Version 1.3 - June 25, 1998
	Version 1.2 - August 22, 1997
	Version 1.1 - July 8, 1997
	Version 1.0 - March 21, 1997
	Version 0.7 - January 24, 1997
	Version 0.6 - November 15, 1996
	Version 0.5 - April 15, 1996
	Version 0.4 - April 8, 1996

	GCF in the Design Process
	GCF in the Design Process
	Sharing of Constraint Data
	Using Multiple GCF Files in One Design
	Timing Environment
	Timing Constraints
	Parasitic Constraints
	Parasitic Environment
	Area Constraints
	Power Constraints
	The GCF Creator
	The Annotator
	Consistency Between GCF File and Design Description
	Consistency Between GCF File and Analysis

	Forward-Annotation of Constraints for Design Synthesis

	Using GCF
	GCF File Content
	Syntax

	Header Section
	Syntax
	GCF Version
	Syntax
	Example

	Design Name
	Syntax

	Date
	Syntax
	Example

	Program
	Syntax
	Example

	Delimiters
	Syntax
	Example

	Scaling Factors
	Syntax
	Example

	Levels
	Level 0
	Level 1
	Usage
	Syntax

	Cases
	Syntax
	Constant Values

	Extensions
	Syntax
	Example

	Precedence Rules
	Normal Precedence Rules

	Meta Data
	Precedence Overrides
	Other Meta Data
	Usage
	Syntax
	Example

	Include Files
	Syntax

	Labels
	Syntax
	Example

	Value Types
	Syntax
	Min and Max
	Syntax

	Min, Max, or both Min and Max
	Syntax

	Rise, Fall, or both Rise and Fall
	Syntax

	Rise Min/Max, Fall Min/Max
	Min/Max Values and Operating Conditions

	Globals
	Syntax
	Environment Globals
	Syntax
	Example

	Process
	Syntax
	Example

	Voltage
	Syntax
	Example

	Temperature
	Syntax
	Example

	Operating Conditions
	Syntax
	Example

	Voltage Threshold
	Syntax
	Example

	Lifetime
	Syntax
	Example

	Environment Globals Case
	Syntax
	Example

	Timing Globals
	Syntax
	Example

	Slew Mode
	Syntax
	Example

	Primary Waveform
	Syntax
	Modeling Jitter
	Example
	Example
	Example
	Example (archaic)

	Derived Waveform
	Syntax
	Uniform Scaling
	Example
	Edge Selection
	Example
	Uniform Phase Shift
	Jitter Adjustments
	Example

	Clock Groups
	Syntax
	Example

	Timing Globals Case
	Example

	Design References
	Name Prefix
	Syntax

	Cell Instance
	Syntax

	Port Instance
	Syntax
	Example
	Example
	Example

	Net
	Syntax
	Example

	Typed Waveform
	Syntax
	Example

	Instance, Port, Pin, and Net Expressions
	Syntax
	Example
	Example
	Example

	Cell Type
	Syntax
	Example
	Example

	Port Master
	Syntax
	Example

	Port Instance or Master
	Syntax

	Cell Entries
	Syntax
	Example
	Cell Instance Spec
	Syntax
	Example
	Syntax
	Example

	Subsets
	Syntax

	Timing Subset
	Timing Subset Header
	Syntax
	Example

	Timing Environment
	Syntax
	Clock Specifications
	Syntax
	Example

	Clock Arrival
	Syntax
	Example
	Example

	Arrival Time
	Syntax
	Example
	Example
	Example

	Required Time
	Syntax
	Example
	Example

	External Delay
	Syntax
	Like ARRIVAL and REQUIRED constructs, the effect of multiple EXTERNAL_DELAY constructs for the sa...
	Example

	Driver Specification
	Syntax
	Precedence Rules
	Driver Cell
	Syntax

	Driver Strength
	Syntax

	Input Slew
	Syntax

	Constant Values
	Syntax

	Operating Conditions
	Internal Slew
	Syntax

	Timing Environment Cases
	Syntax
	Example

	Timing Exceptions
	Syntax
	Path Specifications
	Level 0
	THRU Specifications
	Syntax
	Example
	Level 0 port_instance Specifications
	Level 0 cell_instance Specifications
	Level 0
	Arc Specifications
	Syntax
	Example
	Example
	Level 0 Endpoint Specifications
	Syntax
	Disable And Multi-Cycle 0 Endpoint Specifications
	Path Delay Endpoint Specifications
	Level 0 From, To, Thru Specification
	Syntax
	Example
	Example
	Example
	Example

	Precedence Rules for Exceptions
	Disable Specifications
	Slew Propagation and Disables
	Constant Propagation and Disables
	Level 0 Disables
	Syntax
	Syntax
	Disabling Port Instances, Cell Instances, and Arcs
	Example
	Example
	Example
	Disabling Paths Through Asynchronous Preset and Clear Arcs
	Example
	Disabling Reentrant Bidirectional Paths
	Example
	Disabling Paths Between Endpoints
	Syntax
	Example
	Example
	Disabling Paths With From, To, and Thru
	Syntax
	Example
	Example
	Example
	In Level 1, there are several additional ways in which to specify paths that are to be disabled.

	Level 1 Disables
	Syntax
	Disabling Cell Instances and Cell Types
	Syntax
	Example
	Example

	Multi-Cycle Paths
	Default Definition
	Overriding the Default
	Level 0 Multi-Cycle Paths
	Syntax
	Multi-Cycle Paths Between Endpoints
	Syntax
	Example
	Example
	Multi-Cycle Paths With From, To, and Thru
	Syntax
	Example
	Example

	Combinational Delays
	Level 0 Combinational Path Delays
	Syntax
	Path Delays Between Endpoints
	Syntax
	Example
	Path Delays With From, To, and Thru
	Syntax
	Example
	Path Delays With Arc, Thru, and Thru All (archaic)

	Slew Limit
	Syntax
	Precedence Rules
	Example
	Example

	Latch-Based Borrowing
	Syntax
	Example

	Clock Mode
	Syntax

	Clock Delay
	CLOCK_DELAY Scope
	Syntax
	Syntax
	Precedence Rules
	Example

	Inter-Clock Uncertainty
	Syntax
	Target-Based Uncertainty
	Inter-Clock Uncertainty
	Precedence Rules
	Example
	Example

	Timing Exception Cases
	Syntax
	Example

	Archaic Timing Exception Constructs
	Level 1 Port Instance Edge Specification
	(Archaic)
	Syntax
	Example
	Level 1 Arc Edges Specifications
	(Archaic)
	Syntax
	Example
	Level 1 Thru All Specification (Archaic)
	Syntax
	Example
	Level 1 Thru All Edges Specification (Archaic)
	Syntax
	Example
	Disabling Paths Through Edges (Archaic)
	Syntax
	Level 1 Multi-Cycle Paths
	Syntax
	Multi-Cycle Paths With Arc and Thru (archaic)
	Syntax
	Example
	Example
	Level 1 Path Delays
	Syntax
	Syntax
	Example

	Max Transition Time
	Syntax
	Example

	Parasitics Subset
	Parasitics Subset Header
	Syntax
	Example

	Parasitics Environment
	Syntax
	External Loading
	Syntax

	External Fanout
	Syntax

	External Wire Load Model
	Syntax
	Example

	Wire Load Model
	Syntax
	Example

	Parasitics Environment Cases
	Syntax
	Example

	Parasitics Constraints
	Syntax
	Internal Loading
	Syntax

	Loading
	Syntax
	Precedence Rules

	Internal Fanout
	Syntax

	Fanout
	Syntax

	Parasitics Constraint Cases
	Syntax

	Area Subset
	Area Subset Header
	Syntax
	Example

	Area Constraints
	Primitive Area
	Syntax
	Example

	Total Area
	Syntax
	Example

	Porosity
	Syntax
	Example

	Area Constraint Cases
	Syntax

	Power Subset
	Power Subset Header
	Syntax
	Example

	Power Constraints
	Average Cell Power
	Syntax
	Example

	Average Net Power
	Syntax
	Example

	Power Constraint Cases
	Syntax

	Syntax of GCF
	GCF File Characters
	GCF Characters
	Comments

	Syntax Conventions
	Notation
	Variables

	GCF File Syntax
	Extensions
	Labels
	Meta Data
	Include Specifications
	Value Types
	Globals
	Environment Globals
	Timing Globals
	Design References
	Cell Entries
	Subsets
	Timing Subset
	Timing Environment
	Timing Exceptions
	Archaic Timing Exceptions
	Parasitics Subset
	Parasitics Environment
	Parasitics Constraints
	Area Subset
	Power Subset

	Index
	Cadence-Specific Extensions
	TLF Files
	Syntax
	Example

