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Outline

l Levels of Abstraction and Transitions

l Constraint Transformations

l Architectural Considerations

l Constraint Structure
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Top-down design methodology

Design task

subtask 1-1 subtask 1-2 subtask 1-3

subtask 13-1

subtask 13-2

subtask 13-3

subtask 11-1

subtask 11-2

subtask 11-3

. . .

Each partition corresponds to 
- a step down in abstraction
- a constraint transformation
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Constraints and levels of abstraction

# of constraints
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enforcement &
validation System level
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timing
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Frequency, power,
cost, weight, reliability
manufacturability, maintainability
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constr. management
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constr.management
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RTL level

Physical level
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Internal vs. External Constraints

Current constraints
(“external”)

Derived constraints
(“internal”)

Current constraints
(“external”)

Derived constraints
(“internal”)

Become

new
transformation

Level of abstraction A Level of abstraction B
partition

transformation
bottom-up
verification
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Levels of Abstraction

l Similar to data states

– characterized by sign-off points

– need well-defined transitions between “states”

Verified

RoutedOptimized
Placement

Physical
Floorplan

Verified Gate
Netlist

FloorPlanned
RTL

Global
Routed

Synthesizable
RTL
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Transitions between abstraction levels

l Two types of transitions:

– Major transitions

• Well-defined sequence/progression or reconvergence point
reaching a sign-off point

– Minor transitions

• Incremental changes in data

• May be done in any order
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Concepts: Transitions

l Most applications require a design object to
have reached a certain sign-off point

*e.g., final cross-talk verification may require
parasitics from a 2.5d extractor

l If the object is not in the required state, data
can be derived by either:

–  abstracting from data at a   later state or

–   estimating from data at an earlier state

l A confidence factor can be derived based on
how much estimation or abstraction was
required to provide the data to the application.
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Constraint transformations (phys.des.)

“High-level”
electrical & phys.
constraints

Constraint Generator
    Transformations
     and mapping
electrical ==> physical
electrical ==> electrical
physical  ==> physical

Physical and 
electrical
constraints

Mod. gener.

General
- Timing
- Power
- Area
- Yield

Analog
- Matching
- Symmetry
- freq., DC

Noise, EMI

Placement

Gl. Routing

Det. Routing

Compaction

estimates

Floorpl.
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Constraint structure

l Verification stimuli & expected response are
part of definition for constraints

Data State (model)
Sub-task / block

Analysis & verif.
(stimuli, response)

Budgeting info
(dependencies)

Scope

Semantic

Verification context

Contents,attributes

Hierarchy
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Constraint structure

l Budgeting info is defined by constraint
dependencies / transformation

l Scope is defined by design data hierarchy

l Multiple scopes (models) can be available with
same constraint semantic

l Verification contexts can vary with scope

l Version control / multiple constraint sets


