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Outline

e Levels of Abstraction and Transitions
e Constraint Transformations
e Architectural Considerations

e Constraint Structure
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Top-down design methodology

Each partition corresponds to
- a step down in abstraction
- a constraint transformation
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Constraints and levels of abstraction
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| nternal vs. External Constraints
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L evels of Abstraction

e Similar to data states

— characterized by sign-off points

— need well-defined transitions between “states”
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Transitions between abstraction levels

e Two types of transitions:

— Major transitions

» Weéll-defined sequence/progression or reconvergence point

reaching a sign-off point

— Minor transitions
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* Incremental changes in data
 May be donein any order
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Concepts. Transitions

e Most applications require a design object to

have reached a certain sign-off point

m-e.g., final cross-talk verification may require
parasitics from a 2.5d extractor

e If the object is not in the required state, data

can be derived by either:

— abstracting from data at a |ater state or
— estimating from data at an earlier state

e A confidence factor can be derived based on

how much estimation or abstraction was

required to provide the data to the application.
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Constraint transformations (phys.des.)
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Architectural considerations
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Constraint structure

e Verification stimuli & expected response are
part of definition for constraints
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Constraint structure

e Budgeting info is defined by constraint
dependencies / transformation

e Scope is defined by design data hierarchy

e Multiple scopes (models) can be available with

same constraint semantic
e Verification contexts can vary with scope
e Version control / multiple constraint sets
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