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ABSTRACT

This paper describes an important new facility for timing-driven
design applications within the new CHDStd standard for a
SEMATECH design system for large complex chips.  We first
review EDA requirements for CHDStd hierarchy for large
complex leading edge chips and current EDA problems in
accurately and efficiently handling complex interconnect.  We
then describe our approach for fully-reusable hierarchical
interconnect timing views in support of timing driven design for
0.25u technologies and below.  The result is a method which
builds on SEMATECH's new controlled error parasitic timing
calculation capability for deep submicron, providing means for
compactly storing and reusing accurate hierarchical timing views
for 28M to 100M transistor chip designs.

1. INTRODUCTION

 
 SEMATECH is a consortium focusing on advanced
semiconductor manufacturing technology for its multi-national
Member Companies.  As part of its overall activities,
SEMATECH is developing a new chip design system to enable
large multi-team chip design groups to design large complex chips
in 0.25-micron to 0.18-micron technologies and beyond.  The
system is called the Chip Hierarchical Design System (CHDS).
The goal of CHDS is to provide flexible design methodologies for
timing driven logical and physical design of complex
microprocessors and advanced high-end ASIC’s.  As part of the
CHDS development, SEMATECH in partnership with Silicon
Integration Initiative (SI2) is developing a new high-performance
hierarchical design representation standard, CHDS Technical Data
(CHDStd).
 
 The 1994 National Technology Roadmap for Semiconductors
(NTRS) [1] identified the crisis in complexity of products
implemented as chip designs caused by shrinking feature size,
increasing functionality and complexity, designed by increasingly
larger design teams.  In order to mitigate this increasing
complexity and size, both CHDS and CHDStd have requirements
[2, 3, 4, 5, 6, 7] to describe these large chip designs hierarchically,
provide significantly-improved timing driven design capability,
and provide for greatly improved processing of design by EDA
tools.
 
 
 
 
 

2. CURRENT PRACTICE AND PROBLEMS

 In today's EDA ASIC systems [8], the practice dominantly is to
handle parasitics as lumped values of capacitance and trapezoidal
time delay.  Per the NTRS, for feature sizes of 0.25u and below,
effort must be made to be increasingly more accurate in
identifying and using both net parasitics and timing.  Both R-L-C
parasitic models of interconnect and resulting time delay must be
calculated from accurate treatment of the fields of both target nets
and their surrounding 'threat' nets.  This calculations must be
accomplished with controlled variable accuracy and is the subject
of separate papers.

3. NEEDS AND CHALLENGES

One could simply go ahead and solve these interconnect problems
using today's approaches.  However, there are several key factors
that lead us to develop and productize some new approaches.
Without taking care of these factors, it is highly unlikely we will
have a viable set of solutions and that the CHDS system will not
be useful for SEMATECH Member Company chip designs.

1. Chip sizes are going to 100M+ transistors.  We need
approaches to make sure design data within an EDA system
stays within a reasonable size.  Both creating, storing,
moving, and reusing design data must be handled so that the
data set sizes continue to allow reasonable run times and
hardware resource requirements.

2. Signal coupling between nets can no longer be handled via
conservative design rules.  In fact, we need to move quickly
to handle nets that are routed over the top of and through
blocks, cells, and macros in fairly arbitrary ways.

3. A number of contemporary approaches to interconnect
parasitics continue to require the use of populating
completely flattened design data sets prior to, during, and
after parasitic extraction and timing calculations.  To support
parasitic calculations within a large multi-team design group
that may be geographically dispersed, we will have to store
extremely large data sets and moving them around the world
as part of a single overall chip design process.  This will be a
huge problem in terms of both run time and data storage.

4. Approaches to handling interconnect parasitic calculations
are needed that would support the storing of net, netsegment,
via, and ports (aka pins of used blocks, cells, transistors, and
macros) within a design hierarchy such that parasitics can be
calculated and recalculated at an algebra-like computational



speed.  This task is typically done today using occurrence
level (aka flattened) design data.  An approach needs to be
identified and verified that supports the hierarchical storage
and accurate reuse of deep submicron (DSM) parasitics.
This approach will need to accurately and efficiently support
rapid and accurate calculation of the most complex coupled
interconnect parasitics.

5. To get closure of performance of a large complex leading-
edge chip design, the entire design system must be much
more timing driven within a central delay architecture.  Chip
design timing closure is a key requirement of CHDS.

6. While there are other needs that must be met in this area in
order to have a viable timing driven design system for large
complex 0.25u to 0.18u chips, the above are some of the
most important ones.  If we can find a solution for properly
handling timing views in a reusable way within a folded
design hierarchy, we will be able to handle 0.25u and below
interconnect coupled parasitics persistently in a folded
hierarchy.

The main need for accurate parasitics is to create accurate timing.
Once we get that timing, we, to a large degree, have the
information we need to move forward with timing-driven design.
This means, though, that we may later need to recalculate the
parasitics (or bear the considerable cost of storing them fully
flattened as occurrence data) so we can later reexamine loading,
drive, and related design constraints as we make incremental
design changes.

1. APPROACH

 
 We now describe our approach for handling the net delay timing
data that results from the above accurate net parasitics.  In
addition to simply providing persistent storage of accurate timing
for later use by EDA applications, we also provide an approach to
correctly handle compact storage of such net timing within an
instance (aka folded) design hierarchy in such a way that the
timing data is fully reusable.  That is, once timing values are
found for the definition of a block, cell, macro or core within a
design hierarchy, that set of timing values must be correctly stored
as  a hierarchical timing view so it can accurately used and reused
in the instantiation of that block (i.e., use of the block within
higher level blocks), regardless of the circumstances.
 

 Impact of Hierarchy

 A formal approach is used within CHDStd to define and describe
a design hierarchy.  This approach seeks to completely describe
all aspects of a large complex chip design in terms of a folded or
instance hierarchy.  It is critical that CHDS and CHDStd uses a
hierarchical representation approach in order to counteract the
increasingly large chip design sizes (28M transistors going to
100+M transistors).  That is, the growth of populated CHDStd
data must grow no worse than approximately the log of the
number of transistors inferred by the design hierarchy.  Design
hierarchies populated in the past have resulted in 1M to 10M
transistor chip designs requiring typically around 60,000
populated instances (i.e., unique number of usages of block

definitions within the folded hierarchical design).  Applicable
definitions of aspects of CHDStd hierarchy are included in the
references included with this paper.  The intent of those
definitions is that they support both complete definitions of chip
designs and are consistent with definitions of designs used within
other modern hierarchical system representations such as VHDL.
 
 We first focus on properly describing interconnect delay timing
within the CHDStd hierarchical representation.  To do this
correctly, our goal is populate net timing data that is based on
appropriately-calculated coupled interconnect parasitics [9] such
that we separate timing that is independent of how a block is
instantiated or applied from timing that dependent on how a block
is instantiated.  The following summarizes key concepts of
hierarchy and timing we need to use for our approach:
 

 Block Internal Definition

 Here we include timing on nets and netsegments (aka 'subnets')
which are included entirely within the block.  That is, these nets
have no connection to ports on the block interface nor coupling to
nets on the block interface or to nets outside of the block.
     The timing of these nets does not change regardless how the
block is instantiated.  If the net timing is in any way dependent on
how the block is instantiated, then that timing has to be handled as
described below.  That is, instantiation-dependent nets need to
handled as part of the block instance’s interface definition.
 

 Block Definition Interface

 Here we include the timing on nets and netsegments which are
connected to ports of the block definition interface.  This means
these nets may also be connected to nets outside of the block (into
the next level of the design hierarchy.)
      The timing on these nets should be populated with timing
without regard to their termination or coupling to other nets.
Depending on the technology, this timing would normally
correspond to the timing of the 'Unterminated' net, i.e., the timing
that results without any outside parasitic load or coupling to some
other net.
 

 Block Instance Interface

 Here we include what we term the 'Differential Net Timing'.  This
timing is calculated by taking the difference between the timing
for the open-circuit unterminated delay and the actual instance-
terminated and coupled timing.  Both overall interconnect delay
and slew should be treated this way.  To store this in the design
hierarchy properly, this incremental timing is then associated with
the port of the block instance interface (aka Port Instance) to
which the net or netsegment is connected.
      Note that the Block Instance Interface data is populated as part
of the next higher level of the design hierarchy i.e., within the
parent block's containing block internal definition and its
instances, and not as part of the current block’s definition
     Where there is coupling to nets outside of the block, we
propose to add additional ports to the Block Instance Interface
that specifically identifies that coupling.  We, therefore, refer to
these particular ports as 'Coupling Ports'.  The efficacy of this last
mechanism is still under consideration and debate within the
CHDS Program and we will present out results with the final



paper. With these mechanisms in place, we now can populate the
Block Instance Ports with appropriate Differential Net Timing
information.
 

2. HIERARCHICAL TIMING VIEWS

 However, with the above steps of this method, there are netlist
interconnect patters for which this approach is not fully accurate
(e.g., complex fanout and feedback within a block), so that
currently this method is only useful for some cases and is the
challenge to be solved later.  We therefore turn to the use of
storing this complex hierarchical interconnect data in the form of
timing arcs of hierarchical timing views.
      This same approach has application not only to individual net
and netsegment hierarchical timing, but also to creating, handling,
and reusing timing views.
      Current Practice - The current practice is to create a block
timing view for each Occurrence of the block, that is, for each
individual use or copy of the block.  This means EDA systems
typically today either recreate timing views each time they are
needed by other EDA applications or timing views are created and
stored for each occurrence of each block.
      Hierarchical Timing Views - Our approach for reusable
hierarchical timing is superior to the above since we create
persistent timing views within a folded design hierarchy for each
block internal definition and block instance interface.  This
approach does require creation of a timing view instance interface
'shell' for the actual net timing for those nets of the block which
are connected or coupled to nets at the next level of the hierarchy.
These instance interface shell's are, therefore, simply a correct
description of the timing for next level's block instance ports per
the environment in which the block is used.
      Block Internal Definition Timing View - The approach we
use here is to again make use of the concept of separating
instance-specific and instance-independent timing arc
information.  We therefore create a timing view for the block
internal definition with timing arcs for all of the internal nets and
block instances.
     Block Instance Interface Timing View - We separately then
create a timing view for the block instance interface definition,
with arcs for each of the paths defined by the interconnect to the
boundary of the block internal definition timing view.  This latter
timing view is attached to the block instance definition as part of
the higher-level containing block definition.
      Reusable Timing Views -   With the above mechanisms
defined, in place, and with timing data populated at each level of
the design hierarchy, EDA tools needing accurate timing can walk
the design hierarchy, and pick up and (re)use timing data
regardless how each block within the hierarchy is used.
 

3. IMPLEMENTATION AND RESULTS

 Figure 1 shows a a typical complex mixed logical and physical
hierarchy chip design example.  The coupled RLC parasitic
models and controlled accuracy net and subnet timing are
calculated using CHDS capabilities [9] which we will not
describe here except to note that those coupled parasitic models
and net timing are currently saved persistently within an
expanded-hierarchy occurrence model.  The nets and subnet
effects and timing may include accurate timing data that results
from routing over blocks.

     In this example, block definition A is used at both location A1
and A2 but with quite different wiring at the parent block level,
including a route over the A block which penetrates further down
the hierarchy into F1(F).  F1 itself has net to net coupling.  Note
that in block F1(F), the SIG3 subnet will have instance specific
timing as it connects up to A1(A) via its port 'a' and on into J1(J)
port 'b'.  Note also that net, SIG1, within F1(F) is a net within the
block internal definition and has coupling with the local net,
'SIG3'.  Note that only the net, REG1, is an internel net which is
instance independent.
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 We now show  a set of figures for a complex hierarchical net
fragment to illustrate our approach.
 Figure 2 show the interconnect fragment and the creation of RC
parasitic models for the hierarchical pieces of the
interconnect.

R E U S A B L E  S u b n e t  D e l a y

• S T E P  1 :

– E s t a b l i s h  A c c u r a t e  R C
Paras i t ic  m o d e ls  fo r  each
aspect  o f  the  en t i re
h ierarchica l  net .

• S t o r e  i n  C H D S t d

– Then -  Ident i fy  a l l  the
De lays  for  a  Ce l l ’s
In terna l  def in i t ion  that  are
ins tance  independent .

h i e r a r c h y  ‘ s e a m ’

h i e r a r c h y  ‘ s e a m ’

lower  ce l l
de f in i t ion

lower  ce l l
de f in i t ion

p o r t _ i n s t a n c e

p o r t _ i n s t a n c e

R C  M o d e l s  D e f i n e d  
f o r  A l l  N e t / S u b n e t s :

R C
M o d e l s

F igure  2

 Figure 3 shows the calculated hierarchical subnet delays for block
definition interface.  These are the delays which are instance-
specific since the hierarchy above in part determines their value.
As a key starting point, we also focus on determining the
unterminated port delays.



 

REUSABLE Subnet Delay

• STEP 2:
– Identify Delays for Nets that

Lead-to (terminate) on a
(external) Port_definition leading
off the Block/Cell:

– Approach - Calculate the
Net/Subnet Delay to the
port_definition with the port
UNTERMINATED

• This is the Delay of the
Subnets connected to
(External) port_definitions of
an Uninstantiated cell/block
definition.

– Populate CHDStd with those
Interface Delays, including only
the Unterminated_port Delays.

hierarchy ‘seam’

hierarchy ‘seam’

lower cell
definition

lower cell
definition

port_instance

port_instance

Delays Defined 
for All Internal Net/Subnets:

Figure 3

 Figure 4 shows the delays in the block internal definition of the
parent cell.  Their values in this case are instance independent.
They however do connect to the block instance interface, so that
their resulting values must produce the pathwise subnet delay
values accurately working from CHDStd persistently stored
timing values.
 Figure 4 show the process then of calculating the overall
hierarchical net timing for both the local instance independent and
lower-level instance specific delays.
 

 

REUSABLE Subnet Delay

• STEP 3:  Identify the Delays at
the Next Hierarchical Level:
– At the Next Higher Level of

Hierarchy,

• Identify the Delays of the
Nets/Subnets of that higher
level Cell’s internal_definition

• Including the Delays for the
Net/Subnets that Lead-
To/Terminate on each
Port_instance (ports that are
connected to down into the
instantiated cell/block.)

Delays Defined 
at Next Hierarchy Level:

hierarchy ‘seam’
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Figure 4

 Figure 5 shows the process of dealing with the now terminated
delays and populating that timing information with the instance
ports.  In this way, we have a method for dealing with many
instance specific timing
situations.

REUSABLE Subnet Delay

• Step 4: Find the Delta delay due
terminating the Instance:
– Recalculate the Delay for Nets/Subnets

‘INSIDE’ the instantiated cell/block that
connect to these ports.

• This terminated delay will normally be
Different than the unterminated Delay
calculated for the cell/block definition.

– This identifies ‘Delta’ or ‘Incremental’
delay relative to the instance terminated
vs unterminated subnet connected to
that port within the instantiated
block_definition.

• Difference in the instance-specific delay
of the net portion in that local area of the
design hierarchy.

• Subnet delay just inside the lower-level
Block definition Step

hierarchy ‘seam’

hierarchy ‘seam’

lower cell
definition

lower cell
definition

port_instance

port_instance

Delta Delays Due to
Termination:

Figure 5

 Figure 6 shows the process of using the accurate subnet timing
found by separate CHDS coupled parasitic extraction and timing
calculation tools and creating the two types of timing views that
make up the overall reusable hierarchical timing views.  The
rssulting timing view portions are stored persistently in the
CHDStd folded design hierarchy for a particular chip design.

• Step 5 - Construct
Hierarchical Timing Views
– First Construct a

Timing_View of timing
Arcs for Only the
Internal_definition timing

– Then Construct Timing
View of Timing Arcs for
Block Instance Interface

• Part of Instance of
Containing Block
Definition

– This gives us Accurate
ReUsable Timing Views!

Persistent
Block Internal

Definition
Timing View

Persistent 
Terminated 

Block Instance
Interface 

Timing View

Internal
Timing Arcs

. .
 .

. .
 .

Interface
Timing Arcs

Figure 6

 Figure 7  shows then the use of the stored reusable hierarchical
timing views to later provide timing values to CHDS and other
CHDStd compliant EDA application tools for all of the subnets of
a hierarchical net.

 

REUSABLE Subnet Delay

• Step 6: Later - Using the
Saved Incremental Delay:
– Tools, such as static

timing analyzers, picks up,
in sequence, each Subnet
delay, plus these instance-
specific-offsetting
incremental delays without
Recalculating Delays from
the RCs.hierarchy ‘seam’

hierarchy ‘seam’

lower cell
definition

lower cell
definition
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port_instance

Tools Pickup ReUsable Net
Delays by Getting Delays

in sequence from the \
hierarchical Timing Views

Figure 7

 The above approach for reusable hierarchical timing views is
currently under consideration by the CHDS development teams
for incorporation into the CHDS tools.  Several in-depth analyses
and team reviews have been made.  We expect to also present a
far more detailed complex example using data from some early
CHDS system, tool, and testing results by the time the paper is
finalized for the ISPD-E 98 Conference.
 
 However, we already know from the results and metrics obtained
in earlier hierarchical design system implementations and
CHDStd-related hierarchical EDA work, that the data population
required for this approach is significantly less than handling
timing using a fully flattened occurrence approach.   That is, for
timing views and for the same example chip designs mentioned
earlier in this paper, we would populate only 60,000 block-
instance timing views as an upper bound.  This is in stark contrast
to populating timing for all the hierarchical nets interconnecting
the 5M to 10M transistors that comprises the actual chip.
 



4. CONCLUSIONS

It is startling that the key to far greater data capacity and design
flexibility in handling design data stems from the simple idea of
defining hierarchical timing views in terms of 'open circuit delay'
and 'actual-termination delay'!  However, that is precisely what
this approach is based on. This may be an indication there is
difficulty working out how to utilize hierarchy for other design
representation requirements and EDA applications.  This paper
hopefully will provide a key to working out approaches for other
key deep submicron problems, including handling of reusable R-
L-C complex coupled  interconnect parasitic timing within the
folded instance design hierarchy, a solution that will soon be
needed.
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