Design Constraints Working Group

Mark Hahn, Chair Cadence Design Systems, Inc mhahn@cadence.com (408) 428-5399 (408) 428-5959 (Fax)

Mark Hahn

Design Constraints Working Group

Agenda

- Introduction
- History
- Organizational Structure
- Charter
- Plans
- Current Status

Why Develop A Constraint Standard?

- Tower of Babel today
 - Many different formats for describing constraints
 - Inconsistent syntax
 - Requires re-entering or translating constraints
 - Inconsistent semantics
 - May not be able to translate constraints
 - Contributes to lack of convergence
 - Wasted effort
 - Designers must spend significant time understanding what each tool supports and getting the constraints into each tool
 - EDA developers wind up defining new formats for each new tool
 - IP providers must supply the same data in multiple formats
 - IP integrators may have to translate internal constraints for IPs to get through their particular flow
 - Semiconductor vendors have a harder time qualifying tools

History

- Synthesis Constraints Working Group (SC-WG)
 - Formed in March, 1996 under OVI
 - ◆ Joint OVI/VI sponsorship in August, 1996
 - Charter
 - Synthesis tool interoperability
 - ♦ Focus
 - Definition of the General Constraint Language (GCL), a constraint command language for user entry
 - ♦ Problem
 - Consolidation of synthesis tools
 - ♦ Status
 - Fairly good progress on timing constraints
 - Inactive since October 1997
 - Details at http://www.eda.org/dcwg/scwg/index.html

History (2)

- DC-WG was formed in March, 1998
- Goals in starting a new effort:
 - Broader scope than SC-WG
 - Design constraints in general, rather than just synthesis constraints
 - Increased number of stakeholders => more participation
 - Avoid a win-lose outcome by addressing a wider range of issues than supported by any particular tool
 - Increased visibility and likelihood of adoption through VSI sponsorship
 - Cross-participation between VSI I/V DWG and DC-WG
 - Endorsement from VSI spurs interest from IP suppliers, IP integrators, and EDA vendors

Where Does DC-WG Fit?

VSIA Relationship

- Formal Sponsorship: VSIA will
 - Recruit members
 - Provide requirements specifically for IP mix and match
 - Endorse the standardization effort
 - Based on commitment to address VSIA requirements
 - Review draft specification, provide feedback
 - Adopt the standard when approved
 - Provided it meets VSIA requirements
 - Promote the standard after approval

SLDL Relationship

- Goal
 - Define syntax and semantics that can be used seamlessly from system level design through detailed implementation
- Approach
 - ♦ Joint Working Group
- Responsibilities
 - Define the general syntax and structure for DCDL
 - Define the conceptual model for constraints.
 - Define the formal information model for various constraint domains

DC-WG Charter

- Develop a constraint specification standard which captures aspects of the design intent besides logic functionality
- Constraints, assertions, and environment conditions
- Many types of constraint domains
 - ♦ Timing
 - ♦ Area
 - Clocking
 - ◆ Logic architecture
 - Power
 - Physical Implementation
 - Signal Integrity
 - ♦ Test
 - Environment/Operating Conditions
- Language independent (Verilog, VHDL, SLDL)

Deliverables

- Conceptual Model
 - ♦ How constraints are used
- Constraint Taxonomy
 - Short summary of types of constraints and semantics
 - Detailed, language-independent description of parameters and semantics
- Formal Specification
 - EXPRESS model
 - Currently expect this to be primarily for internal use
- Design Constraint Description Language (DCDL)
 - User entry, tool interchange mechanism
 - ♦ Examples
 - Ambit constraint commands
 - Synopsys dc_shell constraint commands

Details on DCDL

- DCDL is
 - ♦ A set of constraint primitives
 - Fully-defined semantics
 - ◆ TCL-compatible syntax, embeddable in SLDL Phase II
 - ◆ Name and value-based
 - Explicit values for constraints are applied to objects in the design that are identified by name
 - The result of expanding an application-specific TCL script
 - The expanded form used to interchange constraints between tools
- DCDL is not
 - An extension language
 - No general programming capabilities
 - Application or environment-specific
 - No macros to identify design objects or get values from library

Plans

- 1999
 - Release timing subset of DCDL
 - ◆ DAC '99 demos (synthesis, timing analysis, ...)
 - ◆ Partial conceptual model
- 2000
 - Release power and signal integrity subsets
 - Full conceptual model
 - Formal EXPRESS model

Current Status

- Selected strawman for DCDL: Ambit Constraint Language
 - Balloting period closes Monday, 1/18, on vote whether to accept the strawman
 - Unanimously yes, as of 1/17
 - Covers timing, clock constraints
 - ◆ TCL-compatible
- DC-WG is free to use it as-is, build on it, modify it, or develop an alternative
 - Plan to build on it
- Also using Cadence's GCF as a reference
- Constraint taxonomy is nearing completion

How Will DCDL Be Used?

- By designers
 - ♦ As a single, consistent basis for describing their intent
- By EDA tool developers
 - As a standard base for reading, writing, and interpreting constraints
- By IP providers
 - To describe their intent for partially implemented IP blocks
 - To describe restrictions on how IP blocks may be used
- By IP integrators
 - To complete the implementation of IP blocks
- By semiconductor vendors
 - ♦ As part of tool qualification
 - In creating design flows and kits

Contact Information

- Web Page
 - http://www.eda.org/dcwg
- E-Mail Reflector
 - dcwg@eda.org (instructions for subscribing are on web site)
- Meetings
 - Teleconferences 9-11 am (PDT) every other Tuesday
 - Setting up face-to-face meeting at ICCAD

Backup slides

Synopsys Design Constraints

- Synopsys licenses the Design Compiler[™] and PrimeTime[™] constraint command languages
- OVI policy is to develop public-domain standards, based on a proven strawman where possible
- VSI preference is suitable *de facto* standards with no royalties or license fees
- Synopsys proposed DC-WG collect input and make suggestions for how to evolve the Synopsys formats
- DC-WG members felt that
 - Public-domain standards are preferable to licensed standards
 - The Design Compiler and PrimeTime constraint languages do not address many of the target domains
 - Conceptual model will address many unresolved issues, may affect language and semantics
 - ◆ Depending on evolution of a proprietary standard is troublesome

Design Constraints Working Group

General Constraint Format (GCF)

- Reference for DC-WG
 - An exchange format for tool-to-tool communication
 - Cadence-proprietary format
 - ♦ Status
 - Initial emphasis on timing
 - Some area, power, parasitics, signal integrity constraints
 - Supported by many Cadence tools as well as Ambit

• Plans

- Continue to evolve to cover additional constraints
- Consistent semantics with DCDL
- Eventually replaced by DCDL