
1

General Constraint
Format

Specification
Version 1.2

August 22, 1997

Cadence Design Systems, Inc.

Contents

1 Introduction . 9
Introduction 11

Published by Cadence Design Systems 12

Acknowledgements 13

Version History 14
Version 1.2 -
August 22, 1997 14
Version 1.1 -
July 8, 1997 14
Version 1.0 -
March 21, 1997 14
Version 0.7 -
January 24, 1997 15
Version 0.6 -
November 15, 1996 15
Version 0.5 -
April 15, 1996 16
Version 0.4 -
April 8, 1996 16

2 GCF in the Design Process . 17
GCF in the Design Process 19

Sharing of Constraint Data 19
Using Multiple GCF Files in One Design 19
Timing Environment 19
Timing Constraints 19
Parasitic Constraints 20
Parasitic Environment 20
Area Constraints 20
Power Constraints 20
The GCF Creator 20
The Annotator 21
Consistency Between GCF File and Design Description 21
Consistency Between GCF File and Analysis 22

Forward-Annotation of Constraints for Design Synthesis 23
Version 1.2 August 22, 1997 iii

3 Using GCF . 25
GCF File Content 27

Header Section 28
GCF Version 28
Design Name 29
Date 29
Program 29
Delimiters 30
Scaling Factors 31

Levels 33
Level 0 33
Level 1 33
Usage 34

Cases 35
Constant Values 36

Extensions 37

Precedence Rules 39
Normal Precedence Rules 39
Overrides 39

Meta Data 40
Precedence Overrides 40
Other Meta Data 40
Usage 41

Include Files 42

Labels 43

Value Types 44

Globals 45
Environment Globals 45
Process 46
Voltage 46
Temperature 46
Operating Conditions 47
Voltage Threshold 48
Environment Globals Case 49
Timing Globals 50
Primary Waveform 50
Derived Waveform 52
Clock Groups 53
Timing Globals Case 54

Design References 56
Name Prefix 56
Cell and Port Instance 57
iv August 22, 1997 Version 1.2

Cell Type 57

Cell Entries 58
Cell Instance Spec 59

Subsets 61

4 Timing Subset . 63
Timing Subset Header 65

Timing Environment 66
Clock Specifications 66
Arrival Time 67
Departure Time 69
External Delay 70
Driver Specification 72
Driver Cell 73
Driver Strength 74
Input Slew 75

Constant Values 75
Operating Conditions 75
Internal Slew 76
Timing Environment Cases 76

Timing Exceptions 78
Path Specifications 78
Disable Specifications 79
Level 0 Disables 80
Level 1 Disables 81

Multi-Cycle Paths 83
Default Definition 84
Overriding the Default 85

Combinational Delays 90
Max Transition Times 91
Latch-Based Borrowing 91
Clock Delay 92
Timing Exception Cases 93

5 Parasitics Subset . 95
Parasitics Subset Header 97

Parasitics Environment 98
External Loading 98
External Fanout 98
Parasitics Environment
Version 1.2 August 22, 1997 v

Cases 99

Parasitics Constraints 100
Internal Loading 100
Loading 100
Internal Fanout 101
Fanout 101
Parasitics Constraint Cases 101

6 Area Subset . 103
Area Subset Header 105

Area Constraints 106
Primitive Area 106
Total Area 106
Porosity 106
Area Constraint Cases 107

7 Power Subset . 109
Power Subset Header 111

Power Constraints 112
Average Cell Power 112
Average Net Power 112
Power Constraint Cases 113

8 Syntax of GCF . 115
GCF File Characters 117

GCF Characters 117
Comments 118

Syntax Conventions 119
Notation 119
Variables 119

GCF File Syntax 122
Extensions 124
Labels 124
Meta Data 124
Include Specifications 124
Value Types 124
Globals 126
Environment Globals 126
Timing Globals 127
Design References 129
Cell Entries 130
Subsets 130
Timing Subset 131
vi August 22, 1997 Version 1.2

Timing Environment 131
Timing Exceptions 134
Parasitics Subset 138
Parasitics Environment 138
Parasitics Constraints 138
Area Subset 140
Power Subset 141

9 Cadence-Specific Extensions . 1
CTLF_FILES 3
Version 1.2 August 22, 1997 vii

viii August 22, 1997 Version 1.2

1

Introduction

Introduction

Acknowledgements

Version History

Introduction

tools

t

ill be

can

ing
eady

 no
Introduction

The General Constraint Format (GCF) file is intended to be used for
interchanging constraint data associated with a design between EDA
used at any stage in the design process. The data in the GCF file is
represented in a tool-independent way and can currently include

■ Timing environment: intended operating timing environment

■ Timing constraints

■ Parasitics constraints

■ Parasitics environment: intended operating parasitics environmen

■ Area constraints

■ Power constraints

■ Design/instance-specific or type/library-specific data

Cadence Design Systems expects that other types of constraint data w
added to the GCF specification in the future, such as

■ Analog constraints

■ Noise and signal integrity constraints

A particular GCF file can contain all of these types of constraints, or it
contain only certain types of constraints.

GCF is not intended to represent detailed constraints such as the tim
checks described in the Standard Delay Format (SDF), as SDF is alr
well-defined for this information. Instead, GCF covers many types of
constraints for which no standard currently exists.

The name of each GCF file is determined by the EDA tool. There are
conventions for naming GCF files.
Version 1.2 August 22, 1997 11

Introduction

able
that

tion
Cadence Design Systems has developed this GCF specification to en
accurate and unambiguous transfer of constraint data between tools
require this information.All parties utilizing the GCF should interpret
and manipulate constraint data according to this specification. Please
direct questions and corrections to:

Mark Hahn
Cadence Design Systems
3945 Freedom Circle, 4th Floor
Santa Clara, CA 95054

Tel: (408) 450-6548
Fax: (408) 748-3499
internet e-mail: mhahn@cadence.com

Cadence Design Systems, Inc. makes no warranties whatsoever with
respect to the completeness, accuracy, or applicability of the informa
in this document to a user’s requirements.

Cadence Design Systems reserves the right to make changes to the
General Constraint Format Specification at any time without notice.

Published by
Cadence Design
Systems
12 Version 1.2 Introduction

Acknowledgements

 this

as

sely
 a
rly
Acknowledgements

The Constraint Forum working group of Cadence Design Systems
acknowledges the individual and team efforts invested in establishing
version of the GCF specification:

Mark Hahn (primary author)

Ria Simons-Arnout (editor)

Suzanne Thomas (editor)

Henry Chang

Edoardo Charbon

James Cherry

Geoffrey Ellis

Theo Kelessoglou

Anandi Krishnamurthy

Enrico Malavasi

Ed Martinage

Dave Noice

Sherry Solden

Ted Vucurevich

The SDF 3.0 specification developed by Open Verilog International h
strongly influenced GCF. The organization and format of the GCF
document and the contents of a number of sections are borrowed loo
from SDF. The intent is to build upon this excellent previous work as
foundation for a broader description of the designer’s intent, particula
with respect to timing.
Version 1.2 August 22, 1997 13

Version History

r of

he

and

as

ent
art
Version History

■ Modified the semantics of theDEPARTURE_TIME construct to
directly correspond to setup and hold times of a virtual register
connected to the output.

■ Added anEXTERNAL_DELAY construct which describes purely
combinational delays external to a cell.

■ Modified thePATH_DELAY construct semantics to reflect the
EXTERNAL_DELAY construct, and to allow cell instances and
waveform names to be specified as endpoints.

■ Added a section on default precedence rules, as well as a numbe
specific precedence rules for particular constraints and sets of
constraints.

■ Added internal slew and clock slew constructs.

■ Modified theCLOCK_DELAY construct to allow the leaf pins to be
omitted, in which case all primitive clock input pins reachable from t
specified root are implied.

■ Modified thePATH_DELAY construct to allow each of the rise min,
rise max, fall min, fall max delays to be specified independently.

■ Updated theDRIVER_CELL , DRIVER_STRENGTH , and
INPUT_SLEW constructs to explicitly state that if noport_instance is
specified, then the construct applies by default to all primary input
bidirectional pins.

■ Fixed conflicting statements about whether theARRIVAL and
DEPARTURE constructs allow internal pins to be specified as well
primary i/o’s. The statements have been corrected to indicate that
internal pins are allowed.

■ Added the ‘<‘ and ‘>’ characters as legal bus delimiters.

■ Added the syntax description fordisable_cell_spec_1, which was
missing in Version 1.0.

■ Fixed minor inconsistencies.

■ Extensive editing to improve readability.

■ Added operating conditions and voltage thresholds to the environm
globals. Added the ability to override the operating conditions for p
of the design in Level 1.

Version 1.2 -
August 22, 1997

Version 1.1 -
July 8, 1997

Version 1.0 -
March 21, 1997
14 Version 1.2 Introduction

Version History

 the

d of

 of

he

er

ith
.

t

e

aints.
■ Changed the semantics of the process, voltage, and temperature
constructs to specify the range of operating conditions over which
design is intended to operate.

■ Modified the default voltage thresholds to be 10% and 90% instea
20% and 80%.

■ Added a restriction on clock waveforms to only allow a single pair
edges.

■ Added anr_rise_fall_min_max value type, which allows for negative
arrival and departure times, and anINUMBER variable, which
represents a possibly negative integer.

■ Dropped the delay offset construct.

■ Moved fanout-based parasitics constructs to Level 1, since these
require wire load models to interpret.

■ Updated the driver cell construct to allow distinguishing between t
cell types which should be used for each type of edge.

■ Modified the CLOCK_TREE construct and renamed it to
CLOCK_DELAY.

■ Modified name prefixes to include the number of prefixes, and to
require that the id numbers be sequential starting at 0.

■ Modified the max transition time check to refer to output pins, rath
than load pins.

■ Significantly modified the disables section to eliminate problems w
overloading several different types of disables into a single syntax

■ Significantly expanded the description of the multi-cycle constrain
semantics and modified them to better match existing tools.

■ Modified the syntax to allow Level 1 constraints to be grouped
together within a GCF section.

■ Fixed many minor inconsistencies between different sections of th
document.

■ Added many new kinds of information:

❑ Case-dependent constraints

❑ Constant signal specifications

❑ Clock domains

❑ Process, voltage, and temperature specifications

❑ Area and power constraints.

❑ Meta data describing the precedence between alternate constr

Version 0.7 -
January 24, 1997

Version 0.6 -
November 15, 1996
Version 1.2 August 22, 1997 15

Version History

the

ities
■ Significantly revised many of the timing constraints to better match
semantics of existing tools.

■ Separated constraints into several levels of support.

■ Modified the syntax to reduce verboseness and eliminate ambigu
when using yacc as the basis for parsing.

■ Incorporated feedback from internal review.

■ Initial formal version for internal review.

Version 0.5 -
April 15, 1996

Version 0.4 -
April 8, 1996
16 Version 1.2 Introduction

2

GCF in the Design Process

GCF in the Design Process

Forward-Annotation of Constraints for Design Synthesis

GCF in the Design Process

te,
 by
y,

 use

files.

hy

t in
rm

.0.

 the

rms
. It
 by

tial
GCF in the Design Process

By accessing a GCF file, EDA tools are assured of consistent, accura
and up-to-date data. This means that EDA tools can use data created
other tools as input to their own processes. By sharing data in this wa
estimation, synthesis, floorplanning, analysis, and layout tools can all
a consistent set of design constraints with well-defined semantics.

The EDA tools create, read (to update their design), and write to GCF

GCF files support hierarchical constraint annotation. A design hierarc
might include several different ASICs (and/or cells or blocks within
ASICs), each with its own GCF file as illustrated in Figure 1.

Figure 1 Multiple GCF Files in a Hierarchical Design

GCF includes constructs for describing the intended timing environmen
which a design will operate. For example, you can specify the wavefo
to be applied at clock inputs and the arrival time of primary inputs.

Some of the timing environment information is also covered by SDF 3
You should use SDF to pass delay data and detailed path constraints
between tools and use GCF to pass high-level timing constraints and
timing environment description between tools.

GCF contains a richer description of the environment, particularly in te
of the information required for doing delay calculation on interface nets
also supports many types of timing constraints which are not covered
SDF.

GCF contains constructs for describing special cases within a sequen
circuit, such as false and multi-cycle paths. It also contains constructs

Sharing of
Constraint Data

Using Multiple GCF
Files in One Design

ASIC 1

System Module

ASIC 2

GCF File
for ASIC 1

GCF File
for ASIC 2

GCF File
for System

Interconnect

Timing
Environment

Timing
Constraints
Version 1.2 August 22, 1997 19

GCF in the Design Process

us

ithin
hese

nt in
l

tal

d by

r
 can
is
as

 files
xists

ly
rasitic
ng

and

used

d do
les
ich
which allow constraints to be applied on combinational or asynchrono
parts of a circuit.

GCF contains constructs for describing constraints on the parasitics w
a circuit, such as a limit on the internal capacitance of interface nets. T
constraints would typically be used by synthesis and layout tools.

GCF includes constructs for describing the parasitics in the environme
which a design will operate. For example, you can specify the externa
capacitance for interface nets.

GCF contains constructs for constraining the primitive area and the to
area of a cell, as well as the porosity of the cell.

GCF includes constructs for constraining the average power consume
a cell and the average power dissipated by the capacitance in a net.

One or more tools can be responsible for generating the GCF file. Fo
example, a synthesis tool or a dedicated constraint management tool
capture constraint information from the designer and then write out th
data in GCF. To do this, it will examine the specific design for which it h
been instructed to generate constraint data. Tools which create GCF
must locate, within the design, each region for which constraint data e
and calculate values for the parameters of those constraints.

Many types of constraints, such as clock waveform descriptions, app
throughout the design process. Other types of constraints, such as pa
constraints on an interconnection, can be derived from high-level timi
constraints. GCF supports describing both high-level and derived
constraints in the same file. Thus, GCF is suitable for both prelayout
postlayout applications.

There are provisions in the GCF specification for adding meta data
associated with constraints in a later revision. This meta data can be
in many ways; some planned uses include describing relationships
between constraints, and describing the relative importance of each
constraint. The meta data will refer to constraints through a uniquelabel
which can be associated with each constraint.

Many tools only need a description of the constraints themselves, an
not require any of the meta data. However, tools which create GCF fi
should not make assumptions about the requirements of the tools wh

Parasitic
Constraints

Parasitic
Environment

Area Constraints

Power Constraints

The GCF Creator
20 Version 1.2 GCF in the Design Process

GCF in the Design Process

F
ected

files

t the
will
on

b of
ion.

ile

tch

ign

tool.
der
tool
 the
.
o the
and

s of
pply
not

ctly
es

d

same
 nets
will read the GCF file. To prevent the need for multiple GCF files with
different sets of meta data for a given design, a tool which creates GC
files should include as much meta data as possible. Each reader is exp
to filter out the meta data it does not require. Tools which create GCF
can make judicious use of theinclude construct to make this filtering
efficient.

GCF imposes no restrictions on the precision which is used to represen
data in a GCF file. Therefore, the accuracy of the data in the GCF file
depend on the accuracy of the constraint generator and the informati
made available to it.

The GCF file is brought into a reader tool through an annotator. The jo
the annotator is to match data in the GCF file with the design descript
Each region in the design identified in the GCF file must be located.
Constraints in the GCF file for this region must be applied to the
appropriate parameters of the design.

The annotator can be instructed to apply the data in the GCF file to a
specific region of the design, other than at the top level of the design
hierarchy. In this case, it will search for regions identified in the GCF f
starting at this point in the hierarchy. The file must clearly have been
prepared with this in mind, otherwise the annotator will be unable to ma
what it finds in the file with the design viewed from this point.

The foregoing implies that the annotator must have access to the des
description. Frequently, this will be via the internal representations
maintained by the reader tool. The annotator will then be a part of the
As an alternative, the annotator can operate independently of the rea
tool and convert the data in the GCF file into a format suitable for the
to read directly. If such an annotator is unable to match the GCF file to
design description, then the effect of inconsistencies is unpredictable
Also, certain constructs of GCF cannot be supported without access t
design description (for example, wildcard cell instance specifications
wildcard bit specifications).

A GCF file contains constraint data for a specific design. The content
the file identifies regions of the design and provides constraints that a
to various properties of that region. The analysis tool or annotator can
operate if the regions identified in the GCF file do not correspond exa
with the design description. Therefore, changes to the design sometim
require writing a new GCF file, depending on the types of changes an
constraints. A future version of GCF might provide a mechanism for
describing incremental changes to an existing GCF file.

Of equal importance to the logic of the design is the naming of design
objects. Even if the same cells are present and are connected in the
way, annotation cannot operate if the names by which these cells and

The Annotator

Consistency
Between GCF File
and Design
Description
Version 1.2 August 22, 1997 21

GCF in the Design Process

ng

ign

f
ts in
r

ngle
e

each
rcuit,
se to
set a

arn
are known differ in the GCF file and the design description. The nami
of objects must be consistent in these two places.

During annotation, inconsistencies between the GCF file and the des
description are considered errors.

GCF includes a description of a standard semantics for many kinds o
constraints. Some tools might not support all of the types of constrain
GCF, or might restrict the semantics for some types of constraints. Fo
example, a layout tool might handle disabling of false paths where a si
port is specified, but not handle disabling of false paths where multipl
ports are specified.

The constraints of GCF are divided into a number of subsets, where
subset contains constraints associated with a particular aspect of a ci
such as timing or parasitics. When a tool reads a GCF file, it can choo
read one or more of these subsets. During the annotation of each sub
tool reads, unsupported constraints or unsupported semantics for a
constraint are considered to be warnings. However, a tool should not w
about unsupported constraints in other subsets.

Consistency
Between GCF File
and Analysis
22 Version 1.2 GCF in the Design Process

Forward-Annotation of Constraints for Design Synthesis

CF
ls.

the
y
rio of

ple,
ng
n the
dule
Forward-Annotation of Constraints for Design Synthesis

In addition to the use of constraint data for analysis and estimation, G
supports the forward-annotation of constraints to design synthesis too
(In this context, we use the term “synthesis” in its broad sense of
construction, thus including not only logic synthesis, but also
floorplanning, layout and routing.) Constraints are “requirements” for
design’s overall properties and are often modified and broken down b
previous steps in the design process. Figure 2 shows a typical scena
the use of GCF in a design synthesis environment.

Figure 2 GCF Files in Constraint Forward-Annotation

Constraints can also be originated by an analysis tool alone. For exam
a timing budgeting tool might be able to propagate the high-level timi
constraints specified by a designer down to each hierarchical module i
design, setting arrival time and departure time constraints on each mo
port automatically.

GCF File

Synthesis Tool
(logic synthesis,

Analysis
Tool

user
constraints

(synthesis
constraints)

layout, etc.)

design
Version 1.2 August 22, 1997 23

Forward-Annotation of Constraints for Design Synthesis
24 Version 1.2 GCF in the Design Process

3

Using GCF

GCF File Content

Header Section

Levels

Cases

Extensions

Meta Data

Include Files

Labels

Value Types

Globals

Design References

Cell Entries

Subsets

GCF File Content

on
ero

 as
ctors

 in

 (see

 with

of
lue
fic
e

.”
GCF File Content

GCF files are ASCII text files. Every GCF file contains a header secti
followed by one or more additional sections. A GCF file can contain z
cell entries.

Syntax

constraint_file ::= (GCF header section+)

section ::= globals
||= cell_spec
||= extension
||= meta_data
||= include

Theheader section contains information relevant to the entire file such
the design name, the tool used to generate the GCF file, and scaling fa
for the values in the file (see “Header Section” on page 28).

Theglobals section describes information which is common to all cells
a design.

Each cell construct,cell_spec, identifies part of the design (a“ region” or
“scope”) and contains data for the constraints on that part of the design
“Cell Entries” on page 58). Acell can be a physical primitive from the
ASIC library, a modeling primitive for a specific analysis tool or some
user-created part of the design hierarchy. Acell can encompass the entire
design.

Extensions provide a mechanism to extend the standard GCF format
user-defined portions.

Meta data describes relationships between constraints.

This chapter describes the header, globals, cell-spec, and a number
GCF-specific concepts (such as levels, cases, labels, include files, va
types, and design references). The following chapters describe speci
subsets in GCF. For each part of the file, the purpose is discussed, th
syntax is specified, and an example is presented. A complete, formal
definition of the file syntax is contained in Chapter 6, “Syntax of GCF
You can refer to that chapter for precise definitions of some of the
abbreviated syntax descriptions given here.
Version 1.2 August 22, 1997 27

Header Section

the
at it

file.
e

o

hin

tring
CF

the
 a

ge.
Header Section

The header section of a GCF file contains information that relates to
file as a whole. Except for the GCF version, entries are optional, so th
is possible to omit most of the header section.

The design name, date, and program entries are for documentation
purposes and do not affect the meaning of the data in the rest of the
However, the version, delimiters, and scaling factors do affect how th
data in the file is interpreted.

Syntax

header ::= (HEADER version header_info*)
header_info ::= design_name

||= date
||= program
||= delimiters
||= time_scale
||= cap_scale
||= res_scale
||= length_scale
||= area_scale
||= voltage_scale
||= power_scale
||= extension

The version construct identifies the version of the GCF specification t
which the file conforms.

Syntax

version ::= (VERSION QSTRING)

QSTRING is a character string in double quotes. The first substring wit
QSTRING, which consists of just numeric characters and a period,
identifies the GCF version. Other characters before and after this subs
are permitted and will be ignored by readers when determining the G
version.

Example

(VERSION “Cadence Version 1.2”)

Readers of GCF files can use the GCF version construct to adapt to
differences in file syntax between versions. If the file does not contain
GCF version construct, or one is present but theQSTRING field does not
contain a numeric substring, the GCF reader will give an error messa

GCF Version
28 Version 1.2 Using GCF

Header Section

 the

 is

tion.
e
the
ed as

was
The design name construct specifies the name of the design to which
constraints in the GCF file apply. This construct is for documentation
purposes only.

Syntax

design_name::= (DESIGN QSTRING)

QSTRING is a name that identifies the design. Although this construct
not used by the annotator, it is recommended that, if it is included, the
name should be the name given to the top level of the design descrip
This is analogous to theCELLTYPE construct, and in fact, the same nam
would be used in a cell construct for the entire design. It must not be
instance name of the design in a test-bench; this would instead be us
part of the cell instance path in theINSTANCE entries for all cells.

The date construct indicates how current the data in the file is. This
construct is for documentation purposes only.

Syntax

date ::= (DATE QSTRING)

The QSTRING represents the date or time when the data in the GCF file
generated or last modified.

Example

(DATE “Friday, June 6, 1997 - 7:30 p.m.”)

The program name construct indicates the name of the program that
created or last modified the file. This construct is for documentation
purposes only.

Syntax

program ::= (PROGRAM
program_name program_version
 program_company)

program_name::= QSTRING

program_version::= QSTRING

program_company::= QSTRING

TheQSTRING parameters contain (respectively)

■ The name of the program used to generate or modify the GCF file

■ The version number of that program

■ The company that produced the program

Design Name

Date

Program
Version 1.2 August 22, 1997 29

Header Section

iters

r, or

, or

 ()),

od) to
set to
e
s).
Example

(PROGRAM “GCF writer” “1.1” “Cadence”)

The delimiters construct specifies the characters that are used as delim
in design names.

Syntax

delimiters ::= (DELIMITERS QSTRING)

The QSTRING always contains three characters:

■ The first character is referred to as the hierarchy delimiter characte
HCHAR, and must be either a period (.) or a slash (/). If there is no
delimiters construct in the GCF file, theHCHAR defaults to a period.

■ The second character is referred to as the left index character, or
LI_CHAR, and must be either a left bracket ([), a left parenthesis (()
a left angle bracket (<). If there is nodelimiters construct in the GCF
file, theLI_CHAR defaults to a left bracket.

■ The third character is referred to as the right index character, or
RI_CHAR, and must be either a right bracket (]), a right parenthesis
or a right angle bracket (>). If there is nodelimiters construct in the
GCF file, theRI_CHAR defaults to a right bracket.

Example

(DELIMITERS “/()”)
 . . .

(INSTANCE a/b/c(3))
 . . .

In this example, the hierarchy delimiter is specified to be the slash (/)
character, so the hierarchical paths use the slash (rather than the peri
separate elements. In addition, the left and right index characters are
be parentheses, so that bit-specs for selecting elements from instanc
arrays or buses are specified using parentheses (rather than bracket

Hierarchical delimiters can be used in anIDENTIFIER and aPATH. Index
characters can be used in anIDENTIFIER. For more information, see
“Variables” on page 119.

Delimiters
30 Version 1.2 Using GCF

Header Section

lues

12

ied
nds

nds

d
ds
A scaling factor entry specifies the multiplier to be used to scale the va
for the specified physical property.

Syntax

time_scale::= (TIME_SCALE multiplier)
cap_scale::= (CAP_SCALE multiplier)
res_scale::= (RES_SCALEmultiplier)

length_scale::= (LENGTH_SCALE multiplier)
area_scale::= (AREA_SCALE multiplier)

voltage_scale::= (VOLTAGE_SCALE multiplier)
power_scale::= (POWER_SCALE multiplier)

multiplier ::= NUMBER

The default time scale is 1 second. Iftime_scale is specified, the GCF
reader will multiply all delay numbers in the GCF file by the specified
value, which is in seconds. For example, a multiplier of 1.0E-12
corresponds to delay values in ps.

The default capacitance scale is 1 Farad. Ifcap_scale is specified, the GCF
reader will multiply all capacitance numbers in the GCF file by the
specified value, which is in Farads. For example, a multiplier of 1.0E-
corresponds to capacitance values in pF.

The default resistance scale is 1 ohm. Ifres_scale is specified, the GCF
reader will multiply all resistance numbers in the GCF file by the specif
value, which is in ohms. For example, a multiplier of 1.0E-3 correspo
to resistance values in milli-ohms.

The default length scale is 1 meter. Iflength_scale is specified, the GCF
reader will multiply all length numbers in the GCF file by the specified
value, which is in meters. For example, a multiplier of 1.0E-6 correspo
to length values in microns.

The default area scale is 1 square meter. Ifarea_scale is specified, the GCF
reader will multiply all area numbers in the GCF file by the specified
value, which is in square meters. For example, a multiplier of 1.0E-12
corresponds to area values in square microns.

The default voltage scale is 1 volt. Ifvoltage_scale is specified, the GCF
reader will multiply all voltage numbers in the GCF file by the specifie
value, which is in volts. For example, a multiplier of 1.0E-3 correspon
to voltage values in millivolts.

Scaling Factors
Version 1.2 August 22, 1997 31

Header Section

ds
The default power scale is 1 watt. Ifpower_scale is specified, the GCF
reader will multiply all power numbers in the GCF file by the specified
value, which is in watts. For example, a multiplier of 1.0E-3 correspon
to power values in milliwatts.

Example

(CAP_SCALE 1.0E-12)
32 Version 1.2 Using GCF

Levels

n
pes

 to
t way.
hat
igner

ion
ints

. It
idely
ints

ls.

 a
ight

 but
hese

ct
tter
Levels

GCF provides a mechanism for interchanging constraint data betwee
many different kinds of tools. The capabilities of each tool affect the ty
of constraints that the tool can support.

It is desirable to standardize as many types of constraints as possible
ensure that the tools that support each constraint do so in a consisten
However, this presents a dilemma to a designer who is using GCF: W
constraints can be used successfully given the set of tools that the des
must use?

GCF divides the constraints into several levels of support. In this vers
of GCF, two levels have been identified. In this document, all constra
are Level 0 unless otherwise specified.

Level 0 provides a baseline capability to which most tools will conform
includes the most important basic constraints. These constraints are w
supported already, and the algorithms required to support the constra
are well understood and relatively straightforward to implement.

A designer or a flow developer might choose to use only the Level 0
constraints so that the GCF file is widely portable across different too

Tool vendors should state whether their tools comply with Level 0 on
subset-by-subset basis. For example, a timing analysis tool vendor m
state that the tool fully supports GCF Level 0 (Timing and Parasitics
subsets).

Level 1 includes additional constraints that are less widely supported
are viewed as important for certain design styles or methodologies. T
constraints generally allow a more precise description of the intended
operation of the circuit than can be expressed using just the Level 0
constraints.

Level 1 constraints might require more complex algorithms which affe
the performance of a tool. On the other hand, a tool might achieve be
quality results or perform a more accurate analysis when Level 1
constraints are used.

Level 0

Level 1
Version 1.2 August 22, 1997 33

Levels

evel
 to

nts

perly
cify
nly

it is
 are
be

ata”

el 0
t a

,

icts
oint
A designer or a flow developer can choose to use some or all of the L
1 constraints. This decision is necessarily more difficult than choosing
use only Level 0 constraints. It requires careful analysis of at least the
following:

■ The performance versus accuracy trade-off

■ The tools that support the desired Level 1 constraints

■ The resulting effect if not all of the tools support all of the constrai

Even when some aspect of the design behavior can’t be expressed pro
by using Level 0 constraints, it is likely that a designer still needs to spe
Level 0 constraints (which are overly restrictive) so that tools which o
support Level 0 can produce correct results.

In a flow that mixes tools supporting Level 0 and Level 1 constraints,
desirable to specify the Level 1 constraints as well. If both constraints
specified in the same GCF file, it is ambiguous which constraints will
used by a Level 1 tool. In this case, thePRECEDENCE construct can be
used to describe the relationship between the constraints (see “Meta D
on page 40).

It is desirable that every tool can read a GCF file containing both Lev
and Level 1 constraints, so that a single GCF can be used throughou
flow. The syntax for GCF has been defined in a way that allows tools
which only support Level 0 to easily ignore Level 1.

Level 0 constraints are not explicitly identified as belonging to Level 0
while Level 1 and higher constraints must appear within thelevel
construct.

The general form for the level construct is shown below. There are a
number of variations of the level construct, where each variation restr
the types of level-specific constraints which can appear at a particular p
in the GCF file.

Syntax

level ::= (LEVEL NUMBER construct+)

A precise description of each type of level specification is included in
Chapter 6, “Syntax of GCF.”

For this version of GCF,NUMBER must be set to 1.

Usage
34 Version 1.2 Using GCF

Cases

te the
ses

l

andle
em,
r the

traints
ere
in

pear

tion
used.

ase
e.
Cases

With some design styles, it is either necessary or convenient to separa
constraints into several different cases. For example, you can use ca

■ To distinguish between major modes of operation (such as, norma
mode versus test mode and reset mode)

■ To describe the circuit behavior when several clocks are muxed
together

■ To describe the effect of gating clocks

Some tools do not support case-dependent constraints, some tools h
each case separately without considering the interactions between th
and some tools can look at each case separately, as well as conside
interactions between them.

Because not all tools support case-dependent constraints, these cons
are included in GCF Level 1, but not in Level 0. However, given that th
are a number of tools which do support case analysis, there is value
being able to describe the cases in a consistent way.

Cases are identified in GCF using a unique identifier. Unless they ap
within thecase construct, all constraints in a GCF belong to thedefault
case. The namedefault cannot be used to identify other cases.

The general form for case specifications is shown below. The descrip
of a case-dependent constraint depends on the context in which it is

Syntax

case_spec::= (CASE IDENTIFIER
case_dependent_constraint+)

Each case is likely to be described using a number of differentcase_spec
constructs in different places in the GCF. The unique identifier for the c
must be used in each of thecase_spec constructs associated with the cas

A precise description of each type of case specification is included in
Chapter 6, “GCF File Syntax.”
Version 1.2 August 22, 1997 35

Cases

,
 in a
 state-

 is an

ich
In addition to allowing constraints to be separated into different cases
GCF also allows specifying that certain signals have a constant value
given case. In this respect, case-dependent constraints are similar to
dependent delays. However, state-dependent delays are commonly
expressed using Boolean expressions on signal values. In GCF, there
implicit AND of the constant values specified for a given state.

Constant specifications appear within the timing subset for the cell wh
contains theport_instance (see “Timing Environment” on page 66).

Constant Values
36 Version 1.2 Using GCF

Extensions

ard

ata
he
 for
uld

ld

uld

n.
ata

or
f

ions

ust
f the
Extensions

There are a number of cases in which it is desirable to extend a stand
format such as GCF in unofficial ways:

■ For preliminary testing of official proposals for new versions of the
format

■ For early versions of evolving portions of the format

■ For representing company-specific, flow-specific, or tool-specific d
which is not suitable for standardization but is strongly related to t
data in the standard (Often, a separate data format is appropriate
these cases, but in some cases having a separate data format wo
require duplicating much of the information)

However, there are also several concerns with unofficial extensions:

■ Unofficial extensions might be used indefinitely for data that shou
become part of the official standard.

■ Without a built-in mechanism for extensions, most GCF readers wo
not be able to read a GCF file containing an extension. This would
greatly limit the use of extensions because all of the readers in a
particular design flow would have to be modified for each extensio
With a built-in mechanism for extensions, only tools requiring the d
included in the extension would need to be modified.

To overcome the latter concern, GCF includes a built-in mechanism f
unofficial extensions, and establishes a policy restricting the syntax o
those extensions.

We expect that there will be periodic revisions to GCF to incorporate
additional types of constraint data. The developers of unofficial extens
to GCF are strongly encouraged to submit their extensions for
standardization; this makes the data in the extensions more widely
accessible and promotes greater tool interoperability.

Syntax

extension::= (EXTENSION QSTRING
extension_construct+)

extension_construct::= (user_defined)
||= include

TheQSTRING contains the name of the extension. Extension names m
be unique. For example, an extension name might include the name o
tools which support it.
Version 1.2 August 22, 1997 37

Extensions

ucts

in a

ny
imit

 can
tax.

le
 one
Extensions must conform to the GCF syntax for parenthesized constr
and strings to enable every GCF reader to ignore the extension by
searching for a matching right parenthesis that is not embedded with
quoted string.

Except for these restrictions, the format for the extension is flexible. A
keywords can be used, including existing GCF keywords. There is no l
on the number of the parenthesized constructs associated with an
extension, and extension constructs can be arbitrarily nested.

Extensions must not be inserted at arbitrary points in a GCF file. They
only be included where explicit provisions were made in the GCF syn

Example

(EXTENSION “color”
(PACKAGE_COLOR “white” “grey” “black”)

)

In this example, an extension is defined for a constraint on the possib
colors of the package containing the design, where the color must be
of the listed values.
38 Version 1.2 Using GCF

Precedence Rules

Each
e

n

t

 of
ith

CF
ny

l
in
ility

eral
 for

ll
s is
alue

e
ed.

ide
Precedence Rules

Some types of constraints can be expressed in several similar forms.
of these forms results in different degrees of accuracy. Ideally, only th
most accurate form would be included in the GCF, and all tools would
support this form.

For example, the effect of an external driver on delay calculation for a
interface signal can be described by identifying the cell and its drive
strength or by specifying an input slew. Identifying the cell is the mos
accurate approach in most cases.

Unfortunately, not all the tools in a given flow support the same forms
a constraint. In this case, it isn’t possible to create a single GCF file w
only one form of a constraint and go through the flow successfully.

GCF allows multiple forms of a constraint to be included in a single G
file. For tools that only support one form of the constraint, there isn’t a
question about what the tool will do. But for tools that support severa
forms of the constraint, a set of default precedence rules are defined
order to make it clear which form will be applied. There is also a capab
in Level 1 to explicitly override the default precedence rules.

In the absence of any explicit precedence overrides, the following gen
precedence rules are used. Specific precedence rules are also given
particular constructs and sets of constructs in the section of the
specification which describes those constructs.

■ A value which is given explicitly for a particular port instance or ce
instance always overrides a default value. Another way to say thi
that the default value only applies to design elements for which a v
was not explicitly specified.

■ If two different values are given explicitly for the same port instanc
or cell instance, the value which appears later in the GCF file is us

■ If two different default values are given, the default value which
appears later in the GCF file is used.

See “Meta Data” on page 40 for a description of how to explicitly overr
the default precedence rules.

Normal Precedence
Rules

Overrides
Version 1.2 August 22, 1997 39

Meta Data

ata
w to

re
he
 data

everal
ser to
nts.
raint

t are

F in
pe
tion
rs

f the
y

It
.

n a
e

y
 that

a
 can
Meta Data

This version of GCF primarily describes basic constraint data. Meta d
is information about the relationships between constraints or about ho
apply the constraints. Meta data is only supported in Level 1.

One form of meta data is included in this version of GCF, and there a
explicit provisions for adding other forms of meta data in the future. T
goal is to avoid having to change existing GCF readers as more meta
is added unless a reader chooses to support the meta data.

The supported form of meta data describes the precedence among s
related constraints. The precedence meta data construct allows the u
explicitly override the default precedence for a set of several constrai
A tool that supports the precedence meta data applies just one const
from the set. The chosen constraint will be the highest precedence
constraint which the tool supports; the remaining constraints in the se
ignored.

There are many other types of meta data which might be added to GC
future versions. For example, tools often convert constraints of one ty
into constraints of another type. The meta data might include a descrip
of the transformation algorithm which should be used or the paramete
used in the transformation.

Another example is constraint propagation (decomposing high-level
constraints on a design into lower-level constraints on each portion o
design). The meta data might include a description of the dependenc
between the high-level constraint and the lower-level constraints.

Often it is not strictly necessary to satisfy every individual constraint.
might be acceptable to make trade-offs between different constraints
Failing to meet a particular constraint might not be catastrophic.

For example, capacitance constraints can be budgeted for each net i
design. Even though a number of nets fail to meet their constraints, th
circuit can still function properly if other nets more than satisfy their
constraint. Meta data could describe which constraints must be strictl
satisfied (such as the cycle time) and which constraints are only goals
help to ensure that the strict constraints are satisfied.

A designer often sets constraints on a number of different aspects of
circuit, such as area, timing, and power. If not all of these constraints

Precedence Overrides

Other Meta Data
40 Version 1.2 Using GCF

Meta Data

ces,

ta;

aints
t

be satisfied, the designer can use meta data to describe the relative
importance of each aspect.

Meta data usually must refer to constraints. To allow constraint referen
the constraints must be uniquely labeled. For more information, see
“Labels” on page 43.

Syntax

meta_data::= (LEVEL 1 meta_data_1+)
meta_data_1::= (META meta_construct+)

meta_construct::= precedence
||= meta_reserved
||= include

precedence::= (PRECEDENCE (label_id label_id+))
meta_reserved::= (IDENTIFIER reserved_for_future_definition)

Constraints must be listed in thePRECEDENCE construct in decreasing
order of precedence: the first label in the list is the most preferred
constraint.

TheIDENTIFIER is used to distinguish between other types of meta da
explicit values for this will be established in future revisions to GCF.

Example

(META (PRECEDENCE (label1 label2)))

This example describes the precedence between two different constr
identified aslabel1 andlabel2. The description of these constraints mus
precede theMETA construct in the GCF file. If a tool supports the
constraint referenced bylabel1, it will apply that constraint. Otherwise, if
it supports the constraint referenced bylabel2, it will apply that constraint.
If it doesn’t support either constraint, the tool will give a warning.

Usage
Version 1.2 August 22, 1997 41

Include Files

ent

te

ons,

 as
 This
the

ining
file
d by
d by

the

rs
m
ct to

be
CF

e
 data
Include Files

GCF is intended to be the basis for describing a broad range of differ
types of constraints of varying levels of detail, as well as meta data
associated with those constraints. Therefore, it is likely that a comple
GCF file for a design will be fairly large.

The GCF syntax organizes related data by cell type, subsets, extensi
and meta data. By creating separate files for each cell type, subset,
extension, or type of meta data, a GCF writer can make it as efficient
possible for reader applications to find and read just the relevant data.
has to be weighed against the cost of reading from multiple files and
additional complexity for the user of maintaining multiple files.

Every GCF reader must accept the specification of a search path conta
a list of directories in which to search for included files when a relative
name is specified. The user interface for this specification is not define
GCF. Two common approaches are the -I command line options use
many compilers and thePATH environment variable used by the shell in
UNIX. Supporting a similar interface is recommended for UNIX-based
GCF readers.

If a file is not found in any of the directories listed in the search path,
GCF reader will give an error message.

Syntax

include ::= (INCLUDE QSTRING)

TheQSTRING specifies the name of the file to be included. GCF write
will use relative file names to allow a set of GCF files to be copied fro
one location to another. Relative file names are interpreted with respe
the file that contains the include specification, not with respect to the
current working directory of a reader.

The GCF syntax describes explicitly where the include construct can
used. An include file which is referenced at a particular point in the G
must contain only data that would, if substituted directly at that point,
conform to the GCF specification. The intent of these restrictions is to
make it possible for a reader application to easily identify those includ
files which it does not have to read at all because they can only contain
that is not relevant to the reader.
42 Version 1.2 Using GCF

Labels

ntly,

CF.

tive
e

ust

e
ithin

on
Labels

Labels can be used to identify constraints within a GCF file. Conseque
each label within a GCF file must be unique. The label must be an
identifier or a quoted string if the label is a GCF keyword.

There is a provision for a label in every basic constraint construct of G

Syntax

label ::= label_id COLON

label_id ::= IDENTIFIER
||= QSTRING

A simple and compact approach for a GCF writer is to assign consecu
integers as labels. If desired, more information can be conveyed in th
label by using a quoted string.

If several GCF writers are used to create different subsets, a policy m
be established to ensure that the labels created by the writers do not
conflict. An example policy would be to include an abbreviation for th
subset name at the start of the label, such as TG0, TG1, ... for labels w
the timing globals subset.

Example

(27: INTERNAL_LOAD 10.0 out6)

In this example, the label is 27, and it uniquely identifies a constraint
the internal load of the net connected to pinout6.
Version 1.2 August 22, 1997 43

Value Types

tions
er of
Value Types

Most constraints take one or more values, and there are similar restric
on the types of values which are legal. This section describes a numb
basic value types which are used in other constructs.

Syntax

min_and_max::= NUMBER NUMBER

r_min_and_max::= RNUMBER RNUMBER

min_max ::= NUMBER NUMBER?

r_min_max ::= RNUMBER RNUMBER?

rise_fall_min_max::= NUMBER
||= NUMBER NUMBER
||= NUMBER NUMBER NUMBER NUMBER

r_rise_fall_min_max::= RNUMBER
||= RNUMBER RNUMBER
||= RNUMBER RNUMBER

RNUMBER RNUMBER

rise_and_fall ::= NUMBER NUMBER

r_rise_and_fall ::= RNUMBER RNUMBER

rise_fall ::= NUMBER NUMBER?

r_rise_fall ::= RNUMBER RNUMBER?

The formal definitions ofNUMBER andRNUMBER can be found under
“Variables” on page 119.
44 Version 1.2 Using GCF

Globals

iple
f

ore

ent

r a
e two
e of

 used
r

Globals

The globals section describes the constraint data that applies to mult
cells within the design. Use of the globals section avoids duplication o
constraint data within each cell. The globals section must appear bef
anycell_spec sections.

Syntax

globals ::= (GLOBALS globals_subset+)

globals_subset::= env_globals_subset
||= timing_globals_subset
||= extension
||= meta_data

This version of the GCF defines two types of global data: the environm
globals subset and the timing globals subset.

The environment globals subset describes the operating conditions fo
design, including process, temperature, and voltage values. There ar
types of specifications: a range specification, which describes the rang
values over which the design is intended to operate, and a corner
specification, which describes a particular process, voltage, and
temperature point for which analysis or optimization is to be done.

The environment globals subset also describes the voltage thresholds
for the slew specifications and maximum transition constraints in othe
parts of the GCF.

In Level 1, the operating conditions can be case-dependent.

Syntax

env_globals_subset::= (GLOBALS_SUBSET ENVIRONMENT
 env_globals_body)

env_globals_body::= env_globals_spec+
||= include

env_globals_spec::= env_globals_spec_0
||= env_globals_spec_1

env_globals_spec_0::= process
||= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
||= extension
||= meta_data

Environment Globals
Version 1.2 August 22, 1997 45

Globals

orner

ver

0

is

es.

 the
3.1

ich
env_globals_spec_1::= (LEVEL 1 env_globals_case+)
env_globals_case::= (CASE IDENTIFIER env_globals_spec_0+)

Example

(GLOBALS_SUBSET ENVIRONMENT
(voltage 4.5 5.5)
(operating_conditions “fastest” 0.8 3.1 -25.0)

)

In this example, only the voltage range is specified, and the process c
to be used for analysis corresponds to the fastest delays.

Theprocess construct specifies the range of process derating factors o
which the design is intended to operate. This range restricts the
process_value which can be specified for the operating conditions.

Syntax

process ::= (label?PROCESSmin_and_max)

Example

(process 0.8 1.2)

In this example, assuming that 1.0 represents a nominal process, the
process derating factor used for analysis can vary by plus or minus 2
percent.

Thevoltage construct specifies the range of voltages over the design
intended to operate. This range restricts thevoltage_value which can be
specified for the operating conditions.

Syntax

voltage ::= (label?VOLTAGE r_min_and_max)

Ther_min_and_maxparameter specifies minimum and maximum voltag

Example

(voltage 2.9 3.1)

In this example, assuming that the voltage scaling factor is set to 1.0,
design is intended to operate with a supply voltage between 2.9 and
volts.

Thetemperature construct specifies the range of temperatures over wh
the design is intended to operate. This range restricts the
temperature_value which can be specified for the operating conditions.

Process

Voltage

Temperature
46 Version 1.2 Using GCF

Globals

 85.0

a

,
e
rs.

ion
s
lect

ns
dex
Syntax

temperature::= (label?TEMPERATURE r_min_and_max)

Ther_min_and_max parameter specifies the minimum and maximum
operating ambient temperatures in degrees Celsius (centigrade).

Example

(temperature -25.0 85.0)

In this example, the design is intended to operate between -25.0 and
degrees Celsius.

Theoperating_conditions construct specifies an environmental corner—
particular combination of process, voltage, and temperature derating
points —for which analysis or optimization is to be done.

Syntax

operating_conditions::= (label?OPERATING_CONDITIONS
QSTRING
process_value
voltage_value
temperature_value)

process_value::= NUMBER

voltage_value::= RNUMBER

temperature_value::= RNUMBER

TheQSTRING parameter specifies a name for the environment corner
which is used in some libraries to obtain the models for converting th
process, voltage, and temperature derating points into delay multiplie

Theprocess_valuespecifies the process derating point. The interpretat
and the units of the derating factor are library-dependent. The proces
derating point is used to compute a multiplier for scaling delays to ref
the impact of variations in the process. Usually the derating point is
interpreted as an index into a linear model which defines the delay
multiplier.

If the GFC file contains aprocess construct that defines a range of
allowable process derating points, theprocess_value must fall within that
range. There is no default range.

Thevoltage_valuespecifies the voltage derating point, which has units
specified by thevoltage_scale. The voltage derating point is used to
compute a multiplier for scaling delays to reflect the impact of variatio
in the supply voltage. Usually the derating point is interpreted as an in
into a linear model which defines the delay multiplier.

Operating Conditions
Version 1.2 August 22, 1997 47

Globals

es
ute a

dex

ply
for

ts
st

The
 from

90%.

20%
 the
If the GFC file contains avoltage construct that defines a range of
allowable voltages, thevoltage_value must fall within that range. There is
no default range.

Thetemperature_valuespecifies the temperature derating point in degre
Celsius (centigrade). The temperature derating point is used to comp
multiplier for scaling delays to reflect the impact of variations in the
ambient temperature. Usually the derating point is interpreted as an in
into a linear model which defines the delay multiplier.

If the GFC file contains atemperature construct that defines a range of
allowable temperatures, the operatingtemperature_value must fall within
that range. There is no default range.

The operating conditions defined in the global environment subset ap
by default to all cells in the design. In Level 1, this can be overridden
particular cells by including anoperating_conditions specification in the
timing subset for a cell.

Example

(operating_conditions “slowest” 1.2 2.9 85.0)

In this example, the environment corner is set to reflect derating poin
which result in the analysis or optimization being based on the slowe
delays.

Thevoltage_threshold construct specifies the measurement points on a
waveform which must be used in calculating a slew or transition time.
measurement points are defined as a fraction of the change in voltage
the start of the transition to the end of the transition. If no voltage
thresholds are specified in a GCF file, the default values are 10% and

Syntax

voltage_threshold::= (label?VOLTAGE_THRESHOLD
min_and_max)

Themin_and_max parameter specifies the minimum and maximum
measurement points.

Example

(voltage_threshold 20.0 80.0)

In this example, the measurement points on the waveform are at the
and 80% points with respect to the change in voltage associated with
transition.

Voltage Threshold
48 Version 1.2 Using GCF

Globals
The environment globals can be case-dependent.

Syntax

env_globals_spec_1::= (LEVEL 1 env_globals_1+)
env_globals_1::= env_globals_case

env_globals_case::= (CASE IDENTIFIER
env_globals_case_spec+)

env_globals_case_spec::= env_globals_spec_0

Example

(GLOBALS_SUBSET ENVIRONMENT
(level 1

(case board1
(voltage 4.5 5.5)

)
(case board2

(voltage 3.1 3.5)
)

)
)

In this example, the voltage range depends on the board in which the
design is used.

Environment Globals
Case
Version 1.2 August 22, 1997 49

Globals

d
each
nous

s,

rate
rch

m,
tion
 to

y
 an
ip,

k or
The timing globals subset defines waveforms, derived waveforms, an
clock domains. Waveforms and their derivatives can be referenced by
cell, as needed. A clock domain is a group of clocks which are synchro
with respect to each other.

Syntax

timing_globals_subset::= (GLOBALS_SUBSET TIMING
 timing_globals_body)

timing_globals_body::= timing_globals_spec+
||= include

timing_globals_spec::= timing_globals_spec_0
||= timing_globals_spec_1

timing_globals_spec_0::= primary_waveform
||= extension
||= meta_data

timing_globals_spec_1::= (LEVEL 1 timing_globals_1+)
timing_globals_1::= timing_globals_no_case_1

||= timing_globals_case

timing_globals_no_case_1::=derived_waveform
||= clock_group

The following sections describe primary waveforms, derived waveform
clock groups, and timing globals case.

Example

(GLOBALS_SUBSET TIMING
(include “global_timing.gcf”)

)

In this example, the global timing constraints are described in a sepa
file, global_timing.gcf, which must located in a directory along the sea
path.

The primary waveform construct defines an abstract periodic wavefor
which is not necessarily associated with any particular signal in the por
of the design described by the GCF file. A waveform typically is used
define one or more clock signals.

The following example uses a waveform that isn’t associated with an
signal. The GCF file for a chip might need to refer to the waveform of
off-chip clock in a constraint on the arrival time at an input pin of the ch
but that clock itself might not be supplied to the chip.

The primary and derived waveform constructs allow multiple pairs of
edges. However, when a waveform description is used to define a cloc

Timing Globals

Primary Waveform
50 Version 1.2 Using GCF

Globals

must

t in
ps”
in

nce

ck

f a

 the

at
sets

ch
fset.
 the
in a
ion
o
curs
ns
is used as a reference for an arrival or departure time, the waveform
only have a single pair of edges.

Syntax

primary_waveform::= (label?WAVEFORM waveform_name
period edge_pair_list)

waveform_name::= QSTRING

period ::= NUMBER

edge_pair_list ::= pos_pair+
||= neg_pair+

pos_pair ::= pos_edge neg_edge

neg_pair ::= neg_edge pos_edge

pos_edge::= (POSEDGEmin_max)
neg_edge::= (NEGEDGE min_max)

The name of the waveform must be unique. The period describes the
interval at which the waveform repeats, and is in units of time.

All waveforms are described with respect to an implicit reference poin
time. When a circuit contains several clock domains (see “Clock Grou
on page 53), there is one implicit reference point for each clock doma
which applies to all of the clocks in that domain. The clock waveforms
within a clock domain must be described relative to the implicit refere
point, so that known skew between related clocks is reflected in the
respective waveform edge positions.

There is no relationship between the reference points for different clo
domains.

edge_pair_list describes a single period of the waveform. It consists o
list of edge pairs, which can be either apos_edge construct followed by a
neg_edge construct or aneg_edge construct followed by apos_edge
construct. Thus, the total number of edges in the list will be even and
edges will alternate betweenPOSEDGE andNEGEDGE.

In addition to the direction of the transition, each edge gives the time
which the transition takes place relative to the start of each period. Off
must increase monotonically throughout theedge_pair_list and must not
exceed the period.

Themin_max entries allow either one or two values to be specified for ea
edge. If one value is given, then this precisely defines the transition of
If two values are given, then they define an uncertainty region in which
transition will take place. This would usually be used to describe jitter
clock signal. The first value gives the beginning of the uncertainty reg
and the second value gives its end. Tools using this construct with tw
values will assume that a single transition of the specified direction oc
somewhere in the uncertainty region but can not make any assumptio
Version 1.2 August 22, 1997 51

Globals

 will
te the

0 ns
lues

ally
h

ncy
ses

rm
 of
d of

s
e

dge
about the exact location. Tools unable to model this edge uncertainty
issue a warning message and use the mean of the two values to loca
transition.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)

)

In this example, a waveform is defined with a 50% duty cycle and a 1
period (assuming that the time_scale construct specifies that delay va
in the file are in ns).

The derived waveform construct defines a waveform that is harmonic
related to a previously defined waveform (the “parent” waveform whic
might itself be a derived waveform). Derived waveforms can only be
specified in Level 1.

Derived waveforms are commonly used in a multi-phase, single-freque
clocked system. A single abstract waveform is defined, and other pha
are derived from it.

Another example of when this is useful is when clock multipliers or
dividers are used to convert one clock waveform into another wavefo
with a different but related frequency. By defining the output waveform
a divider as a derived waveform, a change to the definition of the perio
the parent waveform will automatically affect the output waveform.

Syntax

derived_waveform::= (label?DERIVED_WAVEFORM
waveform_name
parent_waveform_name
period_multiplier? phase_shift?
skew_adjustment?)

parent_waveform_name::= QSTRING

period_multiplier ::= (PERIOD_MULTIPLIER DNUMBER)

phase_shift::= (PHASE_SHIFT RNUMBER)

skew_adjustment::= (SKEW_ADJUSTMENT edge_pair_list)

If a period_multiplier is specified, the period of the derived waveform i
obtained by multiplying the period of the parent waveform by the valu
given in theperiod_multiplier construct. The position of each waveform
edge in the parent is also multiplied, to determine the corresponding e
position in the derived waveform.

Derived Waveform
52 Version 1.2 Using GCF

Globals

d in

e
rent

inty
ed to
ers
dge
e

tainty

ted

ust

ently

0 ns

rce
gful

rce.
locks
If a phase_shift is specified, the edges of the derived waveform are
computed by adding the specified value to the edge positions specifie
the parent waveform or to the computed edge positions if a
period_multiplier is specified.

The values specified in theskew_adjustment construct are used to chang
the uncertainty region defined for each corresponding edge in the pa
waveform, or for the computed edge positions if either aperiod_multiplier
or aphase_shift is specified. If a single skew adjustment number is
specified for an edge, it is subtracted from the left edge of the uncerta
region associated with the corresponding edge in the parent and add
the right edge of that uncertainty region. If two skew adjustment numb
are specified for an edge, the first number is subtracted from the left e
of the uncertainty region associated with the corresponding edge in th
parent, and the second number is added to the right edge of that uncer
region.

When a combination ofperiod_multiplier, phase_shift, or
skew_adjustment constructs are specified, the edge positions are compu
by first considering the effect of anyperiod_multiplier, then the effect of
anyphase_shift, and finally, the effect of anyskew_adjustment.

The waveform resulting from the calculations must be valid: offsets m
increase monotonically throughout theedge_pair_list and must not exceed
the adjusted period.

When theMULTI_CYCLE construct (see “Multi-Cycle Paths” on page
83) is used for a parent waveform, it has no effect on any waveforms
derived from that parent; any adjustments must be specified independ
for each derived waveform.

Example

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”

(period_multiplier 2)
)

)

In this example, a waveform is defined with a 50% duty cycle and a 2
period by deriving from a previously defined parent waveform.

By default, all clocks are assumed to be derived from a common sou
clock and to have harmonically related frequencies, so that it is meanin
to perform timing checks on paths between any pair of registers.

In Level 1, not all of the clocks need to be derived from the same sou
In this case, the waveforms can be separated into groups of related c
or “clock domains.” Only paths between clock waveforms in the same

Clock Groups
Version 1.2 August 22, 1997 53

Globals

 the

us.
lock

ust

nd

rent
group are constrained. In Level 0, all clock waveforms are assigned to
same default clock domain.

Clock waveforms in different domains are assumed to be asynchrono
There is no default constraint on the delay of paths which start in one c
domain and end in a different one, although an explicit combinational
delay constraint could be specified as an exception. A synchronizer m
usually be used for these paths.

Syntax

clock_group ::= (label?CLOCK_GROUP
clock_group_name waveform_name+)

clock_group_name::= QSTRING

The clocks within the group are identified by their waveform names, a
the definitions of the waveforms must precede theclock_group_spec.
Usually derived waveforms will be in the same clock group as their pa
waveform, but this must be specified explicitly.

Including the same waveform name in multiple clock groups is not
allowed because doing so implies that the clock is asynchronous with
respect to itself.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)

)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”

(period_multiplier 2)
)
(CLOCK_GROUP “group1”

“100 MHz 50/50” “50 MHz 50/50”
)

)

The timing globals can be case-dependent.

Syntax

timing_globals_case::= (CASE IDENTIFIER
timing_globals_case_spec+)

timing_globals_case_spec::= timing_globals_spec_0
||= timing_globals_no_case_1

Timing Globals Case
54 Version 1.2 Using GCF

Globals
Example

(GLOBALS_SUBSET TIMING
(level 1

(case board
(WAVEFORM “100 MHz 50/50” 10.0

(posedge 0) (negedge 5.0)
)

)
(case tester

(WAVEFORM “20 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)

)
)

)
)

In this example, the clock waveform supplied to the chip depends on
whether it is mounted on the board or is being tested.
Version 1.2 August 22, 1997 55

Design References

 port

a
ly

any

r to
ion

. A

sign

n
ose to
es is
ell.

tion

e.
Design References

GCF allows three types of design preferences: name prefixes, cell and
instances, and cell types.

Constraints generally refer to the properties of specific objects within
design (for example, cell instances or port instances). In GCF, it is on
possible to refer to these objects by their name. However, the full
hierarchical name of a design object can be a fairly long string, and m
design objects have similar names.

To reduce the size of GCF files, a notation is adopted which is simila
one originally defined for the Physical Design Exchange Format, Revis
2.0 (PDEF).

To reduce the size of GCF files, GCF allows the use of name prefixes
name prefix is a short alias to be created for an initial portion of a
hierarchical path name. When the full hierarchical names of many de
objects share a common initial prefix, the use of name prefixes can
substantially reduce the size of a GCF file.

Syntax

name_prefixes::= (NAME_PREFIXES num_prefixes
name_prefix+)

num_prefixes::= DNUMBER

name_prefix::= prefix_id QSTRING

prefix_id ::= DNUMBER

To optimize reading a GCF file, thenum_prefixes parameter must specify
the exact number of name prefixes which follow, and theprefix_ids must
be consecutive integers starting at 0.

Name prefixes are defined within a cell specification. A GCF writer ca
choose to use any set of strings for use as name prefixes, or can cho
not define any prefixes at all. One possible choice for the name prefix
the instance names of primitives instantiated as descendents of the c

Once a name prefix has been defined, it can be used to identify cell
instances or port instances within the current cell instance. The defini
of the name prefix must precede any usage of the prefix.

When a name prefix is used, it is interpreted as the initial portion of a
relative path name beginning at the context of the current cell instanc

Name Prefix
56 Version 1.2 Using GCF

Design References

 cell

truct
tion

w

The cell instance construct is used to identify a particular instance of a
within the design. The port instance construct is used to identify a
particular instance of a port within the design.

Syntax

cell_instance::= PATH
||= (prefix_id)
||= (prefix_id PARTIAL_PATH)

port_instance::= port
||= PATH HCHARport
||= (prefix_id port)
||= (prefix_id PARTIAL_PATH HCHARport)

Since the name prefix and thePARTIAL_PATH are simply concatenated
without interpretation to form the fullPATH for the cell or port instance,
the name prefix must use the hierarchy delimiter character,HCHAR, to
separate each level of hierarchy in the name.

There must be no white space separating thePATH or PARTIAL_PATH,
HCHAR, andport components of aport_instance.

Example

(CELL()
(NAME_PREFIXES 2

0 “a.b.c.d.”
1 “a.b.c.e.”

)
(SUBSET “timing”

(MAX_TRANSITION_TIME 1.0 2.0 (1 IN1))
(MAX_TRANSITION_TIME 3.0 4.0 (2 IN1))

)
)

In this example, two name prefixes are defined and then used to cons
the full path name for two different input port instances to set a transi
time constraint on those ports.

Thecell_idconstruct is used to refer to exactly one type of cell.

Syntax

cell_id ::= (CELLTYPE cell_name)
||= (CELLTYPE

library_name cell_name view_name?)

library_name ::= QSTRING

cell_name ::= QSTRING

view_name::= QSTRING

The library name indicates the library which contains the cell. The vie
name specifies a particular view of the cell.

Cell and Port Instance

Cell Type
Version 1.2 August 22, 1997 57

Cell Entries

n

ser-
that

ific

ns,
ll or
p-

e
be

e

d
tain
Cell Entries

A cell construct identifies a particular “region” or “scope” within a desig
and contains constraint data to be applied to that region.

For example, a cell construct might identify a unique occurrence of a u
defined cell or block and provide constraints on the interface ports of
block. Or, it might identify a unique occurrence of an ASIC physical
primitive (such as a flip-flop) in the design and define constraints spec
to that occurrence (such as a multi-cycle path constraint on all paths
starting at that flip-flop). Besides identifying such design-specific regio
cell entries can identify all occurrences of a particular user-defined ce
an ASIC library physical primitive, such as a certain type of gate or fli
flop. Data is applied to all such regions in the design.

Syntax

cell_spec ::= (CELL cell_instance_spec cell_body_spec+)
cell_instance_spec::= cell_instance_path

||= (cell_instance_path+)
||= ()
||= cell_views

cell_instance_path::= PATH

cell_body_spec::= name_prefixes
||= subset
||= extension
||= meta_data
||= include

Thecell_instance_spec identifies one or more regions of the design. Th
cell_body_spec contains the constraint data for that region. These will
discussed in detail in the following chapters.

Example

(CELL a1.b1.c1
(SUBSET PARASITICS

(INTERNAL_LOAD 5.0 7.5 IN1)
)

)

A GCF file can contain any number of cell entries (including zero). Th
order of the cell entries is significant only if they have an overlapping
effect, where data from two different cell entries applies to the same
constraint in the design. In this situation, the cell entries are processe
strictly from the beginning to the end of the file, and the data they con
58 Version 1.2 Using GCF

Cell Entries

 by

 for
cell

The

al

 the
eader
od is

d
h

is applied in sequence to whatever region is appropriate to that cell
construct. Where data is applied to a constraint previously referenced
the same GCF file, the new data will be applied over the old.

This interpretation supports the definition of a set of default constraints
all instances of a cell, then overriding those constraints for particular
instances.

Thecell_instance_spec identifies the parts of the design to which the
constraints in the cell construct apply.

Syntax

cell_instance_spec::= cell_instance_path
||= (cell_instance_path+)
||= ()
||= cell_views

cell_instance_path::= PATH

The first form of thecell_instance_spec identifies a unique occurrence in
the design. Thecell_instance_path must be relative to the level in the
design at which the annotator is instructed to apply the GCF file (see “
Annotator” on page 21). Frequently, this is the topmost level.

Thecell_instance_path is extended down through the hierarchy by
specifying a hierarchical path name with the name of each hierarchic
level separated by the hierarchy delimiter character,HCHAR. The
hierarchical path name must not start with the hierarchy delimiter
character. Name prefixes cannot be used in thecell_instance_path.

Example

(CELL a1.b1.c1
 . . .

)

In this example, the relative hierarchical path is specified asa1.b1.c1 .
The region identified is cell or blockc1 within blockb1, which is in turn
within blocka1, which must be contained within the level at which the
GCF is applied. The period character separates levels or elements of
path. The example assumes that the delimiters construct in the GCF h
specified the hierarchy delimiter as the period character or, since peri
the default, the construct was absent.

The second form of thecell_instance_spec identifies several occurrences
of the cell to which the same constraints must be applied.

The () form of thecell_instance_spec indicates that the constraints define
in thecell_body_spec apply to the hierarchical level in the design at whic

Cell Instance Spec
Version 1.2 August 22, 1997 59

Cell Entries

 to

ts

 the

e
.

e of
the annotator is instructed to apply the GCF file. This is typically used
specify constraints on the top-level cell in the design.

Thecell_views form of the cell instance list indicates that the constrain
defined within thecell_body_spec apply to all occurrences of the given
type of cell which are instantiated under the hierarchical level at which
GCF is applied.

Syntax

cell_views ::= (CELLTYPE cell_name)
||= (CELLTYPE

library_name cell_name view_name*)

library_name ::= QSTRING

cell_name ::= QSTRING

view_name::= QSTRING

The library name indicates the library which contains the cell, while th
view name can be used to specify which views of the cell are affected

Example

(CELL (CELLTYPE “WORKLIB” "ALU")
 . . .

)

The effect of this example is to apply the constraints to every instanc
every view of the ALU cell from the WORKLIB library.
60 Version 1.2 Using GCF

Subsets

 The
h
ss
Subsets

GCF is organized into a number of subsets of related constraint data.
intent of this is to allow the development of the GCF standard for eac
subset to proceed independently, and to allow tools to efficiently acce
only the data which is relevant to them.

Syntax

subset ::= timing_subset
||= parasitics_subset
||= area_subset
||= power_subset

Additional subsets are likely to be added in the future.
Version 1.2 August 22, 1997 61

Subsets
62 Version 1.2 Using GCF

4

Timing Subset

Timing Subset Header

Timing Environment

Timing Exceptions

Timing Subset Header

on

 For
eta
Timing Subset Header

The timing subset of each cell entry in the GCF file includes informati
about the following:

■ The timing environment in which the cell is intended to operate

■ The constraints on the timing characteristics of the cell

This chapter describes the timing environment and timing exceptions.
information on other constructs, refer to “Extensions” on page 37, “M
Data” on page 40, and “Include Files” on page 42.

Syntax

timing_subset::= (SUBSET TIMING timing_subset_body)

timing_subset_body::= timing_subset_spec+
||= include

timing_subset_spec::= timing_environment
||= timing_exceptions
||= extension
||= meta_data

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(INSTANCE *)
(SUBSET TIMING

(ENVIRONMENT
 . . .

)
(EXCEPTIONS

 . . .
)

)
)

Version 1.2 August 22, 1997 65

Timing Environment

rnal

 of

ver

al

ll
ge
ese
d to
Timing Environment

The timing environment of a cell describes a number of conditions exte
to the cell that affect its timing behavior. The following conditions are
included:

■ Arrival and departure times of signals at the cell ports

■ Clock waveforms used by the cell

■ Information about the external drivers connected to the input ports
the cell

This section describes clock specifications, arrival time, driver cell, dri
strength, input slew, constant values, operating conditions, and timing
environment cases. Chapter 5, “Parasitics Subset,” includes addition
information that affects the cell’s timing behavior.

Syntax

timing_environment::= (ENVIRONMENT timing_env_spec+)

timing_env_spec::= timing_env_spec_0
||= timing_env_spec_1

timing_env_spec_0::= clock_spec
||= arrival_spec
||= departure_spec
||= external_delay_spec
||= driver_spec
||= input_slew_spec
||= extension
||= meta_data

timing_env_spec_1::= (LEVEL 1 timing_env_1+)

timing_env_1::= timing_env_no_case_1
||= timing_env_case

timing_env_no_case_1::= constant_spec
||= operating_conditions
||= internal_slew_spec

Each clock that is applied to the cell (or generated internally by the ce
itself) is described by relating a waveform (see “Timing Globals” on pa
50) to a port instance (the source of that waveform within the cell). Th
port instances are usually the roots of a clock network and are referre
as clock roots.

Syntax

clock_spec::= (label?CLOCK waveform_name
port_instance+)

Clock
Specifications
66 Version 1.2 Timing Subset

Timing Environment

ges.

ort

ns

d

ave

.

ave

lling

s. If
If the waveform was not previously defined, an error message will be
given. Although theWAVEFORM construct generally allows more than
one pair of edges, clock waveforms must only have a single pair of ed

Theport_instance can either be an input port on the cell or an output p
of an instance within the cell.

Example

(CLOCK “100 MHz 50/50” clk1)
(CLOCK “50 MHz 50/50” divider.clkout)

TheARRIVAL construct defines ranges of time in which signal transitio
can occur at aport_instance which includes registers in its transitive
fanout. Arrival times are usually specified only for primary input and
bidirectional ports, but they can also be specified for internal input an
bidirectional ports. When specified on internal pins, the arrival time
overrides any propagated arrival time.

Syntax

arrival_spec ::= (label?ARRIVAL
waveform_edge arrival_value
port_instance*)

waveform_edge::= (waveform_edge_identifier waveform_name)

arrival_value ::= (waveform_edge_identifier r_min_max)
||= r_rise_fall_min_max

If no port_instance is specified, the arrival time applies by default to all
primary input and bidirectional ports on the cell except those which h
been identified as clock inputs.

Thewaveform_edge specification, which identifies a waveform and an
edge of that waveform, is required. Thearrival_value is added to that edge

If the waveform was not previously defined, an error message will be
given. Although theWAVEFORM construct generally allows more than
one pair of edges, clock waveforms used for arrival times must only h
a single pair of edges.

The firstarrival_value form,waveform_edge_identifier r_min_max, must
be used to specify the arrival time of just the rising edges or just the fa
edges. The second form,r_rise_fall_min_max, must be used to specify the
arrival time of both rising and falling edges.

One or two values can be specified for ther_min_max form. If a single
value is specified, it applies to both the minimum and maximum value

Arrival Time
Version 1.2 August 22, 1997 67

Timing Environment

m

s for

ct
ame

tance

 the
ill
ge of
two values are specified, they represent the minimum and maximum
values, respectively.

One, two, or four values can be specified for ther_rise_fall_min_max
form. If a single value is specified, it applies to the rise minimum, rise
maximum, fall minimum, and fall maximum values. If two values are
specified, the first value applies to the rise minimum and rise maximu
values, and the second value applies to the fall minimum and fall
maximum values. If four values are specified, they apply to the rise
minimum, rise maximum, fall minimum, and fall maximum values,
respectively.

The minimum values must be less than or equal to the maximum value
the same transition.

Multiple ARRIVAL constructs can be defined for the same port. Each
ARRIVAL construct can reference a differentwaveform_edge. The arrival
times associated with a given referencewaveform_edge are independent of
the arrival times associated with any other referencewaveform_edge, and
analysis will be done separately for each referencewaveform_edge.

If severalARRIVAL constructs appear in a GCF file, and each constru
specifies arrival times for the same port instance with respect to the s
referencewaveform_edge, the effect is cumulative and overriding. For
example, assume there are two arrival constructs for the same port ins
with respect to the same referencewaveform_edge:

■ If the first construct specifies only thePOSEDGE arrival times and the
second construct specifies only theNEGEDGE arrival times, the result
is that both thePOSEDGE andNEGEDGE arrival times are set.

■ If the first construct specifies bothPOSEDGE andNEGEDGE arrival
times and the second construct specifies only theNEGEDGE arrival
times, the result is that the values of thePOSEDGE arrival times come
from the first construct, while the values of theNEGEDGE arrival
times come from the second construct.

Example

(ENVIRONMENT
(ARRIVAL (POSEDGE “50 MHz 50/50”)

10.0 14.0 12.0 16.0 D[*])
)

This example specifies the arrival times for all input pins referenced by
bit-spec D[*]. Assuming that the time scale is in ns, rise transitions w
occur no sooner than 10 ns and no later than 14 ns after the rising ed
68 Version 1.2 Timing Subset

Timing Environment

 and

al

all

ly

ing a
etup

t be
um
lue.
the reference clock. Falling transitions will occur no sooner than 12 ns
no later than 16 ns after the clock edge.

TheDEPARTURE construct defines ranges of time in which signal
transitions must occur at aport_instance which includes registers in its
transitive fanin. Departure times are usually specified only for primary
output and bidirectional ports, but they can also be specified for intern
output and bidirectional ports. When specified on internal pins, the
departure time overrides any propagated departure time.

Syntax

departure_spec::= (label?DEPARTURE
waveform_edge departure_value
port_instance*)

waveform_edge::= (waveform_edge_identifier waveform_name)

departure_value::= setup_rise_fall hold_rise_fall
||= (waveform_edge_identifier

setup_value hold_value)

setup_rise_fall::= r_rise_and_fall

hold_rise_fall ::= r_rise_and_fall

setup_value::= RNUMBER

hold_value ::= RNUMBER

If no port_instance is specified, the departure time applies by default to
primary output and bidirectional ports on the cell.

Thewaveform_edge specification, which identifies a waveform and an
edge of that waveform, is required. The hold departure_value is added to
that edge, while the setupdeparture_value is subtracted from that edge.

If the waveform was not previously defined, an error message will be
given. Although theWAVEFORM construct generally allows more than
one pair of edges, clock waveforms used for departure times must on
have a single pair of edges.

Departure times are interpreted as setup and hold constraints. Specify
departure time is equivalent to adding a register with corresponding s
and hold constraints at the output.

All partial paths from the specified port to the target registers must be
considered in setting the departure time.

■ For the minimum departure time, the delay of each partial path mus
subtracted from the hold time of the target register, and the minim
departure time must be set to the largest (most positive) resulting va

Departure Time
Version 1.2 August 22, 1997 69

Timing Environment

ime
 a

ster

The

lling

ch

ce
e

.
later
efore
 ns
old

al

 that
 path
elay
Since the partial path delays will generally be larger than the hold t
of the target registers, the minimum departure time will usually be
negative number.

■ For the maximum departure time, the setup time of the target regi
must be added to the delay of each partial path, and the maximum
departure time must be set to the largest resulting value.

The firstdeparture_value form,setup_rise_fall hold_rise_fall, must be
used to specify different departure times for rising and falling edges.
second form,waveform_edge_identifier setup_value hold_value, must be
used to specify the departure time of just the rising edges or just the fa
edges.

Multiple DEPARTURE constructs can be defined for the same port. Ea
DEPARTURE construct can reference a differentwaveform_edge. The
departure times associated with a given referencewaveform_edge are
independent of the departure times associated with any other referen
waveform_edge, and analysis will be done separately for each referenc
waveform_edge.

Like ARRIVAL constructs, the effect of multipleDEPARTURE constructs
is cumulative and overriding.

Example

(ENVIRONMENT
(DEPARTURE (NEGEDGE “50 MHz 50/50”)

12.0 18.0 -8.0 -14.0 A[15:0])
)

This example specifies departure times for each of the 16 output pins
A[15:0] and that the falling edge is the active edge of the target clock
Assuming that the time scale is in ns, rising transitions must occur no
than 12.0 ns before the setup active edge and no earlier than 8.0 ns b
the hold active edge. Falling transitions must occur no later than 18.0
before the setup active edge and no earlier than 14.0 ns before the h
active edge.

TheEXTERNAL_DELAY construct is used with thePATH_DELAY
construct to constrain purely combinational portions of a design.

ThePATH_DELAY construct describes constraints on the combination
delay through a portion of the design, while theEXTERNAL_DELAY
construct describes purely combinational delays which are external to
portion of the design. The external delays are added to the computed
delays within that portion of the design before comparing to the path d
constraint.

External Delay
70 Version 1.2 Timing Subset

Timing Environment

 on

.

l
l
 or

ng

s.

s. If

m

s for

ve
External delays may be specified on both primary interface ports and
internal ports. If no external delay is specified for a port which is an
endpoint of aPATH_DELAY constraint, the external delay defaults to 0

Syntax

external_delay_spec::= (label?EXTERNAL_DELAY
external_delay_value endpoints_spec+)

external_delay_value::= (waveform_edge_identifier r_min_max)
||= r_rise_fall_min_max

Theendpoints_spec is described in “Path Specifications” on page 78.
External delays specified using theFROM keyword are to be added to
combinational paths which start at the given endpoints, while externa
delays specified using theTO keyword are to be added to combinationa
paths which end at the given endpoints. A given internal port instance
primary bidirectional port can appear in two different external delay
specifications, one using theFROM keyword and one using theTO
keyword.

The firstexternal_delay_value form,waveform_edge_identifier
r_min_max, must be used to specify the external delay for just the risi
edges or just the falling edges. The second form,r_rise_fall_min_max,
must be used to specify the arrival time of both rising and falling edge
The transitions are with respect to the given endpoints.

One or two values can be specified for ther_min_max form. If a single
value is specified, it applies to both the minimum and maximum value
two values are specified, they represent the minimum and maximum
values, respectively.

One, two, or four values can be specified for ther_rise_fall_min_max
form. If a single value is specified, it applies to the rise minimum, rise
maximum, fall minimum, and fall maximum values. If two values are
specified, the first value applies to the rise minimum and rise maximu
values, and the second value applies to the fall minimum and fall
maximum values. If four values are specified, they apply to the rise
minimum, rise maximum, fall minimum, and fall maximum values,
respectively.

The minimum values must be less than or equal to the maximum value
the same transition.

Like ARRIVAL andDEPARTURE constructs, the effect of multiple
EXTERNAL_DELAY constructs for the same port instance is cumulati
Version 1.2 August 22, 1997 71

Timing Environment

ich

e

les

it

he
and overriding.

Example

(ENVIRONMENT
(EXTERNAL_DELAY 5.0

(FROM IN[0])
)
(EXTERNAL_DELAY 3.0

(TO OUT[0])
)
(PATH_DELAY 10.0

(FROM IN[0])
(TO OUT[0])

)
)

Assuming that time values are in ns, this example specifies that

■ An external combinational delay of 5 ns should be added to the
computed delay of any purely combinational path starting atIN[0]

■ An external combinational delay of 3 ns should be added to the
computed delay of any purely combinational path ending atOUT[0]

■ The effective combinational delay constraint for paths starting at
IN[0] and ending atOUT[0] is 2 ns (the 10 nsPATH_DELAY
constraint minus the two external delays).

Driver specifications describe information about an external driver wh
is connected to a primary input or bidirectional port of the cell.

Syntax

driver_spec ::= driver_cell_spec
||= driver_strength_spec

Precedence Rules

There are several different types of driver specifications, as well as th
ability to directly specify the slew for an input. When several different
constructs appear in a GCF which affect a given port, the following ru
are used to determine which of the constructs should be used:

■ An explicit specification of the driver cell, driver strength, or implic
slew for a given port always overrides any of the defaults.

■ When there are multiple explicit specifications for the same port, t
precedence (in decreasing order) is driver cell, input slew, driver
strength.

Driver
Specification
72 Version 1.2 Timing Subset

Timing Environment

r) of

al
he

ber

el,
ll

ed

 to

be

s all
■ When there are multiple default specifications, but no explicit
specifications for a given port, the precedence (in decreasing orde
the defaults is also driver cell, input slew, driver strength.

TheDRIVER_CELL construct is used when the cell type of the extern
driver is known. For example, for a user-defined block within a chip, t
external driver is usually a cell within another user-defined block. The
default driver cell type can be specified for all primary input and
bidirectional ports by not specifying anyport_instance.

Syntax

driver_cell_spec::= (label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
opt_port_instance_list)

driver_cell_port_spec::= (cell_id)
||= (cell_id output_port)
||= (cell_id input_port output_port)

driver_cell_options::= (driver_cell_option+)

driver_cell_option ::= drive_multiplier
||= driver_input_slew
||= waveform_edge_identifier

drive_multiplier ::= (PARALLEL_DRIVERS DNUMBER)

driver_input_slew::= (INPUT_SLEW slew_value input_port*)

slew_value::= rise_fall_min_max

If a waveform_edge_identifier is specified, the driver cell construct only
applies to delay calculation for that edge.

If multiple buffers of the same type are connected in parallel, the num
of those buffers can be specified using thePARALLEL_DRIVERS
construct. If multiple buffers of different types are connected in parall
multiple DRIVER_CELL constructs can be specified. When a driver ce
type is explicitly specified for a primary input and bidirectional port, it
overrides any default; the explicitly specified driver cell is not connect
in parallel with the default driver cell.

Theoutput_port specifies the port on the driving cell that is connected
the primary inputs. It must be specified whenever the driving cell has
multiple outputs.

Theinput_port specifies a single input port on the driving cell that must
the starting point when doing delay calculation. If theinput_port is not
specified, delay calculation is done by computing the worst case acros
inputs ports that are associated with the specifiedoutput_port.

Driver Cell
Version 1.2 August 22, 1997 73

Timing Environment

ing
f 0

ed

n

rst

our
fall

ut
rt

input
Input slews can be specified for one or more of the input ports on the
driver. If the input slew is not specified for an input port that is the start
point for a timing arc considered in delay calculation, a default slew o
is used.

Theslew_values are time values and must be specified in the units defin
by thetime_scale. The voltage thresholds for measuring the slew are
defined by theVOLTAGE_THRESHOLD construct (see “Voltage
Threshold” on page 48). If no voltage thresholds are specified, the
slew_value represents by default the time required to transition betwee
the 10 and 90 percent points of the power supply voltage.

One, two, or four values can be specified for theslew_value. If a single
value is specified, it applies to the rise minimum, rise maximum, fall
minimum, and fall maximum values. If two values are specified, the fi
value applies to the rise minimum and rise maximum values, and the
second value applies to the fall minimum and fall maximum values. If f
values are specified, they apply to the rise minimum, rise maximum,
minimum, and fall maximum values, respectively.

The information about the driver cell affects the accuracy of the delay
calculation.

■ For the most accurate approach, both theinput_port and the
output_portmust be provided, along with the slew at theinput_port. In
general, this is only feasible when there is only one connected inp
port. At the time a GCF file is created, it is unknown which input po
is switching, and a worst-case analysis must be done instead.

■ For the most accurate worst-case analysis, theoutput_port on the
driver cell must be specified, along with the slew at every input.

■ For a less accurate worst-case analysis, the slew values for each
port can be omitted, in which case the default slew is used.

When the cell type of the external driver is not known, the
DRIVER_STRENGTH construct can be used instead.

Syntax

driver_strength_spec::= (label?DRIVER_STRENGTH strength_value
port_instance*)

strength_value::= rise_fall

The default driver strength can be specified for all primary input and
bidirectional pins by not specifying anyport_instance.

Driver Strength
74 Version 1.2 Timing Subset

Timing Environment

e
ll.

put

ed

n

t
e

 will

ee
Thestrength_values are resistance values and must be specified in the
units defined by theres_scale. One or two values can be specified for th
strength_value. If a single value is specified, it applies to both rise and fa
If two values are specified, they apply to rise and fall, respectively.

When the cell type of the external driver is not known, theINPUT_SLEW
construct can be used instead. Note that theINPUT_SLEW construct can
be used both within the context of aDRIVER_CELL construct and by
itself. When used by itself, it describes the input slew at the primary in
of the cell, and a label can be associated with the construct.

Syntax

input_slew_spec::= (label?INPUT_SLEW slew_value
port_instance*)

The default input slew can be specified for all primary input and
bidirectional pins by omitting theport_instances.

Theslew_value is a time value and must be specified in the units defin
by thetime_scale. The voltage thresholds for measuring the slew are
defined by theVOLTAGE_THRESHOLD construct (see “Voltage
Threshold” on page 48). If no voltage thresholds are specified, the
slew_value represents by default the time required to transition betwee
the 10 and 90 percent points of the power supply voltage.

In Level 1, GCF allows specifying that certain signals have a constan
value. Often, this is used to describe case-dependent constraints (se
“Cases” on page 35) or to disable a portion of a circuit.

Syntax

constant_spec::= (CONSTANT constant_value port_instance+)

constant_value::= 0
||= 1

Constant values are defined in terms of signals but specified using
port_instances. A constant value specified for any of theport_instances
connected to a signal affects the signal as a whole. An error message
be given if different constant values are specified on twoport_instances
connected to the same signal.

The operating conditions defined in the global environment subset (s
“Environment Globals” on page 45) apply by default to all cells in the
design. These conditions can be overridden for particular cells by
including anoperating_conditions specification in the timing subset for a
cell. When applied to a non-leaf cell, the operating conditions are

Input Slew

Constant Values

Operating
Conditions
Version 1.2 August 22, 1997 75

Timing Environment

gain

nal

elay
overridden for that cell and all of its descendents, unless overridden a
by one of the descendents.

The INTERNAL_SLEW construct is a Level 1 construct and specifies a
slew that overrides the default slew on internal pins (input or bidirectio
pins on primitives). Normally,INTERNAL_SLEW must not be used for
clock input pins on primitives; theSLEW option of theCLOCK_DELAY
construct must be used instead.

Syntax

internal_slew_spec::= (label?INTERNAL_SLEW rise_fall
port_instance*)

The INTERNAL_SLEW construct is normally only used

■ For input or bidirectional pins that are part of a combinational loop
broken using a disable

■ For cases where the slew that would be computed by the normal d
calculation is known to be inaccurate

The default internal slew can be set by not specifying anyport_instance.

The internal slew values will be determined using the following
precedence order:

■ An explicit INTERNAL_SLEW for the pin

■ The calculated slew, if it is possible to calculate one

■ The defaultINTERNAL_SLEW , if no slew can be calculated

■ The defaultINPUT_SLEW

■ 0

The timing environment can be case-dependent.

Syntax

timing_env_case::= (CASE IDENTIFIER
timing_env_case_spec+)

timing_env_case_spec::= timing_env_spec_0
||= timing_env_no_case_1

Internal Slew

Timing
Environment
Cases
76 Version 1.2 Timing Subset

Timing Environment

s on
Example

(ENVIRONMENT
(level 1

(case board
(input_slew 2.0 1.0 in1)

)
(case tester

(input_slew 5.0 3.0 in1)
)

)
)

In this example, the input slew of a signal supplied to the chip depend
whether the chip is mounted on the board or is being tested.
Version 1.2 August 22, 1997 77

Timing Exceptions

tion
hs

d by

f a

lti-
,

n

Timing Exceptions

By default, GCF assumes that, a circuit is synchronous. This assump
implies that there are a set of implicit constraints on the delays of pat
through combinational logic. These constraints are determined by the
clock waveforms provided to source registers and target registers, an
the arrival and departure times specified for ports on the cell.

Timing exceptions are GCF constructs that can be used to

■ Override the implicit synchronous timing constraints for portions o
design

■ Describe explicit constraints on asynchronous portions of a design

This section describes path specifications, disable specifications, mu
cycle paths, combinational delays, max transition times, internal slew
latch-based borrowing, clock delay, and timing exception cases.

Syntax

timing_exceptions::= (EXCEPTIONS timing_exception_spec+)

timing_exception_spec::= timing_exception_spec_0
||= timing_exception_spec_1

timing_exception_spec_0::= disable_spec_0
||= multi_cycle_spec_0
||= path_delay_spec_0
||= transition_time_spec
||= extension
||= meta_data

timing_exception_spec_1::= (LEVEL 1 timing_exception_1+)

timing_exception_1::= timing_exception_no_case_1
||= timing_exception_case

timing_exception_no_case_1::= disable_spec_1
||= multi_cycle_spec_1
||= path_delay_spec_1
||= borrow_limit_spec
||= clock_delay_spec

Many of the timing exceptions require path specifications. This sectio
describes the various ways of specifying paths.

Path
Specifications
78 Version 1.2 Timing Subset

Timing Exceptions

 the

DF

en

all
ths,
d in

uts,
y
r

cuit

ng
Syntax

arc_spec ::= (ARC port_instance port_instance)

thru_spec ::= (THRU port_instance)

thru_all_spec ::= (THRU_ALL port_instance port_instance+)

endpoints_spec::= from_spec
||= to_spec
||= (from_spec to_spec)

from_spec::= (FROM from_to_item+)

to_spec ::= (TO from_to_item+)

from_to_item ::= port_instance
||= cell_instance
||= waveform_name

The Level 0ARC construct specifies all paths that pass through both of
port_instances, including paths which start or end at the arc. The port
instances must be contiguous in the path (either an input to output
connection on a cell, or an output to input connection on a net). The S
IOPATH andINTERCONNECT constructs describe similar arcs.

The Level 0THRU construct specifies all paths that pass through the giv
port, including those which start or end at the port.

The Level 0THRU_ALL construct specifies all paths that pass through
of the ports listed. These ports do not have to be contiguous in the pa
but they must be listed in the order in which they would be encountere
traversing each path from the source to the target.

Theendpoints_spec specifies all paths that start at any of theFROM items
and end at any of theTO items. TheFROM items must be waveform
names, primary input or bidirectional ports, registers, register clock inp
or register data outputs. TheTO items must be waveform names, primar
output or bidirectional ports, registers, register clock inputs, or registe
data inputs.

Disabling paths is important for the following reasons:

■ To break combinational feedback loops

■ To eliminate false paths (paths that will never be activated during
normal operation of the circuit)

■ To eliminate paths that are only active during certain modes of cir
operation (for example, paths associated with testability logic)

TheDISABLE construct identifies a set of paths for which selected timi
checks must be suppressed.

Disable
Specifications
Version 1.2 August 22, 1997 79

Timing Exceptions

ps:

 of

.

rtion

both

re

ths
), the
 but

ch
led.
The timing checks that might be affected are separated into two grou

■ The minimum timing checks are hold, removal, and the hold portion
no-change checks. When theHOLD keyword is specified in a disable
construct, it refers generically to all of the minimum timing checks

■ The maximum timing checks are setup, recovery, and the setup po
of no-change checks. When theSETUP keyword is specified in a
disable construct, it refers generically to all of the maximum timing
checks.

In the context of disabled paths, the phrase “all timing checks” means
minimum and maximum timing checks, but not skew, period, or pulse
width checks.

In Level 0, the paths can be identified by a cell instance, a single port
instance, an arc, or the path endpoints.

Syntax

disable_spec_0::= disable_item_spec_0
||= disable_endpoints_spec_0

Disabling Paths Identified by Items

The simplest form of theDISABLE construct,disable_item_spec_0,
disables all timing checks associated with a set of paths.

Syntax

disable_item_spec_0::= (label?DISABLE disable_item_0+)

disable_item_0::= port_instance
||= cell_instance
||= arc_spec

If a port_instance is specified, all timing checks associated with paths
through that port instance are disabled. The following types of
port_instances are handled differently:

■ If the port_instance is a clock input, all timing checks related to that
clock input or associated with paths that begin at that clock input a
disabled.

■ If the port_instance is an enable or disable pin that affects other pa
through a cell instance (such as a latch enable or a tri-state enable
timing checks associated with paths through that pin are affected,
not the timing checks associated with paths which it controls.

If a cell_instance is specified, all output ports on that cell instance are
implicitly referenced. All timing checks associated with any paths whi
start at or pass through any output port on the cell instance are disab

Level 0 Disables
80 Version 1.2 Timing Subset

Timing Exceptions

e are

ny
r start
 on

s

um

ed
point.

ance
e

 a

,

The timing checks on paths that end at input ports on the cell instanc
not affected (paths through input ports to output ports are affected).

If a Level 0ARC construct is given, all timing checks associated with a
paths that pass through the arc are disabled, including paths that eithe
or end at the arc. For more information, refer to “Path Specifications”
page 78.

Disabling Paths Identified by Endpoints

Thedisable_endpoints_spec_0 construct disables selected timing check
on a set of paths that are identified by their from, to, or from and to
endpoints.

Syntax

disable_endpoints_spec_0::= (label?DISABLE endpoints_spec+
 disable_endpoints_options?)

disable_endpoints_options::= timing_check
||= edge_identifier
||= timing_check edge_identifier

timing_check::= SETUP
||= HOLD

If the SETUP or HOLD keyword is specified, only the maximum or the
minimum timing checks must be disabled; otherwise, both the maxim
and minimum timing checks are disabled.

If an edge_identifier is specified, the selected timing checks are disabl
only for the specified edge of the signal, as measured at the path end

In Level 1, the timing checks or edges that are affected by a port inst
or arc disable can be selected. The paths can be identified by multipl
ports, cell instance name, or cell type.

Syntax

disable_spec_1::= disable_edges_spec_1
||= disable_cell_spec_1

Disabling Paths Associated With Port Instances

Thedisable_edges_spec_1 construct disables selected timing checks on
set of paths. If theSETUP or HOLD keyword is specified, only the
maximum or the minimum timing checks must be disabled; otherwise
both the maximum and minimum timing checks are disabled.

Level 1 Disables
Version 1.2 August 22, 1997 81

Timing Exceptions

ed
o each

d
ck

ths
), the

lled

en
g
sured
t of

he
ous

be
e
e
n

Syntax

disable_edges_spec_1::= (label?DISABLE
disable_edges_path_spec+
timing_check?)

disable_edges_path_spec::= thru_edge_spec
||= arc_edges_spec
||= thru_all_edges_spec

thru_edge_spec::= (THRU port_instance_edge)

arc_edges_spec::= (ARC port_instance_edge port_instance_edge)

thru_all_edges_spec::= (THRU_ALL
port_instance_edge port_instance_edge+)

port_instance_edge::= (edge_identifier port_instance)

The Level 1THRU construct specifies all paths which pass through a
single port instance, including those which begin or end at the port
instance. The selected timing checks are disabled only for the specifi
edge of the signal, as measured at that port instance and propagated t
target in the set of paths. The following types ofport_instances are handled
differently.

■ If the port_instance is a clock input, all selected timing checks relate
to that clock input or associated with paths which begin at that clo
input are disabled.

■ If the port_instance is an enable or disable pin that affects other pa
through a cell instance (such as a latch enable or a tri-state enable
selected timing checks associated with paths through that pin are
affected, but not the timing checks associated with the paths contro
by the pin.

The Level 1ARC construct specifies all paths that pass through the giv
arc, including those which begin or end at the arc. The selected timin
checks are disabled only for the specified edges of the signal, as mea
at the start and end of the arc and propagated to each target in the se
paths.

The Level 1THRU_ALL construct specifies all paths that pass through t
specified port instances. The port instances do not have to be contigu
in the paths, but they must be listed in the order in which they would
encountered in traversing each path from the source to the target. Th
selected timing checks are disabled only for the specified edges of th
signal, as measured at eachport_instance and propagated to each target i
the set of paths.
82 Version 1.2 Timing Subset

Timing Exceptions

d

nce

iated

f a

ld
fault.

ing

s of
e
e the
.

se, the

in one

n one

es, or
r be
Disabling Paths Associated With Cell Instances or Cell Types

Syntax

disable_cell_spec_1::= (label?DISABLE disable_cell_path_spec+)

disable_cell_path_spec::= disable_instance_spec
||= disable_master_spec

disable_instance_spec::= (INSTANCE cell_instance+)

disable_master_spec::= (MASTER cell_id)

Thedisable_cell_spec_1 construct disables all timing checks associate
with all paths associated with one or more cell instances including the
following:

■ All timing checks associated with paths to, from, or through the
instance

■ All timing checks associated with paths contained within the insta

Disabling a cell type affects all instances of that cell within either the
current GCF cell instance or its descendents. All timing checks assoc
with all paths associated with any of those instances are disabled.

If a cell type is disabled within the GCF section for the top-level cell o
design, the cell type is disabled throughout the entire design.

TheMULTI_CYCLE construct identifies the paths for which setup or ho
checks must use a different set of active clock edges rather than the de
This construct is commonly used to describe paths whose data can
propagate to the target register over multiple clock cycles by not clock
the target every cycle.

By default, timing checks are computed with respect to the active edge
the source and target clocks.For flip-flops, the active clock edge is th
triggering clock edge. For level-sensitive latches, the active edges ar
opening clock edge for sources and the closing clock edge for targets

When the source and target clocks have the same frequency and pha
following rules are commonly used to determine the active edges:

■ Setup checks are computed between an active edge at the source
cycle and the active edge at the target in the next cycle.

■ Hold checks are computed between an active edge at the source i
cycle and the active edge at the target in the same cycle.

When the source and target clocks have different frequencies or phas
when multiple cycles are allowed for a path, these rules can no longe

Multi-Cycle Paths
Version 1.2 August 22, 1997 83

Timing Exceptions

lt

ck

root,
t of a

t of
f the

rget

cedes

tup
root

d

 early
i-
 for

urrent
 with

d by
 pair
 root

etup

 by
pair
used. A more precise definition of the process for choosing the defau
active edges is used in GCF.

The clock root that drives the source of a path is called the source clo
root, and the waveform edge at the source clock root that triggers the
source of a path is called the source root edge.

The clock root that drives the target of a path is called the target clock
and the waveform edge at the target clock root that triggers the targe
path is called the target root edge.

If the clock signal is inverted between the clock root and the clock inpu
a register or latch, the root edge is different than the triggering edge o
register.

The relationship between particular source and target root edges
determines which active edges are used for setup and hold checks.
Multiple cycles of the source and target clocks are considered in
identifying the source and target root edges for a timing check.

The setup check ensures that the expected data signals reach the ta
registers in time to be latched correctly. If no multi-cycle specification
affects a path, the following rules are used for the setup check:

■ Each target root edge and the nearest source root edge which pre
it are called a setup edge pair.

■ The default source and target root edges are defined to be the se
edge pair with the smallest positive difference between the target
edge and the source root edge. The default active edges are the
propagated versions of the root edges, measured at the source an
target.

The hold check ensures that data does not reach the target registers
enough to be latched in the wrong cycle of the target clock. If no mult
cycle specification affects a path, every setup edge pair is considered
the hold check. For each setup edge pair, the root edges define the c
cycle at the source and at the target. Two conditions must be satisfied
respect to these cycles:

■ Data triggered by the current cycle at the source must not be latche
the previous cycle at the target. This condition defines a hold edge
in which the hold source root edge is the same as the setup source
edge, and the hold target root edge is one cycle earlier than the s
target root edge.

■ Data triggered by the next cycle at the source must not be latched
the current cycle at the target. This condition defines a hold edge

Default Definition
84 Version 1.2 Timing Subset

Timing Exceptions

p
 setup

h the
 root
e
es,

re
arget

ath

on

me.

ed

ter
s.

by

ts

ly

ded

ter
ints.

ose
ted
in which the hold source root edge is one cycle later than the setu
source root edge, and the hold target root edge is the same as the
target root edge.

These conditions are both checked by choosing the hold edge pair wit
most positive difference between the target root edge and the source
edge (note that the difference can still be negative). The default activ
edges for the hold check are the propagated versions of the root edg
measured at the source and target.

TheMULTI_CYCLE construct allows changing the active edges that a
chosen for specific paths or for all paths between a given source and t
clock pair.

Level 0 Multi-Cycle Paths

In Level 0, the paths can only be identified by their endpoints (see “P
Specifications” on page 78).

■ The source endpoints (specified with theFROM construct) identify
primary input or bidirectional ports or register clock inputs. In additi
to explicitly identifying source endpoints, they can be specified
implicitly using a register, register data outputs, or a waveform na

❑ If a register is specified, all clock inputs on the register are includ
as source endpoints.

❑ If a register data output is specified, all clock inputs on the regis
that are related to that output are included as source endpoint

❑ If a waveform name is specified, all register clock inputs driven
the clock root(s) associated with the waveform are included as
source endpoints, as are all primary input and bidirectional por
with an arrival time relative to that waveform.

■ The target endpoints (specified with theTO construct) identify primary
output or bidirectional ports or register data inputs. In addition to
explicitly identifying target endpoints, they can be specified implicit
using a register, register clock inputs, or a waveform name.

❑ If a register is specified, all data inputs on the register are inclu
as target endpoints.

❑ If a register clock input is specified, all data inputs on the regis
that are related to that clock input are included as target endpo

❑ If a waveform name is specified, all data inputs on registers wh
associated clock inputs are driven by the clock root(s) associa
with the waveform are included as target endpoints, as are all

Overriding the Default
Version 1.2 August 22, 1997 85

Timing Exceptions

ecks

,
l

urce

 pair

rget

the

target.
primary output and bidirectional ports with a departure time
relative to that waveform.

■ When both the source and target endpoints are specified using
waveform names, the effect is to change the default relationship
between the waveforms.

Syntax

multi_cycle_spec_0::= (label?MULTI_CYCLE
multi_cycle_option+ endpoints_spec+)

multi_cycle_option::= timing_check_offset
||= edge_identifier

timing_check_offset::= (timing_check num_cycles reference_clock?)
reference_clock::= SOURCE

||= TARGET

num_cycles::= INUMBER

Thetiming_check_offset, which specifies the number of cycles to be
allowed for a path, is used to adjust the active edges for the timing ch
for all paths between the specified endpoints.

The following procedure is used to determine the setup edge pair:

■ For all paths affected by aMULTI_CYCLE construct (whether
SETUP, HOLD , or bothSETUPandHOLD adjustments are specified)
a default setup edge pair is chosen in the same way as for norma
timing checks.

■ Multiple cycles of the source and target clocks are still considered
when determining the default setup edge pair. The pair with the
smallest positive difference between the target root edge and the so
root edge is selected.

■ If the SETUP timing check is specified, then the corresponding
num_cycles parameter is used to determine an adjusted setup edge
as follows:

❑ By default, or ifTARGET is specified, the setupnum_cycles
parameter affects the target root edge. Instead of the default ta
root edge, the edge that arrives (num_cycles - 1) cycles later is
used.

❑ If SOURCE is specified, the setupnum_cycles parameter affects
the source root edge. Instead of the default source root edge,
edge that arrives (num_cycles - 1) cycles earlier is used.

■ The adjusted active edges for the setup check are the propagated
versions of the adjusted root edges, measured at the source and
86 Version 1.2 Timing Subset

Timing Exceptions

a
ng
tions

ith

ir

 of

ther

urce

ge

target.

etup
ed
citly

fset

get
 is
ted.
The default hold edge pair is chosen differently for paths affected by
MULTI_CYCLE construct than for paths which are not. For normal timi
checks, the hold edge pair is chosen by considering the two hold condi
with respect to all possible setup edge pairs.

For all paths affected by aMULTI_CYCLE construct, the default hold
edge pair is chosen by considering the two hold conditions only with
respect to a single setup edge pair, rather than by considering them w
respect to every setup edge pair.

The following procedure is used to determine the hold edge pair:

■ If the SETUP option is specified, then the default hold edge pair is
chosen with respect to the adjusted setup edge pair. If theHOLD option
is specified but theSETUP option is not, then the default hold edge pa
is chosen with respect to the default setup edge pair.

■ The default hold edge pair is chosen to reflect the more restrictive
the two hold conditions (the most positive difference between the
target root edge and the source root edge).

■ An adjusted hold edge pair is always determined, regardless of whe
theHOLD option is specified. If theHOLD option is not specified, the
holdnum_cycles parameter is set to 0. IfHOLD option is specified and
theSETUP option is not.

❑ By default, or ifSOURCE is specified, the holdnum_cycles
parameter affects the source root edge. Instead of the default so
root edge, the edge which arrivesnum_cycles cycles later is used.

❑ If TARGET is specified, the holdnum_cycles parameter affects the
target root edge. Instead of the default target root edge, the ed
which arrivesnum_cycles cycles earlier is used.

■ The adjusted active edges for the hold check are the propagated
versions of the adjusted root edges, measured at the source and

Adjustments can be made independently to the active edges of the s
check and hold check. However, the hold check root edges are defin
with respect to the setup check root edges, so a setup offset will impli
cause a change in the active edges used in the hold check.

When both a setup and hold offset are specified, the setup offset is
interpreted first, establishing a new default hold edge pair. The hold of
is then applied to the edges of that pair.

If anedge_identifier is given, it specifies which data edge at the path tar
is affected by the changes in the active edges of the clock. If no edge
specified, both the rising and falling data edges at the target are affec
Version 1.2 August 22, 1997 87

Timing Exceptions

ge at

setup
p
 the
pair.
 pair

ge
hold
n the

ve
he
Example

(TIMING
(ENVIRONMENT

(CLOCK “100 MHz 50/50” clk1)
(CLOCK “50 MHz 50/50” divider.clkout)

)
(EXCEPTIONS

(MULTI_CYCLE (SETUP 3 SOURCE) (HOLD 1) posedge
(FROM “100 MHz 50/50”) (TO “50 MHz 50/50”)

)
)

)

The multi-cycle path specification in this example has the following
effects on all paths whose source clock originates atclk1 and whose target
clock originates atdivider.clkout(as well as any other paths with“100 MHz

50/50” as the source clock waveform and“50 MHz 50/50” as the target
clock waveform):

■ For the setup check on rising data edges at the target, the active ed
the source is two source clock cycles earlier than the default. The
default active edge at the target is unchanged.

■ The hold check on rising data edges at the target is affected by the
adjustment as well as the hold adjustment. After applying the setu
adjustment, the two hold conditions are considered with respect to
adjusted setup edge pair to determine the new default hold edge
This will generally cause the source edge of the default hold edge
to be two cycles earlier than if no setup adjustment was specified.

The hold adjustment is then applied, resulting in the hold active ed
at the source being one source clock cycle later than in the default
edge pair, while the hold active edge at the target is the same as i
default hold edge pair.

■ The setup and hold checks on falling data edges at the target are
unaffected by the multi-cycle specification.

Example

(MULTI_CYCLE (SETUP 2)
(FROM ff1.clk) (TO ff2.d ff3.d)

)

The multi-cycle path specification in this example has the following
effects on all paths starting atff1 and ending atff2 or ff3:

■ For the setup check on both rising and falling data edges, the acti
edge at the target is one target clock cycle later than the default. T
default active edge at the source is unchanged.
88 Version 1.2 Timing Subset

Timing Exceptions

is
p
 the
pair,

iple

ve
fault.

is
p
 the
pair,

y the
lt
■ The hold check on both rising and falling data edges at the target
implicitly affected by the setup adjustment. After applying the setu
adjustment, the two hold conditions are considered with respect to
adjusted setup edge pair to determine the new default hold edge
which is used without adjustment in the hold check.

Level 1 Multi-Cycle Paths

In Level 1, the paths can be identified by an arc, a single port, or mult
ports.

Syntax

multi_cycle_spec_1::= (label?MULTI_CYCLE
multi_cycle_option+
multi_cycle_path_spec_1+)

multi_cycle_path_spec_1::= arc_spec
||= thru_spec
||= thru_all_spec

Example

(LEVEL 1
(MULTI_CYCLE (SETUP 3 SOURCE) (THRU and1.in1))

)

The multi-cycle path specification in this example has the following
effects on all paths throughand1.in1:

■ For the setup check on both rising and falling data edges, the acti
edge at the source is three source clock cycles earlier than the de
The default active edge at the target is unchanged.

■ The hold check on both rising and falling data edges at the target
implicitly affected by the setup adjustment. After applying the setu
adjustment, the two hold conditions are considered with respect to
adjusted setup edge pair to determine the new default hold edge
which is used without adjustment in the hold check.

Example

(LEVEL 1
(MULTI_CYCLE (HOLD 1 TARGET) negedge

(THRU_ALL nor2.in1 and3.in2))
)

The multi-cycle path specification in this example has the following
effects on all paths through bothnor2.in1 andand3.in2:

■ The setup check on falling data edges at the target is not affected b
specification. However, this setup check does establish the defau
setup edge pair used by the hold check.
Version 1.2 August 22, 1997 89

Timing Exceptions

 hold
 the
ir.

ge
hold
in the

not

s

al

 that
 path
elay

e

ts
■ The hold check on falling data edges at the target is affected by the
adjustment. The two hold conditions are considered with respect to
default setup edge pair to determine the new default hold edge pa

The hold adjustment is then applied, resulting in the hold active ed
at the target being one target clock cycle earlier than in the default
edge pair, while the hold active edge at the source is the same as
default hold edge pair.

■ The setup and hold checks on rising data edges at the target are
affected by the multi-cycle specification.

ThePATH_DELAY construct specifies constraints on the delay of path
through non-sequential parts of the design, such as the following:

■ Paths through combinational logic

■ Connections between hierarchical blocks

■ Paths between asynchronous clock domains

■ Gated clock enable signals

ThePATH_DELAY construct describes constraints on the combination
delay through a portion of the design, while theEXTERNAL_DELAY
construct describes purely combinational delays which are external to
portion of the design. The external delays are added to the computed
delays within that portion of the design before comparing to the path d
constraint.

ThePATH_DELAY construct must not be used to define clock tree
insertion delays. TheCLOCK_DELAY construct must be used instead (se
“Clock Delay” on page 92).

Syntax

path_delay_spec_0::= (label?PATH_DELAY
path_delay_value endpoints_spec+)

path_delay_spec_1::= (label?PATH_DELAY
path_delay_value
path_delay_path_spec_1+)

path_delay_value::= (timing_check waveform_edge_identifier
NUMBER)

||= rise_fall_min_max

path_delay_path_spec_1::= arc_spec
||= thru_spec
||= thru_all_spec

When the first form ofpath_delay_value is used, thePATH_DELAY
construct can be specified multiple times for different delay constrain

Combinational
Delays
90 Version 1.2 Timing Subset

Timing Exceptions

 of

ks.

e
nal

 the
 10

ed
ich

e

e
vel-

dge

s

e
ock
d by
ning
which only apply to certain edges and timing checks on the same set
paths, and the union of these constraints is taken.

When a path constrained by aPATH_DELAY construct starts or ends at a
sequential element, the combinational delay constraint for that path is
implicitly adjusted to include the effect of clock skew and timing chec

TheMAX_TRANSITION_TIME construct specifies the constraint on th
transition time of a net as measured at a specified output or bidirectio
port.

Syntax

transition_time_spec::= (label?MAX_TRANSITION_TIME rise_fall
port_instance*)

Therise_fall values are time values and must be specified in the units
defined by thetime_scale. If no voltage thresholds are specified for
measuring the transition times (see “Voltage Threshold” on page 48),
rise_fall values must specify the time required to transition between the
and 90 percent points of the power supply voltage.

A port_instance must be an output or bidirectional port on a cell contain
within the current GCF cell. The default transition time constraint, wh
can be set by omitting theport_instances, applies to all output pins
contained within the current GCF cell.

Usually, the transition time is specified in the library. If the transition tim
is specified in both the library and the GCF file, the more restrictive
constraint will be used.

TheBORROW_LIMIT construct specifies the maximum amount of tim
that can be borrowed by one cycle from the next cycle when using le
sensitive latches. This construct is a Level 1 construct.

Data normally starts propagating from a source latch at the opening e
of the source clock. It must arrive at the target latch input before the
opening edge of the target clock, thereby ensuring consistency acros
multiple cycles.

Time borrowing allows data to arrive at a target latch during the activ
portion of the target’s clock. To ensure consistency across multiple cl
cycles, the delay allowed for paths starting at that latch must be reduce
the difference between the actual arrival time at the latch and the ope
edge of the clock (the time borrowed by paths in the previous cycle).

Max Transition
Times

Latch-Based
Borrowing
Version 1.2 August 22, 1997 91

Timing Exceptions

e

-

ing
f

is
 are
The default limit on time borrowing for a given latch is the active puls
width of the clock minus the setup time of the latch. Theborrow_limit
construct can only be used to specify a smaller limit; larger limits are
ignored.

Syntax

borrow_limit_spec::= (label?BORROW_LIMIT NUMBER
port_instance*)

If no port_instance is specified, borrowing will be restricted for all level
sensitive latches.

If a port_instance that was identified as a clock (through theCLOCK
construct—see “Clock Specifications” on page 66) is specified, borrow
will be restricted for all level-sensitive latches in the transitive fanout o
that clock.

Otherwise, theport_instances must be clock input pins of level-sensitive
latches.

TheCLOCK_DELAY construct is used to specify the following
constraints:

■ The insertion delay through a clock distribution network

■ The skew in the insertion delay between different leaf pins of the
network

■ The slew of the clock at the leaf pins of the network

This construct is a Level 1 construct.

Syntax

clock_delay_spec::= (label?CLOCK_DELAY
clock_root leaf_spec+)

clock_root ::= port_instance
||= (cell_instance input_port output_port)

leaf_spec::= (leaf_delay_spec+ port_instance*)

leaf_delay_spec::= insertion_delay_spec
||= clock_skew_spec
||= clock_slew_spec

insertion_delay_spec::= (INSERTION_DELAY rise_fall_min_max)

clock_skew_spec::= (SKEW min_max)

clock_slew_spec::= (SLEW slew_value)

If a port_instance is specified for the clock root, it indicates the pin that
the source of the clock distribution network. Insertion delay and skew

Clock Delay
92 Version 1.2 Timing Subset

Timing Exceptions

e

s

the

een
measured from that pin to each of the leafport_instances.

If a cell_instance is specified for the clock root, it gives the instance nam
of a cell that drives the clock distribution network. Insertion delay is
measured from the specifiedinput_port through theoutput_port to each of
the leafport_instances.

Insertion delay, skew, and slew can be specified.

If no leafport_instance is specified, theleaf_spec applies to all primitive
clock input pins that are reached by tracing forward from the specified
clock_root through combinational logic. These primitive clock input pin
are the implicit leafport_instances.

The slew values at a primitive clock input pin will be determined using
following precedence order:

■ The slew specified explicitly by anINTERNAL_SLEW construct

■ The calculated slew, when the physical clock network has already b
implemented

■ The slew specified by aCLOCK_DELAY construct that specifically
lists the leaf pin

■ The slew specified by aCLOCK_DELAY construct that includes the
pin as an implicit leafport_instance

■ If severalCLOCK_DELAY constructs with slew specifications
implicitly include the pin, the slew is taken from the specification
where the root is closest to the leaf pin.

■ The defaultINTERNAL_SLEW

■ The defaultINPUT_SLEW

■ 0

The timing exceptions can be case-dependent.

Syntax

timing_exception_case::= (CASE IDENTIFIER
timing_exception_case_spec+)

timing_exception_case_spec::= timing_exception_spec_0
||= timing_exception_no_case_1

Timing Exception
Cases
Version 1.2 August 22, 1997 93

Timing Exceptions
Example

(EXCEPTIONS
(level 1

(case normal
(multi_cycle (setup 4) (from reg1))

)
(case throttled

(multi_cycle (setup 2) (from reg1))
)

)
)

In this example, the number of cycles required for paths starting atreg1
depends on whether the clock provided to the chip is being throttled.
94 Version 1.2 Timing Subset

5

Parasitics Subset

Parasitics Subset Header

Parasitics Environment

Parasitics Constraints

Parasitics Subset Header

ll is

ints.
,

Parasitics Subset Header

The parasitics subset of each cell entry in the GCF file includes the
following:

■ Information about the parasitics in the environment in which the ce
intended to operate

■ Constraints on the parasitics within the cell

This chapter describes the parasitic environment and parasitic constra
For information on other constructs, refer to “Extensions” on page 37
“Meta Data” on page 40, and “Include Files” on page 42.

Syntax

parasitics_subset::= (SUBSET PARASITICS
 parasitics_subset_body)

parasitics_subset_body::= parasitics_subset_spec+
||= include

parasitics_subset_spec::= parasitics_environment
||= parasitics_constraints
||= extension
||= meta_data

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(INSTANCE *)
(SUBSET PARASITICS

(ENVIRONMENT
 . . .

)
(CONSTRAINTS

 . . .
)

)
)

Version 1.2 August 22, 1997 97

Parasitics Environment

s of

o

s of

for
Parasitics Environment

The parasitics environment of a cell describes a number of conditions
external to the cell that affect its timing behavior. This version of GCF
includes only the external capacitance on nets connected to the cell
interface pins.

Syntax

parasitics_environment::= (ENVIRONMENT
parasitics_env_spec+)

parasitics_env_spec::= parasitics_env_spec_0
||= parasitics_env_spec_1

parasitics_env_spec_0::= external_load_spec
||= extension
||= meta_data

parasitics_env_spec_1::= (LEVEL 1 parasitics_env_1+)

parasitics_env_1::= parasitics_env_no_case_1
||= parasitics_env_case

parasitics_env_no_case_1::= external_fanout_spec

The following sections describe external loading, external fanout, and
parasitic environment cases.

The external capacitance on an interface net can be specified in term
the actual capacitance value using theEXTERNAL_LOAD construct.

Syntax

external_load_spec::= (label?EXTERNAL_LOAD capacitance
 port_instance*)

capacitance::= min_max

The capacitance can be specified for both input and output ports. If n
port_instance is specified, the specification applies by default to all
primary ports.

The external capacitance on an interface net can be specified in term
the number of loads using theEXTERNAL_FANOUT construct. This
construct is a Level 1 construct because it requires wire load models
proper interpretation.

Syntax

external_fanout_spec::= (label?EXTERNAL_FANOUT num_loads
port_instance*)

num_loads::= min_max

External Loading

External Fanout
98 Version 1.2 Parasitics Subset

Parasitics Environment

tput
lt
The number of external fanouts can be specified for both input and ou
ports. If noport_instance is specified, the specification applies by defau
to all primary ports.

The parasitics environment can be case-dependent.

Syntax

parasitics_env_case::= (CASE IDENTIFIER
parasitics_env_case_spec+)

parasitics_env_case_spec::= parasitics_env_spec_0
||= parasitics_env_no_case_1

Example

(environment
(level 1

(case board
(external_load 50.0 out1)

)
(case tester

(external_load 100.0 out1)
)

)
)

In this example, the external capacitance on pinout1 depends on whether
the chip is mounted on the board or whether it is being tested.

Parasitics Environment
Cases
Version 1.2 August 22, 1997 99

Parasitics Constraints

 port

ut,

in

for

ed to
Parasitics Constraints

This version of GCF includes only theparasiticsconstraints on the nets
within a cell. Two forms of constraints are currently supported. The
constraint form depends on whether the net is connected to a primary
on the cell.

Syntax

parasitics_constraints::= (CONSTRAINTS parasitics_constraint+)

parasitics_constraint::= parasitics_cnstr_spec_0
||= parasitics_cnstr_spec_1

parasitics_cnstr_spec_0::= internal_load_spec
||= load_spec
||= extension
||= meta_data

parasitics_cnstr_spec_1::= (LEVEL 1 parasitics_cnstr_1+)

parasitics_cnstr_1::= parasitics_cnstr_no_case_1
||= parasitics_cnstr_case

parasitics_cnstr_no_case_1::= internal_fanout_spec
||= fanout_spec

The following sections describe internal loading, loading, internal fano
fanout, and parasitic constraint cases.

The constraint on the capacitance of an internal net can be specified
terms of an explicit capacitance value using theINTERNAL_LOAD
construct.

Syntax

internal_load_spec::= (label?INTERNAL_LOAD capacitance
 port_instance*)

The constraint on the capacitance of an internal net can be specified
both input and output ports. If noport_instance is specified, the
specification applies by default to all primary ports.

The constraint on the capacitance of an internal net that is not connect
a primary port on the cell can be specified in terms of an explicit
capacitance value using theLOAD construct.

Syntax

load_spec::= (label?LOAD capacitance
 port_instance*)

Internal Loading

Loading
100 Version 1.2 Parasitics Subset

Parasitics Constraints

n any
eral
e
lt

in

dels

tput
lt

ed to
ads
se

 net.
ame

stead.
The constraint on the capacitance of an internal net can be specified o
port connected to the net. If different constraints are specified on sev
ports connected to the same net, the most restrictive constraint will b
used. If noport_instance is specified, the specification applies by defau
to all internal nets.

The constraint on the capacitance of an internal net can be specified
terms of the number of loads using theINTERNAL_FANOUT construct.
This construct is a Level 1 construct because it requires wire load mo
for proper interpretation.

Syntax

internal_fanout_spec::= (label?INTERNAL_FANOUT num_loads
port_instance*)

The number of internal fanouts can be specified for both input and ou
ports. If noport_instance is specified, the specification applies by defau
to all primary ports.

The constraint on the capacitance of an internal net that is not connect
a primary port on the cell can be specified in terms of the number of lo
using theFANOUT construct. This construct is a Level 1 construct becau
it requires wire load models for proper interpretation.

Syntax

fanout_spec::= (label?FANOUT num_loads
port_instance*)

The number of fanouts can be specified on any port connected to the
If different constraints are specified on several ports connected to the s
net, the most restrictive constraint will be used. If noport_instance is
specified, the specification applies by default to all internal nets.

The parasitics constraints can be case-dependent, although it usually
makes sense to specify the tightest constraint across all of the cases in

Syntax

parasitics_cnstr_case::= (CASE IDENTIFIER
parasitics_cnstr_case_spec+)

parasitics_cnstr_case_spec::= parasitics_cnstr_spec_0
||= parasitics_cnstr_no_case_1

Internal Fanout

Fanout

Parasitics Constraint
Cases
Version 1.2 August 22, 1997 101

Parasitics Constraints
102 Version 1.2 Parasitics Subset

6

Area Subset

Area Subset Header

Area Constraints

Area Subset Header

ng:

ll

aints,

0,
Area Subset Header

The area subset of each cell entry in the GCF file includes the followi

■ Constraints on the area of the cell

■ Constraints on the area of the primitives instantiated within the ce

This chapter describes the primitive area constraints, total area constr
cell porosity, and area constraint cases. For information on other
constructs, refer to “Extensions” on page 37, “Meta Data” on page 4
and “Include Files” on page 42.

Syntax

area_subset::= (SUBSET AREA area_subset_body)

area_subset_body::= area_cnstr_spec+
||= include

area_cnstr_spec::= area_cnstr_spec_0
||= area_cnstr_spec_1

area_cnstr_spec_0::= primitive_area_spec
||= total_area_spec
||= extension
||= meta_data

area_cnstr_spec_1::= (LEVEL 1 area_cnstr_1+)

area_cnstr_1::= area_cnstr_no_case_1
||= area_cnstr_case

area_cnstr_no_case_1::= porosity_spec

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(INSTANCE *)
(SUBSET AREA

(PRIMITIVE_AREA 5000)
(TOTAL_AREA 5500)

)
)

Version 1.2 August 22, 1997 105

Area Constraints

ed
ing

ny
 the

 are
vely.

s)

0

 are
vely.

le(s)
ea of

ity

or
the
Area Constraints

The cumulative area of the leaf-level primitive cells that are instantiat
either directly within a cell or within its descendents can be specified us
thePRIMITIVE_AREA construct. The primitive area does not include a
physical overhead such as routing and power distribution which affect
total area of the cell.

Syntax

primitive_area_spec::= (label?PRIMITIVE_AREA area_value)

area_value ::= min_max

If a single value is specified, it represents the maximum. If two values
specified, they represent the minimum and maximum values, respecti

Example

(PRIMITIVE_AREA 5000)

Assuming that thearea_scale is set so that area values in the GCF file(
are specified in square microns, the example specifies that the total
primitive area within the current cell must be less than or equal to 500
square microns.

The total area of a cell (including physical overhead) can be specified
using theTOTAL_AREA construct.

Syntax

total_area_spec::= (label?TOTAL_AREA area_value)

If a single value is specified, it represents the maximum. If two values
specified, they represent the minimum and maximum values, respecti

Example

(TOTAL_AREA 5500)

Assuming that the area_scale is set so that area values in the GCF fi
are specified in square microns, this example specifies that the total ar
the current cell must be less than or equal to 5500 square microns.

ThePOROSITY construct is a Level 1 construct and specifies the poros
of a cell.

Porosity is the percentage of the total primitive area that is available f
over-the-cell routing. The total primitive area is the sum across all of

Primitive Area

Total Area

Porosity
106 Version 1.2 Area Subset

Area Constraints

e

 are
vely.

rent

es
.

leaf-level primitive cells which are instantiated either directly within th
current cell or within its descendents.

Syntax

porosity_spec::= (label?POROSITY porosity_value)

porosity_value::= min_max

If a single value is specified, it represents the minimum. If two values
specified, they represent the minimum and maximum values, respecti

Example

(POROSITY 40)

In this example, at least 40 percent of the primitive area within the cur
cell must be available for over-the-cell routing.

The area constraints can be case-dependent, although it usually mak
sense to specify the tightest constraint across all of the cases instead

Syntax

area_cnstr_case::= (CASE IDENTIFIER area_cnstr_case_spec+)

area_cnstr_case_spec::= area_cnstr_spec_0
||= area_cnstr_no_case_1

Area Constraint Cases
Version 1.2 August 22, 1997 107

Area Constraints
108 Version 1.2 Area Subset

7

Power Subset

Power Subset Header

Power Constraints

Power Subset Header

ing:

et
her
0,
Power Subset Header

The power subset of each cell entry in the GCF file includes the follow

■ Constraints on the average power consumed by the cell and the
primitives instantiated within it

■ Constraints on the power consumed by particular nets

This chapter describes the average cell power constraints, average n
power constraints, and power constraint cases. For information on ot
constructs, refer to “Extensions” on page 37, “Meta Data” on page 4
and “Include Files” on page 42.

Syntax

power_subset::= (SUBSET POWERpower_subset_body)
power_subset_body::= power_cnstr_spec+

||= include

power_cnstr_spec::= power_cnstr_spec_0
||= power_cnstr_spec_1

power_cnstr_spec_0::= average_cell_power
||= average_net_power
||= extension
||= meta_data

power_cnstr_spec_1::= (LEVEL 1 power_cnstr_1+)

power_cnstr_1::= power_cnstr_case

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(INSTANCE *)
(SUBSET POWER

(AVG_CELL_POWER 50)
)

)

Version 1.2 August 22, 1997 111

Power Constraints

e

 are

ge
ual to

cified
y

et is

ge
 watt.
Power Constraints

The average power consumed by the current GCF cell instance can b
specified using theAVG_CELL_POWER construct.

Syntax

average_cell_power::= (label?AVG_CELL_POWER power_value)

power_value::= min_max

If a single value is specified, it represents the maximum. If two values
specified, they represent the minimum and the maximum values,
respectively.

Example

(AVG_CELL_POWER 50.0)

Assuming that thepower_scale is set so that power values in the GCF
file(s) are specified in milliwatts, the example specifies that the avera
power consumed by the current cell instance must be less than or eq
50 milliwatts.

The average power dissipated by the capacitance in a net can be spe
using theAVG_NET_POWER construct. This construct is generally onl
used for clock nets.

Syntax

average_net_power::= (label?AVG_NET_POWER power_value
port_instance)

The power is specified for the physical net as a whole, although the n
identified using one of theport_instances connected to the net.

Example

(AVG_NET_POWER 1000.0 CLKBUF.OUT)

Assuming that thepower_scale is set so that power values in the GCF
file(s) are specified in milliwatts, the example specifies that the avera
power consumed by the specified net must be less than or equal to 1

Average Cell Power

Average Net Power
112 Version 1.2 Power Subset

Power Constraints

kes
.

The power constraints can be case-dependent, although it usually ma
sense to specify the tightest constraint across all of the cases instead

Syntax

power_cnstr_case::= (CASE IDENTIFIER
power_cnstr_case_spec+)

power_cnstr_case_spec::= power_cnstr_spec_0

Power Constraint Cases
Version 1.2 August 22, 1997 113

Power Constraints
114 Version 1.2 Power Subset

8

Syntax of GCF

GCF File Characters

Syntax Conventions

GCF File Syntax

GCF File Characters

in

ers,

cters
cter.

~

yntax.
er

e
 to

n

an
 only

(‘,
ter
 bit-

sis

g in
ped
GCF File Characters

The legal GCF character set and the method of including comments
GCF files are described in this section.

The characters you can use in an GCF file are the following:

■ Alphanumeric characters – the letters of the alphabet, all the numb
and the underscore ‘_’ character.

■ Special characters – any character other than alphanumeric chara
(which includes the underscore as defined above) is a special chara
The following is a list of special characters:
! " # $ % & ´ () * + , - . / : ; < = > ? @ [\] ^ ` { | }

■ Syntax characters – these are special characters required by the s
Examples are: () " * : [] ? and the hierarchy delimiter charact
but see also the definitions of GCF operators, etc.

■ The escape character – to use any special character in anIDENTIFIER,
prefix it with the escape character, a backslash ‘\’. This includes th
backslash character itself: two consecutive backslashes are used
represent a single backslash in the originalIDENTIFIER.

See “Variables” on page 119 for a description of anIDENTIFIER. Note
that if the character would normally have any special meaning in a
IDENTIFIER, this is lost when the character is escaped.

■ Hierarchy delimiter character – either the period ‘.’ or the slash ‘/’ c
be established as the hierarchy delimiter character. This character
has this special meaning in anIDENTIFIER. An escaped hierarchy
delimiter character loses its meaning as a hierarchy delimiter.

■ Left index delimiter character - the left bracket ‘[‘, left parenthesis ‘
or left angle bracket ‘<‘ can be established as the left index delimi
character. The left index delimiter is used as the first delimiter in a
spec. This character only has this special meaning in anIDENTIFIER.
used as the name of a port or cell instance. An escaped left index
delimiter character loses its meaning as a left index delimiter.

■ Right index delimiter character - the right bracket ‘]‘, right parenthe
‘)‘, or right angle bracket ‘>’ can be established as the right index
delimiter character. The right index delimiter is used as the last
delimiter in a bit-spec. This character only has this special meanin
anIDENTIFIER used as the name of a port or cell instance. An esca
right index delimiter character loses its meaning as a right index
delimiter.

GCF Characters
Version 1.2 August 22, 1997 117

GCF File Characters

ed

s.

l to
t

e

■ White space characters – tabs, spaces and newlines are consider
white space. Use white space to separate lexical tokens.

Keywords,IDENTIFIERs, characters, and numbers must be delimited
either by syntax characters or by white space.

Comments can be placed in GCF files using either “C” or “C++” style

“C”-style comments begin with /* and end with */. Nesting of “C”-style
comments is not permitted. The places in an GCF file where it is lega
put “C”-style comments are not defined by this specification. Differen
annotators can have different capabilities in this regard.

“C++”-style comments begin with // and continue until the end of the
current line (the next newline character). Annotators should ignore th
double-slash and any text after them on any line in the file.

Comments
118 Version 1.2 Syntax of GCF

Syntax Conventions

in

for
f
r

hich
main

d
elf,

 3.4,

, .7,

esign
Syntax Conventions

The notation used in presenting the syntax of GCF are as follows:

item item is a symbol for a syntax construct item.

item ::= definition the BNF symbolitem is defined asdefinition.

item ::= definition1 the BNF symbolitem is defined either asdefinition1 or asdefinition2.
||= definition2 (any number of alternative syntax definitions can appear)

item? item is optional in the definition (it can appear once or not at all).

item* item can appear zero or any number of times.

item+ item can appear one or more times (but cannot be omitted).

KEYWORD is a keyword and appears in the file as shown. Keywords are shown
uppercase bold for easy identification but are case insensitive.

VARIABLE is a symbol for a variable. Variable symbols are shown in uppercase
easy identification. Some variables are defined as one of a number o
discrete choices (e.g.HCHAR, which is either a period or a slash). Othe
variables represent user data such as names and numbers.

This section defines the user data variables used in GCF. Variables w
must be one of a number of choices (enumerations) are defined in the
syntax definition which follows.

QSTRING is a string of any legal GCF characters and spaces, excluding tabs an
newlines, enclosed by double-quotes. Except for the double-quote its
special characters lose their special meaning in aQSTRING. To embed a
double-quote within a QSTRING, escape it with a backslash.

NUMBER is a non-negative (zero or positive) real number, for example: 0, 1, 0.0,
.7, 0.3, 2.4e2, 5.3e-1, 8.2E+5

RNUMBER is a positive, zero or negative real number, for example: 0, 1, 0.0, -3.4
-0.3, 2.4e2, -5.3e-1, 8.2E+5

DNUMBER is a non-negative integer number, for example: +12, 23, 0

INUMBER is an integer number, for example: -5, 10, 0, +7

IDENTIFIER is the name of an object in the design. This could be an instance of a d
block or cell or a port depending on where theIDENTIFIER occurs in the
GCF file. Identifiers can be up to 1024 characters long.

Notation

Variables
Version 1.2 August 22, 1997 119

Syntax Conventions

ers,
.

, for
 an

left
.

ger,

ir of

re
 (\)

t and
The following characters can be used in an identifier:

■ Alphanumeric characters – the letters of the alphabet, all the numb
and the underscore ‘_’ character.IDENTIFIERs are case-sensitive, i.e
uppercase and lowercase letters are considered different.

■ Bit specs – to indicate an object selected from an array of objects
example a single port selected from a bus port or an instance from
array of instances, use a “bit spec” at the end of theIDENTIFIER of the
array (with no separating white space). A bit spec consists of the
and right index delimiters (‘[’ and ‘]’, by default) enclosing a range

To select a single object, the range should be a single positive inte
for example, [4].

To select a contiguous group of objects, the range should be a pa
positive integers separated by a colon (‘:’), for example, [3:31] and
[15:0].

To select all objects in the array, the range should be theWILDCARD,
an asterisk (‘*’). For example, [*].

■ Hierarchy delimiter character – see “PATH” below.

■ The escape character ‘\’ – if you want to use a non-alphanumeric
character as a part of anIDENTIFIER it must be escaped by being
prefixed with the ‘\’ character. Examples are shown below.
Note – this escaping mechanism is different from Verilog HDL whe
the entireIDENTIFIER is escaped by placing one escape character
before theIDENTIFIER and a white space after theIDENTIFIER.
Characters that have special meaning in identifiers, such as the lef
right index delimiters and the hierarchy delimiter, lose that special
meaning when escaped.

■ Do not use white space (spaces, tabs or newlines) in anIDENTIFIER.

Examples of correctIDENTIFIERs are:

AMUX\+BMUX

Cache_Row_\#4

mem_array\[0\:1023\]\(0\:15\) ; From a language where square
; brackets indicates arrays
; parentheses indicates bit specs

pipe4\-done\&enb[3] ; Unescaped square brackets
; represent a bit spec
120 Version 1.2 Syntax of GCF

Syntax Conventions

y
ays
the

aped
ge

on

w a
PATH is a hierarchicalIDENTIFIER. The names of levels in the design hierarch
must be separated by the hierarchy delimiter character. A path is alw
interpreted relative to a particular region of the design (which can be
top level cell in the design, so a leading hierarchy delimiter character
should not be used. The hierarchy delimiter character must not be esc
or it loses its meaning as a hierarchy delimiter. See “Delimiters” on pa
30 for details on how the hierarchy delimiter character is established.

PARTIAL_PATH is either an IDENTIFIER or a PATH. A partial path is used in combinati
with aprefix_id to reduce the file size when many PATHs contain a
common prefix. See “Design References” on page 56 for details on ho
prefix_id is established.

HCHAR is the hierarchy delimiter character.

LI_CHAR is the left index delimiter character.

RI_CHAR is the right index delimiter character.

COLON is the colon character (‘:’).

WILDCARD is the asterisk character (‘*’).
Version 1.2 August 22, 1997 121

GCF File Syntax

n

GCF File Syntax

The formal syntax definition for the General Constraint Format is give
here. It is not possible, using the notation chosen, to clearly show how
white-space must be used in the GCF file. Some explanations and
comments are included in the formal descriptions. A double-slash (//)
indicates comments which are not part of the syntax definition.

constraint_file ::= (GCF header section+)

header ::= (HEADER version header_info*)

section ::= globals
||= cell_spec
||= extension
||= meta_data
||= include

version ::= (VERSION QSTRING)

header_info ::= design_name
||= date
||= program
||= delimiters
||= time_scale
||= cap_scale
||= res_scale
||= length_scale
||= area_scale
||= voltage_scale
||= power_scale
||= extension

design_name ::= (DESIGN QSTRING)

date ::= (DATE QSTRING)

program ::= (PROGRAM program_name program_version program_company)

program_name ::= QSTRING
program_version ::= QSTRING

program_company ::= QSTRING

delimiters ::= (DELIMITERS QSTRING)
122 Version 1.2 Syntax of GCF

GCF File Syntax
time_scale ::= (TIME_SCALE multiplier)
cap_scale ::= (CAP_SCALE multiplier)
res_scale ::= (RES_SCALEmultiplier)

length_scale ::= (LENGTH_SCALE multiplier)
area_scale ::= (AREA_SCALE multiplier)

voltage_scale ::= (VOLTAGE_SCALE multiplier)
power_scale ::= (POWER_SCALE multiplier)

multiplier ::= NUMBER
Version 1.2 August 22, 1997 123

GCF File Syntax

lows:
Extensions are defined as follows:

extension ::= (EXTENSION QSTRINGextension_construct+)

extension_construct ::= (user_defined)
||= include

Constraint labels are defined as follows:

label ::= label_id COLON

label_id ::= IDENTIFIER
||= QSTRING

Meta data specifications are defined as follows:

meta_data ::= (LEVEL 1 meta_data_1+)

meta_data_1 ::= (META meta_construct+)

meta_construct ::= precedence
||= meta_reserved
||= include

precedence ::= (PRECEDENCE (label_id label_id+))

meta_reserved ::=(IDENTIFIER reserved_for_future_definition)

Include specifications are defined as follows:

include ::= (INCLUDE QSTRING)

Common types of values used in many constraints are defined as fol

min_and_max ::= NUMBER NUMBER

r_min_and_max ::= RNUMBER RNUMBER

min_max ::= NUMBER NUMBER?

r_min_max ::= RNUMBER RNUMBER?

rise_fall_min_max ::= NUMBER
||= NUMBER NUMBER
||= NUMBER NUMBER NUMBER NUMBER

r_rise_fall_min_max ::= RNUMBER
||= RNUMBER RNUMBER
||= RNUMBER RNUMBER RNUMBER RNUMBER

Extensions

Labels

Meta Data

Include Specifications

Value Types
124 Version 1.2 Syntax of GCF

GCF File Syntax
rise_and_fall ::= NUMBER NUMBER

r_rise_and_fall ::= RNUMBER RNUMBER

rise_fall ::= NUMBER NUMBER?

r_rise_fall ::= RNUMBER RNUMBER?
Version 1.2 August 22, 1997 125

GCF File Syntax
The globals section is defined as follows:

globals ::= (GLOBALS globals_subset+)

globals_subset ::= env_globals_subset
||= timing_globals_subset
||= extension
||= meta_data

The environment globals are defined as follows:

env_globals_subset ::= (GLOBALS_SUBSET ENVIRONMENT env_globals_body)

env_globals_body ::= env_globals_spec+
||= include

env_globals_spec ::= env_globals_spec_0
||= env_globals_spec_1

env_globals_spec_0 ::= process
||= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
||= extension
||= meta_data

process ::= (PROCESSmin_and_max)

voltage ::= (VOLTAGE r_min_and_max)

temperature ::= (TEMPERATURE r_min_and_max)

operating_conditions ::= (label?OPERATING_CONDITIONS
QSTRING
process_value
voltage_value
temperature_value)

process_value ::= NUMBER

voltage_value ::= RNUMBER

temperature_value ::= RNUMBER

voltage_threshold ::= (label?VOLTAGE_THRESHOLD
min_and_max)

Globals

Environment Globals
126 Version 1.2 Syntax of GCF

GCF File Syntax
env_globals_spec_1 ::= (LEVEL 1 env_globals_1+)

env_globals_1 ::= env_globals_case

env_globals_case ::= (CASE IDENTIFIER env_globals_case_spec+)

env_globals_case_spec ::= env_globals_spec_0

The timing globals are defined as follows:

timing_globals_subset ::= (GLOBALS_SUBSET TIMING timing_globals_body)

timing_globals_body ::= timing_globals_spec+
||= include

timing_globals_spec ::= timing_globals_spec_0
||= timing_globals_spec_1

timing_globals_spec_0 ::= primary_waveform
||= extension
||= meta_data

primary_waveform ::=(label?WAVEFORM waveform_name period edge_pair_list)

waveform_name ::= QSTRING

period ::= NUMBER

edge_pair_list ::= pos_pair+
||= neg_pair+

pos_pair ::= pos_edge neg_edge

neg_pair ::= neg_edge pos_edge

pos_edge ::= (POSEDGEmin_max)

neg_edge ::= (NEGEDGE min_max)

timing_globals_spec_1 ::= (LEVEL 1 timing_globals_1+)

timing_globals_1 ::= timing_globals_no_case_1
||= timing_globals_case

timing_globals_no_case_1 ::= derived_waveform
||= clock_group

Timing Globals
Version 1.2 August 22, 1997 127

GCF File Syntax
derived_waveform ::= (label?DERIVED_WAVEFORM
waveform_name parent_waveform_name
derived_waveform_option+)

parent_waveform_name ::= QSTRING

derived_waveform_option ::= period_multiplier
||= phase_shift
||= skew_adjustment

period_multiplier ::= (PERIOD_MULTIPLIER DNUMBER)

phase_shift ::= (PHASE_SHIFT RNUMBER)

skew_adjustment ::= (SKEW_ADJUSTMENT edge_pair_list)

clock_group ::= (label?CLOCK_GROUP clock_group_name waveform_name+)

clock_group_name ::= QSTRING

timing_globals_case ::= (CASE IDENTIFIER timing_globals_case_spec+)

timing_globals_case_spec ::= timing_globals_spec_0
||= timing_globals_no_case_1
128 Version 1.2 Syntax of GCF

GCF File Syntax
The references to design elements are defined as follows:

name_prefixes ::= (NAME_PREFIXES num_prefixes name_prefix+)

num_prefixes ::= DNUMBER

name_prefix ::= prefix_id QSTRING

prefix_id ::= DNUMBER

cell_instance ::= PATH
||= (prefix_id)
||= (prefix_id PARTIAL_PATH)

port_instance ::= port
||= PATH HCHARport
||= (prefix_id port)
||= (prefix_idPARTIAL_PATH HCHAR port)

/* There should be no white space separating the PATH or PARTIAL_PATH,
 HCHAR, andport components of aport_instance */

port ::= scalar_port
||= bus_port

input_port ::= scalar_port

output_port ::= scalar_port

scalar_port ::= IDENTIFIER
||= IDENTIFIER LI_CHAR DNUMBER RI_CHAR

bus_port ::= IDENTIFIER LI_CHAR DNUMBER COLON DNUMBER RI_CHAR
||= IDENTIFIER LI_CHAR WILDCARD RI_CHAR

cell_id ::= (CELLTYPE cell_name)
||= (CELLTYPE library_name cell_name view_name?)

cell_name ::= QSTRING

library_name ::= QSTRING

view_name ::= QSTRING

Design References
Version 1.2 August 22, 1997 129

GCF File Syntax
Cell entries are defined as follows:

cell_spec ::= (CELL cell_instance_spec cell_body_spec+)

cell_instance_spec ::= cell_instance_path
||= (cell_instance_path+)
||= ()
||= cell_views

cell_instance_path ::= PATH

cell_views ::= (CELLTYPE cell_name)
||= (CELLTYPE library_name cell_name view_name*)

cell_body_spec ::= name_prefixes
||= subset
||= extension
||= meta_data
||= include

Subset specifications are defined as follows:

subset ::= timing_subset
||= parasitics_subset
||= area_subset
||= power_subset

Cell Entries

Subsets
130 Version 1.2 Syntax of GCF

GCF File Syntax
The timing subset is defined as follows:

timing_subset ::= (SUBSET TIMING timing_subset_body)

timing_subset_body ::= timing_subset_spec+
||= include

timing_subset_spec ::= timing_environment
||= timing_exceptions
||= extension
||= meta_data

The timing environment is defined as follows:

timing_environment ::= (ENVIRONMENT timing_env_spec+)

timing_env_spec ::= timing_env_spec_0
||= timing_env_spec_1

timing_env_spec_0 ::= clock_spec
||= arrival_spec
||= departure_spec
||= external_delay_spec
||= driver_spec
||= input_slew_spec
||= extension
||= meta_data

clock_spec ::= (label?CLOCK waveform_name port_instance+)

arrival_spec ::= (label?ARRIVAL waveform_edge arrival_value port_instance*)

arrival_value ::= (waveform_edge_identifier r_min_max)
||= r_rise_fall_min_max

departure_spec ::= (label?DEPARTURE waveform_edge departure_value port_instance*)

departure_value ::= setup_rise_fall hold_rise_fall
||= (waveform_edge_identifier setup_value hold_value)

setup_rise_fall ::= r_rise_and_fall
hold_rise_fall ::= r_rise_and_fall

setup_value ::= RNUMBER
hold_value ::= RNUMBER

external_delay_spec ::= (label?EXTERNAL_DELAY
external_delay_value endpoints_spec+)

Timing Subset

Timing Environment
Version 1.2 August 22, 1997 131

GCF File Syntax
external_delay_value ::= (waveform_edge_identifier r_min_max)
||= r_rise_fall_min_max

waveform_edge ::= (waveform_edge_identifier waveform_name)

driver_spec ::= driver_cell_spec
||= driver_strength_spec

driver_cell_spec ::= (label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
opt_port_instance_list)

driver_cell_port_spec ::= (cell_id)
||= (cell_id output_port)
||= (cell_id input_port output_port)

driver_cell_options ::= (driver_cell_option+)

driver_cell_option ::= drive_multiplier
||= driver_input_slew
||= waveform_edge_identifier

drive_multiplier ::= (PARALLEL_DRIVERS DNUMBER)

driver_input_slew ::= (INPUT_SLEW slew_value input_port*)

slew_value ::= rise_fall_min_max

driver_strength_spec ::= (label?DRIVER_STRENGTH strength_value port_instance*)

strength_value ::= rise_fall

input_slew_spec ::= (label? INPUT_SLEW slew_value port_instance*)

timing_env_spec_1 ::= (LEVEL 1 timing_env_1+)

timing_env_1 ::= timing_env_no_case_1
||= timing_env_case

timing_env_no_case_1 ::= constant_spec
||= operating_conditions
||= internal_slew_spec

constant_spec ::= (label?CONSTANT constant_value port_instance+)

constant_value ::= 0
||= 1
132 Version 1.2 Syntax of GCF

GCF File Syntax
internal_slew_spec ::= (label? INTERNAL_SLEW slew_value port_instance*)

timing_env_case ::= (CASE IDENTIFIER timing_env_case_spec+)

timing_env_case_spec ::= timing_env_spec_0
||= timing_env_no_case_1
Version 1.2 August 22, 1997 133

GCF File Syntax
The timing exceptions are defined as follows:

timing_exceptions ::= (EXCEPTIONS timing_exception_spec+)

timing_exception_spec ::= timing_exception_spec_0
||= timing_exception_spec_1

timing_exception_spec_0 ::= disable_spec_0
||= multi_cycle_spec_0
||= path_delay_spec_0
||= transition_time_spec
||= extension
||= meta_data

timing_exception_spec_1 ::= (LEVEL 1 timing_exception_1+)

timing_exception_1 ::= timing_exception_no_case_1
||= timing_exception_case

timing_exception_no_case_1::= disable_spec_1
||= multi_cycle_spec_1
||= path_delay_spec_1
||= internal_slew_spec
||= borrow_limit_spec
||= clock_delay_spec

timing_exception_case ::= (CASE IDENTIFIER timing_exception_case_spec+)

timing_exception_case_spec::= timing_exception_spec_0
||= timing_exception_no_case_1

arc_spec ::= (ARC port_instance port_instance)

endpoints_spec ::= from_spec
||= to_spec
||= (from_spec to_spec)

from_spec ::= (FROM from_to_item+)

to_spec ::= (TO from_to_item+)

from_to_item ::= port_instance
||= cell_instance
||= waveform_name

thru_spec ::= (THRU port_instance)

thru_all_spec ::= (THRU_ALL port_instance port_instance+)

Timing Exceptions
134 Version 1.2 Syntax of GCF

GCF File Syntax
disable_spec_0 ::= disable_item_spec_0
||= disable_endpoints_spec_0

disable_item_spec_0 ::= label?DISABLE disable_item_0+)

disable_item_0 ::= port_instance
||= cell_instance
||= arc_spec

disable_endpoints_spec_0 ::= (label?DISABLE endpoints_spec+ disable_endpoints_options?)

disable_endpoints_options ::= timing_check
||= edge_identifier
||= timing_check edge_identifier

timing_check ::= SETUP
||= HOLD

disable_spec_1 ::= disable_edges_spec_1
||= disable_cell_spec_1

disable_edges_spec_1 ::= (label?DISABLE disable_edges_path_spec+ timing_check?)

disable_cell_spec_1 ::= (label?DISABLE disable_cell_path_spec+)

disable_edges_path_spec ::= thru_edge_spec
||= arc_edges_spec
||= thru_all_edges_spec

thru_edge_spec ::= (THRU port_instance_edge)

arc_edges_spec ::= (ARC port_instance_edge port_instance_edge)

thru_all_edges_spec ::= (THRU_ALL port_instance_edge port_instance_edge+)

port_instance_edge ::= (edge_identifier port_instance)

disable_cell_path_spec ::= disable_instance_spec
||= disable_master_spec

disable_instance_spec ::= (INSTANCE cell_instance+)

disable_master_spec ::= (MASTER cell_id)

multi_cycle_spec_0 ::= (label?MULTI_CYCLE multi_cycle_option+ endpoints_spec+)

multi_cycle_option ::= timing_check_offset
||= edge_identifier
Version 1.2 August 22, 1997 135

GCF File Syntax
timing_check_offset ::= (timing_check num_cycles reference_clock?)

reference_clock ::= SOURCE
||= TARGET

num_cycles ::= INUMBER

multi_cycle_spec_1 ::= (label?MULTI_CYCLE multi_cycle_option+ multi_cycle_path_spec_1+)

multi_cycle_path_spec_1 ::= arc_spec
||= thru_spec
||= thru_all_spec

path_delay_spec_0 ::= (label?PATH_DELAY path_selay_value endpoints_spec+)

path_delay_spec_1 ::= (label?PATH_DELAY
path_delay_value path_delay_path_spec_1+)

path_delay_value ::= (timing_check waveform_edge_identifierNUMBER)
||= rise_fall_min_max

path_delay_path_spec_1 ::= arc_spec
||= thru_spec
||= thru_all_spec

transition_time_spec ::= (label?MAX_TRANSITION_TIME rise_fall port_instance*)

borrow_limit_spec ::= (label?BORROW_LIMIT NUMBER port_instance*)

clock_delay_spec ::= (label?CLOCK_DELAY clock_root leaf_spec+)

clock_root ::= port_instance
||= (cell_instance input_port output_port)

leaf_spec ::= (leaf_delay_spec+ port_instance*)

leaf_delay_spec ::= insertion_delay_spec
||= clock_skew_spec
||= clock_slew_spec

insertion_delay_spec ::= (INSERTION_DELAY rise_fall_min_max)

clock_skew_spec ::= (SKEW min_max)

clock_slew_spec ::= (SLEW slew_value)

waveform_edge_identifier ::= POSEDGE
||= NEGEDGE
136 Version 1.2 Syntax of GCF

GCF File Syntax
edge_identifier ::= POSEDGE
||= NEGEDGE
||= ANYEDGE
||= 0z
||= z1
||= 1z
||= z0
Version 1.2 August 22, 1997 137

GCF File Syntax
The parasitics subset is defined as follows:

parasitics_subset ::= (SUBSET PARASITICS parasitics_subset_body)

parasitics_subset_body ::= parasitics_subset_spec+
||= include

parasitics_subset_spec ::= parasitics_environment
||= parasitics_constraints
||= extension
||= meta_data

The parasitics environment is defined as follows:

parasitics_environment ::= (ENVIRONMENT parasitics_env_spec+)

parasitics_env_spec ::= parasitics_env_spec_0
||= parasitics_env_spec_1

parasitics_env_spec_0 ::= external_load_spec
||= extension
||= meta_data

external_load_spec ::= (label?EXTERNAL_LOAD capacitance port_instance*)

capacitance ::= min_max

parasitics_env_spec_1 ::= (LEVEL 1 parasitics_env_1+)

parasitics_env_1 ::= parasitics_env_no_case_1
||= parasitics_env_case

parasitics_env_no_case_1 ::= external_fanout_spec

external_fanout_spec ::= (label?EXTERNAL_FANOUT num_loads port_instance*)

num_loads ::= min_max

parasitics_env_case ::= (CASE IDENTIFIER parasitics_env_case_spec+)

parasitics_env_case_spec ::= parasitics_env_spec_0
||= parasitics_env_no_case_1

The parasitics constraints are defined as follows:

parasitics_constraints ::= (CONSTRAINTS parasitics_constraint+)

parasitics_constraint ::= parasitics_cnstr_spec_0
||= parasitics_cnstr_spec_1

Parasitics Subset

Parasitics Environment

Parasitics Constraints
138 Version 1.2 Syntax of GCF

GCF File Syntax
parasitics_cnstr_spec_0 ::= internal_load_spec
||= load_spec
||= extension
||= meta_data

internal_load_spec ::= (label? INTERNAL_LOAD capacitance port_instance*)

load_spec ::= (label?LOAD capacitance port_instance*)

parasitics_cnstr_spec_1 ::= (LEVEL 1 parasitics_cnstr_1+)

parasitics_cnstr_1 ::= parasitics_cnstr_no_case_1
||= parasitics_cnstr_case

parasitics_cnstr_no_case_1::= internal_fanout_spec
||= fanout_spec

internal_fanout_spec ::= (label? INTERNAL_FANOUT num_loadsport_instance*)

fanout_spec ::= (label?FANOUT num_loads port_instance*)

parasitics_cnstr_case ::= (CASE IDENTIFIER parasitics_cnstr_case_spec+)

parasitics_cnstr_case_spec::= parasitics_cnstr_spec_0
||= parasitics_cnstr_no_case_1
Version 1.2 August 22, 1997 139

GCF File Syntax
The area subset is defined as follows:

area_subset ::= (SUBSET AREA area_subset_body)

area_subset_body ::= area_cnstr_spec+
||= include

area_cnstr_spec ::= area_cnstr_spec_0
||= area_cnstr_spec_1

area_cnstr_spec_0 ::= primitive_area_spec
||= total_area_spec
||= extension
||= meta_data

primitive_area_spec ::= (label?PRIMITIVE_AREA area_value)

total_area_spec ::= (label?TOTAL_AREA area_value)

area_value ::= min_max

area_cnstr_spec_1 ::= (LEVEL 1 area_cnstr_1+)

area_cnstr_1 ::= area_cnstr_no_case_1
||= area_cnstr_case

area_cnstr_no_case_1 ::= porosity_spec

porosity_spec ::= (label?POROSITY porosity_value)

porosity_value ::= min_max

area_cnstr_case ::= (CASE IDENTIFIER area_cnstr_case_spec+)

area_cnstr_case_spec ::= area_cnstr_spec_0
||= area_cnstr_no_case_1

Area Subset
140 Version 1.2 Syntax of GCF

GCF File Syntax
The power subset is defined as follows:

power_subset ::= (SUBSET POWERpower_subset_body)

power_subset_body ::= power_cnstr_spec+
||= include

power_cnstr_spec ::= power_cnstr_spec_0
||= power_cnstr_spec_1

power_cnstr_spec_0 ::= average_cell_power
||= average_net_power
||= extension
||= meta_data

average_cell_power ::= (label?AVG_CELL_POWER power_value)

average_net_power ::= (label?AVG_NET_POWER power_value port_instance)

power_value ::= min_max

power_cnstr_spec_1 ::= (LEVEL 1 power_cnstr_1+)

power_cnstr_1 ::= power_cnstr_case

power_cnstr_case ::= (CASE IDENTIFIER power_cnstr_case_spec+)

power_cnstr_case_spec ::= power_cnstr_spec_0

Power Subset
Version 1.2 August 22, 1997 141

GCF File Syntax
142 Version 1.2 Syntax of GCF

A
annotator21

where to apply data in design 59
ARC keyword

syntax 134, 135
usage 79, 82

AREA keyword
syntax 140
usage 105

area subset
example 105
syntax 140
usage 105

AREA_SCALE keyword
syntax 123

ARRIVAL keyword
syntax 131
usage 67

arrival time
formal syntax description 131
usage 67

average cell power
example 112

average net power
example 112

AVG_CELL_POWER keyword
syntax 141
usage 112

AVG_NET_POWER keyword
syntax 141
usage 112

B
bit-specs

usage 120
BORROW_LIMIT keyword

syntax 136
usage 92

C
Cadence Design Systems

headquarters 12
CAP_SCALE keyword

example 32
syntax 31, 123

capacitance
formal syntax description 138

usage 98
CASE keyword

syntax 93, 128, 133, 134, 138, 139, 140, 141
usage 99, 101, 107, 113

case-dependent constraints
area

syntax 140
usage 107

parasitics constraints
syntax 139
usage 101

parasitics environment
example 99
syntax 138
usage 99

power
syntax 141
usage 113

timing environment
example 77
syntax 128, 133, 140

timing exceptions
example 94

Cases
usage 35

Cell Entries
usage 58

CELL keyword
syntax 130
usage 58

CELLTYPE keyword
syntax 129, 130
usage 57, 60

characters
escape character 117
hierarchy delimiter character 59, 117
left index delimiter character 117
legal in GCF files117
right index delimiter character 117
white space 118

clock
formal syntax description 131

CLOCK keyword
syntax 131
usage 66

clock root 66
CLOCK_DELAY keyword
Version 1.2 August 22, 1997 143 of 148

syntax 136
usage 92

CLOCK_GROUP keyword
example 54
syntax 128
usage 54

CONSTANT keyword
usage 75, 132

Constraint Forum
acknowledgements 13

constraints
in forward-annotation 23

CONSTRAINTS keyword
syntax 138
usage 100

D
DATE keyword

example 29
syntax 122
usage 29

DELIMITERS keyword
example 30
syntax 122

DEPARTURE keyword
syntax 131
usage 69

departure time
formal syntax description 131
usage 69

DERIVED_WAVEFORM keyword
example 53
syntax 128
usage 52

DESIGN keyword
syntax 122
use, see design name entry

Design References
usage 56

DISABLE keyword
syntax 135
usage 80, 81, 82, 83

DRIVER_CELL keyword
syntax 132
usage 73

DRIVER_STRENGTH keyword
syntax 74, 132

E
ENVIRONMENT keyword

syntax 126, 131, 138
usage 66, 98

EXCEPTIONS keyword
syntax 134
usage 78

EXTENSION keyword
syntax 124
usage 37

Extensions
usage 37

external fanout
formal syntax description 138

external load
formal syntax description 138
usage 98

EXTERNAL_DELAY keyword
syntax 131
usage 71

EXTERNAL_FANOUT keyword
syntax 138
usage 98

EXTERNAL_LOAD keyword
syntax 138
usage 98

F
fanout

formal syntax description 139
FANOUT keyword

syntax 139
usage 101

forward-annotation23
FROM keyword

syntax 134
usage 79

G
GCF creator20
GCF files

introduction to 11
GCF keyword

syntax 122
use 27

GLOBALS keyword
syntax 126
144 of 148 August 22, 1997 Version 1.2

0,
usage 45
GLOBALS_SUBSET keyword

example 46, 49, 50, 55
syntax 126, 127
usage 45, 50, 3

H
Header

usage 28
HEADER keyword

syntax 122
use 28

hierarchical path
formal syntax description 121

HOLD keyword
syntax 135
usage 81

I
identifiers

formal syntax description 119
Include Files

usage 42
INCLUDE keyword

syntax 124
usage 42

INPUT_SLEW keyword
syntax 73, 132
usage 75

INSERTION_DELAY keyword
syntax 136
usage 92

INSTANCE keyword
syntax 135
usage 83

internal fanout
formal syntax description 139

internal load
formal syntax description 139
usage 100

INTERNAL_FANOUT keyword
syntax 139
usage 101

INTERNAL_LOAD keyword
syntax 139
usage 100

INTERNAL_SLEW keyword
syntax 133

usage 76

K
KEYWORD

notation in syntax description 119

L
Labels

usage 43
LENGTH_SCALE keyword

syntax 31, 123
Level 1 constraints

area constraints
usage 105

parasitics constraints
syntax 139
usage 100

parasitics environment
syntax 98, 138

power
syntax 141
usage 111

timing environment
syntax 132
usage 66

timing exceptions
syntax 134
usage 78

LEVEL keyword
syntax 50, 124, 127, 132, 134, 138, 139, 14

141
usage 34, 35, 41, 66, 78, 98, 100, 105, 111

Levels
Usage 33

load
formal syntax description 139
usage 100

LOAD keyword
syntax 139
usage 100

M
MASTER keyword

syntax 135
usage 83

MAX_TRANSITION_TIME keyword
syntax 136
Version 1.2 August 22, 1997 145 of 148

usage 91
Meta Data

usage 40
META keyword

syntax 124
usage 41

MULTI_CYCLE keyword
syntax 135, 136
usage 86, 89

N
NAME_PREFIXES keyword

usage 56
NAMEPREFIX keyword

syntax 129
notation used in syntax descriptions 119

O
OPERATING_CONDITIONS keyword

syntax 126
usage 47

P
PARALLEL_DRIVERS keyword

syntax 73, 132
parasitics constraints

formal syntax description 138
usage 100

parasitics environment
formal syntax description 138

PARASITICS keyword
syntax 138
usage 97

parasitics subset
example 97
formal syntax description 138
usage 97

PATH_DELAY keyword
syntax 136
usage 90

PERIOD_MULTIPLIER keyword
syntax 128
usage 52

PHASE_SHIFT keyword
syntax 128
usage 52

porosity
example 107

POROSITY keyword
syntax 140
usage 107

power
average cell power

syntax 141
usage 112

average net power
syntax 141
usage 112

POWER keyword
syntax 141
usage 111

power subset
example 111
syntax 141
usage 111

power values
syntax 141
usage 112

PRECEDENCE keyword
syntax 124
usage 41

Precedence Rules 39
primitive area

example 106, 3
syntax 140
usage 106

PRIMITIVE_AREA keyword
syntax 140
usage 106

PROCESS keyword
syntax 126
usage 46

PROGRAM keyword
example 30
syntax 122
usage 29

R
RES_SCALE keyword

syntax 31, 123

S
SETUP keyword

syntax 135
usage 81

SKEW keyword
Version 1.2 August 22, 1997 146 of 148

syntax 136
usage 92

SKEW_ADJUSTMENT keyword
syntax 128
usage 52

SLEW keyword
syntax 136
usage 92

SOURCE keyword
syntax 136
usage 86

SUBSET keyword
syntax 131, 138, 140, 141
usage 65, 97, 105, 111

Subsets
usage 61

T
TARGET keyword

syntax 136
usage 86

TEMPERATURE keyword
syntax 126
usage 47

THRU keyword
syntax 134, 135
usage 79, 82

THRU_ALL keyword
syntax 134, 135
usage 79, 82

TIME_SCALE keyword
syntax 31, 123

timing environment
formal syntax description 131
usage 66

timing exceptions
formal syntax description 134
usage 78

TIMING keyword
syntax 127, 131
usage 65

timing subset
example 65
formal syntax description 131
usage 65

TO keyword
syntax 134
usage 79

total area
example 106
syntax 140
usage 106

TOTAL_AREA keyword
syntax 140
usage 106

U
uncertainty region

in WAVEFORM construct 51

V
Value Types

usage 44
VARIABLE

notation in syntax description 119
VERSION keyword

example 28
syntax 122
usage 28

VOLTAGE keyword
syntax 126
usage 46

VOLTAGE_SCALE keyword
syntax 31, 123

VOLTAGE_THRESHOLD keyword
syntax 126
usage 48

W
WAVEFORM keyword

example 52
syntax 51, 127
Version 1.2 August 22, 1997 147 of 148

148 of 148 August 22, 1997 Version 1.2

Appendix 1
Cadence-Specific Extensions

h
sion

ames
h is
The locations of the Compiled Timing Library Format (CTLF) files whic
are to be used for a design are specified through GCF using an exten
within the environment globals subset.

Syntax

env_globals_subset::= (GLOBALS_SUBSET ENVIRONMENT
 env_globals_body)

env_globals_body::= env_globals_spec+
||= include

env_globals_spec::= env_globals_spec_0
||= env_globals_spec_1

env_globals_spec_0::= process
||= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
||= ctlf_files_extension
||= extension
||= meta_data

ctlf_files_extension::= (EXTENSION “CTLF_FILES”
(file_name+))

file_name := IDENTIFIER

The file names can be relative or absolute path names. Relative path n
are interpreted with respect to the directory in which the program whic
reading the GCF is invoked.

Example

(GLOBALS_SUBSET ENVIRONMENT
(EXTENSION “CTLF_FILES”

(lib/mylib.ctlf
 lib/ram1.ctlf
 lib/ram2.ctlf
)

)
)

CTLF_FILES
Version 1.2 August 22, 1997 3

4 Version 1.2 Cadence-Specific Extensions

	BookTitle - General Constraint Format
	BookTitle - Specification
	ContentsTitle - Contents
	ChapterTitleTOC - 1 Introduction 9
	ChapterTitleTOC - 2 GCF in the Design Process 17
	ChapterTitleTOC - 3 Using GCF 25
	ChapterTitleTOC - 4 Timing Subset 63
	ChapterTitleTOC - 5 Parasitics Subset 95
	ChapterTitleTOC - 6 Area Subset 103
	ChapterTitleTOC - 7 Power Subset 109
	ChapterTitleTOC - 8 Syntax of GCF 115
	ChapterTitleTOC - 9 Cadence-Specific Extensions 1
	chap.nmbr - 1
	ChapterTitle - Introduction

	HeadingMain - Introduction
	HeadingSub1 - Published by Cadence Design Systems

	HeadingMain - Acknowledgements
	HeadingMain - Version History
	HeadingSub1 - Version 1.2 - August 22, 1997
	HeadingSub1 - Version 1.1 - July 8, 1997
	HeadingSub1 - Version 1.0 - March 21, 1997
	HeadingSub1 - Version 0.7 - January 24, 1997
	HeadingSub1 - Version 0.6 - November 15, 1996
	HeadingSub1 - Version 0.5 - April 15, 1996
	HeadingSub1 - Version 0.4 - April 8, 1996
	chap.nmbr - 2
	ChapterTitle - GCF in the Design Process

	HeadingMain - GCF in the Design Process
	HeadingSub1 - Sharing of Constraint Data
	HeadingSub1 - Using Multiple GCF Files in One Design
	Figure - Figure 1 Multiple GCF Files in a Hierarchical Desi...

	HeadingSub1 - Timing Environment
	HeadingSub1 - Timing Constraints
	HeadingSub1 - Parasitic Constraints
	HeadingSub1 - Parasitic Environment
	HeadingSub1 - Area Constraints
	HeadingSub1 - Power Constraints
	HeadingSub1 - The GCF Creator
	HeadingSub1 - The Annotator
	HeadingSub1 - Consistency Between GCF File and Design Descriptio...
	HeadingSub1 - Consistency Between GCF File and Analysis

	HeadingMain - Forward-Annotation of Constraints for Design Synth...
	Figure - Figure 2 GCF Files in Constraint Forward-Annotatio...
	chap.nmbr - 3
	ChapterTitle - Using GCF

	HeadingMain - GCF File Content
	HeadingSub3 - Syntax

	HeadingMain - Header Section
	HeadingSub3 - Syntax
	HeadingSub2 - GCF Version
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Design Name
	HeadingSub3 - Syntax

	HeadingSub2 - Date
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Program
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Delimiters
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Scaling Factors
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Levels
	HeadingSub2 - Level 0
	HeadingSub2 - Level 1
	HeadingSub2 - Usage
	HeadingSub3 - Syntax

	HeadingMain - Cases
	HeadingSub3 - Syntax
	HeadingSub2 - Constant Values

	HeadingMain - Extensions
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Precedence Rules
	HeadingSub2 - Normal Precedence Rules
	HeadingSub2 - Overrides

	HeadingMain - Meta Data
	HeadingSub2 - Precedence Overrides
	HeadingSub2 - Other Meta Data
	HeadingSub2 - Usage
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Include Files
	HeadingSub3 - Syntax

	HeadingMain - Labels
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Value Types
	HeadingSub3 - Syntax

	HeadingMain - Globals
	HeadingSub3 - Syntax
	HeadingSub2 - Environment Globals
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Process
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Voltage
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Temperature
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Operating Conditions
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Voltage Threshold
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Environment Globals Case
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Timing Globals
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Primary Waveform
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Derived Waveform
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Clock Groups
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Timing Globals Case
	HeadingSub3 - Example

	HeadingMain - Design References
	HeadingSub2 - Name Prefix
	HeadingSub3 - Syntax

	HeadingSub2 - Cell and Port Instance
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Cell Type
	HeadingSub3 - Syntax

	HeadingMain - Cell Entries
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub2 - Cell Instance Spec
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Subsets
	HeadingSub3 - Syntax
	chap.nmbr - 4
	ChapterTitle - Timing Subset

	HeadingMain - Timing Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Timing Environment
	HeadingSub3 - Syntax
	HeadingSub1 - Clock Specifications
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub1 - Arrival Time
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub1 - Departure Time
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub1 - External Delay
	HeadingSub3 - Syntax
	HeadingSub3 - Like ARRIVAL and DEPARTURE constructs, the effect ...
	HeadingSub3 - Example

	HeadingSub1 - Driver Specification
	HeadingSub3 - Syntax
	HeadingSub3 -
	HeadingSub3 - Precedence Rules
	HeadingSub2 - Driver Cell
	HeadingSub3 - Syntax

	HeadingSub2 - Driver Strength
	HeadingSub3 - Syntax

	HeadingSub2 - Input Slew
	HeadingSub3 - Syntax

	HeadingSub1 - Constant Values
	HeadingSub3 - Syntax

	HeadingSub1 - Operating Conditions
	HeadingSub1 - Internal Slew
	HeadingSub3 - Syntax

	HeadingSub1 - Timing Environment Cases
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Timing Exceptions
	HeadingSub3 - Syntax
	HeadingSub1 - Path Specifications
	HeadingSub3 - Syntax

	HeadingSub1 - Disable Specifications
	HeadingSub2 - Level 0 Disables
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Identified by Items
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Identified by Endpoints
	HeadingSub3 - Syntax
	HeadingSub3 - In Level 1, the timing checks or edges that are af...

	HeadingSub2 - Level 1 Disables
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Associated With Port Instances
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Associated With Cell Instances or ...
	HeadingSub3 - Syntax

	HeadingSub1 - Multi-Cycle Paths
	HeadingSub2 - Default Definition
	HeadingSub2 - Overriding the Default
	HeadingSub3 - Level 0 Multi-Cycle Paths
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub3 - Example
	HeadingSub3 - Level 1 Multi-Cycle Paths
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub3 - Example

	HeadingSub1 - Combinational Delays
	HeadingSub3 - Syntax

	HeadingSub1 - Max Transition Times
	HeadingSub3 - Syntax

	HeadingSub1 - Latch-Based Borrowing
	HeadingSub3 - Syntax

	HeadingSub1 - Clock Delay
	HeadingSub3 - Syntax

	HeadingSub1 - Timing Exception Cases
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	chap.nmbr - 5
	ChapterTitle - Parasitics Subset

	HeadingMain - Parasitics Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Parasitics Environment
	HeadingSub3 - Syntax
	HeadingSub2 - External Loading
	HeadingSub3 - Syntax

	HeadingSub2 - External Fanout
	HeadingSub3 - Syntax

	HeadingSub2 - Parasitics Environment Cases
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Parasitics Constraints
	HeadingSub3 - Syntax
	HeadingSub2 - Internal Loading
	HeadingSub3 - Syntax

	HeadingSub2 - Loading
	HeadingSub3 - Syntax

	HeadingSub2 - Internal Fanout
	HeadingSub3 - Syntax

	HeadingSub2 - Fanout
	HeadingSub3 - Syntax

	HeadingSub2 - Parasitics Constraint Cases
	HeadingSub3 - Syntax
	chap.nmbr - 6
	ChapterTitle - Area Subset

	HeadingMain - Area Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Area Constraints
	HeadingSub2 - Primitive Area
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Total Area
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Porosity
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Area Constraint Cases
	HeadingSub3 - Syntax
	chap.nmbr - 7
	ChapterTitle - Power Subset

	HeadingMain - Power Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Power Constraints
	HeadingSub2 - Average Cell Power
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Average Net Power
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Power Constraint Cases
	HeadingSub3 - Syntax
	ChapterTitle - Syntax of GCF

	HeadingMain - GCF File Characters
	HeadingSub1 - GCF Characters
	HeadingSub1 - Comments

	HeadingMain - Syntax Conventions
	HeadingSub1 - Notation
	HeadingSub1 - Variables

	HeadingMain - GCF File Syntax
	HeadingSub2 - Extensions
	HeadingSub2 - Labels
	HeadingSub2 - Meta Data
	HeadingSub2 - Include Specifications
	HeadingSub2 - Value Types
	HeadingSub2 - Globals
	HeadingSub2 - Environment Globals
	HeadingSub2 - Timing Globals
	HeadingSub2 - Design References
	HeadingSub2 - Cell Entries
	HeadingSub2 - Subsets
	HeadingSub2 - Timing Subset
	HeadingSub2 - Timing Environment
	HeadingSub2 - Timing Exceptions
	HeadingSub2 - Parasitics Subset
	HeadingSub2 - Parasitics Environment
	HeadingSub2 - Parasitics Constraints
	HeadingSub2 - Area Subset
	HeadingSub2 - Power Subset
	GroupTitlesIX - A
	GroupTitlesIX - B
	GroupTitlesIX - C
	GroupTitlesIX - D
	GroupTitlesIX - E
	GroupTitlesIX - F
	GroupTitlesIX - G
	GroupTitlesIX - H
	GroupTitlesIX - I
	GroupTitlesIX - K
	GroupTitlesIX - L
	GroupTitlesIX - M
	GroupTitlesIX - N
	GroupTitlesIX - O
	GroupTitlesIX - P
	GroupTitlesIX - R
	GroupTitlesIX - S
	GroupTitlesIX - T
	GroupTitlesIX - U
	GroupTitlesIX - V
	GroupTitlesIX - W
	chap.nmbr - Appendix 1
	ChapterTitle - Cadence-Specific Extensions

	HeadingSub2 - CTLF_FILES
	HeadingSub3 - Syntax
	HeadingSub3 - Example

