General Constraint
Format

Specification
Version 1.2

August 22, 1997

Cadence Design Systems, Inc.

cadence

Contents

1 Introduction 9

Introduction 11
Published by Cadence Design Systems 12

Acknowledgements 13

Version History 14
Version 1.2 -
August 22, 1997 14
Version 1.1 -

July 8, 1997 14
Version 1.0 -

March 21, 1997 14
Version 0.7 -
January 24, 1997 15
Version 0.6 -
November 15, 1996 15
Version 0.5 -

April 15, 1996 16
Version 0.4 -

April 8, 1996 16

2 GCFintheDesign Processuuiiiinnennnn 17

GCF in the Design Process 19
Sharing of Constraint Data 19
Using Multiple GCF Files in One Design 19
Timing Environment 19
Timing Constraints 19
Parasitic Constraints 20
Parasitic Environment 20
Area Constraints 20
Power Constraints 20
The GCF Creator 20
The Annotator 21
Consistency Between GCF File and Design Description 21
Consistency Between GCF File and Analysis 22

Forward-Annotation of Constraints for Design Synthesis 23

Version 1.2 August 22, 1997 ifi

3 UsSINg GCF ... 25

GCF File Content 27

Header Section 28
GCF Version 28
Design Name 29
Date 29
Program 29
Delimiters 30
Scaling Factors 31

Levels 33
Level 0 33
Level 1 33
Usage 34

Cases 35
Constant Values 36

Extensions 37

Precedence Rules 39
Normal Precedence Rules 39
Overrides 39

Meta Data 40
Precedence Overrides 40
Other Meta Data 40
Usage 41

Include Files 42
Labels 43
Value Types 44

Globals 45
Environment Globals 45
Process 46
Voltage 46
Temperature 46
Operating Conditions 47
Voltage Threshold 48
Environment Globals Case 49
Timing Globals 50
Primary Waveform 50
Derived Waveform 52
Clock Groups 53
Timing Globals Case 54

Design References 56
Name Prefix 56
Cell and Port Instance 57

iv August 22, 1997 Version 1.2

Cell Type 57

Cell Entries 58
Cell Instance Spec 59

Subsets 61

4 TimingSubset

Timing Subset Header 65

Timing Environment 66
Clock Specifications 66
Arrival Time 67
Departure Time 69
External Delay 70

Driver Specification 72
Driver Cell 73
Driver Strength 74
Input Slew 75

Constant Values 75

Operating Conditions 75

Internal Slew 76

Timing Environment Cases 76
Timing Exceptions 78

Path Specifications 78

Disable Specifications 79
Level O Disables 80
Level 1 Disables 81

Multi-Cycle Paths 83
Default Definition 84
Overriding the Default 85

Combinational Delays 90
Max Transition Times 91
Latch-Based Borrowing 91
Clock Delay 92

Timing Exception Cases 93

5 ParasiticsSubset

Parasitics Subset Header 97

Parasitics Environment 98
External Loading 98
External Fanout 98
Parasitics Environment

Version 1.2 August 22, 1997

Cases 99

Parasitics Constraints 100

Internal Loading 100

Loading 100

Internal Fanout 101

Fanout 101

Parasitics Constraint Cases 101

6 Area Subset

Area Subset Header 105
Area Constraints 106

Primitive Area 106

Total Area 106

Porosity 106

Area Constraint Cases 107

7 Power Subset

Power Subset Header 111
Power Constraints 112

Average Cell Power 112
Average Net Power 112
Power Constraint Cases 113

8 Syntax of GCF
GCF File Characters 117

Vi

GCF Characters 117
Comments 118

Syntax Conventions 119

Notation 119
Variables 119

GCF File Syntax 122

Extensions 124

Labels 124

Meta Data 124

Include Specifications 124
Value Types 124

Globals 126
Environment Globals 126
Timing Globals 127
Design References 129
Cell Entries 130

Subsets 130

Timing Subset 131

August 22, 1997

Version 1.2

Timing Environment 131
Timing Exceptions 134
Parasitics Subset 138
Parasitics Environment 138
Parasitics Constraints 138
Area Subset 140

Power Subset 141

9 Cadence-Specific Extensions 1
CTLF_FILES 3

Version 1.2 August 22, 1997 vii

viii August 22, 1997 Version 1.2

Introduction

Introduction
Acknowledgements

Version History

Introduction

Introduction

The General Constraint Format (GCF) file is intended to be used for
interchanging constraint data associated with a design between EDA tools
used at any stage in the design process. The data in the GCF file is
represented in a tool-independent way and can currently include

= Timing environment: intended operating timing environment

= Timing constraints

= Parasitics constraints

= Parasitics environment: intended operating parasitics environment

= Area constraints

= Power constraints

= Design/instance-specific or type/library-specific data

Cadence Design Systems expects that other types of constraint data will be
added to the GCF specification in the future, such as

= Analog constraints

= Noise and signal integrity constraints

A particular GCF file can contain all of these types of constraints, or it can
contain only certain types of constraints.

GCEF is not intended to represent detailed constraints such as the timing
checks described in the Standard Delay Format (SDF), as SDF is already
well-defined for this information. Instead, GCF covers many types of
constraints for which no standard currently exists.

The name of each GCF file is determined by the EDA tool. There are no
conventions for naming GCF files.

Version 1.2 August 22, 1997 11

Introduction

Cadence Design Systems has developed this GCF specification to enable

Eggltlesnrg:id[)bgsign accurate and unambiguous transfer of constraint data between tools that
Systems require this informationAll parties utilizing the GCF should interpret

and manipulate constraint data according to this specificatiolease
direct questions and corrections to:

Mark Hahn

Cadence Design Systems
3945 Freedom Circle, 4th Floor
Santa Clara, CA 95054

Tel: (408) 450-6548
Fax: (408) 748-3499
internet e-mail: mhahn@cadence.com

Cadence Design Systems, Inc. makes no warranties whatsoever with
respect to the completeness, accuracy, or applicability of the information
in this document to a user’s requirements.

Cadence Design Systems reserves the right to make changes to the
General Constraint Format Specification at any time without notice.

12 Version 1.2 Introduction

Acknowledgements

Acknowledgements

The Constraint Forum working group of Cadence Design Systems
acknowledges the individual and team efforts invested in establishing this
version of the GCF specification:

Mark Hahn (primary author)
Ria Simons-Arnout (editor)
Suzanne Thomas (editor)
Henry Chang

Edoardo Charbon

James Cherry

Geoffrey Ellis

Theo Kelessoglou

Anandi Krishnamurthy
Enrico Malavasi

Ed Martinage

Dave Noice

Sherry Solden

Ted Vucurevich

The SDF 3.0 specification developed by Open Verilog International has
strongly influenced GCF. The organization and format of the GCF
document and the contents of a number of sections are borrowed loosely
from SDF. The intent is to build upon this excellent previous work as a
foundation for a broader description of the designer’s intent, particularly
with respect to timing.

Version 1.2 August 22, 1997 13

Version History

Version History

Version 1.2 -
August 22, 1997

Version 1.1 -
July 8, 1997

Version 1.0 -
March 21, 1997

14

Modified the semantics of tHBEPARTURE_TIME construct to
directly correspond to setup and hold times of a virtual register
connected to the output.

Added arEXTERNAL_DELAY construct which describes purely
combinational delays external to a cell.

Modified thePATH_DELAY construct semantics to reflect the
EXTERNAL_DELAY construct, and to allow cell instances and
waveform names to be specified as endpoints.

Added a section on default precedence rules, as well as a number of
specific precedence rules for particular constraints and sets of
constraints.

Added internal slew and clock slew constructs.

Modified theCLOCK_DELAY construct to allow the leaf pins to be
omitted, in which case all primitive clock input pins reachable from the
specified root are implied.

Modified thePATH_DELAY construct to allow each of the rise min,
rise max, fall min, fall max delays to be specified independently.

Updated théORIVER_CELL , DRIVER_STRENGTH, and

INPUT_SLEW constructs to explicitly state that if port_instances
specified, then the construct applies by default to all primary input and
bidirectional pins.

Fixed conflicting statements about whetherARRIVAL and
DEPARTURE constructs allow internal pins to be specified as well as
primary i/0’s. The statements have been corrected to indicate that
internal pins are allowed.

Added the ‘<* and >’ characters as legal bus delimiters.

Added the syntax description fdisable_cell_spec , Wwhich was
missing in Version 1.0.

Fixed minor inconsistencies.
Extensive editing to improve readability.

Added operating conditions and voltage thresholds to the environment
globals. Added the ability to override the operating conditions for part
of the design in Level 1.

Version 1.2 Introduction

Version History

= Changed the semantics of the process, voltage, and temperature
constructs to specify the range of operating conditions over which the
design is intended to operate.

= Modified the default voltage thresholds to be 10% and 90% instead of
20% and 80%.

= Added a restriction on clock waveforms to only allow a single pair of
edges.

= Added arr_rise_fall_min_maxwalue type, which allows for negative
arrival and departure times, andIBIvMBER variable, which
represents a possibly negative integer.

= Dropped the delay offset construct.

= Moved fanout-based parasitics constructs to Level 1, since these
require wire load models to interpret.

= Updated the driver cell construct to allow distinguishing between the
cell types which should be used for each type of edge.

= Modified the CLOCK_TREE construct and renamed it to
CLOCK_DELAY.

= Modified name prefixes to include the number of prefixes, and to
require that the id numbers be sequential starting at O.

= Modified the max transition time check to refer to output pins, rather
than load pins.

= Significantly modified the disables section to eliminate problems with
overloading several different types of disables into a single syntax.

Version 0.7 - = Significantly expanded the description of the multi-cycle constraint
January 24, 1997 semantics and modified them to better match existing tools.

= Modified the syntax to allow Level 1 constraints to be grouped
together within a GCF section.

= Fixed many minor inconsistencies between different sections of the

document.
Version 0.6 - = Added many new kinds of information:
November 15, 1996 0 Case-dependent constraints

0 Constant signal specifications

0 Clock domains

0 Process, voltage, and temperature specifications

0 Area and power constraints.

0 Meta data describing the precedence between alternate constraints.

Version 1.2 August 22, 1997 15

Version History

Version 0.5 -
April 15, 1996

Version 0.4 -
April 8, 1996

16

Significantly revised many of the timing constraints to better match the
semantics of existing tools.

Separated constraints into several levels of support.

Modified the syntax to reduce verboseness and eliminate ambiguities
when using yacc as the basis for parsing.

Incorporated feedback from internal review.

Initial formal version for internal review.

Version 1.2 Introduction

GCF in the Design Process

GCF in the Design Process

Forward-Annotation of Constraints for Design Synthesis

GCF in the Design Process

GCF in the Design Process

Sharing of
Constraint Data

Using Multiple GCF
Files in One Design

Figure 1

Timing
Environment

Timing
Constraints

Version 1.2

By accessing a GCF file, EDA tools are assured of consistent, accurate,
and up-to-date data. This means that EDA tools can use data created by
other tools as input to their own processes. By sharing data in this way,
estimation, synthesis, floorplanning, analysis, and layout tools can all use
a consistent set of design constraints with well-defined semantics.

The EDA tools create, read (to update their design), and write to GCF files.

GCEF files support hierarchical constraint annotation. A design hierarchy
might include several different ASICs (and/or cells or blocks within
ASICs), each with its own GCF file as illustrated in Figure 1.

Multiple GCF Files in a Hierarchical Design

GCF File
for System
Interconnect

GCF File
for ASIC 2

GCF File
for ASIC 1

System Module \

'

ASIC 1 ASIC 2

|

GCF includes constructs for describing the intended timing environment in
which a design will operate. For example, you can specify the waveform
to be applied at clock inputs and the arrival time of primary inputs.

Some of the timing environment information is also covered by SDF 3.0.
You should use SDF to pass delay data and detailed path constraints
between tools and use GCF to pass high-level timing constraints and the
timing environment description between tools.

GCF contains a richer description of the environment, particularly in terms
of the information required for doing delay calculation on interface nets. It
also supports many types of timing constraints which are not covered by
SDF.

GCF contains constructs for describing special cases within a sequential
circuit, such as false and multi-cycle paths. It also contains constructs

August 22, 1997 19

GCF in the Design Process

Parasitic
Constraints

Parasitic
Environment

Area Constraints

Power Constraints

The GCF Creator

20

which allow constraints to be applied on combinational or asynchronous
parts of a circuit.

GCF contains constructs for describing constraints on the parasitics within
a circuit, such as a limit on the internal capacitance of interface nets. These
constraints would typically be used by synthesis and layout tools.

GCF includes constructs for describing the parasitics in the environment in
which a design will operate. For example, you can specify the external
capacitance for interface nets.

GCF contains constructs for constraining the primitive area and the total
area of a cell, as well as the porosity of the cell.

GCF includes constructs for constraining the average power consumed by
a cell and the average power dissipated by the capacitance in a net.

One or more tools can be responsible for generating the GCF file. For
example, a synthesis tool or a dedicated constraint management tool can
capture constraint information from the designer and then write out this
data in GCF. To do this, it will examine the specific design for which it has
been instructed to generate constraint data. Tools which create GCF files
must locate, within the design, each region for which constraint data exists
and calculate values for the parameters of those constraints.

Many types of constraints, such as clock waveform descriptions, apply
throughout the design process. Other types of constraints, such as parasitic
constraints on an interconnection, can be derived from high-level timing
constraints. GCF supports describing both high-level and derived
constraints in the same file. Thus, GCF is suitable for both prelayout and
postlayout applications.

There are provisions in the GCF specification for adding meta data
associated with constraints in a later revision. This meta data can be used
in many ways; some planned uses include describing relationships
between constraints, and describing the relative importance of each
constraint. The meta data will refer to constraints through a utdabeé

which can be associated with each constraint.

Many tools only need a description of the constraints themselves, and do
not require any of the meta data. However, tools which create GCF files
should not make assumptions about the requirements of the tools which

Version 1.2 GCF in the Design Process

The Annotator

Consistency
Between GCF File
and Design
Description

Version 1.2

GCF in the Design Process

will read the GCF file. To prevent the need for multiple GCF files with
different sets of meta data for a given design, a tool which creates GCF
files should include as much meta data as possible. Each reader is expected
to filter out the meta data it does not require. Tools which create GCF files
can make judicious use of timelude construct to make this filtering

efficient.

GCF imposes no restrictions on the precision which is used to represent the
data in a GCF file. Therefore, the accuracy of the data in the GCF file will
depend on the accuracy of the constraint generator and the information
made available to it.

The GCF file is brought into a reader tool through an annotator. The job of
the annotator is to match data in the GCF file with the design description.
Each region in the design identified in the GCF file must be located.
Constraints in the GCF file for this region must be applied to the
appropriate parameters of the design.

The annotator can be instructed to apply the data in the GCF file to a
specific region of the design, other than at the top level of the design
hierarchy. In this case, it will search for regions identified in the GCF file
starting at this point in the hierarchy. The file must clearly have been
prepared with this in mind, otherwise the annotator will be unable to match
what it finds in the file with the design viewed from this point.

The foregoing implies that the annotator must have access to the design
description. Frequently, this will be via the internal representations
maintained by the reader tool. The annotator will then be a part of the tool.
As an alternative, the annotator can operate independently of the reader
tool and convert the data in the GCF file into a format suitable for the tool
to read directly. If such an annotator is unable to match the GCF file to the
design description, then the effect of inconsistencies is unpredictable.
Also, certain constructs of GCF cannot be supported without access to the
design description (for example, wildcard cell instance specifications and
wildcard bit specifications).

A GCEF file contains constraint data for a specific design. The contents of
the file identifies regions of the design and provides constraints that apply
to various properties of that region. The analysis tool or annotator cannot
operate if the regions identified in the GCF file do not correspond exactly
with the design description. Therefore, changes to the design sometimes
require writing a new GCF file, depending on the types of changes and
constraints. A future version of GCF might provide a mechanism for
describing incremental changes to an existing GCF file.

Of equal importance to the logic of the design is the naming of design
objects. Even if the same cells are present and are connected in the same
way, annotation cannot operate if the names by which these cells and nets

August 22, 1997 21

GCF in the Design Process

Consistency
Between GCF File
and Analysis

22

are known differ in the GCF file and the design description. The naming
of objects must be consistent in these two places.

During annotation, inconsistencies between the GCF file and the design
description are considered errors.

GCF includes a description of a standard semantics for many kinds of
constraints. Some tools might not support all of the types of constraints in
GCF, or might restrict the semantics for some types of constraints. For
example, a layout tool might handle disabling of false paths where a single
port is specified, but not handle disabling of false paths where multiple
ports are specified.

The constraints of GCF are divided into a number of subsets, where each
subset contains constraints associated with a particular aspect of a circuit,
such as timing or parasitics. When a tool reads a GCF file, it can choose to
read one or more of these subsets. During the annotation of each subset a
tool reads, unsupported constraints or unsupported semantics for a
constraint are considered to be warnings. However, a tool should not warn
about unsupported constraints in other subsets.

Version 1.2 GCF in the Design Process

Forward-Annotation of Constraints for Design Synthesis

Forward-Annotation of Constraints for Design Synthesis

Figure 2

Version 1.2

In addition to the use of constraint data for analysis and estimation, GCF
supports the forward-annotation of constraints to design synthesis tools.
(In this context, we use the term “synthesis” in its broad sense of
construction, thus including not only logic synthesis, but also
floorplanning, layout and routing.) Constraints are “requirements” for the
design’s overall properties and are often modified and broken down by
previous steps in the design process. Figure 2 shows a typical scenario of
the use of GCF in a design synthesis environment.

GCF Files in Constraint Forward-Annotation

Analysis user
Tool constraints

GCF File
(synthesis

constraints)

Synthesis Tool
(logic synthesis,
layout, etc.)

Constraints can also be originated by an analysis tool alone. For example,
a timing budgeting tool might be able to propagate the high-level timing
constraints specified by a designer down to each hierarchical module in the
design, setting arrival time and departure time constraints on each module
port automatically.

August 22, 1997 23

Forward-Annotation of Constraints for Design Synthesis

24 Version 1.2 GCF in the Design Process

Using GCF

GCF File Content
Header Section
Levels

Cases
Extensions

Meta Data
Include Files
Labels

Value Types
Globals

Design References
Cell Entries

Subsets

GCF File Content

GCF File Content

GCF files are ASCII text files. Every GCF file contains a header section
followed by one or more additional sections. A GCF file can contain zero
cell entries.

Syntax

constraint_file ::= (GCF header section+)

section ::= globals
[|= cell_spec
||= extension
[|= meta_data
[|= include

Theheadersection contains information relevant to the entire file such as
the design name, the tool used to generate the GCF file, and scaling factors
for the values in the file (see “Header Section” on page 28).

Theglobalssection describes information which is common to all cells in
a design.

Each cell constructell_specidentifies part of the design (aegion” or
“scope”) and contains data for the constraints on that part of the design (see
“Cell Entries” on page 58). &ell can be a physical primitive from the

ASIC library, a modeling primitive for a specific analysis tool or some
user-created part of the design hierarchgeAcan encompass the entire
design.

Extensions provide a mechanism to extend the standard GCF format with
user-defined portions.

Meta data describes relationships between constraints.

This chapter describes the header, globals, cell-spec, and a number of
GCF-specific concepts (such as levels, cases, labels, include files, value
types, and design references). The following chapters describe specific
subsets in GCF. For each part of the file, the purpose is discussed, the
syntax is specified, and an example is presented. A complete, formal
definition of the file syntax is contained in Chapter 6, “Syntax of GCF.”
You can refer to that chapter for precise definitions of some of the
abbreviated syntax descriptions given here.

Version 1.2 August 22, 1997 27

Header Section

Header Section

GCF Version

28

The header section of a GCF file contains information that relates to the
file as a whole. Except for the GCF version, entries are optional, so that it
is possible to omit most of the header section.

The design name, date, and program entries are for documentation
purposes and do not affect the meaning of the data in the rest of the file.
However, the version, delimiters, and scaling factors do affect how the
data in the file is interpreted.

Syntax
header ::
header_info::

(HEADER version header_info}

design_name
date

program
delimiters
time_scale
cap_scale
res_scale
length_scale
area_scale
voltage_scale
power_scale
extension

The version construct identifies the version of the GCF specification to

which the file conforms.
Syntax

version ::= (VERSION QSTRING)

QSTRINGIs a character string in double quotes. The first substring within
QSTRING,which consists of just numeric characters and a period,
identifies the GCF version. Other characters before and after this substring
are permitted and will be ignored by readers when determining the GCF

version.

Example

(VERSION “Cadence Version 1.2")

Readers of GCF files can use the GCF version construct to adapt to the
differences in file syntax between versions. If the file does not contain a
GCF version construct, or one is present butQRERINGfield does not

contain a numeric substring, the GCF reader will give an error message.

Version 1.2

Using GCF

Design Name

Date

Program

Version 1.2

Header Section

The design name construct specifies the name of the design to which the
constraints in the GCF file apply. This construct is for documentation
purposes only.
Syntax

design_name:= (DESIGN QSTRING)

QSTRINGis a name that identifies the design. Although this construct is
not used by the annotator, it is recommended that, if it is included, the
name should be the name given to the top level of the design description.
This is analogous to th@ELLTYPE construct, and in fact, the same name
would be used in a cell construct for the entire design. It must not be the
instance name of the design in a test-bench; this would instead be used as
part of the cell instance path in ttNSTANCE entries for all cells.

The date construct indicates how current the data in the file is. This
construct is for documentation purposes only.

Syntax
date ::= (DATE QSTRING)

The QSTRINGrepresents the date or time when the data in the GCF file was
generated or last modified.

Example
(DATE “Friday, June 6, 1997 - 7:30 p.m."”)

The program name construct indicates the name of the program that
created or last modified the file. This construct is for documentation
purposes only.

Syntax

program ::= (PROGRAM
program_name program_version
program_company

program_name:.:= QSTRING
program_version::= QSTRING
program_company.:= QSTRING
The QSTRING parameters contain (respectively)
= The name of the program used to generate or modify the GCF file
= The version number of that program
= The company that produced the program

August 22, 1997 29

Header Section

Delimiters

30

Example

(PROGRAM “GCF writer” “1.1" “Cadence”)

The delimiters construct specifies the characters that are used as delimiters
in design names.

Syntax
delimiters ::= (DELIMITERS QSTRING)

The QSTRING always contains three characters:

= Thefirst character is referred to as the hierarchy delimiter character, or
HCHAR, and must be either a period (.) or a slash (/). If there is no
delimitersconstruct in the GCF file, tH¢CHAR defaults to a period.

= The second character is referred to as the left index character, or
LI_CHAR, and must be either a left bracket ([), a left parenthesis ((), or
a left angle bracket (<). If there is delimitersconstruct in the GCF
file, theLI_CHAR defaults to a left bracket.

= The third character is referred to as the right index character, or
RI_CHAR, and must be either a right bracket (]), a right parenthesis ()),
or a right angle bracket (>). If there is @elimitersconstruct in the
GCF file, theRl_CHAR defaults to a right bracket.

Example
(DELIMITERS “/()")

" (INSTANCE a/b/c(3))

In this example, the hierarchy delimiter is specified to be the slash (/)
character, so the hierarchical paths use the slash (rather than the period) to
separate elements. In addition, the left and right index characters are set to
be parentheses, so that bit-specs for selecting elements from instance
arrays or buses are specified using parentheses (rather than brackets).

Hierarchical delimiters can be used inlBENTIFIER and aPATH. Index
characters can be used inIBENTIFIER. For more information, see
“Variables” on page 119.

Version 1.2 Using GCF

Scaling Factors

Version 1.2

Header Section

A scaling factor entry specifies the multiplier to be used to scale the values
for the specified physical property.
Syntax
time_scale::= (TIME_SCALE multiplier)
cap_scale::= (CAP_SCALE multiplier)
res_scale::= (RES_SCALE multiplier)
length_scale::= (LENGTH_SCALE multiplier)
area_scale::= (AREA_SCALE multiplier)
voltage_scale::= (VOLTAGE_SCALE multiplier)
power_scale::= (POWER_SCALE multiplier)
multiplier ::= NUMBER

The default time scale is 1 secondirtie_scaldas specified, the GCF
reader will multiply all delay numbers in the GCF file by the specified
value, which is in seconds. For example, a multiplier of 1.0E-12
corresponds to delay values in ps.

The default capacitance scale is 1 Farachpf scalas specified, the GCF
reader will multiply all capacitance numbers in the GCF file by the
specified value, which is in Farads. For example, a multiplier of 1.0E-12
corresponds to capacitance values in pF.

The default resistance scale is 1 ohme# scalas specified, the GCF
reader will multiply all resistance numbers in the GCF file by the specified
value, which is in ohms. For example, a multiplier of 1.0E-3 corresponds
to resistance values in milli-ohms.

The default length scale is 1 meterelfigth_scales specified, the GCF
reader will multiply all length numbers in the GCF file by the specified
value, which is in meters. For example, a multiplier of 1.0E-6 corresponds
to length values in microns.

The default area scale is 1 square metareid_scalas specified, the GCF
reader will multiply all area numbers in the GCF file by the specified
value, which is in square meters. For example, a multiplier of 1.0E-12
corresponds to area values in square microns.

The default voltage scale is 1 voltvifltage scalés specified, the GCF
reader will multiply all voltage numbers in the GCF file by the specified
value, which is in volts. For example, a multiplier of 1.0E-3 corresponds
to voltage values in millivolts.

August 22, 1997 31

Header Section

32

The default power scale is 1 wattptbwer_scalas specified, the GCF
reader will multiply all power numbers in the GCF file by the specified
value, which is in watts. For example, a multiplier of 1.0E-3 corresponds
to power values in milliwatts.

Example

(CAP_SCALE 1.0E-12)

Version 1.2 Using GCF

Levels

Levels

Level O

Level 1

Version 1.2

GCF provides a mechanism for interchanging constraint data between
many different kinds of tools. The capabilities of each tool affect the types
of constraints that the tool can support.

It is desirable to standardize as many types of constraints as possible to
ensure that the tools that support each constraint do so in a consistent way.
However, this presents a dilemma to a designer who is using GCF: What
constraints can be used successfully given the set of tools that the designer
must use?

GCEF divides the constraints into several levels of support. In this version
of GCF, two levels have been identified. In this document, all constraints
are Level 0 unless otherwise specified.

Level 0 provides a baseline capability to which most tools will conform. It
includes the most important basic constraints. These constraints are widely
supported already, and the algorithms required to support the constraints
are well understood and relatively straightforward to implement.

A designer or a flow developer might choose to use only the Level 0
constraints so that the GCF file is widely portable across different tools.

Tool vendors should state whether their tools comply with Level 0 on a
subset-by-subset basis. For example, a timing analysis tool vendor might
state that the tool fully supports GCF Level 0 (Timing and Parasitics
subsets).

Level 1 includes additional constraints that are less widely supported but
are viewed as important for certain design styles or methodologies. These
constraints generally allow a more precise description of the intended
operation of the circuit than can be expressed using just the Level O
constraints.

Level 1 constraints might require more complex algorithms which affect
the performance of a tool. On the other hand, a tool might achieve better
quality results or perform a more accurate analysis when Level 1
constraints are used.

August 22, 1997 33

Levels

Usage

34

A designer or a flow developer can choose to use some or all of the Level
1 constraints. This decision is necessarily more difficult than choosing to
use only Level O constraints. It requires careful analysis of at least the
following:

= The performance versus accuracy trade-off
= The tools that support the desired Level 1 constraints
= The resulting effect if not all of the tools support all of the constraints

Even when some aspect of the design behavior can’t be expressed properly
by using Level 0 constraints, it is likely that a designer still needs to specify
Level O constraints (which are overly restrictive) so that tools which only
support Level 0 can produce correct results.

In a flow that mixes tools supporting Level O and Level 1 constraints, it is
desirable to specify the Level 1 constraints as well. If both constraints are
specified in the same GCF file, it is ambiguous which constraints will be
used by a Level 1 tool. In this case, HRECEDENCE construct can be

used to describe the relationship between the constraints (see “Meta Data”
on page 40).

It is desirable that every tool can read a GCF file containing both Level O
and Level 1 constraints, so that a single GCF can be used throughout a
flow. The syntax for GCF has been defined in a way that allows tools
which only support Level O to easily ignore Level 1.

Level O constraints are not explicitly identified as belonging to Level 0,
while Level 1 and higher constraints must appear withithete
construct.

The general form for the level construct is shown below. There are a
number of variations of the level construct, where each variation restricts
the types of level-specific constraints which can appear at a particular point
in the GCF file.

Syntax
level ::= (LEVEL NUMBER construct+)

A precise description of each type of level specification is included in
Chapter 6, “Syntax of GCF.”

For this version of GCHRUMBER must be set to 1.

Version 1.2 Using GCF

Cases

Cases

Version 1.2

With some design styles, it is either necessary or convenient to separate the
constraints into several different cases. For example, you can use cases

= To distinguish between major modes of operation (such as, normal
mode versus test mode and reset mode)

= To describe the circuit behavior when several clocks are muxed
together

= To describe the effect of gating clocks

Some tools do not support case-dependent constraints, some tools handle
each case separately without considering the interactions between them,
and some tools can look at each case separately, as well as consider the
interactions between them.

Because not all tools support case-dependent constraints, these constraints
are included in GCF Level 1, but not in Level 0. However, given that there
are a number of tools which do support case analysis, there is value in
being able to describe the cases in a consistent way.

Cases are identified in GCF using a unique identifier. Unless they appear
within thecaseconstruct, all constraints in a GCF belong todba&ault
case. The nam#efaultcannot be used to identify other cases.

The general form for case specifications is shown below. The description
of a case-dependent constraint depends on the context in which it is used.

Syntax

case_spec:= (CASE IDENTIFIER
case_dependent_constrain}+

Each case is likely to be described using a number of diffeasit spec
constructs in different places in the GCF. The unique identifier for the case
must be used in each of tbase_speconstructs associated with the case.

A precise description of each type of case specification is included in
Chapter 6, “GCF File Syntax.”

August 22, 1997 35

Cases

Constant Values

36

In addition to allowing constraints to be separated into different cases,
GCF also allows specifying that certain signals have a constant value in a
given case. In this respect, case-dependent constraints are similar to state-
dependent delays. However, state-dependent delays are commonly
expressed using Boolean expressions on signal values. In GCF, there is an
implicit AND of the constant values specified for a given state.

Constant specifications appear within the timing subset for the cell which
contains theort_instancgsee “Timing Environment” on page 66).

Version 1.2 Using GCF

Extensions

Extensions

Version 1.2

There are a number of cases in which it is desirable to extend a standard
format such as GCF in unofficial ways:

= For preliminary testing of official proposals for new versions of the
format

= For early versions of evolving portions of the format

= Forrepresenting company-specific, flow-specific, or tool-specific data
which is not suitable for standardization but is strongly related to the
data in the standard (Often, a separate data format is appropriate for
these cases, but in some cases having a separate data format would
require duplicating much of the information)

However, there are also several concerns with unofficial extensions:

= Unofficial extensions might be used indefinitely for data that should
become part of the official standard.

= Without a built-in mechanism for extensions, most GCF readers would
not be able to read a GCF file containing an extension. This would
greatly limit the use of extensions because all of the readers in a
particular design flow would have to be modified for each extension.
With a built-in mechanism for extensions, only tools requiring the data
included in the extension would need to be modified.

To overcome the latter concern, GCF includes a built-in mechanism for
unofficial extensions, and establishes a policy restricting the syntax of
those extensions.

We expect that there will be periodic revisions to GCF to incorporate
additional types of constraint data. The developers of unofficial extensions
to GCF are strongly encouraged to submit their extensions for
standardization; this makes the data in the extensions more widely
accessible and promotes greater tool interoperability.

Syntax

extension::= (EXTENSION QSTRING
extension_construct}

extension_construct= (user_defined
[|= include

The QSTRINGcontains the name of the extension. Extension names must
be unique. For example, an extension name might include the name of the
tools which support it.

August 22, 1997 37

Extensions

38

Extensions must conform to the GCF syntax for parenthesized constructs
and strings to enable every GCF reader to ignore the extension by
searching for a matching right parenthesis that is not embedded within a
quoted string.

Except for these restrictions, the format for the extension is flexible. Any
keywords can be used, including existing GCF keywords. There is no limit
on the number of the parenthesized constructs associated with an
extension, and extension constructs can be arbitrarily nested.

Extensions must not be inserted at arbitrary points in a GCF file. They can
only be included where explicit provisions were made in the GCF syntax.

Example

(EXTENSION “color”
(PACKAGE_COLOR *“white” “grey” “black”)

)

In this example, an extension is defined for a constraint on the possible
colors of the package containing the design, where the color must be one
of the listed values.

Version 1.2 Using GCF

Precedence Rules

Precedence Rules

Normal Precedence
Rules

Overrides

Version 1.2

Some types of constraints can be expressed in several similar forms.
of these forms results in different degrees of accuracy. Ideally, only th
most accurate form would be included in the GCF, and all tools would
support this form.

For example, the effect of an external driver on delay calculation for a
interface signal can be described by identifying the cell and its drive
strength or by specifying an input slew. Identifying the cell is the most
accurate approach in most cases.

Unfortunately, not all the tools in a given flow support the same forms
a constraint. In this case, it isn’'t possible to create a single GCF file wi
only one form of a constraint and go through the flow successfully.

GCF allows multiple forms of a constraint to be included in a single G
file. For tools that only support one form of the constraint, there isn’t a
guestion about what the tool will do. But for tools that support several
forms of the constraint, a set of default precedence rules are defined i
order to make it clear which form will be applied. There is also a capabili
in Level 1 to explicitly override the default precedence rules.

In the absence of any explicit precedence overrides, the following gendral
precedence rules are used. Specific precedence rules are also given f@r
particular constructs and sets of constructs in the section of the
specification which describes those constructs.

= A value which is given explicitly for a particular port instance or cell
instance always overrides a default value. Another way to say thisfis
that the default value only applies to design elements for which a vallie
was not explicitly specified.

= If two different values are given explicitly for the same port instanc
or cell instance, the value which appears later in the GCF file is usdd.

= If two different default values are given, the default value which
appears later in the GCF file is used.

See “Meta Data” on page 40 for a description of how to explicitly overri
the default precedence rules.

August 22, 1997 39

Meta Data

Meta Data

Precedence Overrides

Other Meta Data

40

This version of GCF primarily describes basic constraint data. Meta data
is information about the relationships between constraints or about how to
apply the constraints. Meta data is only supported in Level 1.

One form of meta data is included in this version of GCF, and there are
explicit provisions for adding other forms of meta data in the future. The
goal is to avoid having to change existing GCF readers as more meta data
is added unless a reader chooses to support the meta data.

The supported form of meta data describes the precedence among several
related constraints. The precedence meta data construct allows the user to
explicitly override the default precedence for a set of several constraints.

A tool that supports the precedence meta data applies just one constraint
from the set. The chosen constraint will be the highest precedence
constraint which the tool supports; the remaining constraints in the set are
ignored.

There are many other types of meta data which might be added to GCF in
future versions. For example, tools often convert constraints of one type
into constraints of another type. The meta data might include a description
of the transformation algorithm which should be used or the parameters
used in the transformation.

Another example is constraint propagation (decomposing high-level
constraints on a design into lower-level constraints on each portion of the
design). The meta data might include a description of the dependency
between the high-level constraint and the lower-level constraints.

Often it is not strictly necessary to satisfy every individual constraint. It
might be acceptable to make trade-offs between different constraints.
Failing to meet a particular constraint might not be catastrophic.

For example, capacitance constraints can be budgeted for each net in a
design. Even though a number of nets fail to meet their constraints, the
circuit can still function properly if other nets more than satisfy their
constraint. Meta data could describe which constraints must be strictly
satisfied (such as the cycle time) and which constraints are only goals that
help to ensure that the strict constraints are satisfied.

A designer often sets constraints on a number of different aspects of a
circuit, such as area, timing, and power. If not all of these constraints can

Version 1.2 Using GCF

Usage

Version 1.2

Meta Data

be satisfied, the designer can use meta data to describe the relative
importance of each aspect.

Meta data usually must refer to constraints. To allow constraint references,
the constraints must be uniquely labeled. For more information, see
“Labels” on page 43.
Syntax
meta_data::= (LEVEL 1 meta_data_14)
meta_data_1::= (META meta_constructd

meta_construct:= precedence
||= meta_reserved
||I= include

precedence:= (PRECEDENCE (label_id label_id+))
meta_reserved:= (IDENTIFIER reserved_for_future_definition

Constraints must be listed in tRRECEDENCE construct in decreasing
order of precedence: the first label in the list is the most preferred
constraint.

ThelIDENTIFIER is used to distinguish between other types of meta data;
explicit values for this will be established in future revisions to GCF.

Example
(META (PRECEDENCE (labell label2)))

This example describes the precedence between two different constraints
identified adabellandlabel2 The description of these constraints must
precede th#META construct in the GCF file. If a tool supports the
constraint referenced bgbell, it will apply that constraint. Otherwise, if

it supports the constraint referencedddyel?2, it will apply that constraint.

If it doesn’t support either constraint, the tool will give a warning.

August 22, 1997 41

Include Files

Include Files

42

GCEF is intended to be the basis for describing a broad range of different
types of constraints of varying levels of detail, as well as meta data
associated with those constraints. Therefore, it is likely that a complete
GCF file for a design will be fairly large.

The GCF syntax organizes related data by cell type, subsets, extensions,
and meta data. By creating separate files for each cell type, subset,
extension, or type of meta data, a GCF writer can make it as efficient as
possible for reader applications to find and read just the relevant data. This
has to be weighed against the cost of reading from multiple files and the
additional complexity for the user of maintaining multiple files.

Every GCF reader must accept the specification of a search path containing
a list of directories in which to search for included files when a relative file
name is specified. The user interface for this specification is not defined by
GCF. Two common approaches are the -l command line options used by
many compilers and tHeATH environment variable used by the shell in
UNIX. Supporting a similar interface is recommended for UNIX-based
GCF readers.

If a file is not found in any of the directories listed in the search path, the
GCF reader will give an error message.

Syntax
include ::= (INCLUDE QSTRING)

The QSTRING specifies the name of the file to be included. GCF writers
will use relative file names to allow a set of GCF files to be copied from
one location to another. Relative file names are interpreted with respect to
the file that contains the include specification, not with respect to the
current working directory of a reader.

The GCF syntax describes explicitly where the include construct can be
used. An include file which is referenced at a particular point in the GCF
must contain only data that would, if substituted directly at that point,
conform to the GCF specification. The intent of these restrictions is to
make it possible for a reader application to easily identify those include
files which it does not have to read at all because they can only contain data
that is not relevant to the reader.

Version 1.2 Using GCF

Labels

Labels

Version 1.2

Labels can be used to identify constraints within a GCF file. Consequently,
each label within a GCF file must be unique. The label must be an
identifier or a quoted string if the label is a GCF keyword.

There is a provision for a label in every basic constraint construct of GCF.

Syntax
label ::= label id COLON

label_id ::= IDENTIFIER
[|= QSTRING

A simple and compact approach for a GCF writer is to assign consecutive
integers as labels. If desired, more information can be conveyed in the
label by using a quoted string.

If several GCF writers are used to create different subsets, a policy must
be established to ensure that the labels created by the writers do not
conflict. An example policy would be to include an abbreviation for the
subset name at the start of the label, such as TGO, TG1, ... for labels within
the timing globals subset.

Example

(27: INTERNAL_LOAD 10.0 out6)

In this example, the label is 27, and it uniquely identifies a constraint on
the internal load of the net connected to quité.

August 22, 1997 43

Value Types

Value Types

Most constraints take one or more values, and there are similar restrictions
on the types of values which are legal. This section describes a number of
basic value types which are used in other constructs.

Syntax

NUMBER NUMBER
RNUMBER RNUMBER
NUMBER NUMBER?
r_min_max:= RNUMBER RNUMBER?

rise_fall_min_max::= NUMBER
= NUMBER NUMBER
[[= NUMBER NUMBER NUMBER NUMBER

r_rise_fall_min_max::= RNUMBER
[l= RNUMBER RNUMBER
|l= RNUMBER RNUMBER
RNUMBER RNUMBER

NUMBER NUMBER
RNUMBER RNUMBER
NUMBER NUMBER?
RNUMBER RNUMBER?

min_and_max:

r_min_and_max:

min_max ::

rise_and_fall ::
r_rise_and_fall ::
rise_fall ::
r_rise_fall ::

The formal definitions oNUMBER andRNUMBER can be found under
“Variables” on page 119.

44 Version 1.2 Using GCF

Globals

Globals

Environment Globals

Version 1.2

The globals section describes the constraint data that applies to multiple
cells within the design. Use of the globals section avoids duplication of
constraint data within each cell. The globals section must appear before
anycell_specsections.

Syntax
globals ::= (GLOBALS globals_subset

globals_subset:= env_globals_subset
[|= timing_globals_subset
[|= extension
[|= meta_data

This version of the GCF defines two types of global data: the environment
globals subset and the timing globals subset.

The environment globals subset describes the operating conditions for a
design, including process, temperature, and voltage values. There are two
types of specifications: a range specification, which describes the range of
values over which the design is intended to operate, and a corner
specification, which describes a particular process, voltage, and
temperature point for which analysis or optimization is to be done.

The environment globals subset also describes the voltage thresholds used
for the slew specifications and maximum transition constraints in other
parts of the GCF.

In Level 1, the operating conditions can be case-dependent.

Syntax

env_globals_subset= (GLOBALS_SUBSET ENVIRONMENT
env_globals_body

env_globals_body:= env_globals_spec+
[|= include

env_globals_spec:= env_globals_spec 0
[|= env_globals_spec_1

env_globals_spec_0= process
[|= voltage
||= temperature
||= operating_conditions
[|= voltage_threshold
||= extension
[|= meta_data

August 22, 1997 45

Globals

Process

Voltage

Temperature

46

env_globals_spec_1= (LEVEL 1env_globals_case}
env_globals_case:= (CASE IDENTIFIER env_globals_spec_O)

Example
(GLOBALS_SUBSET ENVIRONMENT

(voltage 4.5 5.5)
(operating_conditions “fastest” 0.8 3.1 -25.0)

)

In this example, only the voltage range is specified, and the process corner
to be used for analysis corresponds to the fastest delays.

Theprocessconstruct specifies the range of process derating factors over
which the design is intended to operate. This range restricts the
process_valuavhich can be specified for the operating conditions.

Syntax
process::= (label?PROCESSmin_and_may

Example
(process 0.8 1.2)

In this example, assuming that 1.0 represents a nominal process, the
process derating factor used for analysis can vary by plus or minus 20
percent.

Thevoltageconstruct specifies the range of voltages over the design is
intended to operate. This range restrictsvibleage _valuavhich can be
specified for the operating conditions.

Syntax
voltage ::= (label?VOLTAGE r_min_and_may

Ther_min_and_magparameter specifies minimum and maximum voltages.

Example
(voltage 2.9 3.1)

In this example, assuming that the voltage scaling factor is set to 1.0, the
design is intended to operate with a supply voltage between 2.9 and 3.1
volts.

Thetemperatureconstruct specifies the range of temperatures over which
the design is intended to operate. This range restricts the
temperature_valugvhich can be specified for the operating conditions.

Version 1.2 Using GCF

Globals

Syntax
temperature::= (label? TEMPERATURE r_min_and_may

Ther_min_and_mayarameter specifies the minimum and maximum
operating ambient temperatures in degrees Celsius (centigrade).

Example
(temperature -25.0 85.0)

In this example, the design is intended to operate between -25.0 and 85.0
degrees Celsius.

Operating Conditions Theoperating_conditionsonstruct specifies an environmental corner—a
particular combination of process, voltage, and temperature derating
points —for which analysis or optimization is to be done.

Syntax
operating_conditions::= (label? OPERATING_CONDITIONS

QSTRING
process_value
voltage value
temperature_valug

process_value:= NUMBER

voltage value::= RNUMBER

temperature_value:= RNUMBER

The QSTRING parameter specifies a name for the environment corner,
which is used in some libraries to obtain the models for converting the
process, voltage, and temperature derating points into delay multipliers.

Theprocess_valuspecifies the process derating point. The interpretation
and the units of the derating factor are library-dependent. The process
derating point is used to compute a multiplier for scaling delays to reflect
the impact of variations in the process. Usually the derating point is
interpreted as an index into a linear model which defines the delay
multiplier.

If the GFC file contains processconstruct that defines a range of
allowable process derating points, pfrecess_valuenust fall within that
range. There is no default range.

Thevoltage valuespecifies the voltage derating point, which has units
specified by thevoltage scaleThe voltage derating point is used to
compute a multiplier for scaling delays to reflect the impact of variations
in the supply voltage. Usually the derating point is interpreted as an index
into a linear model which defines the delay multiplier.

Version 1.2 August 22, 1997 47

Globals

Voltage Threshold

48

If the GFC file contains woltageconstruct that defines a range of
allowable voltages, theoltage valuenust fall within that range. There is
no default range.

Thetemperature_valuspecifies the temperature derating point in degrees
Celsius (centigrade). The temperature derating point is used to compute a
multiplier for scaling delays to reflect the impact of variations in the
ambient temperature. Usually the derating point is interpreted as an index
into a linear model which defines the delay multiplier.

If the GFC file contains eemperatureconstruct that defines a range of
allowable temperatures, the operatiegiperature_valuenust fall within
that range. There is no default range.

The operating conditions defined in the global environment subset apply
by default to all cells in the design. In Level 1, this can be overridden for
particular cells by including amperating_conditionspecification in the
timing subset for a cell.

Example
(operating_conditions “slowest” 1.2 2.9 85.0)

In this example, the environment corner is set to reflect derating points
which result in the analysis or optimization being based on the slowest
delays.

Thevoltage_threshol@onstruct specifies the measurement points on a
waveform which must be used in calculating a slew or transition time. The
measurement points are defined as a fraction of the change in voltage from
the start of the transition to the end of the transition. If no voltage
thresholds are specified in a GCF file, the default values are 10% and 90%.

Syntax

voltage_threshold::= (label?VOLTAGE_THRESHOLD
min_and_may

Themin_and_maxyarameter specifies the minimum and maximum
measurement points.

Example
(voltage_threshold 20.0 80.0)

In this example, the measurement points on the waveform are at the 20%
and 80% points with respect to the change in voltage associated with the
transition.

Version 1.2 Using GCF

Globals

Environment Globals The environment globals can be case-dependent.

Case Syntax
env_globals_spec_1= (LEVEL 1 env_globals_1+)
env_globals_1::= env_globals_case

env_globals_case:= (CASE IDENTIFIER
env_globals_case_speg+

env_globals_case_spec= env_globals_spec_0

Example

(GLOBALS_SUBSET ENVIRONMENT
(level 1
(case board1
(voltage 4.5 5.5)
)
(case board2
(voltage 3.1 3.5)
)
)
)

In this example, the voltage range depends on the board in which the
design is used.

Version 1.2 August 22, 1997 49

Globals

Timing Globals

Primary Waveform

50

The timing globals subset defines waveforms, derived waveforms, and
clock domains. Waveforms and their derivatives can be referenced by each
cell, as needed. A clock domain is a group of clocks which are synchronous
with respect to each other.

Syntax
timing_globals_subset= (GLOBALS_SUBSET TIMING
timing_globals_body
timing_globals_body::= timing_globals_spec+
[|I= include
timing_globals_spec:= timing_globals_spec 0
||= timing_globals_spec_1
timing_globals_spec_0:= primary_waveform

||= extension
||= meta_data

timing_globals_spec_1:= (LEVEL 1timing_globals_1+)
timing_globals_1::= timing_globals_no_case 1
[|= timing_globals_case

timing_globals_no_case::xderived_waveform
||= clock_group

The following sections describe primary waveforms, derived waveforms,
clock groups, and timing globals case.

Example

(GLOBALS_SUBSET TIMING
(include “global_timing.gcf”)

)

In this example, the global timing constraints are described in a separate
file, global_timing.gcf, which must located in a directory along the search
path.

The primary waveform construct defines an abstract periodic waveform,
which is not necessarily associated with any particular signal in the portion
of the design described by the GCF file. A waveform typically is used to
define one or more clock signals.

The following example uses a waveform that isn’t associated with any
signal. The GCF file for a chip might need to refer to the waveform of an
off-chip clock in a constraint on the arrival time at an input pin of the chip,
but that clock itself might not be supplied to the chip.

The primary and derived waveform constructs allow multiple pairs of
edges. However, when a waveform description is used to define a clock or

Version 1.2 Using GCF

Version 1.2

Globals

is used as a reference for an arrival or departure time, the waveform must
only have a single pair of edges.

Syntax

primary_waveform::= (label?WAVEFORM waveform_name
period edge_pair_lis}

waveform_name:= QSTRING
period ::= NUMBER
edge_pair_list::= pos_pair+
[|= neg_pair+
pos_pair ::= pos_edge neg_edge
neg_pair ::= neg_edge pos_edge
pos_edge::= (POSEDGEmin_max)
neg_edge::= (NEGEDGE min_max)

The name of the waveform must be unique. The period describes the
interval at which the waveform repeats, and is in units of time.

All waveforms are described with respect to an implicit reference point in
time. When a circuit contains several clock domains (see “Clock Groups”
on page 53), there is one implicit reference point for each clock domain
which applies to all of the clocks in that domain. The clock waveforms
within a clock domain must be described relative to the implicit reference
point, so that known skew between related clocks is reflected in the
respective waveform edge positions.

There is no relationship between the reference points for different clock
domains.

edge_pair_listdescribes a single period of the waveform. It consists of a
list of edge pairs, which can be eithgsas_edgeonstruct followed by a
neg_edgeonstruct or meg_edgeonstruct followed by pos_edge
construct. Thus, the total number of edges in the list will be even and the
edges will alternate betwe®OSEDGE andNEGEDGE.

In addition to the direction of the transition, each edge gives the time at
which the transition takes place relative to the start of each period. Offsets
must increase monotonically throughout guge_pair_lisand must not
exceed the period.

Themin_madxentries allow either one or two values to be specified for each
edge. If one value is given, then this precisely defines the transition offset.
If two values are given, then they define an uncertainty region in which the
transition will take place. This would usually be used to describe jitter in a
clock signal. The first value gives the beginning of the uncertainty region
and the second value gives its end. Tools using this construct with two
values will assume that a single transition of the specified direction occurs
somewhere in the uncertainty region but can not make any assumptions

August 22, 1997 51

Globals

Derived Waveform

52

about the exact location. Tools unable to model this edge uncertainty will
issue a warning message and use the mean of the two values to locate the
transition.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(POSEDGE 0) (NEGEDGE 5.0)

)

In this example, a waveform is defined with a 50% duty cycle and a 10 ns
period (assuming that the time_scale construct specifies that delay values
in the file are in ns).

The derived waveform construct defines a waveform that is harmonically
related to a previously defined waveform (the “parent” waveform which
might itself be a derived waveform). Derived waveforms can only be
specified in Level 1.

Derived waveforms are commonly used in a multi-phase, single-frequency
clocked system. A single abstract waveform is defined, and other phases
are derived from it.

Another example of when this is useful is when clock multipliers or
dividers are used to convert one clock waveform into another waveform
with a different but related frequency. By defining the output waveform of
a divider as a derived waveform, a change to the definition of the period of
the parent waveform will automatically affect the output waveform.

Syntax
derived_waveform:= (label? DERIVED_WAVEFORM
waveform_name
parent_waveform_name
period_multiplier? phase_shift?
skew_adjustmenty?

parent_waveform_name= QSTRING
period_multiplier ::= (PERIOD_MULTIPLIER DNUMBER)
phase_shift:= (PHASE_SHIFT RNUMBER)
skew_adjustment.= (SKEW_ADJUSTMENT edge_pair_lis}

If a period_multiplieris specified, the period of the derived waveform is
obtained by multiplying the period of the parent waveform by the value
given in theperiod_multiplierconstruct The position of each waveform
edge in the parent is also multiplied, to determine the corresponding edge
position in the derived waveform.

Version 1.2 Using GCF

Clock Groups

Version 1.2

Globals

If a phase_shifts specified, the edges of the derived waveform are
computed by adding the specified value to the edge positions specified in
the parent waveform or to the computed edge positions if a
period_multiplieris specified.

The values specified in tlekew_adjustmemonstruct are used to change

the uncertainty region defined for each corresponding edge in the parent
waveform, or for the computed edge positions if eithgeréod_multiplier

or aphase_shifts specified. If a single skew adjustment number is
specified for an edge, it is subtracted from the left edge of the uncertainty
region associated with the corresponding edge in the parent and added to
the right edge of that uncertainty region. If two skew adjustment numbers
are specified for an edge, the first number is subtracted from the left edge
of the uncertainty region associated with the corresponding edge in the
parent, and the second number is added to the right edge of that uncertainty
region.

When a combination qderiod_multiplietr phase_shiftor
skew_adjustmembnstructs are specified, the edge positions are computed
by first considering the effect of apgriod_multiplief then the effect of
anyphase_shiftand finally, the effect of angkew_adjustment

The waveform resulting from the calculations must be valid: offsets must
increase monotonically throughout #ege _pair_lisand must not exceed
the adjusted period.

When theMULTI_CYCLE construct (see “Multi-Cycle Paths” on page
83) is used for a parent waveform, it has no effect on any waveforms I
derived from that parent; any adjustments must be specified independently
for each derived waveform.

Example

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”
(period_multiplier 2)
)
)

In this example, a waveform is defined with a 50% duty cycle and a 20 ns
period by deriving from a previously defined parent waveform.

By default, all clocks are assumed to be derived from a common source
clock and to have harmonically related frequencies, so that it is meaningful
to perform timing checks on paths between any pair of registers.

In Level 1, not all of the clocks need to be derived from the same source.
In this case, the waveforms can be separated into groups of related clocks
or “clock domains.” Only paths between clock waveforms in the same

August 22, 1997 53

Globals

Timing Globals Case

54

group are constrained. In Level 0O, all clock waveforms are assigned to the
same default clock domain.

Clock waveforms in different domains are assumed to be asynchronous.
There is no default constraint on the delay of paths which start in one clock
domain and end in a different one, although an explicit combinational
delay constraint could be specified as an exception. A synchronizer must
usually be used for these paths.

Syntax

clock_group::= (label?CLOCK_GROUP
clock_group_name waveform_nampg+

clock_group_name:= QSTRING

The clocks within the group are identified by their waveform names, and
the definitions of the waveforms must precedecibek _group_spec

Usually derived waveforms will be in the same clock group as their parent
waveform, but this must be specified explicitly.

Including the same waveform name in multiple clock groups is not
allowed because doing so implies that the clock is asynchronous with
respect to itself.

Example

(WAVEFORM “100 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)
)

(LEVEL 1
(DERIVED_WAVEFORM “50 MHz 50/50” “100 MHz 50/50”
(period_multiplier 2)

)
(CLOCK_GROUP “groupl”

“100 MHz 50/50" “50 MHz 50/50”

)
)

The timing globals can be case-dependent.

Syntax

timing_globals_case:= (CASE IDENTIFIER
timing_globals_case_speg+

timing_globals_case_spes timing_globals_spec_0
||= timing_globals_no_case_1

Version 1.2 Using GCF

Version 1.2

Globals

Example

(GLOBALS_SUBSET TIMING
(level 1
(case board
(WAVEFORM “100 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)
)
)

(case tester
(WAVEFORM “20 MHz 50/50” 10.0
(posedge 0) (negedge 5.0)
)
)
)
)

In this example, the clock waveform supplied to the chip depends on
whether it is mounted on the board or is being tested.

August 22, 1997 55

Design References

Design References

GCF allows three types of design preferences: name prefixes, cell and port
instances, and cell types.

Name Prefix Constraints generally refer to the properties of specific objects within a
design (for example, cell instances or port instances). In GCF, it is only
possible to refer to these objects by their name. However, the full
hierarchical name of a design object can be a fairly long string, and many
design objects have similar names.

To reduce the size of GCF files, a notation is adopted which is similar to
one originally defined for the Physical Design Exchange Format, Revision
2.0 (PDEF).

To reduce the size of GCF files, GCF allows the use of name prefixes. A
name prefix is a short alias to be created for an initial portion of a
hierarchical path name. When the full hierarchical names of many design
objects share a common initial prefix, the use of name prefixes can
substantially reduce the size of a GCF file.

Syntax

(NAME_PREFIXES num_prefixes
name_prefix+)

num_prefixes::= DNUMBER
name_prefix::= prefix_id QSTRING
prefix_id ::= DNUMBER

name_prefixes:

To optimize reading a GCF file, tieim_prefixeparameter must specify
the exact number of name prefixes which follow, andotiedix_idsmust
be consecutive integers starting at O.

Name prefixes are defined within a cell specification. A GCF writer can
choose to use any set of strings for use as name prefixes, or can choose to
not define any prefixes at all. One possible choice for the name prefixes is
the instance names of primitives instantiated as descendents of the cell.

Once a name prefix has been defined, it can be used to identify cell
instances or port instances within the current cell instance. The definition
of the name prefix must precede any usage of the prefix.

When a name prefix is used, it is interpreted as the initial portion of a
relative path name beginning at the context of the current cell instance.

56 Version 1.2 Using GCF

Design References

The cell instance construct is used to identify a particular instance of a cell
within the design. The port instance construct is used to identify a
particular instance of a port within the design.

Cell and Port Instance

Syntax
cell_instance::= PATH
[|= (prefix_id)
[|= (prefix_idPARTIAL_PATH)
port_instance::= port
||= PATH HCHARport
[|= (prefix_id port)
||= (prefix_idPARTIAL_PATH HCHARport)

Since the name prefix and tRARTIAL_PATH are simply concatenated
without interpretation to form the fuHATH for the cell or port instance,
the name prefix must use the hierarchy delimiter charadGHAR, to
separate each level of hierarchy in the name.

There must be no white space separatindPkieH or PARTIAL_PATH,
HCHAR, andport components of port_instance

Example

(CELL()

(NAME_PREFIXES 2
0 “a.b.c.d.”
1“a.b.c.e.”

)

(SUBSET *“timing”
(MAX_TRANSITION_TIME 1.0 2.0 (1 IN1))
(MAX_TRANSITION_TIME 3.0 4.0 (2 IN1))

)
)

In this example, two name prefixes are defined and then used to construct
the full path name for two different input port instances to set a transition
time constraint on those ports.

Cell Type Thecell_id construct is used to refer to exactly one type of cell.

Syntax

cell_id ::= (CELLTYPE cell_name
||= (CELLTYPE
library _name cell_name view_namg?

library_name ::= QSTRING
cell_name:= QSTRING
view_hame::= QSTRING

The library name indicates the library which contains the cell. The view
name specifies a particular view of the cell.

Version 1.2 August 22, 1997 57

Cell Entries

Cell Entries

A cell construct identifies a particular “region” or “scope” within a design
and contains constraint data to be applied to that region.

For example, a cell construct might identify a unique occurrence of a user-
defined cell or block and provide constraints on the interface ports of that
block. Or, it might identify a unique occurrence of an ASIC physical
primitive (such as a flip-flop) in the design and define constraints specific
to that occurrence (such as a multi-cycle path constraint on all paths
starting at that flip-flop). Besides identifying such design-specific regions,
cell entries can identify all occurrences of a particular user-defined cell or
an ASIC library physical primitive, such as a certain type of gate or flip-
flop. Data is applied to all such regions in the design.

Syntax
cell_spec::= (CELL cell_instance_spec cell_body spec+

cell_instance_spec.= cell_instance_path
[|= (cell_instance_path+)
II= ()

[|= cell_views
cell_instance_path:= PATH

cell_body_spec:= name_prefixes
[|= subset
||= extension
||= meta_data
[|= include

Thecell_instance_speidentifies one or more regions of the design. The
cell_body specontains the constraint data for that region. These will be
discussed in detail in the following chapters.

Example

(CELL al.bl.cl1
(SUBSET PARASITICS
(INTERNAL_LOAD 5.0 7.5 IN1)

)
)

A GCF file can contain any number of cell entries (including zero). The
order of the cell entries is significant only if they have an overlapping
effect, where data from two different cell entries applies to the same
constraint in the design. In this situation, the cell entries are processed
strictly from the beginning to the end of the file, and the data they contain

58 Version 1.2 Using GCF

Cell Entries

is applied in sequence to whatever region is appropriate to that cell
construct. Where data is applied to a constraint previously referenced by
the same GCF file, the new data will be applied over the old.

This interpretation supports the definition of a set of default constraints for
all instances of a cell, then overriding those constraints for particular cell
instances.

Cell Instance Spec Thecell_instance_speidentifies the parts of the design to which the
constraints in the cell construct apply.

Syntax

cell_instance_spec.= cell_instance_path
[|= (cell_instance_path+)
II= ()

[|= cell_views
cell_instance_path:= PATH

The first form of thecell_instance_spedentifies a unique occurrence in
the design. Theell_instance_patimust be relative to the level in the
design at which the annotator is instructed to apply the GCF file (see “The
Annotator” on page 21). Frequently, this is the topmost level.

Thecell_instance_patis extended down through the hierarchy by
specifying a hierarchical path name with the name of each hierarchical
level separated by the hierarchy delimiter charaetleHAR. The
hierarchical path name must not start with the hierarchy delimiter
character. Name prefixes cannot be used ice¢tieinstance_path.

Example

(CELL al.bl.cl

)

In this example, the relative hierarchical path is specified.as.c1

The region identified is cell or bloak within blockb1, which is in turn

within blocka1, which must be contained within the level at which the

GCF is applied. The period character separates levels or elements of the
path. The example assumes that the delimiters construct in the GCF header
specified the hierarchy delimiter as the period character or, since period is
the default, the construct was absent.

The second form of theell_instance_speidentifies several occurrences
of the cell to which the same constraints must be applied.

The () form of theeell_instance_speaadicates that the constraints defined
in thecell_body_speapply to the hierarchical level in the design at which

Version 1.2 August 22, 1997 59

Cell Entries

60

the annotator is instructed to apply the GCF file. This is typically used to
specify constraints on the top-level cell in the design.

Thecell_viewsform of the cell instance list indicates that the constraints
defined within thecell_body_speeapply to all occurrences of the given
type of cell which are instantiated under the hierarchical level at which the
GCF is applied.

Syntax

cell_views::= (CELLTYPE cell_ name
[I= (CELLTYPE
library_name cell_name view_namg*

library_name ::= QSTRING
cell_ name::= QSTRING
view_name::= QSTRING

The library name indicates the library which contains the cell, while the
view name can be used to specify which views of the cell are affected.

Example
(CELL (CELLTYPE “WORKLIB” "ALU")
)

The effect of this example is to apply the constraints to every instance of
every view of the ALU cell from the WORKLIB library.

Version 1.2 Using GCF

Subsets

Subsets

Version 1.2

GCF is organized into a number of subsets of related constraint data. The
intent of this is to allow the development of the GCF standard for each
subset to proceed independently, and to allow tools to efficiently access
only the data which is relevant to them.

Syntax

subset::= timing_subset
||= parasitics_subset
||= area_subset
[|= power_subset

Additional subsets are likely to be added in the future.

August 22, 1997 61

Subsets

62 Version 1.2 Using GCF

Timing Subset

Timing Subset Header
Timing Environment

Timing Exceptions

Timing Subset Header

Timing Subset Header

The timing subset of each cell entry in the GCF file includes information
about the following:

= The timing environment in which the cell is intended to operate

= The constraints on the timing characteristics of the cell

This chapter describes the timing environment and timing exceptions. For
information on other constructs, refer to “Extensions” on page 37, “Me
Data” on page 40, and “Include Files” on page 42.

Syntax
timing_subset::= (SUBSET TIMING timing_subset_body

timing_subset_body:= timing_subset_spec+
[|= include

timing_subset_spec= timing_environment
[|= timing_exceptions
[|= extension
[|= meta_data

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(INSTANCE *)
(SUBSET TIMING
(ENVIRONMENT

)
(EXCEPTIONS

)

)
)

Version 1.2 August 22, 1997 65

Timing Environment

Timing Environment

The timing environment of a cell describes a number of conditions external
to the cell that affect its timing behavior. The following conditions are

included:

the cell

Arrival and departure times of signals at the cell ports
Clock waveforms used by the cell
Information about the external drivers connected to the input ports of

This section describes clock specifications, arrival time, driver cell, driver
strength, input slew, constant values, operating conditions, and timing
environment cases. Chapter 5, “Parasitics Subset,” includes additional
information that affects the cell’s timing behavior.

Syntax

timing_environment:= (ENVIRONMENT timing_env_specy

timing_env_spec:=
|I=
timing_env_spec_0:=
|I=
|I=
|I=
|I=
I
|I=
|I=

timing_env_spec_1.=

timing_env_1::

timing_env_no_case 1=
|I=
1=

timing_env_spec_0
timing_env_spec_1

clock _spec
arrival_spec
departure_spec
external_delay _spec
driver_spec
input_slew_spec
extension
meta_data

(LEVEL 1 timing_env_14
timing_env_no_case_1
timing_env_case

constant_spec
operating_conditions
internal_slew_spec

Each clock that is applied to the cell (or generated internally by the cell
itself) is described by relating a waveform (see “Timing Globals” on page

50) to a port instance (the source of that waveform within the cell). These
port instances are usually the roots of a clock network and are referred to

clock_spec::= (label?CLOCK waveform_name

Clock

Specifications
as clock roots.
Syntax

66

Version 1.2

port_instance+)

Timing Subset

Arrival Time

Version 1.2

Timing Environment

If the waveform was not previously defined, an error message will be
given. Although th&VAVEFORM construct generally allows more than
one pair of edges, clock waveforms must only have a single pair of edges.

Theport_instancecan either be an input port on the cell or an output port
of an instance within the cell.

Example

(CLOCK “100 MHz 50/50” clk1)
(CLOCK “50 MHz 50/50” divider.clkout)

TheARRIVAL construct defines ranges of time in which signal transitions
can occur at gort_instancewhich includes registers in its transitive
fanout. Arrival times are usually specified only for primary input and
bidirectional ports, but they can also be specified for internal input and
bidirectional ports. When specified on internal pins, the arrival time
overrides any propagated arrival time.

Syntax
arrival_spec ::= (label? ARRIVAL
waveform_edge arrival_value
port_instance®
waveform_edge:= (waveform_edge_identifier waveform_name

arrival_value ::= (waveform_edge_identifier r_min_mpax
[|= r_rise_fall_min_max

If no port_instancds specified, the arrival time applies by default to all
primary input and bidirectional ports on the cell except those which have
been identified as clock inputs.

Thewaveform_edgspecification, which identifies a waveform and an
edge of that waveform, is required. Tdreval_valueis added to that edge.

If the waveform was not previously defined, an error message will be
given. Although th&VAVEFORM construct generally allows more than
one pair of edges, clock waveforms used for arrival times must only have
a single pair of edges.

The firstarrival_valueform,waveform_edge_identifier r_min_mamust

be used to specify the arrival time of just the rising edges or just the falling
edges. The second formyise_fall_min_maxmust be used to specify the
arrival time of both rising and falling edges.

One or two values can be specified for thein_maxform. If a single
value is specified, it applies to both the minimum and maximum values. If

August 22, 1997 67

Timing Environment

68

two values are specified, they represent the minimum and maximum
values, respectively.

One, two, or four values can be specified forrthése_fall_min_max

form. If a single value is specified, it applies to the rise minimum, rise
maximum, fall minimum, and fall maximum values. If two values are
specified, the first value applies to the rise minimum and rise maximum
values, and the second value applies to the fall minimum and fall
maximum values. If four values are specified, they apply to the rise
minimum, rise maximum, fall minimum, and fall maximum values,
respectively.

The minimum values must be less than or equal to the maximum values for
the same transition.

Multiple ARRIVAL constructs can be defined for the same port. Each
ARRIVAL construct can reference a differergveform_edgeThe arrival
times associated with a given referemesreform_edgare independent of
the arrival times associated with any other referaveoeeform_edgeand
analysis will be done separately for each refereveneeform_edge

If severalARRIVAL constructs appear in a GCF file, and each construct
specifies arrival times for the same port instance with respect to the same
referencevaveform_edgehe effect is cumulative and overriding. For
example, assume there are two arrival constructs for the same port instance
with respect to the same referencaveform_edge

= If the first construct specifies only tROSEDGE arrival times and the
second construct specifies only MEGEDGE arrival times, the result
is that both thOSEDGE andNEGEDGE arrival times are set.

= If the first construct specifies boBOSEDGE andNEGEDGE arrival
times and the second construct specifies onlWWE@EDGE arrival
times, the result is that the values of B@BSEDGE arrival times come
from the first construct, while the values of MEGEDGE arrival
times come from the second construct.

Example

(ENVIRONMENT
(ARRIVAL (POSEDGE “50 MHz 50/50")
10.0 14.0 12.0 16.0 D[])

)

This example specifies the arrival times for all input pins referenced by the
bit-specD[*]. Assuming that the time scale is in ns, rise transitions will
occur no sooner than 10 ns and no later than 14 ns after the rising edge of

Version 1.2 Timing Subset

Departure Time

Version 1.2

Timing Environment

the reference clock. Falling transitions will occur no sooner than 12 ns and
no later than 16 ns after the clock edge.

TheDEPARTURE construct defines ranges of time in which signal
transitions must occur atpert_instancewhich includes registers in its
transitive fanin. Departure times are usually specified only for primary
output and bidirectional ports, but they can also be specified for internal
output and bidirectional ports. When specified on internal pins, the
departure time overrides any propagated departure time.

Syntax

departure_spec:= (label?DEPARTURE
waveform_edge departure_value
port_instance®

waveform_edge:= (waveform_edge_identifier waveform_name

departure_value::= setup_rise_fall hold_rise_fall
[|I= (waveform_edge_identifier
setup_value hold_valde

setup_rise_fall::= r_rise_and_fall

hold_rise_fall ::= r_rise_and_fall
setup_value::= RNUMBER
hold_value ::= RNUMBER

If no port_instancaes specified, the departure time applies by default to all
primary output and bidirectional ports on the cell.

Thewaveform_edgspecification, which identifies a waveform and an
edge of that waveform, is required. The hdé&parture_valués added to
that edge, while the setaeparture_values subtracted from that edge.

If the waveform was not previously defined, an error message will be
given. Although th&VAVEFORM construct generally allows more than
one pair of edges, clock waveforms used for departure times must only
have a single pair of edges.

Departure times are interpreted as setup and hold constraints. Specifyifjg a
departure time is equivalent to adding a register with corresponding setup
and hold constraints at the output. I

All partial paths from the specified port to the target registers must be
considered in setting the departure time.

= For the minimum departure time, the delay of each partial path mustjpe
subtracted from the hold time of the target register, and the minim
departure time must be set to the largest (most positive) resulting valjie.

August 22, 1997 69

Timing Environment

Since the partial path delays will generally be larger than the hold time
of the target registers, the minimum departure time will usually be a
negative number.

= For the maximum departure time, the setup time of the target register
must be added to the delay of each partial path, and the maximum
departure time must be set to the largest resulting value.

The firstdeparture_valudorm, setup_rise_fall hold_rise_falmust be

used to specify different departure times for rising and falling edges. The
second formyaveform_edge_identifier setup_value hold_vatoest be

used to specify the departure time of just the rising edges or just the falling
edges.

Multiple DEPARTURE constructs can be defined for the same port. Each
DEPARTURE construct can reference a differgrdveform_edgerhe
departure times associated with a given referarmseform_edgare
independent of the departure times associated with any other reference
waveform_edgeand analysis will be done separately for each reference
waveform_edge

Like ARRIVAL constructs, the effect of multipBEPARTURE constructs
is cumulative and overriding.

Example

(ENVIRONMENT
(DEPARTURE (NEGEDGE “50 MHz 50/50")
12.0 18.0-8.0 -14.0 A[15:0])

)

This example specifies departure times for each of the 16 output pins
A[15:0] and that the falling edge is the active edge of the target clock.
Assuming that the time scale is in ns, rising transitions must occur no later
than 12.0 ns before the setup active edge and no earlier than 8.0 ns before
the hold active edge. Falling transitions must occur no later than 18.0 ns
before the setup active edge and no earlier than 14.0 ns before the hold
active edge.

External Delay TheEXTERNAL_DELAY construct is used with tHRATH_DELAY
construct to constrain purely combinational portions of a design.

ThePATH_DELAY construct describes constraints on the combinational
delay through a portion of the design, while EMTERNAL_DELAY

construct describes purely combinational delays which are external to that
portion of the design. The external delays are added to the computed path
delays within that portion of the design before comparing to the path delay
constraint.

70 Version 1.2 Timing Subset

Timing Environment

External delays may be specified on both primary interface ports and
internal ports. If no external delay is specified for a port which is an
endpoint of PATH_DELAY constraint, the external delay defaults to O.

Syntax

external delay_spec:= (label?EXTERNAL_DELAY
external_delay_value endpoints_spec+

external_delay_value:= (waveform_edge_identifier r_min_mjpx
[|= r_rise_fall_min_max

Theendpoints_speis described in “Path Specifications” on page 78.
External delays specified using thROM keyword are to be added to
combinational paths which start at the given endpoints, while external
delays specified using the® keyword are to be added to combinational
paths which end at the given endpoints. A given internal port instance pr
primary bidirectional port can appear in two different external delay
specifications, one using tiRROM keyword and one using ti®

keyword.

The firstexternal_delay_valutorm, waveform_edge_identifier
r_min_max must be used to specify the external delay for just the risin
edges or just the falling edges. The second fornge_fall_min_max
must be used to specify the arrival time of both rising and falling edge
The transitions are with respect to the given endpoints.

One or two values can be specified for thein_maxform. If a single

value is specified, it applies to both the minimum and maximum values jIf
two values are specified, they represent the minimum and maximum
values, respectively.

One, two, or four values can be specified forrthese_fall_min_max
form. If a single value is specified, it applies to the rise minimum, rise
maximum, fall minimum, and fall maximum values. If two values are
specified, the first value applies to the rise minimum and rise maximu
values, and the second value applies to the fall minimum and fall
maximum values. If four values are specified, they apply to the rise
minimum, rise maximum, fall minimum, and fall maximum values,
respectively.

The minimum values must be less than or equal to the maximum valuesffor
the same transition.

Like ARRIVAL andDEPARTURE constructs, the effect of multiple
EXTERNAL_DELAY constructs for the same port instance is cumulativ

Version 1.2 August 22, 1997 71

Timing Environment

and overriding.

Example

(ENVIRONMENT
(EXTERNAL_DELAY 5.0
(FROM IN[0])

)
(EXTERNAL_DELAY 3.0

(TO OUTIO])

)
(PATH_DELAY 10.0

(FROM IN[0])
(TO OUT[0])

)
)

Assuming that time values are in ns, this example specifies that

= An external combinational delay of 5 ns should be added to the
computed delay of any purely combinational path startimg[@t

= An external combinational delay of 3 ns should be added to the
computed delay of any purely combinational path endiryato]

= The effective combinational delay constraint for paths starting at
IN[0] and ending abuT[0] is 2 ns (the 10 NBATH_DELAY
constraint minus the two external delays).

Driver Driver specifications describe information about an external driver which
Specification is connected to a primary input or bidirectional port of the cell.
Syntax

driver_spec::= driver_cell_spec
||= driver_strength_spec

Precedence Rules

There are several different types of driver specifications, as well as the
ability to directly specify the slew for an input. When several different
constructs appear in a GCF which affect a given port, the following rules
are used to determine which of the constructs should be used:

= An explicit specification of the driver cell, driver strength, or implicit
slew for a given port always overrides any of the defaults.

= When there are multiple explicit specifications for the same port, the
precedence (in decreasing order) is driver cell, input slew, driver
strength.

72 Version 1.2 Timing Subset

Driver Cell

Version 1.2

Timing Environment

specifications for a given port, the precedence (in decreasing order

= When there are multiple default specifications, but no explicit
of
the defaults is also driver cell, input slew, driver strength.

TheDRIVER_CELL construct is used when the cell type of the external
driver is known. For example, for a user-defined block within a chip, the
external driver is usually a cell within another user-defined block. The
default driver cell type can be specified for all primary input and
bidirectional ports by not specifying apprt_instance

Syntax

driver_cell_spec::= (label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
opt_port_instance_list
driver_cell_port_spec:= (cell_id)
[|= (cell_id output_por)
[|I= (cell_id input_port output_port
driver_cell_options::= (driver_cell_option+)
driver_cell_option::= drive_multiplier
||= driver_input_slew
||= waveform_edge _identifier
drive_multiplier ::= (PARALLEL_DRIVERS DNUMBER)
(INPUT_SLEW slew_value input_port}¥

slew_value::= rise_fall_min_max

driver_input_slew::

If awaveform_edge_identifies specified, the driver cell construct only
applies to delay calculation for that edge.

If multiple buffers of the same type are connected in parallel, the number
of those buffers can be specified usingPIRALLEL_DRIVERS

construct. If multiple buffers of different types are connected in parallel,
multiple DRIVER_CELL constructs can be specified. When a driver cell
type is explicitly specified for a primary input and bidirectional port, it
overrides any default; the explicitly specified driver cell is not connected
in parallel with the default driver cell.

Theoutput_portspecifies the port on the driving cell that is connected to
the primary inputs. It must be specified whenever the driving cell has
multiple outputs.

Theinput_portspecifies a single input port on the driving cell that must be
the starting point when doing delay calculation. Ifitigut_portis not
specified, delay calculation is done by computing the worst case across all
inputs ports that are associated with the spectfigdut_port

August 22, 1997 73

Timing Environment

Driver Strength

74

Input slews can be specified for one or more of the input ports on the
driver. If the input slew is not specified for an input port that is the starting
point for a timing arc considered in delay calculation, a default slew of O
is used.

Theslew_valuesire time values and must be specified in the units defined
by thetime_scaleThe voltage thresholds for measuring the slew are
defined by th&/OLTAGE_THRESHOLD construct (see “Voltage
Threshold” on page 48). If no voltage thresholds are specified, the
slew_valueepresents by default the time required to transition between
the 10 and 90 percent points of the power supply voltage.

One, two, or four values can be specified fordlesv_valuelf a single

value is specified, it applies to the rise minimum, rise maximum, fall
minimum, and fall maximum values. If two values are specified, the first
value applies to the rise minimum and rise maximum values, and the
second value applies to the fall minimum and fall maximum values. If four
values are specified, they apply to the rise minimum, rise maximum, fall
minimum, and fall maximum values, respectively.

The information about the driver cell affects the accuracy of the delay
calculation.

= For the most accurate approach, bothitipeit_portand the
output_portmust be provided, along with the slew atitiyut_port In
general, this is only feasible when there is only one connected input
port. At the time a GCF file is created, it is unknown which input port
is switching, and a worst-case analysis must be done instead.

= For the most accurate worst-case analysisptiygut_porton the
driver cell must be specified, along with the slew at every input.

= For aless accurate worst-case analysis, the slew values for each input
port can be omitted, in which case the default slew is used.

When the cell type of the external driver is not known, the
DRIVER_STRENGTH construct can be used instead.

Syntax

driver_strength_spec:= (label?DRIVER_STRENGTH strength_value
port_instance®

strength_value::= rise_fall

The default driver strength can be specified for all primary input and
bidirectional pins by not specifying apprt_instance

Version 1.2 Timing Subset

Input Slew

Constant Values

Operating
Conditions

Version 1.2

Timing Environment

Thestrength_valuesare resistance values and must be specified in the
units defined by thees_scaleOne or two values can be specified for the
strength_valuelf a single value is specified, it applies to both rise and fall.
If two values are specified, they apply to rise and fall, respectively.

When the cell type of the external driver is not known)MRUT_SLEW
construct can be used instead. Note thatNR&/T_SLEW construct can

be used both within the context ob& I VER_CELL construct and by

itself. When used by itself, it describes the input slew at the primary input
of the cell, and a label can be associated with the construct.

Syntax

input_slew_spec:= (label?INPUT_SLEW slew_value
port_instance®

The default input slew can be specified for all primary input and
bidirectional pins by omitting thgort_instances

Theslew_valuas a time value and must be specified in the units defined
by thetime_scaleThe voltage thresholds for measuring the slew are
defined by the/OLTAGE_THRESHOLD construct (see “Voltage
Threshold” on page 48). If no voltage thresholds are specified, the
slew_valuerepresents by default the time required to transition between
the 10 and 90 percent points of the power supply voltage.

In Level 1, GCF allows specifying that certain signals have a constant
value. Often, this is used to describe case-dependent constraints (see
“Cases” on page 35) or to disable a portion of a circuit.

Syntax
constant_spec:= (CONSTANT constant_value port_instancg+

constant_value::= 0
II= 1

Constant values are defined in terms of signals but specified using
port_instancesA constant value specified for any of {h&t_instances
connected to a signal affects the signal as a whole. An error message will
be given if different constant values are specified onpgerd_instances
connected to the same signal.

The operating conditions defined in the global environment subset (see
“Environment Globals” on page 45) apply by default to all cells in the
design. These conditions can be overridden for particular cells by
including anoperating_conditionspecification in the timing subset for a
cell. When applied to a non-leaf cell, the operating conditions are

August 22, 1997 75

Timing Environment

Internal Slew

Timing
Environment
Cases

76

overridden for that cell and all of its descendents, unless overridden again
by one of the descendents.

TheINTERNAL_SLEW construct is a Level 1 construct and specifies a
slew that overrides the default slew on internal pins (input or bidirectional
pins on primitives). NormallyNTERNAL_SLEW must not be used for
clock input pins on primitives; theLEW option of theCLOCK_DELAY
construct must be used instead.

Syntax
internal_slew_spec:= (label?INTERNAL_SLEW rise_fall

port_instance®
TheINTERNAL_SLEW construct is normally only used

= For input or bidirectional pins that are part of a combinational loop
broken using a disable

= For cases where the slew that would be computed by the normal delay
calculation is known to be inaccurate

The default internal slew can be set by not specifyingoanty instance

The internal slew values will be determined using the following

precedence order:

= An explicitINTERNAL_SLEW for the pin

= The calculated slew, if it is possible to calculate one

= The defauiNTERNAL_SLEW , if no slew can be calculated

= The defaulilNPUT_SLEW

= 0

The timing environment can be case-dependent.

Syntax

timing_env_case:= (CASE IDENTIFIER
timing_env_case_speg+

timing_env_case_spec= timing_env_spec_0
[|= timing_env_no_case_1

Version 1.2 Timing Subset

Timing Environment

Example

(ENVIRONMENT
(level 1
(case board
(input_slew 2.0 1.0 in1)
)
(case tester
(input_slew 5.0 3.0 in1)
)
)
)

In this example, the input slew of a signal supplied to the chip depends on
whether the chip is mounted on the board or is being tested.

Version 1.2 August 22, 1997 77

Timing Exceptions

Timing Exceptions

Path
Specifications

78

By default, GCF assumes that, a circuit is synchronous. This assumption
implies that there are a set of implicit constraints on the delays of paths
through combinational logic. These constraints are determined by the
clock waveforms provided to source registers and target registers, and by
the arrival and departure times specified for ports on the cell.

Timing exceptions are GCF constructs that can be used to

= Override the implicit synchronous timing constraints for portions of a
design

= Describe explicit constraints on asynchronous portions of a design

This section describes path specifications, disable specifications, multi-
cycle paths, combinational delays, max transition times, internal slew,
latch-based borrowing, clock delay, and timing exception cases.

Syntax
timing_exceptions:= (EXCEPTIONS timing_exception_specj

timing_exception_spec= timing_exception_spec_0
[|= timing_exception_spec_1

timing_exception_spec_:& disable_spec_0
[|= multi_cycle_spec_0
||= path_delay spec 0
[|= transition_time_spec
||= extension
||= meta_data

timing_exception_spec:E (LEVEL 1 timing_exception_1+%

timing_exception_1:= timing_exception_no_case_1
||= timing_exception_case

timing_exception_no_case 1= disable_spec 1

||= multi_cycle_spec_1
||= path_delay_spec_1
[|= borrow_limit_spec
||= clock_delay_spec

Many of the timing exceptions require path specifications. This section
describes the various ways of specifying paths.

Version 1.2 Timing Subset

Disable
Specifications

Version 1.2

Timing Exceptions

Syntax
arc_spec::= (ARC port_instance port_instange
thru_spec::= (THRU port_instance

(THRU_ALL port_instance port_instancex

thru_all_spec::
endpoints_spec:= from_spec
||= to_spec
[|I= (from_spec to_spec
from_spec::= (FROM from_to_item+)
to_spec::= (TO from_to_item+)
from_to_item::= port_instance
||= cell_instance
[|= waveform_name

The Level ®ARC construct specifies all paths that pass through both of the
port_instancesincluding paths which start or end at the arc. The port
instances must be contiguous in the path (either an input to output
connection on a cell, or an output to input connection on a net). The SDF
IOPATH andINTERCONNECT constructs describe similar arcs.

The Level OTHRU construct specifies all paths that pass through the given
port, including those which start or end at the port.

The Level OTHRU_ALL construct specifies all paths that pass through alll
of the ports listed. These ports do not have to be contiguous in the patjs,
but they must be listed in the order in which they would be encounterediin
traversing each path from the source to the target.

Theendpoints_spespecifies all paths that start at any of fR&OM items

and end at any of theO items. TheFROM items must be waveform I
names, primary input or bidirectional ports, registers, register clock inputs,
or register data outputs. TR® items must be waveform names, primary
output or bidirectional ports, registers, register clock inputs, or register
data inputs.

Disabling paths is important for the following reasons:

= To break combinational feedback loops

= To eliminate false paths (paths that will never be activated during
normal operation of the circuit)

= To eliminate paths that are only active during certain modes of circuit
operation (for example, paths associated with testability logic)

TheDISABLE construct identifies a set of paths for which selected timing
checks must be suppressed.

August 22, 1997 79

Timing Exceptions

Level O Disables

80

The timing checks that might be affected are separated into two groups:

= The minimum timing checks are hold, removal, and the hold portion of
no-change checks. When tHeLD keyword is specified in a disable
construct, it refers generically to all of the minimum timing checks.

= The maximum timing checks are setup, recovery, and the setup portion
of no-change checks. When tBETUP keyword is specified in a
disable construct, it refers generically to all of the maximum timing
checks.

In the context of disabled paths, the phrase “all timing checks” means both
minimum and maximum timing checks, but not skew, period, or pulse
width checks.

In Level O, the paths can be identified by a cell instance, a single port
instance, an arc, or the path endpoints.
Syntax
disable_spec_Q:= disable_item_spec 0
||= disable_endpoints_spec 0

Disabling Paths Identified by Items

The simplest form of thBISABLE constructdisable_item_spec, 0
disables all timing checks associated with a set of paths.

Syntax
disable_item_spec_0= (label?DISABLE disable_item_04)

disable_item_0::= port_instance
[|= cell_instance
||= arc_spec

If a port_instancds specified, all timing checks associated with paths
through that port instance are disabled. The following types of
port_instancesre handled differently:

= If the port_instancas a clock input, all timing checks related to that
clock input or associated with paths that begin at that clock input are
disabled.

= [f the port_instancds an enable or disable pin that affects other paths
through a cell instance (such as a latch enable or a tri-state enable), the
timing checks associated with paths through that pin are affected, but
not the timing checks associated with paths which it controls.

If a cell_instanceas specified, all output ports on that cell instance are
implicitly referenced. All timing checks associated with any paths which
start at or pass through any output port on the cell instance are disabled.

Version 1.2 Timing Subset

Timing Exceptions

The timing checks on paths that end at input ports on the cell instance are
not affected (paths through input ports to output ports are affected).

If a Level OARC construct is given, all timing checks associated with any
paths that pass through the arc are disabled, including paths that either start
or end at the arc. For more information, refer to “Path Specifications”

page 78. T

Disabling Paths Identified by Endpoints

Thedisable_endpoints_speccOnstruct disables selected timing checks
on a set of paths that are identified by their from, to, or from and to
endpoints.
Syntax
disable_endpoints_spec_ 0= (label?DISABLE endpoints_spec+
disable_endpoints_option3?

disable_endpoints_options= timing_check

||= edge_identifier

||= timing_check edge_identifier

timing_check::= SETUP
||= HOLD

If the SETUP or HOLD keyword is specified, only the maximum or the
minimum timing checks must be disabled; otherwise, both the maximum
and minimum timing checks are disabled.

If an edge_identifiers specified, the selected timing checks are disabled
only for the specified edge of the signal, as measured at the path endpoint.

Level 1 Disables In Level 1, the timing checks or edges that are affected by a port instance
or arc disable can be selected. The paths can be identified by multiple
ports, cell instance name, or cell type.

Syntax
disable_spec_1:= disable_edges_spec_ 1
||= disable_cell_spec 1

Disabling Paths Associated With Port Instances

Thedisable_edges_specctnstruct disables selected timing checks on a
set of paths. If th€ETUP or HOLD keyword is specified, only the
maximum or the minimum timing checks must be disabled; otherwise,
both the maximum and minimum timing checks are disabled.

Version 1.2 August 22, 1997 81

Timing Exceptions

Syntax
disable_edges_spec _:1= (label? DISABLE
disable_edges_path_spec+
timing_check?
disable_edges_path_spes= thru_edge_spec
||= arc_edges_spec
[|= thru_all_edges_spec
thru_edge_spec:= (THRU port_instance_edgge
arc_edges_spec= (ARC port_instance_edge port_instance_eflge
thru_all_edges_spec= (THRU_ALL
port_instance_edge port_instance_edge+
port_instance_edge:= (edge_identifier port_instange

The Level ITHRU construct specifies all paths which pass through a

single port instance, including those which begin or end at the port
instance. The selected timing checks are disabled only for the specified
edge of the signal, as measured at that port instance and propagated to each
target in the set of paths. The following typepatt_instancesre handled
differently.

= [ftheport_instancas a clock input, all selected timing checks related
to that clock input or associated with paths which begin at that clock
input are disabled.

= [f the port_instancds an enable or disable pin that affects other paths
through a cell instance (such as a latch enable or a tri-state enable), the
selected timing checks associated with paths through that pin are
affected, but not the timing checks associated with the paths controlled
by the pin.

The Level 1ARC construct specifies all paths that pass through the given
arc, including those which begin or end at the arc. The selected timing
checks are disabled only for the specified edges of the signal, as measured
at the start and end of the arc and propagated to each target in the set of
paths.

The Level ITHRU_ALL construct specifies all paths that pass through the
specified port instances. The port instances do not have to be contiguous
in the paths, but they must be listed in the order in which they would be
encountered in traversing each path from the source to the target. The
selected timing checks are disabled only for the specified edges of the
signal, as measured at egdrt_instanceand propagated to each target in
the set of paths.

82 Version 1.2 Timing Subset

Timing Exceptions

Disabling Paths Associated With Cell Instances or Cell Types
Syntax
disable_cell_spec_1:= (label?DISABLE disable_cell_path_specj

disable_cell_path_spec= disable_instance_spec
||= disable_master_spec

disable_instance_spec= (INSTANCE cell_instance+)
disable_master_spec= (MASTER cell_id)

Thedisable_cell_spec_@onstruct disables all timing checks associated
with all paths associated with one or more cell instances including the
following:

= All timing checks associated with paths to, from, or through the
instance

= All timing checks associated with paths contained within the instance
Disabling a cell type affects all instances of that cell within either the

current GCF cell instance or its descendents. All timing checks associated
with all paths associated with any of those instances are disabled.

If a cell type is disabled within the GCF section for the top-level cell of a
design, the cell type is disabled throughout the entire design.

Multi-Cycle Paths TheMULTI_CYCLE construct identifies the paths for which setup or hold
checks must use a different set of active clock edges rather than the default.
This construct is commonly used to describe paths whose data can
propagate to the target register over multiple clock cycles by not clocking
the target every cycle.

By default, timing checks are computed with respect to the active edges of
the source and target clocks.For flip-flops, the active clock edge is the
triggering clock edge. For level-sensitive latches, the active edges are the
opening clock edge for sources and the closing clock edge for targets.

When the source and target clocks have the same frequency and phase, the
following rules are commonly used to determine the active edges:

= Setup checks are computed between an active edge at the source in one
cycle and the active edge at the target in the next cycle.

= Hold checks are computed between an active edge at the source in one
cycle and the active edge at the target in the same cycle.

When the source and target clocks have different frequencies or phases, or
when multiple cycles are allowed for a path, these rules can no longer be

Version 1.2 August 22, 1997 83

Timing Exceptions

Default Definition

84

used. A more precise definition of the process for choosing the default
active edges is used in GCF.

The clock root that drives the source of a path is called the source clock
root, and the waveform edge at the source clock root that triggers the
source of a path is called the source root edge.

The clock root that drives the target of a path is called the target clock root,
and the waveform edge at the target clock root that triggers the target of a
path is called the target root edge.

If the clock signal is inverted between the clock root and the clock input of
a register or latch, the root edge is different than the triggering edge of the
register.

The relationship between particular source and target root edges
determines which active edges are used for setup and hold checks.
Multiple cycles of the source and target clocks are considered in
identifying the source and target root edges for a timing check.

The setup check ensures that the expected data signals reach the target
registers in time to be latched correctly. If no multi-cycle specification
affects a path, the following rules are used for the setup check:

= Each target root edge and the nearest source root edge which precedes
it are called a setup edge pair.

= The default source and target root edges are defined to be the setup
edge pair with the smallest positive difference between the target root
edge and the source root edge. The default active edges are the
propagated versions of the root edges, measured at the source and
target.

The hold check ensures that data does not reach the target registers early
enough to be latched in the wrong cycle of the target clock. If no multi-
cycle specification affects a path, every setup edge pair is considered for
the hold check. For each setup edge pair, the root edges define the current
cycle at the source and at the target. Two conditions must be satisfied with
respect to these cycles:

= Datatriggered by the current cycle at the source must not be latched by
the previous cycle at the target. This condition defines a hold edge pair
in which the hold source root edge is the same as the setup source root
edge, and the hold target root edge is one cycle earlier than the setup
target root edge.

= Data triggered by the next cycle at the source must not be latched by
the current cycle at the target. This condition defines a hold edge pair

Version 1.2 Timing Subset

Overriding the Default

Version 1.2

Timing Exceptions

in which the hold source root edge is one cycle later than the setup
source root edge, and the hold target root edge is the same as the setup
target root edge.

These conditions are both checked by choosing the hold edge pair with the
most positive difference between the target root edge and the source root
edge (note that the difference can still be negative). The default active
edges for the hold check are the propagated versions of the root edges,
measured at the source and target.

TheMULTI_CYCLE construct allows changing the active edges that are
chosen for specific paths or for all paths between a given source and target
clock pair.

Level 0 Multi-Cycle Paths

In Level O, the paths can only be identified by their endpoints (see “Pa
Specifications” on page 78).

= The source endpoints (specified with #ROM construct) identify
primary input or bidirectional ports or register clock inputs. In addition
to explicitly identifying source endpoints, they can be specified
implicitly using a register, register data outputs, or a waveform name.

0 If aregister is specified, all clock inputs on the register are included
as source endpoints.

0 If aregister data output is specified, all clock inputs on the register
that are related to that output are included as source endpoints.

0 If awaveform name is specified, all register clock inputs driven by
the clock root(s) associated with the waveform are included as
source endpoints, as are all primary input and bidirectional ports
with an arrival time relative to that waveform.

= The target endpoints (specified with @ construct) identify primary
output or bidirectional ports or register data inputs. In addition to
explicitly identifying target endpoints, they can be specified implicitly
using a register, register clock inputs, or a waveform name.

0 If aregister is specified, all data inputs on the register are included
as target endpoints.

0 If a register clock input is specified, all data inputs on the register
that are related to that clock input are included as target endpoints.

0 If awaveform name is specified, all data inputs on registers whose
associated clock inputs are driven by the clock root(s) associated
with the waveform are included as target endpoints, as are all

August 22, 1997 85

Timing Exceptions

primary output and bidirectional ports with a departure time
relative to that waveform.

= When both the source and target endpoints are specified using
waveform names, the effect is to change the default relationship
between the waveforms.
Syntax
multi_cycle_spec_0:= (label?MULTI_CYCLE
multi_cycle_option+ endpoints_speg+
multi_cycle_option::= timing_check_offset
||= edge_identifier
timing_check_offset:= (timing_check num_cycles reference_clogk?

reference_clock:= SOURCE
[|= TARGET

num_cycles::= INUMBER

Thetiming_check_offsetvhich specifies the number of cycles to be
allowed for a path, is used to adjust the active edges for the timing checks
for all paths between the specified endpoints.

The following procedure is used to determine the setup edge pair:

= For all paths affected byMULTI_CYCLE construct (whether
SETUP, HOLD, or bothSETUPandHOLD adjustments are specified),
a default setup edge pair is chosen in the same way as for normal
timing checks.

= Multiple cycles of the source and target clocks are still considered
when determining the default setup edge pair. The pair with the
smallest positive difference between the target root edge and the source
root edge is selected.

= [f the SETUPtiming check is specified, then the corresponding
num_cycleparameter is used to determine an adjusted setup edge pair
as follows:

0 By default, or fTARGET is specified, the setupum_cycles
parameter affects the target root edge. Instead of the default target
root edge, the edge that arrivesifh_cycles 1) cycles later is
used.

0 If SOURCE s specified, the setupum_cycleparameter affects
the source root edge. Instead of the default source root edge, the
edge that arrives\im_cycles 1) cycles earlier is used.

= The adjusted active edges for the setup check are the propagated
versions of the adjusted root edges, measured at the source and target.

86 Version 1.2 Timing Subset

Version 1.2

Timing Exceptions

The default hold edge pair is chosen differently for paths affected by a
MULTI_CYCLE construct than for paths which are not. For normal timing
checks, the hold edge pair is chosen by considering the two hold conditions
with respect to all possible setup edge pairs.

For all paths affected byMULTI_CYCLE construct, the default hold

edge pair is chosen by considering the two hold conditions only with
respect to a single setup edge pair, rather than by considering them with
respect to every setup edge pair.

The following procedure is used to determine the hold edge pair:

= [f the SETUP option is specified, then the default hold edge pair is
chosen with respect to the adjusted setup edge pairHfxtbhe option
is specified but thBETUP option is not, then the default hold edge pair
is chosen with respect to the default setup edge pair.

= The default hold edge pair is chosen to reflect the more restrictive of
the two hold conditions (the most positive difference between the
target root edge and the source root edge).

= Anadjusted hold edge pair is always determined, regardless of whether
theHOLD option is specified. If thelOLD option is not specified, the
holdnum_cycleparameter is set to 0.HIOLD option is specified and
the SETUP option is not.

0 By default, or fSOURCE is specified, the holdum_cycles
parameter affects the source root edge. Instead of the default source
root edge, the edge which arriveam_cyclegycles later is used.

0 If TARGET is specified, the holdum_cycleparameter affects the
target root edge. Instead of the default target root edge, the edge
which arrivesnum_cyclegycles earlier is used.

= The adjusted active edges for the hold check are the propagated
versions of the adjusted root edges, measured at the source and target.

Adjustments can be made independently to the active edges of the setup
check and hold check. However, the hold check root edges are defined
with respect to the setup check root edges, so a setup offset will implicitly
cause a change in the active edges used in the hold check.

When both a setup and hold offset are specified, the setup offset is
interpreted first, establishing a new default hold edge pair. The hold offset
is then applied to the edges of that pair.

If anedge_identifiers given, it specifies which data edge at the path target
is affected by the changes in the active edges of the clock. If no edge is
specified, both the rising and falling data edges at the target are affected.

August 22, 1997 87

Timing Exceptions

88

Example

(TIMING
(ENVIRONMENT
(CLOCK “100 MHz 50/50” clk1)
(CLOCK “50 MHz 50/50” divider.clkout)
)
(EXCEPTIONS
(MULTI_CYCLE (SETUP 3 SOURCE) (HOLD 1) posedge
(FROM “100 MHz 50/50”) (TO “50 MHz 50/50”)
)
)
)

The multi-cycle path specification in this example has the following
effects on all paths whose source clock originatekatind whose target
clock originates alivider.clkout(as well as any other paths withoMHz
50/50" as the source clock waveform aad MHz 50/50" as the target
clock waveform):

For the setup check on rising data edges at the target, the active edge at
the source is two source clock cycles earlier than the default. The
default active edge at the target is unchanged.

The hold check onrising data edges at the target is affected by the setup
adjustment as well as the hold adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair.
This will generally cause the source edge of the default hold edge pair
to be two cycles earlier than if no setup adjustment was specified.

The hold adjustment is then applied, resulting in the hold active edge
at the source being one source clock cycle later than in the default hold
edge pair, while the hold active edge at the target is the same as in the
default hold edge pair.

The setup and hold checks on falling data edges at the target are
unaffected by the multi-cycle specification.

Example

(MULTI_CYCLE (SETUP 2)
(FROM ff1.clk) (TO ff2.d ff3.d)

)

The multi-cycle path specification in this example has the following
effects on all paths starting it and ending &ff2 or ff3:

For the setup check on both rising and falling data edges, the active
edge at the target is one target clock cycle later than the default. The
default active edge at the source is unchanged.

Version 1.2 Timing Subset

Version 1.2

Timing Exceptions

= The hold check on both rising and falling data edges at the target is
implicitly affected by the setup adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair,
which is used without adjustment in the hold check.

Level 1 Multi-Cycle Paths

In Level 1, the paths can be identified by an arc, a single port, or multiple
ports.

Syntax
multi_cycle_spec_1:= (label?MULTI_CYCLE
multi_cycle_option+
multi_cycle_path_spec_1+
multi_cycle_path_spec_:¥ arc_spec
||= thru_spec
||= thru_all_spec

Example

(LEVEL 1
(MULTI_CYCLE (SETUP 3 SOURCE) (THRU and1.in1))

)

The multi-cycle path specification in this example has the following
effects on all paths througindl.int

= For the setup check on both rising and falling data edges, the active
edge at the source is three source clock cycles earlier than the default.
The default active edge at the target is unchanged.

= The hold check on both rising and falling data edges at the target is
implicitly affected by the setup adjustment. After applying the setup
adjustment, the two hold conditions are considered with respect to the
adjusted setup edge pair to determine the new default hold edge pair,
which is used without adjustment in the hold check.

Example

(LEVEL 1
(MULTI_CYCLE (HOLD 1 TARGET) negedge
(THRU_ALL nor2.in1 and3.in2))

)

The multi-cycle path specification in this example has the following
effects on all paths through batbr2.in1andand3.in2

= The setup check on falling data edges at the target is not affected by the
specification. However, this setup check does establish the default
setup edge pair used by the hold check.

August 22, 1997 89

Timing Exceptions

Combinational
Delays

90

= The hold check on falling data edges at the target is affected by the hold
adjustment. The two hold conditions are considered with respect to the
default setup edge pair to determine the new default hold edge pair.

The hold adjustment is then applied, resulting in the hold active edge
at the target being one target clock cycle earlier than in the default hold
edge pair, while the hold active edge at the source is the same as in the
default hold edge pair.

= The setup and hold checks on rising data edges at the target are not
affected by the multi-cycle specification.

ThePATH_DELAY construct specifies constraints on the delay of paths
through non-sequential parts of the design, such as the following:

= Paths through combinational logic

= Connections between hierarchical blocks

= Paths between asynchronous clock domains
= Gated clock enable signals

ThePATH_DELAY construct describes constraints on the combinational
delay through a portion of the design, while EMTERNAL_DELAY

construct describes purely combinational delays which are external to that
portion of the design. The external delays are added to the computed path
delays within that portion of the design before comparing to the path delay
constraint.

ThePATH_DELAY construct must not be used to define clock tree
insertion delays. TheLOCK_DELAY construct must be used instead (see
“Clock Delay” on page 92).

Syntax
path_delay_spec_0= (label?PATH_DELAY
path_delay_ value endpoints_spec+
path_delay_spec_1= (label?PATH_DELAY
path_delay_ value
path_delay path_spec I+
path_delay value:= (timing_check waveform_edge_identifier
NUMBER)
[|= rise_fall_min_max
path_delay path_spec :& arc_spec
||= thru_spec
||= thru_all_spec

When the first form opath_delay valués used, th®ATH_DELAY
construct can be specified multiple times for different delay constraints

Version 1.2 Timing Subset

Max Transition
Times

Latch-Based
Borrowing

Version 1.2

Timing Exceptions

which only apply to certain edges and timing checks on the same set of
paths, and the union of these constraints is taken.

sequential element, the combinational delay constraint for that path is

When a path constrained byPATH_DELAY construct starts or ends at a
implicitly adjusted to include the effect of clock skew and timing checkg.

TheMAX_TRANSITION_TIME construct specifies the constraint on the
transition time of a net as measured at a specified output or bidirectional
port.

Syntax

transition_time_spec:= (label?MAX_TRANSITION_TIME rise_fall
port_instance?

Therise_fall values are time values and must be specified in the units
defined by theéime_scalelf no voltage thresholds are specified for
measuring the transition times (see “Voltage Threshold” on page 48), the
rise_fallvalues must specify the time required to transition between the 10
and 90 percent points of the power supply voltage.

A port_instancanust be an output or bidirectional port on a cell contained
within the current GCF cell. The default transition time constraint, which
can be set by omitting thgort_instancesapplies to all output pins
contained within the current GCF cell.

Usually, the transition time is specified in the library. If the transition time
is specified in both the library and the GCF file, the more restrictive
constraint will be used.

TheBORROW_LIMIT construct specifies the maximum amount of time
that can be borrowed by one cycle from the next cycle when using level-
sensitive latches. This construct is a Level 1 construct.

Data normally starts propagating from a source latch at the opening edge
of the source clock. It must arrive at the target latch input before the
opening edge of the target clock, thereby ensuring consistency across
multiple cycles.

Time borrowing allows data to arrive at a target latch during the active
portion of the target’s clock. To ensure consistency across multiple clock
cycles, the delay allowed for paths starting at that latch must be reduced by
the difference between the actual arrival time at the latch and the opening
edge of the clock (the time borrowed by paths in the previous cycle).

August 22, 1997 91

Timing Exceptions

Clock Delay

92

The default limit on time borrowing for a given latch is the active pulse
width of the clock minus the setup time of the latch. bbrow _limit
construct can only be used to specify a smaller limit; larger limits are
ignored.

Syntax

borrow_limit_spec::= (label?BORROW_LIMIT NUMBER
port_instance®

If no port_instancds specified, borrowing will be restricted for all level-
sensitive latches.

If a port_instancdhat was identified as a clock (through @ieOCK
construct—see “Clock Specifications” on page 66) is specified, borrowing
will be restricted for all level-sensitive latches in the transitive fanout of
that clock.

Otherwise, theort_instancesnust be clock input pins of level-sensitive
latches.

The CLOCK_DELAY construct is used to specify the following
constraints:
= The insertion delay through a clock distribution network

= The skew in the insertion delay between different leaf pins of the
network

= The slew of the clock at the leaf pins of the network

This construct is a Level 1 construct.

Syntax

clock_delay_spec:= (label?CLOCK_DELAY
clock_root leaf_specy

clock_root ::= port_instance
[|I= (cell_instance input_port output_pdrt
leaf spec::= (leaf delay spec+ port_instancg*

leaf_delay_spec:= insertion_delay_spec
||= clock_skew_ spec
||= clock_slew_spec

insertion_delay_spec:= (INSERTION_DELAY rise_fall_min_may
clock_skew_spec= (SKEW min_max)
clock_slew_spec:= (SLEW slew_valug

If a port_instances specified for the clock root, it indicates the pin that is
the source of the clock distribution network. Insertion delay and skew are

Version 1.2 Timing Subset

Timing Exceptions

measured from that pin to each of the leaft_instances

If a cell_instancas specified for the clock root, it gives the instance name
of a cell that drives the clock distribution network. Insertion delay is
measured from the specifiegput_portthrough theutput_portto each of

the leafport_instances

Insertion delay, skew, and slew can be specified.

If no leafport_instancds specified, théeaf _speapplies to all primitive
clock input pins that are reached by tracing forward from the specified
clock_rootthrough combinational logic. These primitive clock input pins
are the implicit leaport_instances

The slew values at a primitive clock input pin will be determined using the
following precedence order:
= The slew specified explicitly by aNTERNAL_SLEW construct

= The calculated slew, when the physical clock network has already been
implemented

= The slew specified by @LOCK_DELAY construct that specifically
lists the leaf pin

= The slew specified by @LOCK_DELAY construct that includes the
pin as an implicit leaport_instance

= |f severalCLOCK_DELAY constructs with slew specifications
implicitly include the pin, the slew is taken from the specification
where the root is closest to the leaf pin.

= The defaulNTERNAL_SLEW
= The defaullNPUT_SLEW

= 0
Timing Exception The timing exceptions can be case-dependent.

timing_exception_case= (CASE IDENTIFIER
timing_exception_case_speg+

timing_exception_case_spes= timing_exception_spec_0
[|= timing_exception_no_case_1

Version 1.2 August 22, 1997 93

Timing Exceptions

Example

(EXCEPTIONS
(level 1
(case normal
(multi_cycle (setup 4) (from regl))

)

(case throttled
(multi_cycle (setup 2) (from regl))

)

)
)

In this example, the number of cycles required for paths startieght
depends on whether the clock provided to the chip is being throttled.

94 Version 1.2 Timing Subset

Parasitics Subset

Parasitics Subset Header
Parasitics Environment

Parasitics Constraints

Parasitics Subset Header

Parasitics Subset Header

The parasitics subset of each cell entry in the GCF file includes the
following:

= Information about the parasitics in the environment in which the cell is
intended to operate

= Constraints on the parasitics within the cell

This chapter describes the parasitic environment and parasitic constraints.
For information on other constructs, refer to “Extensions” on page 37,
“Meta Data” on page 40, and “Include Files” on page 42. I

Syntax

parasitics_subset:= (SUBSET PARASITICS
parasitics_subset_body

parasitics_subset_body= parasitics_subset_spec+
[|= include

parasitics_subset_spec= parasitics_environment
||= parasitics_constraints
||= extension
||= meta_data

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(INSTANCE *)
(SUBSET PARASITICS
(ENVIRONMENT

)
(CONSTRAINTS

)

)
)

Version 1.2 August 22, 1997 97

Parasitics Environment

Parasitics Environment

The parasitics environment of a cell describes a number of conditions
external to the cell that affect its timing behavior. This version of GCF
includes only the external capacitance on nets connected to the cell
interface pins.

Syntax

parasitics_environment:;= (ENVIRONMENT
parasitics_env_specy

parasitics_env_spec.= parasitics_env_spec 0
||= parasitics_env_spec_1

parasitics_env_spec_0= external_load spec
[|= extension
[|= meta_data

parasitics_env_spec_1= (LEVEL 1parasitics env_14

parasitics_env_1:= parasitics_env_no_case_1
||= parasitics_env_case

parasitics_env_no_case 1= external_fanout_spec

The following sections describe external loading, external fanout, and
parasitic environment cases.

External Loading The external capacitance on an interface net can be specified in terms of
the actual capacitance value usingEX@ ERNAL_LOAD construct.
Syntax

external_load_spec:= (label?EXTERNAL_LOAD capacitance
port_instance?

capacitance::= min_max

The capacitance can be specified for both input and output ports. If no
port_instancds specified, the specification applies by default to all
primary ports.

External Fanout The external capacitance on an interface net can be specified in terms of
the number of loads using tBXTERNAL_FANOUT construct. This
construct is a Level 1 construct because it requires wire load models for
proper interpretation.

Syntax

external_fanout_spec= (label?EXTERNAL_FANOUT num_loads
port_instance®

num_loads::= min_max

98 Version 1.2 Parasitics Subset

Parasitics Environment

The number of external fanouts can be specified for both input and output
ports. If noport_instances specified, the specification applies by default
to all primary ports.

Parasitics Environment The parasitics environment can be case-dependent.

Cases
Syntax

parasitics_env_case= (CASE IDENTIFIER
parasitics_env_case_speg+
parasitics_env_case_spec parasitics_env_spec_0
||= parasitics_env_no_case 1

Example

(environment
(level 1
(case board
(external_load 50.0 outl)
)

(case tester
(external_load 100.0 outl)

)
)
)

In this example, the external capacitance oropid depends on whether
the chip is mounted on the board or whether it is being tested.

Version 1.2 August 22, 1997 99

Parasitics Constraints

Parasitics Constraints

Internal Loading

Loading

100

This version of GCF includes only tiparasitics constraints on the nets
within a cell. Two forms of constraints are currently supported. The
constraint form depends on whether the net is connected to a primary port
on the cell.

Syntax
parasitics_constraints:= (CONSTRAINTS parasitics_constraint+)
parasitics_constraint.:= parasitics_cnstr_spec_0
||= parasitics_cnstr_spec_1

parasitics_cnstr_spec_@= internal_load_spec
||= load_spec
||= extension
[|= meta_data

parasitics_cnstr_spec_1= (LEVEL 1 parasitics_cnstr_14
parasitics_cnstr_1::= parasitics_cnstr_no_case_1
||= parasitics_cnstr_case

parasitics_cnstr_no_case: X internal_fanout spec
||= fanout_spec

The following sections describe internal loading, loading, internal fanout,
fanout, and parasitic constraint cases.

The constraint on the capacitance of an internal net can be specified in
terms of an explicit capacitance value usingINEERNAL_LOAD
construct.

Syntax

internal_load_spec:= (label?INTERNAL_LOAD capacitance
port_instance®

The constraint on the capacitance of an internal net can be specified for
both input and output ports. If port_instancds specified, the
specification applies by default to all primary ports.

The constraint on the capacitance of an internal net that is not connected to
a primary port on the cell can be specified in terms of an explicit
capacitance value using th@AD construct.

Syntax

load_spec::= (label?LOAD capacitance
port_instance®

Version 1.2 Parasitics Subset

Parasitics Constraints

The constraint on the capacitance of an internal net can be specified on any
port connected to the net. If different constraints are specified on several
ports connected to the same net, the most restrictive constraint will be
used. If ngport_instancas specified, the specification applies by default

to all internal nets.

Internal Fanout The constraint on the capacitance of an internal net can be specified in
terms of the number of loads using tNEERNAL_FANOUT construct.
This construct is a Level 1 construct because it requires wire load models
for proper interpretation.

Syntax

internal_fanout_spec:= (label?INTERNAL_FANOUT num_loads
port_instance®

The number of internal fanouts can be specified for both input and output
ports. If noport_instances specified, the specification applies by default
to all primary ports.

Fanout The constraint on the capacitance of an internal net that is not connected to
a primary port on the cell can be specified in terms of the number of loads
using theFANOUT construct. This constructis a Level 1 construct because
it requires wire load models for proper interpretation.

Syntax

fanout_spec::= (label?FANOUT num_loads
port_instance®

The number of fanouts can be specified on any port connected to the net.
If different constraints are specified on several ports connected to the same
net, the most restrictive constraint will be used. Ipod_instances
specified, the specification applies by default to all internal nets.

Parasitics Constraint The parasitics constraints can be case-dependent, although it usually
Cases makes sense to specify the tightest constraint across all of the cases instead.
Syntax

parasitics_cnstr_case:= (CASE IDENTIFIER
parasitics_cnstr_case_speg+

parasitics_cnstr_case_sper= parasitics_cnstr_spec_0
||= parasitics_cnstr_no_case 1

Version 1.2 August 22, 1997 101

Parasitics Constraints

102 Version 1.2 Parasitics Subset

Area Subset

Area Subset Header

Area Constraints

Area Subset Header

Area Subset Header

Version 1.2

The area subset of each cell entry in the GCF file includes the following:

s Constraints on the area of the cell

= Constraints on the area of the primitives instantiated within the cell

This chapter describes the primitive area constraints, total area constraints,
cell porosity, and area constraint cases. For information on other
constructs, refer to “Extensions” on page 37, “Meta Data” on page 40
and “Include Files” on page 42. I

Syntax
area_subset:=
area_subset_body.=

II=
area_cnstr_spec:=
|I=
area_cnstr_spec_0:=
|I=

|I=

|I=
area_cnstr_spec_1.=
area_cnstr_1::=

|I=
area_cnstr_no_case_1I=

Example

(CELL

(SUBSET AREA area_subset_body

area_cnstr_spec+
include
area_cnstr_spec 0
area_cnstr_spec 1
primitive_area_spec
total_area spec
extension
meta_data

(LEVEL 1 area_cnstr_1+4)

area_cnstr_no_case_1
area_cnstr_case

porosity_spec

(CELLTYPE "WORKLIB" "ALU")

(INSTANCE *)
(SUBSET AREA

(PRIMITIVE_AREA 5000)
(TOTAL_AREA 5500)

)
)

August 22, 1997 105

Area Constraints

Area Constraints

Primitive Area

Total Area

Porosity

106

The cumulative area of the leaf-level primitive cells that are instantiated
either directly within a cell or within its descendents can be specified using
thePRIMITIVE_AREA construct. The primitive area does not include any
physical overhead such as routing and power distribution which affect the
total area of the cell.

Syntax
primitive_area_spec:= (label?PRIMITIVE_AREA area_value
area_value::= min_max

If a single value is specified, it represents the maximum. If two values are
specified, they represent the minimum and maximum values, respectively.

Example

(PRIMITIVE_AREA 5000)

Assuming that tharea_scalés set so that area values in the GCF file(s)
are specified in square microns, the example specifies that the total
primitive area within the current cell must be less than or equal to 5000
square microns.

The total area of a cell (including physical overhead) can be specified
using theTOTAL_AREA construct.

Syntax
total_area_spec:= (label? TOTAL_AREA area_valug

If a single value is specified, it represents the maximum. If two values are
specified, they represent the minimum and maximum values, respectively.

Example

(TOTAL_AREA 5500)

Assuming that the area_scale is set so that area values in the GCF file(s)
are specified in square microns, this example specifies that the total area of
the current cell must be less than or equal to 5500 square microns.

ThePOROSITY construct is a Level 1 construct and specifies the porosity
of a cell.

Porosity is the percentage of the total primitive area that is available for
over-the-cell routing. The total primitive area is the sum across all of the

Version 1.2 Area Subset

Area Constraint Cases

Version 1.2

Area Constraints

leaf-level primitive cells which are instantiated either directly within the
current cell or within its descendents.

Syntax

porosity _spec::
porosity value::

(1abel? POROSITY porosity _valug
min_max

If a single value is specified, it represents the minimum. If two values are
specified, they represent the minimum and maximum values, respectively.

Example

(POROSITY 40)

In this example, at least 40 percent of the primitive area within the current
cell must be available for over-the-cell routing.

The area constraints can be case-dependent, although it usually makes
sense to specify the tightest constraint across all of the cases instead.
Syntax

area_cnstr_case:= (CASE IDENTIFIER area_cnstr_case_speg+

area_cnstr_case_spec= area_cnstr_spec_0
||= area_cnstr_no_case 1

August 22, 1997 107

Area Constraints

108 Version 1.2 Area Subset

Power Subset

Power Subset Header

Power Constraints

Power Subset Header

Power Subset Header

Version 1.2

The power subset of each cell entry in the GCF file includes the following:

= Constraints on the average power consumed by the cell and the
primitives instantiated within it

= Constraints on the power consumed by particular nets

This chapter describes the average cell power constraints, average net
power constraints, and power constraint cases. For information on other
constructs, refer to “Extensions” on page 37, “Meta Data” on page 40,
and “Include Files” on page 42.

Syntax

power_subset:= (SUBSET POWER power_subset_body
power_subset_body.= power_cnstr_spec+
[|I= include
power_cnstr_spec:= power_cnstr_spec_0
[|= power_cnstr_spec_1
power_cnstr_spec_0:= average_cell_power
||= average_net_power
||= extension
[|= meta_data

power_cnstr_spec_1:= (LEVEL 1 power_cnstr_14)
power_cnstr_1::= power_cnstr_case

Example

(CELL
(CELLTYPE "WORKLIB" "ALU")
(INSTANCE *)
(SUBSET POWER
(AVG_CELL_POWER 50)
)
)

August 22, 1997 111

Power Constraints

Power Constraints

Average Cell Power The average power consumed by the current GCF cell instance can be
specified using thavVG_CELL_POWER construct.

Syntax
average_cell_power:

(label?AVG_CELL_POWER power_valug
power_value::= min_max

If a single value is specified, it represents the maximum. If two values are
specified, they represent the minimum and the maximum values,
respectively.

Example
(AVG_CELL_POWER 50.0)

Assuming that thpower_scalas set so that power values in the GCF

file(s) are specified in milliwatts, the example specifies that the average
power consumed by the current cell instance must be less than or equal to
50 milliwatts.

Average Net Power The average power dissipated by the capacitance in a net can be specified
using theAVG_NET_POWER construct. This construct is generally only
used for clock nets.

Syntax

average_net_power.= (label?AVG_NET_POWER power_value
port_instance

The power is specified for the physical net as a whole, although the net is
identified using one of thgort_instancesonnected to the net.

Example
(AVG_NET_POWER 1000.0 CLKBUF.OUT)

Assuming that thpower_scalas set so that power values in the GCF
file(s) are specified in milliwatts, the example specifies that the average
power consumed by the specified net must be less than or equal to 1 watt.

112 Version 1.2 Power Subset

Power Constraints

The power constraints can be case-dependent, although it usually makes
sense to specify the tightest constraint across all of the cases instead.

Power Constraint Cases

Syntax

power_cnstr_case:= (CASE IDENTIFIER
power_cnstr_case_speg+

power_cnstr_case_spec= power_cnstr_spec_0

Version 1.2 August 22, 1997 113

Power Constraints

114 Version 1.2 Power Subset

Syntax of GCF

GCF File Characters
Syntax Conventions
GCF File Syntax

GCF File Characters

GCF File Characters

GCF Characters

Version 1.2

The legal GCF character set and the method of including comments in
GCEF files are described in this section.

The characters you can use in an GCF file are the following:

= Alphanumeric characters — the letters of the alphabet, all the numbers,
and the underscore ‘_’ character.

= Special characters — any character other than alphanumeric characters
(which includes the underscore as defined above) is a special character.
The following is a list of special characters:
P'"#8$% & ()*+,-./:;<=>?2@[\]" " {]|}~

= Syntax characters — these are special characters required by the syntax.
Examplesare: () " * : [] ? and the hierarchy delimiter character
but see also the definitions of GCF operators, etc.

= The escape character —to use any special charactelDEMTNIFIER,
prefix it with the escape character, a backslash ‘\'. This includes the
backslash character itself: two consecutive backslashes are used to
represent a single backslash in the origib&NTIFIER.

See “Variables” on page 119 for a description o ENTIFIER. Note ||
that if the character would normally have any special meaning in an
IDENTIFIER, this is lost when the character is escaped.

= Hierarchy delimiter character — either the period *.” or the slash ‘/’ can
be established as the hierarchy delimiter character. This character only
has this special meaning in EDENTIFIER. An escaped hierarchy
delimiter character loses its meaning as a hierarchy delimiter.

= Left index delimiter character - the left bracket [', left parenthesis ‘(’,
or left angle bracket ‘<‘ can be established as the left index delimiter
character. The left index delimiter is used as the first delimiter in a bit-
spec. This character only has this special meaning IDEMTIFIER.
used as the name of a port or cell instance. An escaped left index
delimiter character loses its meaning as a left index delimiter.

= Rightindex delimiter character - the right bracket ‘', right parenthesis
), or right angle bracket >’ can be established as the right index
delimiter character. The right index delimiter is used as the last
delimiter in a bit-spec. This character only has this special meaning in
anIDENTIFIER used as the name of a port or cell instance. An escaped
right index delimiter character loses its meaning as a right index
delimiter.

August 22, 1997 117

GCF File Characters

= White space characters — tabs, spaces and newlines are considered
white space. Use white space to separate lexical tokens.

Keywords,IDENTIFIERS, characters, and numbers must be delimited
either by syntax characters or by white space.

Comments can be placed in GCF files using either “C” or “C++" styles.

“C”-style comments begin with /* and end with */. Nesting of “C”-style
comments is not permitted. The places in an GCF file where it is legal to
put “C”-style comments are not defined by this specification. Different
annotators can have different capabilities in this regard.

“C++"-style comments begin with // and continue until the end of the
current line (the next newline character). Annotators should ignore the
double-slash and any text after them on any line in the file.

Comments

118 Version 1.2 Syntax of GCF

Syntax Conventions

Syntax Conventions

Notation

item
item ::= definition

item ::= definitionl
||= definitior2

iten?
itent
itemt+

KEYWORD

VARIABLE

Variables

QSTRING

NUMBER

RNUMBER

DNUMBER
INUMBER
IDENTIFIER

Version 1.2

The notation used in presenting the syntax of GCF are as follows:
itemis a symbol for a syntax construct item.
the BNF symboitemis defined aslefinition.

the BNF symboitemis defined either adefinitionlor asdefinition2.
(any number of alternative syntax definitions can appear)

itemis optional in the definition (it can appear once or not at all).
itemcan appear zero or any number of times.
itemcan appear one or more times (but cannot be omitted).

is a keyword and appears in the file as shown. Keywords are shown in
uppercase bold for easy identification but are case insensitive.

is a symbol for a variable. Variable symbols are shown in uppercase for
easy identification. Some variables are defined as one of a number of
discrete choices (e.8lICHAR, which is either a period or a slash). Other
variables represent user data such as hames and numbers.

This section defines the user data variables used in GCF. Variables which
must be one of a number of choices (enumerations) are defined in the main
syntax definition which follows.

is a string of any legal GCF characters and spaces, excluding tabs and
newlines, enclosed by double-quotes. Except for the double-quote itself,
special characters lose their special meaningQSERING To embed a
double-quote within a QSTRING, escape it with a backslash.

is a non-negative (zero or positive) real number, for example: 0, 1, 0.0, 3.4,
.7,0.3, 2.4e2, 5.3e-1, 8.2E+5

is a positive, zero or negative real number, for example: 0, 1, 0.0, -3.4, .7,
-0.3, 2.4e2, -5.3e-1, 8.2E+5

IS a non-negative integer number, for example: +12, 23, 0
is an integer number, for example: -5, 10, 0, +7

is the name of an object in the design. This could be an instance of a design
block or cell or a port depending on where (DENTIFIER occurs in the
GCF file. Identifiers can be up to 1024 characters long.

August 22, 1997 119

Syntax Conventions

The following characters can be used in an identifier:

= Alphanumeric characters — the letters of the alphabet, all the numbers,
and the underscore ‘_’ charactt®ENTIFIERS are case-sensitive, i.e.
uppercase and lowercase letters are considered different.

= Bit specs — to indicate an object selected from an array of objects, for
example a single port selected from a bus port or an instance from an
array of instances, use a “bit spec” at the end aDXBNTIFIER of the
array (with no separating white space). A bit spec consists of the left
and right index delimiters (‘' and ‘]’, by default) enclosing a range.

To select a single object, the range should be a single positive integer,
for example, [4].

To select a contiguous group of objects, the range should be a pair of
positive integers separated by a colon (*:"), for example, [3:31] and
[15:0].

To select all objects in the array, the range should b&/theCARD,
an asterisk (**). For example, [*].

= Hierarchy delimiter character — sg@ATH” below.

= The escape character ‘\' — if you want to use a non-alphanumeric
character as a part of HHENTIFIER it must be escaped by being
prefixed with the ‘\' character. Examples are shown below.
Note — this escaping mechanism is different from Verilog HDL where
the entirdDENTIFIER is escaped by placing one escape character (\)
before thedDENTIFIER and a white space after tiEENTIFIER.
Characters that have special meaning in identifiers, such as the left and
right index delimiters and the hierarchy delimiter, lose that special
meaning when escaped.

= Do not use white space (spaces, tabs or newlines)|DENTIFIER.
Examples of corredDENTIFIERS are:

AMUX\+BMUX
Cache_Row_ \#4

mem_array\[0\:1023\]\(0\:15\) ; From a language where square
; brackets indicates arrays
; parentheses indicates bit specs

pipe4\-done\&enb(3] ; Unescaped square brackets
; represent a bit spec

120 Version 1.2 Syntax of GCF

PATH

PARTIAL_PATH

Version 1.2

HCHAR
LI_CHAR
RI_CHAR

COLON

WILDCARD

Syntax Conventions

is a hierarchicaDENTIFIER. The names of levels in the design hierarchy
must be separated by the hierarchy delimiter character. A path is always
interpreted relative to a particular region of the design (which can be the
top level cell in the design, so a leading hierarchy delimiter character
should not be used. The hierarchy delimiter character must not be escaped
or it loses its meaning as a hierarchy delimiter. See “Delimiters” on page
30 for details on how the hierarchy delimiter character is established.

is either an IDENTIFIER or a PATH. A partial path is used in combination
with aprefix_idto reduce the file size when many PATHSs contain a
common prefix. See “Design References” on page 56 for details on how a
prefix_idis established.

is the hierarchy delimiter character.
is the left index delimiter character.
is the right index delimiter character.
is the colon character (*:’).

is the asterisk character (**).

August 22, 1997 121

GCF File Syntax

GCF File Syntax

The formal syntax definition for the General Constraint Format is given
here. It is not possible, using the notation chosen, to clearly show how
white-space must be used in the GCF file. Some explanations and
comments are included in the formal descriptions. A double-slash (//)
indicates comments which are not part of the syntax definition.

constraint_file ::= (GCF header section)

header (HEADER version header_info}
section ::= globals

[|= cell_spec

[|= extension

||= meta_data

[|I= include

version (VERSION QSTRING)

header_info ::= design_name
||= date
[|= program
[|= delimiters
||= time_scale
||= cap_scale
||= res_scale
[|I= length_scale
||= area_scale
||= voltage scale
||= power_scale
||= extension

design_name (DESIGN QSTRING)

date := (DATE QSTRING)
program = (PROGRAM program_name program_version program_compgny
program_name QSTRING

program_version QSTRING
program_company := QSTRING

delimiters ::= (DELIMITERS QSTRING)

122 Version 1.2 Syntax of GCF

Version 1.2

time_scale
cap_scale
res_scale
length_scale
area_scale
voltage_scale
power_scale

multiplier

(TIME_SCALE multiplier)

(CAP_SCALE multiplier)

(RES_SCALE multiplier)
(LENGTH_SCALE multiplier)
(AREA_SCALE multiplier)
(VOLTAGE_SCALE multiplier)
(POWER_SCALE multiplier)

NUMBER

August 22, 1997

GCF File Syntax

123

GCF File Syntax

Extensions

extension

extension_construct

Labels
label
label_id
Meta Data
meta_data

meta_data_1

meta_construct

precedence

meta_reserved

Include Specifications

include

Value Types
min_and_max
r_min_and_max
min_max
r_min_max

rise_fall_min_max

r_rise_fall_min_max

124

Extensions are defined as follows:

.= (EXTENSION QSTRINGextension_constructy

= (user_defined

= include

Constraint labels are defined as follows:

.= label idCOLON

IDENTIFIER
QSTRING

Meta data specifications are defined as follows:

= (LEVEL 1 meta_data_14)

(META meta_construct)

:= precedence

= meta_reserved
= include

(PRECEDENCE (label_id label_id4))
X IDENTIFIER reserved_for_future_definition

Include specifications are defined as follows:

= (INCLUDE QSTRING)

Common types of values used in many constraints are defined as follows:

= NUMBER NUMBER

= RNUMBER RNUMBER

= NUMBER NUMBER?

:'= RNUMBER RNUMBER?

= NUMBER

= NUMBER NUMBER
= NUMBER NUMBER NUMBER NUMBER

= RNUMBER

= RNUMBER RNUMBER
= RNUMBER RNUMBER RNUMBER RNUMBER

Version 1.2 Syntax of GCF

GCF File Syntax

NUMBER NUMBER

rise_and_fall

r_rise_and_fall RNUMBER RNUMBER

rise_fall NUMBER NUMBER?

RNUMBER RNUMBER?

r_rise_fall

Version 1.2 August 22, 1997 125

GCF File Syntax

Globals

globals

globals_subset

Environment Globals

env_globals_subset ::

env_globals_body

env_globals_spec ::

env_globals_spec_0 ::

process
voltage
temperature

operating_conditions

process_value
voltage_value
temperature_value

voltage_threshold

126

The globals section is defined as follows:

The environment globals are defined as follows:

(GLOBALS globals_subset

env_globals_subset
timing_globals_subset
extension

meta_data

(GLOBALS_SUBSET ENVIRONMENT env_globals_body

env_globals_spec+
include

env_globals_spec 0
env_globals_spec 1

process
voltage

temperature
operating_conditions
voltage_threshold
extension
meta_data

(PROCESSmin_and_may
(VOLTAGE r_min_and_may
(TEMPERATURE r_min_and_may

(label? OPERATING_CONDITIONS
QSTRING
process_value
voltage value
temperature_valug

NUMBER
RNUMBER
RNUMBER

(label?VOLTAGE_THRESHOLD
min_and_may

Version 1.2

Syntax of GCF

GCF File Syntax

env_globals_spec_1 ::= (LEVEL 1env_globals_1+)

env_globals_1 env_globals_case

env_globals_case ::= (CASE IDENTIFIER env_globals_case_speg+

env_globals_spec 0

env_globals_case_spec ::

Timing Globals The timing globals are defined as follows:

timing_globals_subset ::= (GLOBALS_SUBSET TIMING timing_globals_body

timing_globals_body timing_globals_spec+

[|I= include

timing_globals_spec ::= timing_globals_spec 0
||= timing_globals_spec_1

timing_globals_spec_0 ::= primary_waveform
[|= extension
[|= meta_data
primary_waveform ::=(label?WAVEFORM waveform_name period edge_pair_Jist

waveform_name ::= QSTRING
period = NUMBER
edge_pair_list ::= pos_pair
[|= neg_pair

pos_pair = pos_edge neg_edge

neg_pair = neg_edge pos_edge

pos_edge := (POSEDGEmMin_max
neg _edge := (NEGEDGE min_max)
timing_globals_spec_1 := (LEVEL 1timing_globals_ 1+

timing_globals_1 ::= timing_globals_no_case_1
[|= timing_globals_case

timing_globals_no_case_1::= derived_waveform
||= clock_group

Version 1.2 August 22, 1997 127

GCF File Syntax

derived_waveform ::=

parent_waveform_name ::

derived_waveform_option ::=
|I=
|I=

period_multiplier
phase_shift :=

skew_adjustment ::=

(label? DERIVED_WAVEFORM
waveform_name parent_waveform_name
derived_waveform_option}

QSTRING

period_multiplier

phase_shift

skew_adjustment

(PERIOD_MULTIPLIER DNUMBER)
(PHASE_SHIFT RNUMBER)

(SKEW_ADJUSTMENT edge_pair_lis)

clock_group ::= (label? CLOCK_GROUP clock_group_name waveform_nampe+

clock_group_name :=

timing_globals_case

timing_globals_case_spec ::=

128

QSTRING
(CASE IDENTIFIER timing_globals_case_speg+

timing_globals_spec_0
timing_globals_no_case_1

Version 1.2

Syntax of GCF

Design References

name_prefixes

num_prefixes

name_prefix
prefix_id

cell_instance

port_instance

port

input_port
output_port

scalar_port

bus_port

cell_id

cell_name
library_name

view_name

Version 1.2

GCF File Syntax

The references to design elements are defined as follows:

(NAME_PREFIXES num_prefixes name_prefix+

DNUMBER

prefix _idQSTRING

DNUMBER

PATH
(prefix_id)
(prefix_idPARTIAL_PATH)

;= port

||= PATH HCHARport

[|I= (prefix_id port)

[|I= (prefix_idPARTIAL _PATH HCHAR port)

/* There should be no white space separating the PATH or PARTIAL_PATH,
HCHAR, andobort components of port_instancet/

scalar_port
bus_port

scalar_port

scalar_port

== IDENTIFIER
[|= IDENTIFIER LI_CHAR DNUMBER RI_CHAR

::= IDENTIFIER LI_CHAR DNUMBER COLON DNUMBER RI_CHAR
||= IDENTIFIER LI_CHAR WILDCARD RI_CHAR

= (CELLTYPE cell_name
||= (CELLTYPE library_name cell_name view_namg?

= QSTRING
= QSTRING

= QSTRING

August 22, 1997 129

GCF File Syntax

Cell Entries

cell_instance_spec

cell_spec

cell_instance_path

cell_views

cell_body spec

Subsets

130

subset

Cell entries are defined as follows:

(CELL cell_instance_spec cell_body_spec+

cell_instance_path
(cell_instance_path+)

0

cell_views
PATH

(CELLTYPE cell_name
(CELLTYPE library_name cell_name view_nampg*

name_prefixes
subset
extension
meta_data
include

Subset specifications are defined as follows:

timing_subset
parasitics_subset
area_subset
power_subset

Version 1.2

Syntax of GCF

Timing Subset

timing_subset

timing_subset_body ::

timing_subset_spec ::

Timing Environment
timing_environment

timing_env_spec

timing_env_spec_0

clock_spec
arrival_spec

arrival_value

departure_spec
departure_value
setup_rise_fall
hold_rise_fall
setup_value

hold_value

external delay_spec

Version 1.2

GCF File Syntax

The timing subset is defined as follows:

(SUBSET TIMING timing_subset_body

timing_subset_spec+
include

timing_environment
timing_exceptions
extension
meta_data

The timing environment is defined as follows:

(ENVIRONMENT timing_env_specy

timing_env_spec_0
timing_env_spec_1

clock _spec
arrival_spec
departure_spec
external_delay_spec
driver_spec
input_slew_spec
extension
meta_data

(label? CLOCK waveform_name port_instancg+
(label? ARRIVAL waveform_edge arrival_value port_instange*

(waveform_edge_identifier r_min_mpx
r_rise_fall_min_max

(label? DEPARTURE waveform_edge departure_value port_instance*

setup_rise_fall hold_rise_fall
(waveform_edge_identifier setup_value hold_value

r_rise_and_fall
r_rise_and_fall
RNUMBER
RNUMBER

(label?EXTERNAL_DELAY
external_delay_value endpoints_spec+

August 22, 1997 131

GCF File Syntax

external_delay value ::= (waveform_edge_identifier r_min_mjpx
[|= r_rise_fall_min_max

waveform_edge ::= (waveform_edge_identifier waveform_name

driver_spec ::= driver_cell_spec
[|= driver_strength_spec

driver_cell_spec := (label?DRIVER_CELL
driver_cell_port_spec
driver_cell_options?
opt_port_instance_list
driver_cell_port_spec ::= (cell_id)
[|I= (cell_id output_por)
[|I= (cell_id input_port output_pont

driver_cell_options ::= (driver_cell_option+)

driver_cell_option drive_multiplier
[|= driver_input_slew

||= waveform_edge_identifier

(PARALLEL_DRIVERS DNUMBER)

drive_multiplier

driver_input_slew ::= (INPUT_SLEW slew_value input_pott)

slew_value rise_fall_min_max

driver_strength_spec (label? DRIVER_STRENGTH strength_value port_instanté

strength_value rise_fall

input_slew_spec := (label?INPUT_SLEW slew_value port_instante

timing_env_spec_1 (LEVEL 1timing_env_14

timing_env_1 timing_env_no_case_1

timing_env_case

timing_env_no_case_1 ::
|
|

constant_spec
operating_conditions
internal_slew_spec

constant_spec (label? CONSTANT constant_value port_instancg+

constant_value =0
II= 1

132 Version 1.2 Syntax of GCF

GCF File Syntax

internal_slew_spec ::= (label?INTERNAL_SLEW slew_value port_instante

timing_env_case (CASE IDENTIFIER timing_env_case_speqg+

timing_env_case_spec ::= timing_env_spec_0
[|= timing_env_no_case_1

Version 1.2 August 22, 1997 133

GCF File Syntax

Timing Exceptions

timing_exceptions ::= (EXCEPTIONS timing_exception_spec)

timing_exception_spec ::=

timing_exception_spec_0 ::=

timing_exception_spec_1 ::

timing_exception_1

timing_exception_no_case: &
|I=
|I=
|I=
II=
II=

timing_exception_case ::=

timing_exception_case_spes=

|I=
arc_spec =

endpoints_spec

from_spec

to_spec

from_to_item

timing_exception_spec_0
timing_exception_spec_1

The timing exceptions are defined as follows:

disable_spec_0
multi_cycle_spec 0
path_delay spec 0
transition_time_spec

extension
meta_data

(LEVEL 1timing_exception_1%

timing_exception_no_case_1

timing_exception_case

disable_spec_1
multi_cycle_spec_1
path_delay_spec_1
internal_slew_spec
borrow_limit_spec
clock delay_spec

(CASE IDENTIFIER timing_exception_case_speg+

timing_exception_spec_0
timing_exception_no_case_1

(ARC port_instance port_instange

from_spec
to_spec

(from_spec to_spec

(FROM from_to_item)

(TO from_to_item)

port_instance
cell_instance

[|= waveform_name

thru_spec := (THRU port_instance
thru_all_spec := (THRU_ALL port_instance port_instaneg
134 Version 1.2

Syntax of GCF

GCF File Syntax

disable_spec 0 ::=disable_item_spec 0

disable_item_spec 0 :

disable_endpoints_spec 0

= labeDISABLE disable_item_049

disable_item_0 ::= port_instance

disable_endpoints_spec 0::=

disable_endpoints_options ::=
|I=
1=

timing_check

disable_spec 1

l

disable_edges_spec_1 ::=
disable_cell_spec_1 ::=
disable_edges_path_spec ::=
||=

|I=

thru_edge spec ::=
arc_edges_spec :=
thru_all_edges_spec ::=
port_instance_edge ::=

disable_cell_path_spec ::=

|I=
disable_instance_spec ::=
disable_master_spec ::=

multi_cycle_spec_0

multi_cycle_option ::=

Version 1.2

cell_instance
arc_spec

(label?DISABLE endpoints_spec+ disable_endpoints_options?
timing_check
edge_identifier

timing_check edge_identifier

SETUP
HOLD

disable_edges_spec 1
disable cell_spec 1

(label?DISABLE disable_edges_path_spec+ timing_cherk?
(label?DISABLE disable_cell_path_spec)

thru_edge_spec

arc_edges_spec

thru_all_edges_spec

(THRU port_instance_edge

(ARC port_instance_edge port_instance_edige

(THRU_ALL port_instance_edge port_instance_edge+
(edge_identifier port_instance

disable_instance_spec
disable_master_spec

(INSTANCE cell_instance+)
(MASTER cell_id)
(label? MULTI_CYCLE multi_cycle_option+ endpoints_speg+

timing_check_offset
edge_identifier

August 22, 1997 135

GCF File Syntax

timing_check_offset (timing_check num_cycles reference_clogk?

reference_clock ::= SOURCE
||= TARGET

INUMBER

num_cycles

(label? MULTI_CYCLE multi_cycle_option+ multi_cycle_path_spec 1+

multi_cycle_spec_1

multi_cycle path_spec_1 ::= arc_spec
[|= thru_spec
||= thru_all_spec

path_delay_spec_0 := (label? PATH_DELAY path_selay_value endpoints_spec+

path_delay spec 1 := (label? PATH_DELAY
path_delay value path_delay path_spec)1+

path_delay_value := (timing_check waveform_edge_identifdMBER)
[|= rise_fall_min_max

path_delay_path_spec_1 ::= arc_spec
[|= thru_spec
[|= thru_all_spec
transition_time_spec ::= (label? MAX_TRANSITION_TIME rise_fall port_instance?)
borrow_limit_spec ::= (label?BORROW_LIMIT NUMBER port_instance®
clock _delay spec ::= (label? CLOCK_DELAY clock root leaf specy}

clock_root := port_instance
[|I= (cell_instance input_port output_pogrt

leaf spec ::= (leaf_delay_spec+ port_instancg*
leaf _delay spec ::= insertion_delay spec
||= clock_skew_spec
||= clock_slew_spec
insertion_delay_spec ::= (INSERTION_DELAY rise_fall_min_may
clock_skew_spec ::= (SKEW min_max)

clock_slew_spec := (SLEW slew_value

waveform_edge_identifier ::= POSEDGE
||= NEGEDGE

136 Version 1.2 Syntax of GCF

GCF File Syntax

edge_identifier ::= POSEDGE
||= NEGEDGE
||= ANYEDGE
[|= 0z
[|= z1
[|= 1z
[|= zO0

Version 1.2 August 22, 1997 137

GCF File Syntax

Parasitics Subset The parasitics subset is defined as follows:

parasitics_subset ::= (SUBSET PARASITICS parasitics_subset_body

parasitics_subset_body ::= parasitics_subset_spec+
[|I= include

parasitics_subset_spec ::= parasitics_environment
||= parasitics_constraints

||= extension
[|= meta_data
Parasitics Environment The parasitics environment is defined as follows:
parasitics_environment ::= (ENVIRONMENT parasitics_env_spec}
parasitics_env_spec ::= parasitics_env_spec 0

||= parasitics_env_spec_1

parasitics_env_spec_0 ::= external_load_spec
[|= extension
[|= meta_data

external_load_spec (label?EXTERNAL_LOAD capacitance port_instance*

capacitance = min_max

parasitics_env_spec_1 ::= (LEVEL 1parasitics_env_14

parasitics_env_1 := parasitics_env_no_case_1
[|= parasitics_env_case

external_fanout_spec

parasitics_env_no_case_1::

external_fanout_spec := (label?EXTERNAL_FANOUT num_loads port_instance*

num_loads min_max

parasitics_env_case ::= (CASE IDENTIFIER parasitics_env_case_speg¢+

parasitics_env_case_spec ::= parasitics_env_spec_0
||= parasitics_env_no_case_1

Parasitics Constraints The parasitics constraints are defined as follows:
parasitics_constraints ::= (CONSTRAINTS parasitics_constraint4)
parasitics_constraint ::= parasitics_cnstr_spec_0

||= parasitics_cnstr_spec_1

138 Version 1.2 Syntax of GCF

parasitics_cnstr_spec_0 ::=
|I=
|I=
1=

internal_load_spec =

load_spec =

parasitics_cnstr_spec_1 ::

parasitics_cnstr_1

parasitics_cnstr_no_case_1.=

internal_fanout_spec

fanout_spec ::=

parasitics_cnstr_case

parasitics_cnstr_case_spec:=

Version 1.2

GCF File Syntax

internal_load_spec

load_spec

extension

meta_data

(label?INTERNAL_LOAD capacitance port_instance*
(label? LOAD capacitance port_instance*

(LEVEL 1 parasitics_cnstr_14)

= parasitics_cnstr_no_case 1

parasitics_cnstr_case

internal_fanout_spec
fanout_spec

(label?INTERNAL_FANOUT num_loadsport_instance*
(label? FANOUT num_loads port_instance*
(CASE IDENTIFIER parasitics_cnstr_case_speg+

parasitics_cnstr_spec_0
parasitics_cnstr_no_case_1

August 22, 1997 139

GCF File Syntax

Area Subset The area subset is defined as follows:

area_subset (SUBSET AREA area_subset_body

area_subset_body := area_cnstr_spec+
[|I= include
area_cnstr_spec ::= area_cnstr_spec_0

||= area_cnstr_spec_1
area_cnstr_spec_0 ::= primitive_area_spec

||= total_area_spec

[|= extension

[|= meta_data
primitive_area_spec ::= (label? PRIMITIVE_AREA area_value

total_area_spec := (labe? TOTAL _AREA area valug

area value ::= min_max
area_cnstr_spec_1 := (LEVEL 1larea_cnstr_14)
area_cnstr_1 := area_cnstr_no_case_1

||= area_cnstr_case
area_cnstr_no_case_1 := porosity_spec
porosity_spec ::= (label? POROSITY porosity value
porosity _value ::= min_max
area_cnstr_case := (CASE IDENTIFIER area_cnstr_case_speg+

area_cnstr_case_spec ::= area_cnstr_spec 0
||= area_cnstr_no_case_1

140 Version 1.2 Syntax of GCF

Power Subset

power_subset

power_subset_body ::

power_cnstr_spec

power_cnstr_spec_0 ::

average_cell_power
average_net_power ::
power_value
power_cnstr_spec_1 ::
power_cnstr_1
power_cnstr_case

power_cnstr_case_spec ::

Version 1.2

GCF File Syntax

The power subset is defined as follows:

(SUBSET POWERpower_subset_body

power_cnstr_spec+
include

power_cnstr_spec_0
power_cnstr_spec_1

average_cell_power

average_net_power

extension

meta_data

(label? AVG_CELL_POWER power_value

(label? AVG_NET_POWER power_value port_instance
min_max

(LEVEL 1 power_cnstr_14)

power_cnstr_case

(CASE IDENTIFIER power_cnstr_case_speg+

power_cnstr_spec_0

August 22, 1997 141

GCF File Syntax

142 Version 1.2 Syntax of GCF

A usage98
CASE keyword

annotato2 o syntax93, 128, 133, 134, 138, 139, 140, 141
where to apply data in desig® usage99, 101, 107, 113
ARC keyword case-dependent constraints
syntax134, 135 area
usager9, 82 syntax140
AREA keyword y
syntax140 us_e_tge107 :
usagel05 parasitics constraints
area subset syntax139
examplel05 usagelO1
syntax140 parasitics environment
usagel05 example99
AREA_SCALE keyword syntax138
syntax123 usage9d9
ARRIVAL keyword power
syntax131 syntax141
usageb’ usagell3
arrival time timing environment
formal syntax descriptiod31 example77
usageb’ syntax128, 133, 140
average cell power timing exceptions
examplell?2 example94
average net power Cases
examplell2 usage35
AVG_CELL_POWER keyword Cell Entries
syntax141 usages8
usagel12 CELL keyword
AVG_NET_POWER keyword syntax130
syntax141 usage58
usagell2 CELLTYPE keyword
B syntax129, 130
_ usage57, 60
bit-specs characters
usagel20 escape charactdrl7
BORROW_LIMIT keyword hierarchy delimiter charact&9, 117
syntax136 left index delimiter charactek17
usage92 legal in GCF files117
C right index delimiter characterl7
white spacel18
Cadence Design Systems clock
headquarterd2 formal syntax descriptio31
CAP_SCALE keyword CLOCK keyword
example32 syntax131
syntax31, 123 usageb6
capacitance clock root66
formal syntax descriptiod38 CLOCK_DELAY keyword

Version 1.2 August 22, 1997 143 of 148

syntax136

usage92
CLOCK_GROUP keyword

example54

syntax128

usageb4
CONSTANT keyword

usage’5, 132
Constraint Forum

acknowledgement&3
constraints

in forward-annotatior23
CONSTRAINTS keyword

syntax138

usagel00

D

DATE keyword
example29
syntax122
usage29
DELIMITERS keyword
example30
syntax122
DEPARTURE keyword
syntax131
usageb9
departure time
formal syntax descriptiod31
usage69
DERIVED_WAVEFORM keyword
exampleb3
syntax128
usageb2
DESIGN keyword
syntax122
use, see design name entry
Design References
usageb6
DISABLE keyword
syntax135
usage80, 81, 82, 83
DRIVER_CELL keyword
syntax132
usage/3
DRIVER_STRENGTH keyword
syntax74, 132

144 of 148

E

ENVIRONMENT keyword
syntax126, 131, 138
usage66, 98

EXCEPTIONS keyword
syntax134
usage/8

EXTENSION keyword
syntax124
usage37

Extensions
usage37

external fanout
formal syntax descriptiod38

external load
formal syntax descriptiod38
usaged8

EXTERNAL_DELAY keyword
syntax131
usage’/1l

EXTERNAL_FANOUT keyword
syntax138
usaged8

EXTERNAL_LOAD keyword
syntax138
usaged98

F

fanout

formal syntax descriptiod39
FANOUT keyword

syntax139

usagelOl
forward-annotatior23
FROM keyword

syntax134

usage’9

G

GCF creato20

GCF files
introduction tol1

GCF keyword
syntax122
use27

GLOBALS keyword
syntax126

August 22, 1997 Version 1.2

usage4b

GLOBALS_SUBSET keyword
example46, 49, 50, 55
syntax126, 127
usagedb, 50, 3

H

Header
usage28
HEADER keyword
syntax122
use28
hierarchical path
formal syntax descriptioi21
HOLD keyword
syntax135
usage81

identifiers
formal syntax descriptiod19
Include Files
usaged?2
INCLUDE keyword
syntax124
usaged?2
INPUT_SLEW keyword
syntax73, 132
usage’5
INSERTION_DELAY keyword
syntax136
usaged2
INSTANCE keyword
syntax135
usage83
internal fanout
formal syntax descriptio39
internal load
formal syntax descriptiod39
usagel00
INTERNAL_FANOUT keyword
syntax139
usagelOl
INTERNAL_LOAD keyword
syntax139
usagel00
INTERNAL_SLEW keyword
syntax133

Version 1.2

usage’6

K

KEYWORD
notation in syntax descriptiohl9

L

Labels
usage43
LENGTH_SCALE keyword
syntax31, 123
Level 1 constraints
area constraints
usagel05
parasitics constraints
syntax139
usagel00
parasitics environment
syntax98, 138
power
syntax141
usagelll
timing environment
syntax132
usageb6
timing exceptions
syntax134
usage’/8
LEVEL keyword

syntax50, 124, 127, 132, 134, 138, 139, 140,

141

usage34, 35, 41, 66, 78, 98, 100, 105, 111
Levels

Usage33
load

formal syntax descriptiod39

usagel00
LOAD keyword

syntax139

usagel00

M

MASTER keyword
syntax135
usage83
MAX_TRANSITION_TIME keyword
syntax136

August 22, 1997 145 of 148

usage9l
Meta Data
usage40
META keyword
syntax124
usagedl
MULTI_CYCLE keyword
syntax135, 136
usage86, 89

N

NAME_PREFIXES keyword
usageb6

NAMEPREFIX keyword
syntax129

notation used in syntax descriptioh$9

O

OPERATING_CONDITIONS keyword
syntax126
usaged’

P

PARALLEL_DRIVERS keyword
syntax73, 132
parasitics constraints
formal syntax descriptiod38
usagel00
parasitics environment
formal syntax descriptiod38
PARASITICS keyword
syntax138
usage97
parasitics subset
example97
formal syntax descriptiod38
usage97
PATH_DELAY keyword
syntax136
usage90
PERIOD_MULTIPLIER keyword
syntax128
usageb2
PHASE_SHIFT keyword
syntax128
usageb2
porosity
examplel07

Version 1.2

POROSITY keyword
syntax140
usagel07

power
average cell power

syntax141
usagell?2
average net power
syntax141
usagell2

POWER keyword
syntax141
usagelll

power subset
examplelll
syntax141
usagelll

power values
syntax141
usagell?

PRECEDENCE keyword
syntax124
usagedl

Precedence Rulé€¥9

primitive area
examplel06, 3
syntax140
usagel06

PRIMITIVE_AREA keyword
syntax140
usagel06

PROCESS keyword
syntax126
usage46

PROGRAM keyword
example30
syntax122
usage29

R

RES_SCALE keyword
syntax31, 123

S

SETUP keyword
syntax135
usage81

SKEW keyword

August 22, 1997 146 of 148

syntax136
usage92
SKEW_ADJUSTMENT keyword
syntax128
usageb2
SLEW keyword
syntax136
usage92
SOURCE keyword
syntax136
usage86
SUBSET keyword
syntax131, 138, 140, 141
usagebb, 97, 105, 111
Subsets
usagebl

T

TARGET keyword
syntax136
usage86
TEMPERATURE keyword
syntax126
usaged’
THRU keyword
syntax134, 135
usager’9, 82
THRU_ALL keyword
syntax134, 135
usage’/9, 82
TIME_SCALE keyword
syntax31, 123
timing environment
formal syntax descriptio31
usage66
timing exceptions
formal syntax descriptiod34
usage/8
TIMING keyword
syntax127, 131
usageb5
timing subset
example65
formal syntax descriptiot31
usagebs
TO keyword
syntax134
usage’9

Version 1.2

total area
examplel06
syntax140
usagel06
TOTAL_AREA keyword
syntax140
usagel06

U

uncertainty region
in WAVEFORM construcbl1

Vv

Value Types
usaged4
VARIABLE
notation in syntax descriptiohl9
VERSION keyword
example28
syntax122
usage28
VOLTAGE keyword
syntax126
usage46
VOLTAGE_SCALE keyword
syntax31, 123
VOLTAGE_THRESHOLD keyword
syntax126
usaged48

\W

WAVEFORM keyword
example52
syntax51, 127

August 22, 1997

147 of 148

148 of 148 August 22, 1997 Version 1.2

Appendix 1

Cadence-Specific Extensions

The locations of the Compiled Timing Library Format (CTLF) files which
are to be used for a design are specified through GCF using an extension
within the environment globals subset.

CTLF_FILES

Syntax

env_globals_subset:= (GLOBALS_SUBSET ENVIRONMENT
env_globals_body

env_globals_body:= env_globals_spec+
[|= include

env_globals_spec:= env_globals_spec_0
[|= env_globals_spec 1

env_globals_spec_0= process
[|= voltage
||= temperature
||= operating_conditions
||= voltage_threshold
||= ctlf_files_extension
[|= extension
[|= meta_data

ctlf_files_extension:= (EXTENSION “CTLF_FILES”
(file_name+))

file_name:= IDENTIFIER

The file names can be relative or absolute path names. Relative path names
are interpreted with respect to the directory in which the program which is
reading the GCF is invoked.

Example

(GLOBALS_SUBSET ENVIRONMENT
(EXTENSION “CTLF_FILES”
(lib/mylib.ctlf
lib/ram1.ctlf
lib/ram2.ctlf
)
)
)

Version 1.2 August 22, 1997 3

Version 1.2 Cadence-Specific Extensions

	BookTitle - General Constraint Format
	BookTitle - Specification
	ContentsTitle - Contents
	ChapterTitleTOC - 1 Introduction 9
	ChapterTitleTOC - 2 GCF in the Design Process 17
	ChapterTitleTOC - 3 Using GCF 25
	ChapterTitleTOC - 4 Timing Subset 63
	ChapterTitleTOC - 5 Parasitics Subset 95
	ChapterTitleTOC - 6 Area Subset 103
	ChapterTitleTOC - 7 Power Subset 109
	ChapterTitleTOC - 8 Syntax of GCF 115
	ChapterTitleTOC - 9 Cadence-Specific Extensions 1
	chap.nmbr - 1
	ChapterTitle - Introduction

	HeadingMain - Introduction
	HeadingSub1 - Published by Cadence Design Systems

	HeadingMain - Acknowledgements
	HeadingMain - Version History
	HeadingSub1 - Version 1.2 - August 22, 1997
	HeadingSub1 - Version 1.1 - July 8, 1997
	HeadingSub1 - Version 1.0 - March 21, 1997
	HeadingSub1 - Version 0.7 - January 24, 1997
	HeadingSub1 - Version 0.6 - November 15, 1996
	HeadingSub1 - Version 0.5 - April 15, 1996
	HeadingSub1 - Version 0.4 - April 8, 1996
	chap.nmbr - 2
	ChapterTitle - GCF in the Design Process

	HeadingMain - GCF in the Design Process
	HeadingSub1 - Sharing of Constraint Data
	HeadingSub1 - Using Multiple GCF Files in One Design
	Figure - Figure 1 Multiple GCF Files in a Hierarchical Desi...

	HeadingSub1 - Timing Environment
	HeadingSub1 - Timing Constraints
	HeadingSub1 - Parasitic Constraints
	HeadingSub1 - Parasitic Environment
	HeadingSub1 - Area Constraints
	HeadingSub1 - Power Constraints
	HeadingSub1 - The GCF Creator
	HeadingSub1 - The Annotator
	HeadingSub1 - Consistency Between GCF File and Design Descriptio...
	HeadingSub1 - Consistency Between GCF File and Analysis

	HeadingMain - Forward-Annotation of Constraints for Design Synth...
	Figure - Figure 2 GCF Files in Constraint Forward-Annotatio...
	chap.nmbr - 3
	ChapterTitle - Using GCF

	HeadingMain - GCF File Content
	HeadingSub3 - Syntax

	HeadingMain - Header Section
	HeadingSub3 - Syntax
	HeadingSub2 - GCF Version
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Design Name
	HeadingSub3 - Syntax

	HeadingSub2 - Date
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Program
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Delimiters
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Scaling Factors
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Levels
	HeadingSub2 - Level 0
	HeadingSub2 - Level 1
	HeadingSub2 - Usage
	HeadingSub3 - Syntax

	HeadingMain - Cases
	HeadingSub3 - Syntax
	HeadingSub2 - Constant Values

	HeadingMain - Extensions
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Precedence Rules
	HeadingSub2 - Normal Precedence Rules
	HeadingSub2 - Overrides

	HeadingMain - Meta Data
	HeadingSub2 - Precedence Overrides
	HeadingSub2 - Other Meta Data
	HeadingSub2 - Usage
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Include Files
	HeadingSub3 - Syntax

	HeadingMain - Labels
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Value Types
	HeadingSub3 - Syntax

	HeadingMain - Globals
	HeadingSub3 - Syntax
	HeadingSub2 - Environment Globals
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Process
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Voltage
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Temperature
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Operating Conditions
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Voltage Threshold
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Environment Globals Case
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Timing Globals
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Primary Waveform
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Derived Waveform
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Clock Groups
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Timing Globals Case
	HeadingSub3 - Example

	HeadingMain - Design References
	HeadingSub2 - Name Prefix
	HeadingSub3 - Syntax

	HeadingSub2 - Cell and Port Instance
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Cell Type
	HeadingSub3 - Syntax

	HeadingMain - Cell Entries
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub2 - Cell Instance Spec
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Subsets
	HeadingSub3 - Syntax
	chap.nmbr - 4
	ChapterTitle - Timing Subset

	HeadingMain - Timing Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Timing Environment
	HeadingSub3 - Syntax
	HeadingSub1 - Clock Specifications
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub1 - Arrival Time
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub1 - Departure Time
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub1 - External Delay
	HeadingSub3 - Syntax
	HeadingSub3 - Like ARRIVAL and DEPARTURE constructs, the effect ...
	HeadingSub3 - Example

	HeadingSub1 - Driver Specification
	HeadingSub3 - Syntax
	HeadingSub3 -
	HeadingSub3 - Precedence Rules
	HeadingSub2 - Driver Cell
	HeadingSub3 - Syntax

	HeadingSub2 - Driver Strength
	HeadingSub3 - Syntax

	HeadingSub2 - Input Slew
	HeadingSub3 - Syntax

	HeadingSub1 - Constant Values
	HeadingSub3 - Syntax

	HeadingSub1 - Operating Conditions
	HeadingSub1 - Internal Slew
	HeadingSub3 - Syntax

	HeadingSub1 - Timing Environment Cases
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Timing Exceptions
	HeadingSub3 - Syntax
	HeadingSub1 - Path Specifications
	HeadingSub3 - Syntax

	HeadingSub1 - Disable Specifications
	HeadingSub2 - Level 0 Disables
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Identified by Items
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Identified by Endpoints
	HeadingSub3 - Syntax
	HeadingSub3 - In Level 1, the timing checks or edges that are af...

	HeadingSub2 - Level 1 Disables
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Associated With Port Instances
	HeadingSub3 - Syntax
	HeadingSub3 - Disabling Paths Associated With Cell Instances or ...
	HeadingSub3 - Syntax

	HeadingSub1 - Multi-Cycle Paths
	HeadingSub2 - Default Definition
	HeadingSub2 - Overriding the Default
	HeadingSub3 - Level 0 Multi-Cycle Paths
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub3 - Example
	HeadingSub3 - Level 1 Multi-Cycle Paths
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	HeadingSub3 - Example

	HeadingSub1 - Combinational Delays
	HeadingSub3 - Syntax

	HeadingSub1 - Max Transition Times
	HeadingSub3 - Syntax

	HeadingSub1 - Latch-Based Borrowing
	HeadingSub3 - Syntax

	HeadingSub1 - Clock Delay
	HeadingSub3 - Syntax

	HeadingSub1 - Timing Exception Cases
	HeadingSub3 - Syntax
	HeadingSub3 - Example
	chap.nmbr - 5
	ChapterTitle - Parasitics Subset

	HeadingMain - Parasitics Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Parasitics Environment
	HeadingSub3 - Syntax
	HeadingSub2 - External Loading
	HeadingSub3 - Syntax

	HeadingSub2 - External Fanout
	HeadingSub3 - Syntax

	HeadingSub2 - Parasitics Environment Cases
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Parasitics Constraints
	HeadingSub3 - Syntax
	HeadingSub2 - Internal Loading
	HeadingSub3 - Syntax

	HeadingSub2 - Loading
	HeadingSub3 - Syntax

	HeadingSub2 - Internal Fanout
	HeadingSub3 - Syntax

	HeadingSub2 - Fanout
	HeadingSub3 - Syntax

	HeadingSub2 - Parasitics Constraint Cases
	HeadingSub3 - Syntax
	chap.nmbr - 6
	ChapterTitle - Area Subset

	HeadingMain - Area Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Area Constraints
	HeadingSub2 - Primitive Area
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Total Area
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Porosity
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Area Constraint Cases
	HeadingSub3 - Syntax
	chap.nmbr - 7
	ChapterTitle - Power Subset

	HeadingMain - Power Subset Header
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingMain - Power Constraints
	HeadingSub2 - Average Cell Power
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Average Net Power
	HeadingSub3 - Syntax
	HeadingSub3 - Example

	HeadingSub2 - Power Constraint Cases
	HeadingSub3 - Syntax
	ChapterTitle - Syntax of GCF

	HeadingMain - GCF File Characters
	HeadingSub1 - GCF Characters
	HeadingSub1 - Comments

	HeadingMain - Syntax Conventions
	HeadingSub1 - Notation
	HeadingSub1 - Variables

	HeadingMain - GCF File Syntax
	HeadingSub2 - Extensions
	HeadingSub2 - Labels
	HeadingSub2 - Meta Data
	HeadingSub2 - Include Specifications
	HeadingSub2 - Value Types
	HeadingSub2 - Globals
	HeadingSub2 - Environment Globals
	HeadingSub2 - Timing Globals
	HeadingSub2 - Design References
	HeadingSub2 - Cell Entries
	HeadingSub2 - Subsets
	HeadingSub2 - Timing Subset
	HeadingSub2 - Timing Environment
	HeadingSub2 - Timing Exceptions
	HeadingSub2 - Parasitics Subset
	HeadingSub2 - Parasitics Environment
	HeadingSub2 - Parasitics Constraints
	HeadingSub2 - Area Subset
	HeadingSub2 - Power Subset
	GroupTitlesIX - A
	GroupTitlesIX - B
	GroupTitlesIX - C
	GroupTitlesIX - D
	GroupTitlesIX - E
	GroupTitlesIX - F
	GroupTitlesIX - G
	GroupTitlesIX - H
	GroupTitlesIX - I
	GroupTitlesIX - K
	GroupTitlesIX - L
	GroupTitlesIX - M
	GroupTitlesIX - N
	GroupTitlesIX - O
	GroupTitlesIX - P
	GroupTitlesIX - R
	GroupTitlesIX - S
	GroupTitlesIX - T
	GroupTitlesIX - U
	GroupTitlesIX - V
	GroupTitlesIX - W
	chap.nmbr - Appendix 1
	ChapterTitle - Cadence-Specific Extensions

	HeadingSub2 - CTLF_FILES
	HeadingSub3 - Syntax
	HeadingSub3 - Example

