

Modelling of Ground-Noise for Circuits with Short-Channel Transistors

Mariusz Fąferko m.faferko@ieee.org

FhG-IZM Paderborn/Berlin • University of Paderborn

16 March 2001

Overview

- Motivation
- Definition of Ground-Noise
- Modelling of Ground-Noise
 - Ground-Noise model
 - Parameter determination
- Numerical example
- Summary

Motivation: Problems and their solutions

- Expensive measurements on finished product
- Time-consuming simulations of full circuit
- Overlap of different effects

- Partitioning of circuit into functional blocks
- Description of single effect
- Error-free circuit function in consideration of one effect
- High-Level Simulations for complete circuit

Definition of Ground-Noise

- The effective inductance
- *N* buffers switch $C_{out,N}$ simultaneously (High o Low)

Each buffer can be simplified to a CMOS inverter

Voltage drop at the effective inductance

Modelling of Ground-Noise: Split of the Ground-Noise signal

Modelling of Ground-Noise: Analysis of the first phase

For signals with short rise/fall time:

- the load capacitance is relatively large
- during the transient process the n-channel transistor operates in the saturation area
- $\overline{}_{C_{out}}^-$ current through load capacitance is negligible in comparison with the transistor current
 - maximal value of noise originates, when the input voltage originates its plateau
 - noise voltage increases linear

Starting point:

$$v_g(t) = NL_{eff} \frac{di_d(t)}{dt}$$

BSIM3v3 mobility model for saturation current: $i_d = WC_{ox}v_{sat}\frac{\left(v_{gs} - V_{th}\right)^2}{E_{sat}L + v_{gs} - V_{th}}$

Modelling of Ground-Noise: Analysis of the first phase

$$V_{gmax} = WC_{ox}v_{sat}NL_{eff}\left(\left(\frac{2(a-V_{gmax})}{b-V_{gmax}} - \frac{(a-V_{gmax})^2}{(b-V_{gmax})^2}\right)\left(\frac{V_{dd}}{t_r} - \frac{V_{gmax}}{t_r-t_d}\right)\right)$$

$$a = V_{dd} - V_{th}$$

$$b = E_{sat}L + V_{dd} - V_{th}$$

 V_{gmax} - noise voltage

- oxide capacitance

I - number of buffers

V_{dd} - power supply voltage

 E_{sat} - electrical field in channel

- rise time of input voltage

W - channel width

 v_{sat} - saturation velocity of carrier

*L*_{eff} - effective inductance

 V_{th} - threshold voltage

L - channel length

 t_d - delay time

Modelling of Ground-Noise: Analysis of the second phase

Mathematical description of the circuit

$$v_g(t) = \frac{R_{sat}}{N}i(t) + L_{eff}\frac{di(t)}{dt} = R_si(t) + L_{eff}\frac{di(t)}{dt}$$

$$i(t) = \frac{V_{gmax}}{R_s} \left(1 - \exp^{-\frac{t}{\tau_L}} \right) \qquad \qquad \tau_L = \frac{L_{eff}}{R_s}$$

Mathematical description of the voltage at the inductance:

$$v_g(t) = V_{gmax} - R_s i(t) = V_{gmax} \exp^{-\frac{t}{\tau_L}}$$

Modelling of Ground-Noise: Analysis of the third phase

Mathematical description of the circuit

$$L_{eff}C_{outtot} \frac{d^{2}v_{c}(t)}{dt^{2}} + R_{l}C_{outtot} \frac{dv_{c}(t)}{dt} + v_{c}(t) = 0$$

$$C_{outtot} = NC_{out}$$

$$R_{l} = \frac{R_{lin}}{N}$$

Three cases for solution of differential equation depending on: $\vartheta = \frac{N_1 \sqrt{N_2}}{2}$

$$\vartheta = \frac{R_l \sqrt{L_{eff} C_{outtot}}}{2L_{eff}}$$

- ϑ > 1: over-damped case
- only for some configurations
- ϑ = 1: critically damped case
- the most uncommonly case
- ϑ < 1: under-damped case
- the most frequently case

Modelling of Ground-Noise: Analysis of the third phase

Under-damped case

$$v_g(t) = V_{dsat} \exp^{-\delta t} \cos(\varpi_d t - \Theta)$$

Damping constant:

$$\delta = \frac{K_l}{2L_{eff}}$$

Damping angle:

$$\Theta = \arctan\left(\frac{\delta}{\varpi_d}\right)$$

Eigen angular frequency:

Ground-Noise model

$$v_{g}(t) = \begin{cases} 0 & for & t < t_{d} \\ \frac{V_{gmax}}{t_{r} - t_{d}} t - \frac{V_{gmax}}{t_{r} - t_{d}} t_{d} & for & t_{d} \le t \le t_{r} \\ \frac{t_{r} - t_{d}}{t_{r} - t_{d}} - K & for & t_{r} < t < t_{23} \\ v_{l}(t - t_{s3}) & for & t_{23} < t \end{cases}$$

K - voltage shift for the second phase

 t_x - time shift for the second phase

 $v_{l}(t)$ - voltage on the inductance during the third phase

 t_{s3} - time shift for the third phase

Parameter determination: Split of all parameters

- physical constants,
- transistor parameters, found in the parameter file of a given transistor model,
- circuit parameters, to be read in the schematic,
- parameters, which have to be determined using simulations,

Needed to calculate the maximal value of Ground-Noise due to

Can be taken from IBIS model

Numerical example I: Circuit and signal parameters

Comparison between simulation results and calculation results

number of buffers (N) = 8

frequency of input signal (f) = 10 MHz

rise time of input voltage $(t_{r in})$ = 1 ns

power supply voltage $(V_{dd}) = 3.3 \text{ V}$

effective inductance $(L_{eff}) = 10 \text{ nH}$

load capacitance $(C_{out}) = 50 \text{ pF}$

fall time of output voltage (t_f) = 6.85 ns

Numerical example I: In the time domain

full circuit simulationmodel

Fraunhofer Institut
Zuverlässigkeit und
Mikrointegration

Numerical example I: In the frequency domain

full circuit simulation model

$$error = v_{simul} - v_{model}$$

Numerical example II: Circuit and signal parameters

Comparison between measurements and calculation results

number of buffers (N) = 8

frequency of input signal (f) = 10 MHz

rise time of input voltage $(t_{r in})$ = 2 ns

power supply voltage $(V_{dd}) = 3.0 \text{ V}$

effective inductance (L_{eff}) = 18 nH (recalculated)

load capacitance $(C_{out}) = 47 pF$

fall time of output voltage (t_f) = 5.00 ns

Numerical example II: In the time domain

measurements model

$$error = v_{measurements} - v_{model}$$

Zuverlässigkeit und

Mikrointegration

Infin

Numerical example II: In the frequency domain

measurements model

$$error = v_{measurements} - v_{model}$$

Summary

- Motivation
- Definition of Ground-Noise
- Modelling of Ground-Noise
- Determination of parameters
- Accuracy of model
 - model ↔ simulations
 - model ↔ measurements

