

An Electromagnetic Emission Model for Integrated Circuits

Peter Kralicek
FhG-IZM Paderborn/Berlin • University of Paderborn
Kralicek@ieee.org

16 March 2001

Overview

- Motivation/Introduction
- General Modeling
- Proposed Emission Model
- Modeling example
- Summary

Motivation: Problems and their solutions

System/PCB analysis:

- IC typically modeled by equivalent circuits → no direct contributions to emitted field
- Not sufficient for today's high clock rates and complex packaging
- Complete analysis of IC/package and PCB/system not possible:
 - high complexity
 - scale level differences
- ⇒ only practicable for small substructures

Development of macro-models representing essential properties

Modeling: Requirements

Requirements for an emission model:

- Good approximation of emitted fields (near- and far field)
- Low number of model parameters
- Parameter determination via measurement and simulation
- Simple integration into existing commercial tools for system/PCB analysis
- Considering different operation modes and connected circuitry

Zuverlässigkeit und

Mikrointegration

Modeling: Different approaches

Some possibilities of modeling EM-fields:

- Equivalence principle (known field values around IC)
- Superposition of plane waves (plane-wave spectrum)
- Equivalent radiating structures:
 - simple antennas: dipoles, loops (constant current distribution)
 - patch antennas
 - antennas with non-constant current distribution
- Multipole Expansion of electromagnetic field

IZM Fraunhofer _{Institut}

Modeling: Multipole Expansion I

Solution of vector wave equation in spherical coordinates:

$$\left(\Delta + \mathbf{k}^2\right) \vec{\mathbf{C}} = \mathbf{0}$$
 $\vec{\mathbf{C}} \in \left\{\vec{\mathbf{E}}, \vec{\mathbf{B}}, \vec{\Pi}^{\mathsf{e,m}}\right\}$

leads to field expansion in orthogonal functions:

$$\begin{vmatrix} \vec{\Pi}_{e} \\ \vec{\Pi}_{m} \end{vmatrix} = \frac{j}{k} \sum_{n=1}^{\infty} r \, h_{n}(kr) \sum_{m=0}^{n} P_{n}^{m}(\cos \vartheta) \left[\begin{cases} A_{n,m} \\ C_{n,m}/Z_{0} \end{cases} \cos(m\varphi) + \begin{cases} B_{n,m} \\ D_{n,m}/Z_{0} \end{cases} \sin(m\varphi) \right] \cdot \vec{e}_{r}$$

$$\vec{\mathbf{E}} = \nabla \times \nabla \times \vec{\Pi}_{e} - \mathbf{j}\omega\mu\nabla \times \vec{\Pi}_{m} \qquad \vec{\mathbf{H}} = \nabla \times \nabla \times \vec{\Pi}_{m} + \mathbf{j}\omega\epsilon\nabla \times \vec{\Pi}_{e}$$

⇒ Expansion of el. and magnetic field in space outside sources

Modeling: Multipole Expansion II

P.K. 2001

Fraunhofer Institut Zuverlä:

Proposed Model: Simple Emission Model

Simple Emission Model (SEM)

- + Valid in near- and farfield
- + physical model
- parameter determination via measurement or simulation
- no consideration of external circuitry

Model parameters:

- Multipole coefficients
- Optionally different operation modes

Proposed Model: Controlled Emission Model

Voltage Controlled Emission Model (VCEM)

Electromagnetic equivalent model:

$$\overline{\overline{T'}} \cdot (\overline{u} - \overline{u}_0) + \overline{m}_0 = \overline{m}$$

- voltages at IC ports control modal emissions
- + consideration of external circuitry
 - → parasitics effects (unintentional signals)

Proposed Model: Modeling Workflow

Pag

Fraunhofer ,

Institut Zuverlässigkeit und Mikrointegration

Proposed Model: Integration into High-Level Tools

- Use of models with weak coupling in fieldsolver COMORAN
- Calculation of current and radiated fields considering the IC emissions
- only minimal increase in calculation time (MoM matrix dim. constant)
 - ⇒ Linear system of equations to determine unknown currents:

$$\mathbf{\underline{A}} \cdot \mathbf{\ddot{x}} = \mathbf{\dot{b}}$$
 $\mathbf{\dot{E}}_{Multipol}$

Superposition of right side **b** by field contribution of multipoles

Proposed Model: Coupling mechanisms

Coupling mechanisms covered by proposed models

Mikrointegration

Example: Complex Configuration

Two IC with an antenna structure in the near-field

→ Image theory used for simplification, Simple Emission Model used

Example: Complex Configuration

→ "Simple" geometric package model used to allow fullwave reference calculation of complete configuration

Current distribution at f=2GHz

Fraunhofer Instit

Example: Excitation

Excitation signal

Respective spectrum (up to 3GHZ)

Example: Nearfield-Effects

Time domain voltage at antenna resistor

Mag. Of current on antenna at f = 2 GHz

red = Model; blue = reference

P.K. 2001

*1E-3

Page 16

Length [m] ->

Example: Farfield-Effects

Radial part of Poynting vector at f = 3 GHz in plane x=const.

Spectrum of x-component of electrical field 3m above

red = Model; blue = reference

Example: Comparison to Dipole Model

E-field 3m above structure; red: E_x , blue E_y , purple E_z ; pure electric dipole model (left) and multipole model (right)

Example: Computational Effort

Computational resources:

Simulation	Calculation time	Memory used
Reference	297:43 min	95 MB
Model creation	48:12 min	21 MB
Model use	0:21 min	0.2 MB

- Efficient consideration of electromagnetic IC emission
- Enable fast analysis of different configurations
 - → design optimizations

Summary

- High complexity of IC → expensive modeling necessary
 ⇒ no integration in system design possible
- Use of Multipole expansion as macro-model
 ⇒ low number of necessary parameters
- Simple integration in PCB- and system-level tools
- Good agreement with full-wave reference calculations
- Substantial gain of computational- and memory resources

