

True Differential Buffer Models (case study)

IBIS Summit at DesignCon 2004 Santa Clara Convention Center, CA February 2, 2004

> Arpad Muranyi Signal Integrity Engineering Intel Corporation arpad.muranyi@intel.com

Background

- A new characterization technique for "true differential buffers" was introduced at the October 15, 2002 IBIS Summit http://www.eda.org/pub/ibis/summits/oct02/muranyi.pdf
- A correlation study using the new technique was shown at the October 21, 2003 IBIS Summit

http://www.eda.org/pub/ibis/summits/oct03/muranyi.pdf

- A VHDL-AMS implementation of a true differential buffer model is shown in this IBIS Summit (today)
- Question:
 - Now that we know how to make better differential models in IBIS, should we automate the process to make it easier?

More questions

- The new buffer characterization technique is only needed when there is a differential current flowing between the two signal pads
 - > Otherwise the [Diff Pin] association of two single ended [Model]s is sufficient
- How much differential current flows between the signal pads in our differential buffers?
 - > We know it must be significant for buffers with on die differential termination
 - ➢ LVDS, etc...
 - > ??? for buffers without on die termination
 - ▹ USB, LVDS, etc...
 - > ??? for Pre/De-emphasis buffers
 - > SATA, PCI Express, etc...

Differential current and impedance LVDS buffer – chipset "A"

Differential impedance over 100 M Ω in the operating region!

Differential current and impedance LVDS buffer – chipset "B"

Differential impedance over 100 M Ω in the operating region!

page 5 CPD

Differential current and impedance LVDS buffer with ODT turned off – chipset "C"

Differential impedance over 100 M Ω in the operating region!

Differential current and impedance LVDS buffer with ODT turned on – chipset "C"

Differential impedance around 600 Ω !

Pre/De-emphasis buffer overview (SATA)

Differential current and impedance SATA buffer – in "strong bit" mode

Differential impedance over 100 M Ω in the operating region!

page 9 CPD

Differential current and impedance SATA buffer – in "weak bit" mode

Differential impedance over 100 M Ω in the operating region!

Conclusion

- All models used in this analysis were transistor level SPICE models
- All buffers analyzed in this study showed an extremely high differential impedance, except the one that had an on die termination
 - > Around 600 Ω when ODT was turned on
 - > Otherwise over 100 M Ω in the operating region
 - Could be less outside the operating region but that will not effect the signals
- Using the old, simple [Model] and [Diff Pin] keywords for making IBIS models for these buffers did not cause any loss of accuracy!
- Most of the simulations using models made with the old technique were not as bad as some feared!

