

A VHDL-AMS true differential buffer model using IBIS v3.2 data

IBIS Summit at DesignCon 2004

Santa Clara Convention Center, CA

February 2, 2004

Arpad Muranyi

Signal Integrity Engineering Intel Corporation arpad.muranyi@intel.com

Outline

- Background
- Block diagram of VHDL-AMS model
- Code changes highlighted
- Correlation study
 - Waveform overlays with various loads
- Summary

Background

- SI
- The VHDL-AMS differential buffer model introduced in this presentation is a simple modification of the VHDL-AMS single-ended buffer model introduced at the June 5 and June 23, 2003 IBIS Summits

http://www.eda.org/pub/ibis/summits/jun03b/muranyi1.pdf

• This model also incorporates the modeling technique developed for differential buffers presented at the October 15, 2002 and October 21, 2003 IBIS Summits

http://www.eda.org/pub/ibis/summits/oct02/muranyi.pdf http://www.eda.org/pub/ibis/summits/oct03/muranyi.pdf

• Main features:

- 1 digital input, 1 digital enable, 1 digital output (dummy for receiver out)
- 4 analog supplies, 2 analog (differential) I/O ports
- Uses normal IBIS data (I-V and V-t curve tables) for "common mode" component [Model]
- Uses fitted coefficients (calculated from the I-V tables of the [Series MOSFET] model) for the "differential" component
- Includes 4-way split C_comp plus C_diff
- This presentation is accompanied by a VHDL-AMS file (IBIS_diff.vhd) which is made available freely to anyone interested
- This is done to encourage the use of the *-AMS extensions of IBIS for improved behavioral modeling

Block diagram of the VHDL-AMS model Library calls Entity generics Added C diff, k0-k5 for I diff Added 2nd port for inverting I/O pad ports Architecture Doubled all quantities for 2nd port and quantities added two more for the differential components signals functions lookup common length common time common wfm coeff **Processes** catch logic **Break statements** Simultaneous equations to select coefficients Doubled all equations for 2nd port and added two more for the differential **Simultaneous equations to calculate output currents** inte components

VHDL-AMS implementation – changes (1)

entity IBIS DIFF IO is

generic (C comp : real := 1.00e-12; -- Default C comp value and k C comp pc : real := 0.25; -- splitting coefficients k C comp pu : real := 0.25; k C comp pd : real := 0.25; k C comp gc : real := 0.25; C diff : real := 50.0e-15; -- Default C diff value (50.0fF) -- [Pullup Reference] and [Pulldown Reference] values V pu ref : real := 1.8; V pd ref : real := 0.0; _____ -- Coefficients of Idiff surface (from Matlab surface fitting) k0 : real := -6.503179353194756e-006; k1 : real := 2.541816815085296e-003; k2 : real := -2.541334083148360e-003; k3 : real := 2.809854297776799e-005; k4 : real := -4.580644144607367e-004; k5 : real := 4.354430013260378e-004; R diff : real := 700.0; -- In case a linear resistor does the job _____ Vectors of the IV curve tables

Page 5

CPD

*Other brands and names are the property of their respective owners

6/23/2003

VHDL-AMS implementation – changes (2)

intel

V_fixture and R_fixture values								
	Vfx_pu_on	i : rea	al := 1	.0;				
	Vfx_pu_of	f : rea	al := 1.	.0;				
	Vfx_pd_on	n : rea	al := 1.	.5;				
	Vfx_pd_of	ff : rea	al := 1	.5;				
	Rfx_pu_on	n : rea	al := 50	0.0;				
	<pre>Rfx_pu_off : real := 50.0;</pre>							
	Rfx_pd_on : real := 50.0;							
	Rfx_pd_of	f : rea	al := 50	0.0;				
	determ points	nines wh s of the	at the Vt cu	.0e-12); This parameter maximum time delta will be between the rves and scaling coefficient curves the input data.				
port	(signal	In D	: in	std logic;				
		_		std logic;				
	signal	Rcv_D	: out	<pre>std_logic;</pre>				
	terminal	IO_p	:	electrical;				
	terminal	IO_n	:	electrical;				
	terminal	PC_ref	:	electrical;				
	terminal	PU_ref	:	electrical;				
	terminal	PD_ref	:	electrical;				
	terminal	GC_ref	:	electrical);				
end entity	IBIS_DIFF	_IO;						

6/23/2003 *Other brands and names are the property of their respective owners

Page 6

VHDL-AMS implementation – changes (3)

quantity quantity quantity		across across across	Ipu_p	through through through	PU_ref	to	IO_p; IO_p; PD ref;
quantity	—	across		through			—
quantity		across		through	—		IO_n;
quantity quantity		across across	Ipu_n Ipd n	through through	_		IO_n; PD ref;
	Vgc_n	across	—	-	—		GC_ref;
Commor	n mode com	ponents	for C_com				
quantity	Vc_pc_p	across	Ic_pc_p	through	PC_ref	to	IO_p;
quantity	Vc_pu_p	across		through	_		IO_p;
	Vc_pd_p			through	_		
quantity	Vc_gc_p	across	Ic_gc_p	through	IO_p	to	GC_ref;
quantity	Vc_pc_n	across	Ic_pc_n	through	PC_ref	to	IO_n;
quantity	Vc_pu_n	across	Ic_pu_n	through	PU_ref	to	IO_n;
mian+i+	Vc_pd_n	across	Ic_pd_n	through	IO_n	to	<pre>PD_ref;</pre>
quantity		across	Ic gc n	through	IO n	to	GC ref;

intel

6/23/2003

*Other brands and names are the property of their respective owners

Page 7

VHDL-AMS implementation – changes (4)

Various signals and quantities (for internal calculations)						
signal	pu_on	: std_logic := '0';				
signal	pu_off	: std_logic := '0';				
signal	pd_on	: std_logic := '0';				
signal	pd_off	: std_logic := '0';				
signal	State_D	: std_logic := 'U';				
signal	In_time	: real := 0.0;				
signal	En_time	: real := 0.0;				
signal	Event_time	: real := 0.0;				
quantity	k_pu_p	: real := 0.0;				
quantity	k_pd_p	: real := 0.0;				
quantity	k_pu_n	: real := 0.0;				
quantity	k_pd_n	: real := 0.0;				

intel

VHDL-AMS implementation – changes (5)

```
-- This section contains the simultaneous analog equations to find the
-- appropriate scaling coefficients according to the state the buffer.
                                                                   _____
if (Event time = 0.0) use
                                             -- Initialization
 if (State D = '1') use
                                             -- Start with the end of the
   k pu p == K pu on(K pu on'right);
                                          -- Vt curves for those which
   k pd p == K pd off(K pd off'right);
                                        -- are fully on initially
   k pd n == K pd on(K pd on'right);
   k pu n == K pu off(K pu off'right);
 elsif (State D = '0') use
   k pd p == K pd on(K pd on'right);
   k pu p == K pu off(K pu off'right);
   k pu n == K pu on(K pu on'right);
   k_pd_n == K_pd_off(K_pd_off'right);
 else
   k pu p == 0.0;
   k pd p == 0.0;
   k pu n == 0.0;
   k pd n == 0.0;
 end use;
else
                               -- Look up coefficients in normal operation
  . . .
```

6/23/2003 *Other brands and names are the property of their respective owners

VHDL-AMS implementation – changes (6)

else

-- Look up coefficients in normal operation

```
if
    (pu on = '1') use
 k pu p == Lookup("Vt", now - Event time, K pu on, T common);
  k pd n == Lookup("Vt", now - Event time, K pd on, T common);
elsif (pu off = '1') use
  k pu p == Lookup("Vt", now - Event time, K pu off, T common);
 k pd n == Lookup("Vt", now - Event time, K pd off, T common);
else
 k pu p == K pu on(K pu on'left);
 k pd n == K pd on(K pd on'left);
end use;
if
      (pd on = '1') use
 k pd p == Lookup("Vt", now - Event time, K pd on, T common);
 k pu n == Lookup("Vt", now - Event time, K pu on, T common);
elsif (pd off = '1') use
 k pd p == Lookup("Vt", now - Event time, K pd off, T common);
 k pu n == Lookup("Vt", now - Event time, K pu off, T common);
else
 k pd p == K pd on(K pd on'left);
 k pu n == K pu on(K pu on'left);
end use;
```

end use;

6/23/2003 *Other brands and names are the property of their respective owners

Page 10

VHDL-AMS implementation – changes (7)

```
-- Common mode components for IV curves
       _____
                          * Lookup("IV", Vpc p, I pc, V pc);
      Ipc p == -1.0
      Ipu p == -1.0 * k pu p * Lookup("IV", Vpu p, I pu, V pu);
      Ipd p == k pd p * Lookup("IV", Vpd p, I pd, V pd);
                              Lookup("IV", Vgc p, I gc, V gc);
      Igc p ==
      Ipc n == -1.0
                            * Lookup("IV", Vpc n, I pc, V pc);
      Ipu n == -1.0 * k pu n * Lookup("IV", Vpu n, I pu, V pu);
                   k pd n * Lookup("IV", Vpd n, I pd, V pd);
      Ipd n ==
                             Lookup("IV", Vgc_n, I_gc, V_gc);
      Igc n ==
                -- Common mode components for C comp
                                           _____
      Ic pc p == k C comp pc * C comp * Vc pc p'dot;
      Ic pu p == k C comp pu * C comp * Vc pu p'dot;
      Ic pd p == k C comp pd * C comp * Vc pd p'dot;
      Ic gc p == k C comp gc * C comp * Vc gc p'dot;
      Ic pc n == k C comp pc * C comp * Vc pc n'dot;
      Ic pu n == k C comp pu * C comp * Vc pu n'dot;
      Ic pd n == k C comp pd * C comp * Vc pd n'dot;
      Ic_gc_n == k_C_comp_gc * C_comp * Vc_gc_n'dot;
      -- Differential IV surface and C comp
      I pn == k0 + k1*Vpd p + k2*Vpd n + k3*Vpd p*Vpd n + k4*(Vpd p**2) + k5*(Vpd n**2);
     -- I pn == V pn / R diff; -- In case a linear resistor does the job
      Ic diff == C diff * Vc diff'dot;
                     _______
6/23/2003
                                         Page 11
```

CPD

*Other brands and names are the property of their respective owners

Correlation study

- The same test cases which were used in the correlation work of the October 21, 2003 presentation were repeated here using the VHDL-AMS model
 - 3 resistor values (50, 100, 200 Ω pin-to-pin)
 - 3 Vtt values (no source \approx 1.25 V, 1.0 V, 1.5 V)
 - Open (no load condition)
- The overlays on the following pages show the waveforms of the original transistor model, IBIS/HSPICE B-element model, and the VHDL-AMS model

Correlation – no Vtt source

Correlation – Vtt = 1.0 V

intel

*Other brands and names are the property of their respective owners

Correlation – Vtt = 1.5 V

*Other brands and names are the property of their respective owners

Summary

A modification of the basic VHDL-AMS I/O buffer model has been shown

http://www.eda.org/pub/ibis/summits/feb04a/IBIS_diff.vhd

• Feel free to download and use the file any way you want

• The modified model is a "true differential" I/O model

- It has two analog I/O ports
- This model can be used with [External Model] in IBIS v4.1 (not tested yet)
- Good correlation with the original transistor model and the HSPICE B-element + [Series MOSFET] implementation
 - The deviations are similar to the ones seen with the HSPICE B-element / [Series MOSFET] implementation
 - These discrepancies are due to higher order effects in the transistor model which are not captured in the IBIS data used with these behavioral models

