IBIS Die V-T Tables from Part or Board Measurements

Bob Ross DesignCon IBIS Summit Meeting Santa Clara, California February 2, 2004

© 2002-2004 Teraspeed Consulting Group LLC

Contents

- Problem
 - Measurement based IBIS models get V-T data at hardware test fixture interface
 - Includes pin package (model) and test fixture
 - Need accurate estimate the IBIS Die V-T data
- "Delta" process illustrated
 - Transforms TIME axis of measured V-T data
 - Assumes the package/test fixture can be modeled (e.g., from TDR measurements)
- Observations and Conclusions

Steps for "Delta" Process IBIS Die V-T Tables from Pin/Board V-T Tables

- I. Create IBIS model using MEASURED V-T tables at **B**
- 2. Simulate **B**, then add package/ board and simulate "delta" **C**
- Use inverse of linear transform of **B** time axis to derive new IBIS model DIE V-T table **A**
- Add package/board to simulate
 V-T response at **D**
- 5. Compare **B** and **D**

Illustrated Steps Using Real Measurement (50 Ohms to Gnd)

GROUP

Step 3: Inverse Linear Transform to Find V-T table A from B

- Find times for 80% and 20% points of B, C: t_{B8}, t_{B2}, t_{C8}, t_{C2} (interpolate for accuracy)
- Solve transform for p and q:
 t_c = p * t_B + q
 (& assume t_B = p * t_A + q)
- Inverse transform time axis t_B to time axis t_A using: $t_A = (t_B - q) / p$

•
$$\mathbf{t}_{\mathbf{A}} = \mathbf{t}_{B8} + (\mathbf{t}_{B} - \mathbf{t}_{C8}) * (\mathbf{t}_{B8} - \mathbf{t}_{B2}) / (\mathbf{t}_{C8} - \mathbf{t}_{C2})$$

Example I – Delayed Rounded Ramps Package Only, No Board

- Assumed measurement based IBIS model:
 - 5 Volt Buffer
 - 50 Ohm pullup, pulldown
 - 4 V-T ideal rounded ramps extracted at the pin (B)
 - No clamps
 - $C_{comp} = 5 pF$
- Lumped package model

- L_pkg = 5 nH, C_pkg = 2 pF (50 Ohms, 100 ps)

- V-T tables derived for new IBIS model
 - Tested at pin interface (D)

Example I - 50 Ohms to Gnd (Lumped Package) with Overshoot

TERASPEED CONSULTING GROUP

Page 7

© 2002-2004 Teraspeed Consulting Group LLC

Example I – Overlay of B, D for 50 Ohms to Gnd/Vcc Waveforms

GROUP

Example 2 – Real Device with Test Fixture Board

- Pin D2 V-T data of mounted device measured at test fixture interface
 - C_comp=2.0 pF in model (about I.8 pF TDA Systems extraction)
- Package/Test Board model from TDA Systems IConnect®:
 - R_pin=0.023 Ohms, L_pin=2.05 nH, C_pin=0.57 pF
 - Z0=79.5 Ohms TD=70 ps (board)
 - Z0=86.5 Ohms TD=34 ps (board)
 - Z0=49.8 Ohms TD=55.8 ps (50 Ohm extension)
- HSpice B-element used to simulate BI-2.6V buffers
- Graphs later show OVERLAYING B, D simulations of all corners and V-T tables (50 ohms to ground/Vcc for rising and falling edges)

Example 2 - Package/Board Extraction

- Pin D2 V-T data of mounted device measured at test fixture interface
 - C_comp=2.0 pF in model (about 1.8 pF TDA Systems extraction)
- Package/Test Board model from TDA Systems IConnect®:
 - R_pin=0.023 Ohms,
 L_pin=2.05 nH, C_pin=0.57 pF
 - Z0=79.5 Ohms TD=70 ps (board)
 - Z0=86.5 Ohms TD=34 ps (board)
 - Z0=49.8 Ohms TD=55.8 ps (50 Ohm extension)

<pre>•subckt Single_Line_2 port1 port2 gnd_</pre>					
t1	ро	rt1	gnd_	1	gnd_ Z0=49.8 TD=55.8p
t2	1	gnd_	2	gnd_	Z0=86.5 TD=34p
t3	2	gnd_	3	gnd_	Z0=79.5 TD=70p
t4	3	gnd_	4	gnd_	Z0=57.3 TD=32.9p
t5	4	gnd_	5	gnd_	Z0=20.2 TD=36.1p
t6	5	gnd_	ро	rt2	gnd_ Z0=114 TD=198p
.ends					

BI-2.6V – B, D Overlaying V-T Model Simulations (min/typ/max)

© 2002-2004 Teraspeed Consulting Group LLC

TERASPEED CONSULTING GROUP

Typ Column Overlaying B, D Falling Waveform Match

Min Column B, D Falling Waveform Mismatch

Column Mismatch Refinement Ideas

- Combine the time axis
 - With 1000 points, just put the min column with same time points shifted by 73 ps (NA's every other point for each column)
 - Or interpolate new corner data to typ time axis
 - Or interleave independently derived typ/min/max axis
- Or just improve the approximation
 - Use three column data point averages for overall average inverse linear transform
 - Or do three column linear regression for closer overall transformation

Additional Observations

- Delta should work with any EDA tool with:
 - IBIS waveform algorithm that reproduces test fixture responses
 - Time step control for simulation and output (resolution, interpolation)
 - Ability to process complex packages
- Other possible "formal" approaches
 - Optimization, feedback methods, FFT/Inverse-FFT methods, deconvolution, ...
 - Potential numerical artifacts and other errors
- NOT EXACT, but an EXCELLENT APPROXIMATION
 - Might not capture some detail (e.g., overshoot, glitches)
 - Preserves waveform shapes
 - Adjusts for slew & delay effects (not just scaling or delay)
 - Self checking process

Summary and Conclusion

- Delta package simulation and time axis inverse linear transform (scale & delay) of typ column measurement data produces accurate die V-T tables
 - Each V-T table handled independently
 - Used for complex packages (device package plus measurement board test fixture)
 - Easy to program directly or with spread sheets
 - Typ data based time axis change gives "good" results for min and max columns
 - Min/max column time axis matching can be improved
- Examples show good correlation

