Lossy Line Characterization and Modeling for SPICE and IBIS

Steve Corey TDA Systems, Inc.

In This Talk...

- Examples of loss
- Why loss matters
- Physical basis for loss
- Modeling approaches
- Loss modeling issues
- Our approach
- Results
- Conclusions

Loss Example: Time Domain

Loss Example: Frequency Domain

Why Loss Matters

- Ignoring loss can cause design failures
 - Data rates too high
 - Drivers too weak
- Overestimating loss can result in overly conservative designs
 - Slower than necessary
 - Stronger drive than necessary

Why Loss is a "Recent" Issue

- Loss is only recently significant in common digital design
 - Faster rise times and data rates
 - Narrower traces
 - Same old materials...
- Loss has long been significant in analog design
 - Frequency-Domain analysis methods
 - Not targeted toward broadband modeling

Physical Basis for Loss

- Resistance in metal
 - Varying skin depth causes frequencydependent resistance
 - Magnetic flux internal to metal causes frequency-dependent inductance
- Conductance in dielectric
 - Constant non-zero loss tangent causes frequency-dependent conductance
 - Charges moving within dielectric cause frequency-dependent capacitance

Different TEM Modeling Approaches

- Lumped
 - Defined for all frequencies
 - Slow for long lines
- Distributed
 - Based on parameters (R_{skin}, G_{dielectric})
 - -Defined for all frequencies
 - -Not as general
 - Based on RLGC data
 - -General for quasi-TEM
 - -Not defined for all frequencies

Loss Modeling Issues

- Accuracy of model
 - Defined for sufficient range of frequencies
- Passivity of model
 - Cannot generate energy
 - Required for use in a time-domain simulator which handles feedback
 - Requires model to be causal
- Stability of algorithm
 - Unstable algorithms can cause passive models to blow up

Causality in TEM Models

- From basic physics, the real and imaginary parts of the dielectric constant are tightly related to ensure causality.
- The same is true of the permeability constant, **m**
- In TEM modeling, this means that R and L are related, and G and C are related
- Models based on RLGC data should address this issue

Our Model Extraction Approach

• Assume equations:

 $Z \approx R_{dc} + R_{ac}\sqrt{f} + jwL_{\infty}$ $Y \approx G_{dc} + G_{ac}f + jwC_{\infty}$

- Extract/Optimize loss parameters: $R_{dc},\,R_{ac},\,G_{dc},\,G_{ac},\,L_{{\bf x}},\,C_{{\bf x}}$
- Write resulting model in various formats
 - Lumped
 - Distributed with parameters
 - Distributed with RLGC data

Example: Extraction Results

Example: Lumped Simulation Results

Example: Parameterized Simulation Results

Example: RLGC Data Simulation Results

Conclusions

- Industry needs lossy line models for board-level simulation
- The capability exists for accurate modeling
 - Lumped elements, parameters, RLGC data
 - Our modeling approach is based on TDR measurements
- Care is required to ensure that models are physical and algorithms are stable

