

IBIS Interconnect Specification (ICM): Status and Proposed Changes

Kelly Green, Independent Contractor Michael Mirmak, Intel Corporation

By

IBIS Summit at Design Con 2003

January 27, 2003

Other brands and names are the property of their respective owners

SĮ

Agenda

- ICM Review
 - Purpose
 - History
 - Structure
- Need for Changes in Draft 1.0
- Proposed Changes
- Parser Overview & Status
- Next Steps

 $\frac{20}{03}$

- IBIS Futures Sub-committee Review
- Open Forum Review
- Future Updates

Other brands and names are the property of their respective owners

Potential technical improvements?

Backup: Example Model Text

What is ICM?

- ICM = IBIS Interconnect Specification
- Purpose: to establish a human-readable standard format for exchanging interconnect modeling data
 - "Interconnect" can be connector, cable, PCB traces or even an IC package
 - Format is designed to be:
 - Consistent & easily parsed by software
 - Compatible with current means of representing data
 - S-parameters

Other brands and names are the property of their respective owners

- R, L, G & C matrices
- "Swaths," trees, node lists
- IBIS-like (keyword-driven)

SZ

ICM History

- Initial concept developed from 1995 1997
 - Kellee Crisafulli, Hyperlynx
 - Augusto (Gus) Panella, Molex
 - Others through IBIS Connector Sub-committee
- Revision 0.31 issued in Jan. 1999
 - Outlined in Jan. 1999 IBIS Summit
 - Shift from connectors to interconnects began
- Revision 0.92 issued in Nov. 1999
- Revisions 0.93 0.99901 issued 2000 2002
 - Added "Argument," Even & Odd Modes, etc.
 - Revised Swath treatments
 - Editorial changes
 - Draft 1.0 released Sept. 19, 2002

ICM Structure

- Header Information
 - [Begin Header] & [End Header] keywords
 - Spec. Version
 - Filename & Revision
 - Date
 - Source, Notes, Disclaimer & Copyright
- ICM Family
 - Description of model "family" or group
 - List of models in the "family"

ICM Structure (continued)

- ICM Model Description
 - Type (SLM, S-parameter, MLM_*, etc.)
 - Signal-to-ground ratio & (optionally) reference Z
 - Tree Path Description
 - Links groups of signals through cascaded "sections" of model data
 - Intended to describe one-to-one connections between sections and ports or endpoints of the interconnect
 - Allows "forks" with same number of conductors
 - Nodal Path Description
 - Links sections of model data through input & output nodes per section
 - Connections need not be one-to-one
 - Allows internal "dangling nodes"
 - Note that Nodal and Tree Path Descriptions are mutually exclusive

ICM Structure (continued)

- Additional ICM Constructs
 - ICM Pin Map
 - Maps connector pins to Tree Path Descriptions
 - ICM Node Map
 - Maps connector pins to Nodal Path Descriptions
 - ICM Section
 - Data block for model sections
 - Data is in RLGC matrix or s-parameter format
 - *Matrices include self-inductance, capacitance, conductance, loss, etc.*
 - Similar format to IBIS package models
 - Each section is referenced by at least one Tree or Nodal Path Description

*Other brands and names are the property of their respective owners

ICM Structure (continued)

ICM Swath

- Allows minimal, economical description to be used for larger connectors or interconnects
 - Smaller electrical parameter matrices can be repeatedly mapped over a larger structure
- Includes the [ICM Swath Description] and [ICM Swath Pin Numbers] keywords

Sample ICM model is included in Backup
Data is taken from ICM specification examples

Need for Changes in Draft 1.0

Draft 1.0 text needs improvement

- To increase readability & understanding
 - Some small errors have survived revision process
 - The writing style of several sections may produce confusion in readers

• To ease software parsing

- Several structures are defined in an ambiguous way and create a risk of conflicting "interpretations" by individual vendor software tools
- Some structures are not compliant with the Lex/YACC format used as the standard for creating compilers and parsers

Other brands and names are the property of their respective owners

Summary of Proposed Changes

42 Proposed Changes in All

- **18 Editorial Changes**
 - No impact to functionality of specification

Examples

- Grammatical and spelling corrections
- Correction of keyword misuse in examples
- Inconsistent spelling: "Un-ordered" vs. Un_ordered"

• 24 Clarifications

- **Provide stricter interpretation of content**
- **Examples**
 - Enforce consistent use of white space & tabs
 - Enforce consistent use of "=" with subparameters
 - Allow use of non-one denominator in SGR

Technical changes to be considered only after Draft 1.0 approved by Open Forum **Desktop** Platforms

Other brands and names are the property of their respective owners

Parser Overview & Status

- **ANSI C prototype in development**
 - Find issues with 1.0 specification EARLY
- Exploiting widely available tools
 - Lexical processor (FLEX) COMPLETED
 - **Grammar (YACC/BISON) IN PROGRESS**
 - Semantic analysis NOT STARTED
- Already operational at level of grammar
- Schedule pending approval of proposed changes, but expect golden code by May
- **Unencumbered Open Source delivery**
 - **Realistic Test Models available? Desktop** Platfo

Other brands and names are the property of their respective owners

Short-Term Future

- Changes to be presented to IBIS Futures Sub-committee
 - Each change is numbered and can be considered and voted upon independently
 - Next meeting likely in early February (shortly before IBIS Open Forum teleconference)
- IBIS Open Forum Review
 - New document, with changes, is presented
 - Open Forum votes to approve or disapprove
 - Next meetings: Feb. 14, March 7

Future Improvements

- Several technical issues may be considered after Draft 1.0 is approved
 - Allow multiple types of data within a single [Begin ICM Model]/[End ICM Model] pair
 - Example: Include S-parameter <u>AND</u> matrix data
 - Include frequency-dependence in matrix data
 - Example: Matrix parameters for 1 MHz, 100 MHz, etc.
 - Allow mixed-mode S-parameters
 - Example: SDC12 vs. S12 coupled pair insertion loss is described in terms of common-mode excitation and differential response

Discussion point: on-die interconnect?

Questions & Free Discussion

01/20/03 *Other brands and names are the property of their respective owners

BACKUP

01/20/03 *Other brands and names are the property of their respective owners

ICM Example

1.0
iconm_hdi_202.icm
1.0
January 20, 2003
Results from field simulation
This is a test model only.
This information is for modeling purposes only, and is not guaranteed.
Copyright 2003, XYZ Corp.,
All Rights Reserved
http://www.VendorNameIbisModels.com
Yes
This file is freely redistributable.

ICM Example (2)

[Begin ICM Family] High_Speed_Interconnect

[Manufacturer] XYZ Incorporated

[ICM Family Description]

High Density square pin connector for use on IEEE 99999 buses.

[Begin ICM Model List]

Name	Mating	Min_Slew_	Time Image
HDI_202	Mated	100ps	HDI_202_Mated.jpg
HDI_202_UnMatedA	Unmated_side	e_A 100ps	HDI_202_UnMatedA.jpg
$\tt HDI_202_SMT_to_Cable$	Mated	25ps	HDI_TEST_202_Mated.jpg
HDI_202_SMT_to_ThruHole	Mated	25ps	HDI_202_Mated.jpg
= = = = = = = = = = = = = = = = = = =			

ICM Example (3)

[Begin ICM Model Description]

High Density 0.1 center square pin with PCB effects

Has a stub fork!

[Begin ICM Model] MyModelExample3

ICM_Model_Type MLM

[Tree Path Description]

Model_PinMap MyModelPinMapA

Section Mult=1 SectionA

Fork

Section Mult=1 StubSection1

End_fork

Section Mult=1 SectionB

Model PinMap MyModelPinMapB

I

[End ICM Model]

01/20/03 *Other brands and names are the property of their respective owners

ICM Example (4)

[ICM Pin Map] Baseboard side Pin order = row ordered Num of columns = 4 Num of rows = 2Pin Type A1 SIG A2 SIG A3 SIG A4 SIG B1 SIG B2 SIG B3 SIG B4 SIG

[End ICM Family]

ICM Example (5)

[Derivation Meth	od] Lumped		
[Begin ICM Secti	on] ExampleMatri	x01	
[Inductance Matr	ix] Full_matrix		
[Row] 1			
3.04859e-07	4.73185e-08	1.3428e-08	6.12191e-09
1.74022e-07	7.35469e-08	2.73201e-08	1.33807e-08
[Row] 2			
3.04859e-07	4.73185e-08	1.3428e-08	7.35469e-08
1.74022e-07	7.35469e-08	2.73201e-08	
.			
.			
.			

intel

ICM Example (6)

The capacitance matrix has sparse coupling:

[Capacitance Matrix] Sparse_matrix

[Row]	1
1	2.48227e-10
2	-1.56651e-11
5	-9.54158e-11
6	-7.15684e-12
[Row]	2
2	2.51798e-10
3	-1.56552e-11
5	-6.85199e-12
6	-9.0486e-11
•	
•	
[End	CM Section] ExampleMatrix01
[End]	
)1/20/03 Other brands ar	Page 21

*Other brands and names are the property of their respective owners

Desktop Platforms