

## **Lossy Line Simulation and Analysis**

**Dima Smolyansky** 

**TDA Systems, Inc.** 

www.tdasystems.com

Based on a paper at Printed Circuit Design Magazine, March 2003



## **Effect of Losses**

II Effect of Lossy Line - IConnect TDR software





## **Lossy Line Simulation Approaches**

- S-parameters
- Parametric models
- RLGC tables
- Behavioral model



### **Using S-parameters in Simulation**

Tried and true approach in microwave design

 Used in linear or small-signal regime
 Skip the modeling, save the time!

 SPICE just begins to support it

 Need to use in non-linear regime
 Accuracy yet unknown

| IIII Backplane Interconnect Link Analysis in IConnect.cir | JN |
|-----------------------------------------------------------|----|
| TDR/T S(f) Schematic Eye Diagram                          |    |
|                                                           | 1  |
|                                                           |    |

## **TDA's Interconnect Link Simulator**

#### Use TDR/T or S-parameter data in simulations

- Quickly predict eye diagram, jitter, losses, crosstalk, reflections, ringing
- Efficiently validate analytical and field solver models





## **Parametric Models**

Parametric model make specific assumptions
 Example: the hailed and hollered W-element...
 R(f) = R<sub>DC</sub> + R<sub>AC</sub> \sqrt{f} G(f) = G\_d \cdot f

Accuracy – depends on who you talk to

- Clearly, dielectric loss simulation is not perfect
- Speed and efficiency very good
- Pre-defined assumptions make it easy to extract the accurate model from measurement



## **TDA Modeling Experience with W-element**



#### • Not bad with proper treatment!



## **Frequency Tables**

#### Better accuracy than parametric

- Slower simulation time
- More difficult to extract accurately

## • Example: TDA extraction

| Frequency  | R          | L          | G               | С                       |
|------------|------------|------------|-----------------|-------------------------|
| 0.0000E+00 | 7.8700E-01 | 6.9960E-08 | 2.2100E-09      | 2.9339E-11              |
| 4.1100E+07 | 8.0822E-01 | 6.9670E-08 | 1.9028E-04      | 2.7912E-11              |
| 8.2200E+07 | 8.1517E-01 | 6.9648E-08 | 4.0699E-04      | 2.7574E-11              |
| 1.2300E+08 | 8.2057E-01 | 6.9639E-08 | 6.0625E-04      | 2.7339E-11              |
|            |            |            |                 |                         |
| 8.1000E+09 | 1.0588E+00 | 6.9605E-08 | 3.9807E-02      | 2.5401E-11              |
| 8.1400E+09 | 1.0596E+00 | 6.9605E-08 | 4.0027E-02      | 2.5398E-11              |
| 8.1800E+09 | 1.0604E+00 | 6.9605E-08 | 4.0247E-02      | 2.5395E-11              |
| 8.2200E+09 | 1.0612E+00 | 6.9605E-08 | 4.0467E-02      | 2.5392E-11              |
|            |            | The Inter  | connect Analysi | s Company <sup>tm</sup> |



## **Behavioral Modeling**

- Different algorithms are available
- Can achieve exact correlation between model and measured data
- Simulation tends to be slower for large interconnect structures
  - Lumped element approach is the only approach where *passivity* can be ensured



### **TDA Experience: Parametric Behavioral**

#### Convert mathematically exact skin effect and dielectric loss into behavioral model



## **TDA Experience: MeasureXtractor**<sup>TM</sup>

S MeasureXtractor(TM) Model Accuracy





# Summary

|              | Advantages                              | Disadvantages                           |
|--------------|-----------------------------------------|-----------------------------------------|
| S-parameters | Exact representation of frequency       | Requires forced linearization of        |
|              | dependent behavior.                     | inherently non-linear transmitter and   |
|              | Measurement data is used directly in    | receiver.                               |
|              | simulations.                            | Not effective for large backplane-style |
|              |                                         | system simulations.                     |
| Parametric   | Simulates quickly and efficiently       | Parametric assumptions do not always    |
| model        | Can be efficiently extracted from       | hold.                                   |
|              | measurements.                           | Accuracy of simulating parametric       |
|              | Accuracy is sufficient for most         | models in current SPICE                 |
|              | applications.                           | implementations is moderate.            |
| RLGC tables  | More accurate than parametric           | Without the parametric model            |
|              | models.                                 | assumptions, could not be extracted     |
|              |                                         | from measurement directly.              |
|              |                                         | Results in longer simulation times.     |
|              |                                         | Simulator interpolation between and     |
|              |                                         | extrapolation beyond frequency points   |
|              |                                         | can result in stability and passivity   |
|              |                                         | issues.                                 |
| Behavioral   | Exact if implemented properly;          | Results in longer simulation times.     |
| modeling     | effectively, an S-parameter substitute. | Passivity, stability, and causality of  |
|              | Models include other features           | models must be ensured.                 |
|              | embedded into the transmission line     |                                         |
|              | structure, such as vias or connectors.  |                                         |

