

IBIS Summit 2005

IBIS Power/Ground Modeling of LSI Core Logic with High-Pin Count Package for EMI and PI

January 31, 2005

Norio Matsui*, Hiroshi Wabuka**, Dileep Divekar*, Neven Orhanovic*

*Applied Simulation Technology, Inc.

****NEC Production Technology Laboratories**

1

Outlines

- **1. Introduction**
- 2. Modeling of Core Logic Power/Ground for EMI Simulation
- **3. Modeling of High-Pin Count Package 4. Conclusion**

1. Introduction

PI and EMI Simulation

4

Two Types of LSIs

LSI for Digital Consumer/Auto Mobile

		Total Power/Current	Clock Freq	Voltage			
I/O	Core Logic	High	High	Low			
	I/O	Low	Low	High			
Core Logic	Driver IC						
		Total Power/Current	Clock Freq	Voltage			
	Core Logic	Low	Same/High	Low			

High

I/0

High

Low

Dominant Currents

©Applied Simulation Technology, Inc. and NEC Corporation. 2005. All Rights Reserved.

6

EMC in Digital Consumer Electronics

Non-Ideal Ground at Various Levels

2. Modeling of Core Logic Power/Ground for EMI Simulation

System LSI for Digital Consumer Electronics

	Voltage	Current	Clock Frequency
	1.2V	2.5A	96MHz
Core Logic	1.8V	0.2A	96MHz
	2.5V	0.5A	96MHz
<i>I/O</i>	3.3V	0.3A	48MHz

Methods of Extraction of Core Logic Model for EMI

11

Three Types of Core Logic Model for EMI

+ Power/Ground Pattern on Chip and Package Model

EMI Simulation using Frequency Domain Model

EMI Simulation using Time Domain Model

╋

Equivalent Circuit in Time Domain (Current waveforms are not necessary: Just switch Model between Voltage Source)

time

Equivalent Circuit of Power and Ground Patterns in Time Domain with Location Information of PCB

Current Distribution (not current waveforms)

14

Accuracy

3. Modeling of High-Pin Count Package

Advanced IC Packages

BGA/CSP (Bonding Wire)

BGA/CSP (Flip Chip)

Bonding Wires and Balls

Coupling

Reference Ground

Flip Chip/Ball Pad

Pad on a chip/substrate

Pad on a substrate/PCB

A Problem in IBIS IC Package Model

No Models of Power/Ground Pins

Only lead frame type package

Too Huge Model for Arbitrary Shape Power/Ground

Patterns with Many Pins Partial Models

Too complex to use for time domain analysis

Isolated Model from PCB and/or LSI chip (Some case needs to merge CAD DB)

Non-Ideal Power/Ground Needs ICM/IBIS 4.1

More than Two Terminals

Meshing Power and Ground

Three Types of Model Order Reduction (MOR)

Three Types of Model Order Reduction (MOR)

23

Comparison of MOR

	Circuit Direct Compression	Frequency Fitting	Frequency Table	
Input Data	Lumped Elements with no frequency dependency	N-port Parameters (by Measurement or Field Solver, Linear Elements with frequency dependency)		
Output Data	G-element, Segmented Lumped Elements	G-element (Polynomial)	G-element (Frequency Table)	
Stability with Nonlinear Devices in Time Domain	Stable Fast	Unstable/Stable Fast	Unstable / Slow Stable needs huge data points	
Applications	Need Circuit Data	Short Structure Few Resonance	Long Structure Many Resonance	

Needs Huge Computation to Make a Macro Model for High-Pin Count Power/Ground Patterns

Double Step MOR

	Cell Level	odeling Whole Level	Model Size	Accuracy	Modeling Time	Comments
1		PEEC	Too Large	highest	Memory Overflow	Too large
2	PEEC		Too Large	high	Medium	Too large
3	Circuit Compression		Large	high	Long	Hard to use
4	Circuit Compression	Circuit Compression	ession Small low Long I		Inaccurate	
5	Circuit Compression	N-port Parameter Fitting	Small	medium	Long	Best

Impedance between Power and Ground

Along the same net

Between the different nets

Still Needs a Smaller Model in Time Domain

Log Number of Pin Counts

Grouping of closely located Pins may be needed

29

Choice of Formats

IBIS 4.1 / ICM 1.0 Formats

Time Domain

Lumped SPICE Networks

S-parameters

Coupled Transmission Line Networks

4. Conclusion

Simple is best / Well-balanced Model

Different Models for SSO/Bounce/EMI