IBIS Interconnect Specification

Stephen Peters, Intel Corp.

IBIS Summit 2002

Current Status

- In the process of final editorial review
 - Rev 1.0 release set for June 20, 2002.
 - Available on IBIS website under the "Connector Info" link
- Major changes/enhancements since the last report:
 - Removed auto pinmap functionality, removed redundant info, streamlined keyword organization.
 - Added the "G" to LRGC matrices
 - Added support for non-regular interconnect (nodal path descriptions)
 - Added support for freq dependent transmission line parameters (via S-parameters)
- "Connector" spec now encompasses both connectors and package interconnect!

Overview

- A .icm file supports one (1) interconnect family
 - Each interconnect family includes one or more individual interconnect descriptions
- Individual interconnect descriptions include the following:
 - Basic info like manufacture, description, mating conditions, model limit (max slew rate), etc.
 - The model type (MLM, SLM or S-parameter).
 - A path description, either 'tree' or 'nodal', that describes how the matrices are interconnected.
 - Where applicable, info that allows pin swathing.
 - Mapping between external pins/node of interconnect and the rows of the matrix.
- Matrixes contain either LRGC or S-parameter data (via external Touchstone file).

Overview (cont.)

- Specification supports three different types of interconnect:
 - Regular (no pins missing) rectangular connectors
 - ${\scriptstyle \measuredangle}$ Swathable, can use either path description
 - Regular, non-rectangular connectors
 - Solution Not swathable, can use either path description
 - Irregular connector/interconnect
 - Not swathable, must use nodal path description
- Nodal vs. Tree type path descriptions
 - [Tree Path Description] cascades matrices back to back, each row of matrix corresponds to a single pin, same # of pins front and back
 - [Nodal Path Description] connects matrices via explicit node names, can build arbitrary structures with missing pins, different size matrices, etc.

MLM and SLM Models

- MLM = Multi-line (coupled) models
 - Use for including pin-to-pin coupling
 - Spec specifies partial inductance values and Maxwell capacitance values in matrix
 - Intent is to support xtalk and return path simulations.
- SLM = Single lines (un-coupled) models
 - SLM_EvenMode/OddMode/Quiescent models have documented ground return paths(!)
 - SLM_General only documents GSR ratio
 - Spec specifies loop inductance in matrix
 - The intent is to 'bracket' interconnect performance under specific conditions
- S-parameter models
 - By definition are coupled models, unused terminals terminated by reference impedance

5

Length vs. Multiplier Matrix Specification

- Path description specifies how to interpret the data in an RLGC matrix
 - Len = per-unit-length, intended for distributed transmission line elements. Expansion by multiplication.
 - Mult = lumped elements, intended to be rendered into circuit netlists. Expansion by cascading sections.
 - S-parameter is always lumped, non-cascade
- [Derivation Method] keyword in matrix section provides a cross reference
- Two styles for two different purposes...
 - Per unit length results from a 2-D extraction of parallel structures (I.e. package traces)
 - Unit multiplier results from a 3-D extraction of non-regular structure (I.e. connectors)

