
A VHDL-AMS buffer model
using IBIS v3.2 data

Luca Giacotto
Université Joseph Fourier

lgiacott@libero.it

Arpad Muranyi
Signal Integrity Engineering

Intel Corporation
arpad.muranyi@intel.com

IBIS Summit at DAC 2003

Marriott Hotel, Anaheim, CA

June 5, 2003

IBIS Summit at DesignConEast 2003

Royal Plaza Hotel Marlborough, MA

June 23, 2003

6/23/2003
*Other brands and names are the property of their respective owners

Page 2

Outline

Motivation
IBIS model block diagram review
The system of two equations, two unknowns

Equation
Solution
VHDL-AMS implementation

Waveform overlay with HSPICE B-element
Solving the “DDR problem”

the multi VT-tables approach
Summary

6/23/2003
*Other brands and names are the property of their respective owners

Page 3

Motivation

This presentation was written to explain the
algorithms of a basic I/O buffer model written for
IBIS in VHDL-AMS

The presentation is accompanied by a VHDL-AMS file
which is made available freely for anyone interested
This is done to encourage the use of the *-AMS
extensions of IBIS for improved behavioral modeling

Demonstrate the usefulness of using the *-AMS
extensions of IBIS with a practical example that
solves an existing problem

An enhanced version of the model demonstrates how
problems can be solved by writing better algorithms

This presentation is NOT intended to be an
introduction to the VHDL-AMS language

6/23/2003
*Other brands and names are the property of their respective owners

Page 4

Block diagram of an I/O buffer model

The logic front end controls the state of the output
This can be done with purely digital equations

The PU and PD IV curves describe the steady state characteristics
The Ramps or Vt curves describe the transient characteristics

Ramps or Vt curves are used to scale the PU and PD IV curves with respect
to time to account for the partially on/off transistors during transients

The POWER_cl and GND_cl IV curves describe the clamps and
static on-die terminations

These are always “ON”, no variations with respect to time are allowed
The passive package circuit is modeled separately from the buffer

GND

pull-
up
I-V

enable

I/O
pin

threshold
&

3-state
control

Vcc

input

Ramp
up

(or V-t)

package

C_comp_pd / gc

POWER
clamp

I-V

Ramp
down

(or V-t)

pull-
down
I-V

GND
clamp

I-V

C_comp_pu / pc

6/23/2003
*Other brands and names are the property of their respective owners

Page 5

The system of two equations, two unknowns

R_fixture

V_fixture

k*IVpu

k*IVpd
Vout

(t))(VI(t))(VIV(t)k(t))(VIV(t)k0 wfm1outwfm1pdpdwfm1pupu −⋅−⋅=

fixture

fixtureout
out

R
VVI −=

(t))(VI(t))(VIV(t)k(t))(VIV(t)k0 wfm2outwfm2pdpdwfm2pupu −⋅−⋅=

where

and wfm1 and wfm2 are waveforms of the same
switching direction (rising edges or falling edges)
obtained with two different V_fixture values (usually
Vcc and GND)

6/23/2003
*Other brands and names are the property of their respective owners

Page 6

Assumption

R_fixture

V_fixture

k*IVpu

k*IVpd
Vout

(t))(VI(t))(VIV(t)k(t))(VIV(t)k0 wfm1outwfm1pdpdwfm1pupu −⋅−⋅=

(t))(VI(t))(VIV(t)k(t))(VIV(t)k0 wfm2outwfm2pdpdwfm2pupu −⋅−⋅=

kpu(t) and kpd(t) are assumed to be the same for the
two different waveforms.
Strictly speaking this is not true, because the pre-
driver waveform is modified by the output waveform
through the Miller capacitance, which makes kpu(t)
and kpd(t) dependent on the derivative (dV/dt) of the
output waveforms

6/23/2003
*Other brands and names are the property of their respective owners

Page 7

Error in assumption illustrated

Vgate_P

Vgate_N

The output waveform modifies the gate voltage through the Miller capacitance

6/23/2003
*Other brands and names are the property of their respective owners

Page 8

Solution

R_fixture

V_fixture

k*IVpu

k*IVpd
Vout

(t)I(t)I(t)I(t)I
(t)I(t)I(t)I(t)I

(t))(VIV(t))(VIV-(t))(VIV(t))(VIV
(t))(VIV(t))(VI(t))(VIV(t))(VI(t)k

3142

3fx24fx1

wfm2puwfm1pdwfm1puwfm2pd

wfm1puwfm2outwfm2puwfm1out
pd

⋅−⋅
⋅+⋅=

⋅⋅
⋅+⋅=

(t)I(t)I(t)I(t)I
(t)I(t)I(t)I(t)I

(t))(VIV(t))(VIV-(t))(VIV(t))(VIV
(t))(VIV(t))(VI(t))(VIV(t))(VI(t)k

3142

2fx21fx1

wfm2puwfm1pdwfm1puwfm2pd

wfm1pdwfm2outwfm2pdwfm1out
pu

⋅−⋅
⋅+⋅=

⋅⋅
⋅+⋅=

6/23/2003
*Other brands and names are the property of their respective owners

Page 9

VHDL-AMS implementation

for index in Vwfm_pu'range loop

-- Calculate intermediate (current) variables

I1 := Lookup("IV", Vwfm_pd(index) - V_pd_ref, Iiv_pd, Viv_pd);
I2 := Lookup("IV", Vwfm_pu(index) - V_pd_ref, Iiv_pd, Viv_pd);

I3 := -1.0 * Lookup("IV", V_pu_ref - Vwfm_pu(index), Iiv_pu, Viv_pu);
I4 := -1.0 * Lookup("IV", V_pu_ref - Vwfm_pd(index), Iiv_pu, Viv_pu);

-- Calculate intermediate (fixture) variables

Ifx1 := ((Vwfm_pu(index) - Vfx_pu) / Rfx_pu) + C_comp * dVwfm_pu(index);
Ifx2 := ((Vfx_pd - Vwfm_pd(index)) / Rfx_pd) - C_comp * dVwfm_pd(index);

-- Set up the numerator of the equation depending on the direction of
-- the transition, and set up denominator of the equation.

if (Edge = "K_pu_on") or (Edge = "K_pu_off") then

num := (Ifx1 * I1) + (Ifx2 * I2);

elsif (Edge = "K_pd_on") or (Edge = "K_pd_off") then
num := (Ifx1 * I4) + (Ifx2 * I3);

else

num := 0.0;
end if;

den := (I1 * I3) - (I2 * I4);

Kout(index) := num / den;

end loop;

C_comp
compensation

6/23/2003
*Other brands and names are the property of their respective owners

Page 10

Overview of VHDL-AMS I/O buffer example

“Entity” section
“Generics” – various IBIS parameters defined as variables: C_comp,
V_fixture, R_fixture, Vpuref, Vpdref, IV tables, Vt tables, etc…
One non-IBIS parameter to define mesh size for processed Vt tables
and scaling coefficients

“Architecture” section
Define “ports”, “signals”, “quantities”, “constants”, and functions

PWL lookup function
Common time axis generator and interpolator for Vt curves
Vt curve to scaling coefficient converter

“Process” sections process events on digital signals (input, enable)
“Break” statements ensure that the analog equations are calculated
properly when events occur
Simultaneous “if” statements select the appropriate scaling
coefficients for each particular state
Analog equations of output current due to IV curves and C_comp
capacitors

6/23/2003
*Other brands and names are the property of their respective owners

Page 11

Detailed study of VHDL-AMS file

If we have enough time, we can open the VHDL-AMS file
and go through each statement and function in detail

If you are reading this presentation on your own, please
refer to the files referenced on the last summary page

6/23/2003
*Other brands and names are the property of their respective owners

Page 12

HSPICE B-element and VHDL-AMS model
IBIS model with Vfixture = Vcc/3 and Vcc*2/3

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0E+00 1.0E-09 2.0E-09 3.0E-09 4.0E-09 5.0E-09 6.0E-09

Time (sec)

Vo
lta

ge
 (V

)

out1spice
out2spice
out3spice
out1ibis
out2ibis
out3ibis
AMS_GND
AMS_Vcc/2
AMS_Vcc

IBIS model with Vfixture = Vcc/3 and Vcc*2/3

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

2.5E-08 2.6E-08 2.7E-08 2.8E-08 2.9E-08 3.0E-08 3.1E-08

Time (sec)

Vo
lta

ge
 (V

)

out1spice
out2spice
out3spice
out1ibis
out2ibis
out3ibis
AMS_GND
AMS_Vcc/2
AMS_Vcc

The VHDL-AMS model matches
B-element even in the bad areas

6/23/2003
*Other brands and names are the property of their respective owners

Page 13

Structuring the VHDL-AMS file

The VHDL-AMS code presented can be structured to define
sub-“entities” and/or “packages”.

an entity “transistor” (to instantiate PU and PD);
an entity “clamp” (to instantiate the two clamps);
a package with the functions.

Advantages:
small structures: easier to maintain;
shorter code (= fewer bugs);
different kind of buffers (I/O, IN, Open-Collector, …) obtained
by selecting the appropriate sub-entities to instantiate.

Entities and packages can be concatenated into a single file
for distribution, eventually.

It results a main entity containing only the concurrent statements
of the digital logic and the instantiation of the sub-entities.

6/23/2003
*Other brands and names are the property of their respective owners

Page 14

Solving an existing problem with VHDL-AMS

DDR style termination (to a voltage of Vcc/2) results in
inaccurate waveforms when the V_fixture values used in
the IBIS file are at Vcc and GND
Further studies revealed that simulation waveforms are
even worse when the actual simulation uses
termination voltages outside the range that the V_fixture
values cover in the IBIS file
This problem has been presented in a previous IBIS
summit

http://www.eda.org/pub/ibis/summits/sep01/muranyi1.pdf
Please note that the original presentation contained an
error which has been corrected in an update on February
13, 2003 which has not been presented in public to date
Even though the problem was first observed with the
HSPICE B-element, it turns out that is a general problem
inherent to the 2-equations, 2-unknown algorithm

6/23/2003
*Other brands and names are the property of their respective owners

Page 15

Multi VT-tables with VHDL-AMS

In the equations to solve for the K-tables only two rising
(and two falling) VT-tables can be used.

But… we can use whichever pair of VT-tables we like better.

Two approaches could be implemented :
computing all the possible K-tables during the initialization
phase;
computing the necessary K-tables “on the fly”.

In any case, adding a simple decision logic to the code
discussed on the previous pages enables us to choose the
best VT-table pair.

Let’s see how…

6/23/2003
*Other brands and names are the property of their respective owners

Page 16

Multi VT-tables with VHDL-AMS (2)

V fixture = Vcc

V fixture = 2/3 Vcc

V fixture = 1/3 Vcc

Vfixture = GND

R fixture = 50 ΩΩΩΩ

Zone “C”

Zone “B”

Zone “A”

Using the initial voltage-values of the VT-tables we can define some
“switching zones”.

Depending on which zone contains the actual voltage value at the
buffer pad (when the transition is about to start), we can decide
which VT-table pair
describes the current
situation most accurately.

The four rising
VT-tables from our

example-file

For the falling
transition, a

similar strategy
has been

implemented.

6/23/2003
*Other brands and names are the property of their respective owners

Page 17

Transistor model, 4 wfm IBIS, and 8wfm IBIS
Multi-Vt curve algorithm in VHDL-AMS using IBIS model with V_fixture = Vcc, 2/3*Vcc, 1/3*Vcc, and GND

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0E+00 1.0E-09 2.0E-09 3.0E-09 4.0E-09 5.0E-09 6.0E-09

Time (sec)

Vo
lta

ge
 (V

)

out1spice
out2spice
out3spice
out1ibis
out2ibis
out3ibis
AMS_GND
AMS_Vcc/2
AMS_Vcc

Multi-Vt curve algorithm in VHDL-AMS using IBIS model with V_fixture = Vcc, 2/3*Vcc, 1/3*Vcc, and GND

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

2.5E-08 2.6E-08 2.7E-08 2.8E-08 2.9E-08 3.0E-08 3.1E-08

Time (sec)

Vo
lta

ge
 (V

)

out1spice
out2spice
out3spice
out1ibis
out2ibis
out3ibis
AMS_GND
AMS_Vcc/2
AMS_Vcc

The 8 wfm VHDL-AMS model
matches the transistor model

6/23/2003
*Other brands and names are the property of their respective owners

Page 18

Multi VT-tables with VHDL-AMS (3)

The assumptions underlying the described algorithm are:
All the VT-tables have the same R_fixture (50 ΩΩΩΩ) ;
The actual loading impedance is about 50 ΩΩΩΩ ;
The transition happens when the previous transition is
(almost) over.

The “standard” algorithm uses similar assumptions.
Future work may lead to improvements in order to relax
some of these limitations.

6/23/2003
*Other brands and names are the property of their respective owners

Page 19

Summary

A basic VHDL-AMS implementation of a behavioral I/O
buffer model using IBIS data has been shown

http://www.eda.org/pub/ibis/summits/jun03a/IBIS_basic_IO.vhd
Feel free to download and use the file any way you want

An improved version of the file has been introduced to
solve an existing problem that is inherent in the most
commonly used IBIS algorithms

http://www.eda.org/pub/ibis/summits/jun03a/IBIS_multiVt_IO.vhd
Feel free to download and use the file any way you want
Support for multi Vt curve IBIS models in EDA tools is a must to
eliminate this problem
IBIS model makers should consider generating IBIS models with
multiple sets of Vt curves using several V_fixture values in addition
to the usual Vcc and GND

