

Things You Can Learn From V/I Curves

IBIS Summit / DAC 2005 Todd Westerhoff Cisco Systems, Inc.

Components of a [Model] Declaration

Cisco.com

V/T Curves

V/I Curves -Pullup/Pulldown -PWR/GND Clamps

For Purposes of this Presentation ...

Electrically

Rising Edge Behavior, t=0

Rising Edge Behavior, t=500ps

Rising Edge Behavior, t=1ns

.4111111111

Rising Edge Behavior, t=2ns

.4111111111

Rising Edge Behavior, t=2.5ns

Rising Edge Behavior, t=3ns

diana Cisco.com

Rising Edge Behavior, t=4ns

Rising Edge Behavior, t=4.5ns

Observations

- The buffer output changes voltage only when the edge is launched and the reflection is received
 - Launch: 0 to 0.5 ns
 - Reflection: 4 to 4.5 ns
- The buffer spends most of its time in the steadystate condition, where behavior is determined by the V/I curve
 - Reflection behavior is also determined by the V/I curve

t = 4.5 ns

... So What Determines Steady-State Values?

How to Determine Z_{out}?

- If we know Z_{out}, we can compute step voltage
- Can select R_{series} such that Z_{out} + R_{series} = Z₀

Remember Transistor Curves and Load Lines?

All Cisco.com

- We used them to find DC bias points for amplifier circuits back in college
- They're equally valid for digital circuit analysis
 - Digital circuits simply operate with $V_{\mbox{\scriptsize GS}}$ saturated

1.8V HSTL Class 1 Pulldown V/I Curve

dillight Cisco.com

- Look like a transistor curve? That's because it is!
 - Special case where V_{GS} = VDDQ
- Load line analysis will find the operating point

1.8V HSTL Class 1 Pulldown Load Line

- Since this is a pull down, load line should be 50 ohms to VDDQ
- Step voltage for unterminated line is 0.64V
- This buffer will overdrive a 50 ohm line in the nominal case

Simulation Results

What Else Do We Know?

- Pulldown will operate along the V/I curve from the origin to the load line intersection
- The slope of the V/I curve corresponds to Z_{out}, if the curve is linear, the device will behave as a resistor

Serial Termination Basics

4111111111

Initial voltage launched down the line determines overshoot at receiver

Things in a V/I model

It's a Current Thing ...

- Ideal step voltage is VDDQ/2
 - From Ohm's law: E=IR, I=E/R
 - E = VDDQ/2, R=50 ohms
 - -I = (VDDQ/2)/50 = VDDQ/100
- Our 1.8V receiver requires 1.8/100 = 18mA of line current for ideal reflection behavior

How Strong Is Our HSTL Output?

- At 50 ohm operating point, R=E/I
 E = 0.64V, I = 23 mA
- Effective output impedance = 28 ohms

... So, What Value of R_{series}?

Cisco.com

Effective Output Impedance, R=E/I

E = 0.9V, I = 18mA, so R = 50 ohms

Z_{out} + R_{series} = 50, R_{series} = 22 ohms

Updated Simulation Results

Why Is There Still Overshoot?

- The series resistor changes the transistor's operating point
- Load line is now 72 (50 + 22) ohms to VDDQ
- If the V/I curve isn't linear between the new and old operating points, Z_{out} will change
- New Z_{out} = 0.47V/18mA = 26 ohms

Simulation Results For New Load Line

dillight Cisco.com

How Do We Determine Z_{out} and R_{series}?

- **1.** Determine ideal current from I=VDDQ/100
- 2. Find corresponding current point on V/I curve
- **3.** Compute $Z_{out,eff} = E_{curve}/I_{curve}$
- 4. Assign R_{series} such that $Z_{out,eff} + R_{series} = Z_0$
For Our 1.8V HSTL Buffer ...

- 1. I = 1.8V/100 = 18mA
- 2. From the pulldown curve, E=470mV at I=18 mA
- 3. Z_{out,eff} = 0.47/0.018 = 26.1 ohms
- 4. R_{series} = 23.9 ohms

Pullup Curves Work The Same Way

- 1. I = 1.8V/100 = -18mA (IBIS convention)
- 2. From the pullup curve, E=371mV at I=-18 mA
- 3. Z_{out,eff} = 0.371/0.018 = 20.6 ohms
- 4. R_{series} = 29.4 ohms

Pullup/Pulldown Simulation Results

Observations

- This is a HSTL Class 1 buffer; we'd expect it to be designed for point to point operation without termination (50 ohm Z_{out})
- Z_{out,eff} ranges from 21-26 ohms, requiring a series resistor to avoid overshoot
- Pullup/Pulldown are not well matched (21 vs. 26 ohms)
- This could either be a buffer design issue or a modeling issue

More On V/I Curves

Cisco.com

 Where the load line intersects the V/I curve says a lot about how the device will behave

3.3V, 4mA LVTTL Buffer Pulldown Curve

- This device can't drive a 50 ohm line; we need 30 mA, the output can only supply 17 mA
- absorbs reflections

Simulation Results, 4mA Buffer

 As expected, the driver cannot drive the line or adequately control the reflections

3.3V Clock Output Buffer Pulldown

- Load line suggests buffer will drive about 42mA into a 50 ohm line; we only need 30mA
- Step voltage E=IR, 42 mA*50 ohms = 2.1V, so we expect about 900 mV overshoot
- Slope of V/I curve at load line is very high; expect very poor absorption of reflections by driver

Simulation Results – Falling Edge

- Overshoot slightly exceeds expectations
- "Ringing" occurs because of slope of V/I curve at the load line

More Simulation Results ...

Cisco.com

"Ringing" amplifies over time; the model essentially spins out of control

Eliminate Reflections And ...

- Ideal termination at the end of the line eliminates reflections off the driver
- Now we have a voltage threshold problem
- This may be a modeling problem anyway; should be investigated further

Summary

- Depending on the ratio of edge rate to line length, drivers can spend much of their time in "steady state" conditions
- "Steady state" behavior is driven by V/I curves
- Understanding the details behind V/I curve can provide valuable insight into
 - Buffer behavior
 - Model quality
 - Termination selection

Yoda Says

Cisco.com

Mind your V/I curves!

- Important, they are!
- Save you, they can!