

Some Remarks on Electrical Board Descriptions

Michael Schäder

European IBIS Summit Munich 2003

Copyright © 2003 Zuken GmbH, EMC Technology Center, Vattmannstr. 3, D-33100 Paderborn, Germany Email: michael.schaeder@zuken.de

Electrical Board Description (EBD)

A board level component is the generic term to be used to describe a printed circuit board (PCB) or substrate which can contain components or even other boards, and which can connect to another board through a set of user visible pins. The electrical connectivity of such a board level component is referred to as an Electrical Board Description.

Excerpt from IBIS 4.0 spec.

Typical examples of use are:

- SIMM, DIMM Modules,
- MCMs,
- Processor Modules, and also
- Packages

EBD Limitations

Transmission line parameters have to be derived with respect to well defined reference plane(s).

- No coupling between paths.
- Thus, no correct modelling of differential signalling.
- Insufficient connector modelling.

Structure of an EBD Description [Begin Board Description] zmini [Manufacturer] Zuken [Number Of Pins] 1 [Pin List] signal_name 1 **D0** [Path Description] net1 Pin 1 Len = 0.1 L = 7.5n C = 3.0p /Node U1.1 [Reference Designator Map] zsimple.ibs zsimple **U1** [End Board Description] [End]


```
[Path Description] CAS_2
Pin J25
Len = 0.5 L=8.35n C=3.34p R=0.01 /
Node u21.15
Len = 0.5 L=8.35n C=3.34p R=0.01 /
Node u22.15
Len = 0.5 L=8.35n C=3.34p R=0.01 /
Node u23.15
```


EBD Path Example 2 (Discrete Series El.)

```
[Path Description] sig1
Pin J27
Len = 0 L=1.6n /
Len = 1.5 L=6.0n C=2.0p /
Node R2.1
Node R2.2
Len = 0.5 L=6.0n C=2.0p /
Node U25.6
```


EBD Path Example 3 (Fork/Endfork)

```
[Path Description] PassThru1
Pin B5
Len = 0 L=2.0n /
Len = 2.1 \text{ L}=6.0 \text{ C}=2.0 \text{ p} /
 Fork
 Len = 1.0 L = 1.0n C = 2.0p /
 Node u23.16
 Endfork
Len = 1.0 L = 6.0n C = 2.0p /
Pin A5
```


Common Problems in EBDs

- Unresolved external references.
- Missing boundary pins.
- Double listed boundary pins.
- Incomplete path descriptions.
- Connector modelled as part of path description.
- Ambiguous order of R,L,C, if described in one path segment:

 x1
 L

Len = 0 L=5n C=4p R=0.01

- Path descriptions are not optimised.
- Confusion about arbitrary unit length.

Apply EBDs in Simulation (Directly)

Another way getting EBDs into Simulation

Convert EBD into the simulation environment's specific topology format.

- Combine PCB component(s) pins with the EBD's boundary pins (logically).
- Consider EBD paths in electrical net extraction.

Perform simulation as usual.

Conversion of EBDs

Can improve quality of final topology description.

Enables logical combination of PCB with EBD data.

Allows connector models to be used (PCB < EBD).</p>

Simulate Combined PCB/EBD Topology

- EBD description is part of the topology input.
- Thus, topology is *complete*.
- No need to load simulation environment with extra topology extraction and combination tasks.

.ibs-file

