
page 1
®

IBIS Summit at DATE05

München, Germany

March 11, 2005

Arpad Muranyi
Signal Integrity Engineering

Intel Corporation
arpad.muranyi@intel.com

Pre/de-emphasis buffer
modeling with IBIS

Kuen Yew Lam
Signal Integrity Engineering

Intel Corporation
kuen.yew.lam@intel.com

page 2
®

• Model the building blocks of the buffer with independent
[Model]s and tell the user to wire them up

• This approach was used initially for many models but required manual editing of
files and/or simulation schematics

• The legacy [Driver Schedule] keyword provides a reasonable
solution to model pre/de-emphasis buffers

http://www.eda.org/pub/ibis/summits/jan05/muranyi.pdf
• Eliminates the need for manually connecting [Model]s to make a complete buffer
• Uses no more than IBIS v3.2 syntax
• Useful for tools not supporting the *-AMS extensions of IBIS
• Reasonably good correlation with transistor level model
• There are a few unsolved problems

• The *-AMS language extensions of IBIS v4.1 provide means to
solve the outstanding problems

• The issues around C_comp compensation can be solved
• Switching into an unfinished edge, and
• Data pattern dependent behavior can be added
• Any other features and capabilities can be added as needed, such as
• Frequency and/or voltage dependent C_comp, etc…

Options for modeling pre/de-emphasis buffers in IBIS

page 3
®

Pre/de-emphasis buffer review

In most of the current two-tap designs the “emphasis stimulus pattern”
is a one bit delayed and inverted copy of the “input stimulus pattern”
This is not necessarily true for all pre/de-emphasis buffer designs. The delay may not be a
one bit duration in each design, and multi-tap configurations would usually have a more

complicated stimulus logic.

��������	

��
�������������	��	�	��

�����	��	�	��

�����

���� ����

�������

�� ������

���� ����

�������

� �	!��

� � !��

"������ 	#����$��	
��� 	�%	� ��� �&

""""

page 4
®

C_comp issues

• The IBIS specification says that C_comp should be placed into the
“top level” model and should represent the total buffer capacitance

• This is easy for the model maker, but tool vendors need to answer
some difficult questions:

• How is the C_comp compensation done?
• independently, inside the Main and Boost [Model]s?
• collectively?

• If independently, how is the capacitive loading effect of the neighboring model(s)
accounted for in the compensation algorithm?

• How is the total C_comp divided between the Main and Boost buffers?
• Is the C_comp compensation correct for each transition?

• strong to strong bit
• strong to weak bit
• weak to strong bit

• More C_comp related information:
• http://www.eda.org/pub/ibis/summits/apr04/mirmak2.pdf
• http://www.eda.org/pub/ibis/summits/oct04/mirmak2.pdf

• A constant C_comp value may not be accurate enough at GHz speeds
• Frequency and/or voltage dependence may be important, which can only be modeled

with the IBIS v4.1 language extensions

page 5
®

Waveforms with independent C_comp compensation

This simulation uses two separate VHDL-AMS models representing the
“Main” and “Boost” blocks, in which the C_comp compensation is done

independently. The reduced edge rate is a result of the two blocks
loading each other.

page 6
®

Solving this problem with a modified algorithm

• How about combining the main and boost buffers
into one single model?

– Have only one I-V curve, representing the Main + Boost
I-V curves

– Separate V-t curves for the different transition edges
• Strong to strong bit
• Strong to weak bit
• Weak to strong bit

– Use *-AMS to pick the right V-t (KPU(t)) curves to use,
and scale the IV curve accordingly

– No need to change the C_comp compensation equations

page 7
®

Combine the Main and Boost blocks into one model

� �

'�� #����	��(����

��(
��)�	

�
�����	
�
���	

*!+���

,�����	��(
��)�-	������������	���	#�

��	$���	

#���	����	���	�����	���	��

.	�/���	�
	�����	�����������-	���������	��	0	��

�����	*!+���	$�)�
��� �1

,������������1	����	�	�����	�$ ��
����	��	��� �	����
����

,������$��&1	�����	�$ ��
����	�����	
��������

���&�������1	����	�$ ��
����	������	
��������

�2� �2$ $2�

�(3
�� #����

(

�

page 8
®

Block diagram of combined model

,����	

� �
����	��	

��� �� #��	

#�

��	�����		

���	

��������	

������	

�������

4�����	

�5�������

*
!
+
�
+

4�����	

�5�������

�(3
�� #����

(

�

'�&

"���

�2�	������

�2$	������

$2�	������

�2�	
������

�2$	
������

$2�	
������

� �

� �

'���	����

-- One set of analog equations

Ipc_p_0 == -1.0 * Lookup("IV", Vpc_p_0, I_pc, V_pc); -- Power clamp eqn’s
Ipu_p_0 == -1.0 * k_pu_p_0 * Lookup("IV", Vpu_p_0, I_pu, V_pu); -- Pull up eqn’s
Igc_p_0 == Lookup("IV", Vgc_p_0, I_gc, V_gc); -- Ground clamp eqn’s
.....

page 9
®

State machine diagram for the logic

6

6

6

6

7

7

���&	7	�

,�����	6

���&	7

,�����	6	�

���&	6

8

�������

7

7

,�����	

7	�

,�����	

6

���&	6	�

,�����	7

���&	6

,�����	7	�

���&	7

6

6

,�����	

6	�

,�����	

7

7
7

7
6

76

76

7

6

"���	��	9	7

"���	��	9	6

• Each blue bubble represents a buffer state transition
(6 of them in total, one for each KPU(t) waveform)

• Orange bubbles represent no state changes
• State changes occur at clock edges

page 10
®

Data extraction

• I-V curves
• Only ONE I-V curve generated, for when both Main and

Boost are on
• Can re-use existing IBIS data (Sum Main and Boost I-V)
• No need to worry about double-counting Internal terminations

(between Main and Boost buffers, as in previous techniques)

• V-t curves
• Generate V-t curves for the SIX different transition types
• No need to worry about double-counting Internal terminations

• Same C_comp extraction methodology as before, but
C_comp doesn’t need to be split between buffer blocks

page 11
®

Strong bit to strong bit transition overlay

page 12
®

Strong bit to weak bit transition overlay

page 13
®

Weak bit to strong bit transition overlay

page 14
®

Notes on correlation results

• Excellent match between SPICE and *-AMS model on all transitions
– No tweaking of the I-V & V-t curves and C_comp was necessary
– Original C_comp compensation algorithm can still be used

http://www.eda.org/pub/ibis/summits/jun03b/muranyi1.pdf (pg. 9)
– This *-AMS model assumes a perfectly symmetric differential buffer in which the

V-t characteristics are identical for the P and N ouputs
– A small change in the code can account for the asymmetry effects also (next page)

• However, this was done with the clock slowed down, such that the V-t
curves have settled

– In this case, clock was slowed down from 480 MHz to 30 MHz
– At full speed, some “switching into an unfinished edge” exists

• Effects, such as switching into an unfinished edge, or data pattern
dependent behaviors are not addressed in this presentation

page 15
®

Block diagram with asymmetric differential capabilities

,����	

� �
����	��	

��� �� #��	

#�

��	�����		

���	

��������	

������	

�������

4�����	

�5�������

4�����	

�5�������

�(3
�� #����

(

�

'�&

"���

*
!
+
�
+

�2�	������3!

�2$	������3!

$2�	������3!

�2�	
������3!

�2$	
������3!

$2�	
������3!

� �

� �

'���	����

*
!
+
�
+

�2�	������3:

�2$	������3:

$2�	������3:

�2�	
������3:

�2$	
������3:

$2�	
������3:

page 16
®

Simulation results at full speed (480MHz)

strong bit weak bit

page 17
®

Details reveal some discontinuities due to unfinished edge

strong2weak
transition

weak2strong
transition

page 18
®

Conclusions

• This study complements and completes the initial work:
http://www.eda.org/pub/ibis/summits/apr04/muranyi.zip

• The VHDL-AMS model of this presentation simulates
~2.5x faster than the model developed above

• This model can also include the full differential buffer
characteristics, discussed at:

http://www.eda.org/pub/ibis/summits/oct03/muranyi.pdf

• Data required for this new approach
– I-V curve is obtained for Main + Boost driving together
– V-t curves need to be to be generated for each switching edge
– C_comp, measured as usual for the complete buffer

• Next steps
– Solve switching into an unfinished edge problem
– Add data pattern dependent behavior effects
– Add frequency and/or voltage dependent C_comp
– Test with other interfaces

