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• Model the building blocks of the buffer with independent 
[Model]s and tell the user to wire them up

• This approach was used initially for many models but required manual editing of 
files and/or simulation schematics

• The legacy [Driver Schedule] keyword provides a reasonable 
solution to model pre/de-emphasis buffers

http://www.eda.org/pub/ibis/summits/jan05/muranyi.pdf
• Eliminates the need for manually connecting [Model]s to make a complete buffer
• Uses no more than IBIS v3.2 syntax
• Useful for tools not supporting the *-AMS extensions of IBIS
• Reasonably good correlation with transistor level model
• There are a few unsolved problems

• The *-AMS language extensions of IBIS v4.1 provide means to 
solve the outstanding problems

• The issues around C_comp compensation can be solved
• Switching into an unfinished edge, and
• Data pattern dependent behavior can be added
• Any other features and capabilities can be added as needed, such as
• Frequency and/or voltage dependent C_comp, etc…

Options for modeling pre/de-emphasis buffers in IBIS
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Pre/de-emphasis buffer review

In most of the current two-tap designs the “emphasis stimulus pattern”
is a one bit delayed and inverted copy of the “input stimulus pattern”
This is not necessarily true for all pre/de-emphasis buffer designs.  The delay may not be a 
one bit duration in each design, and multi-tap configurations would usually have a more 

complicated stimulus logic.
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C_comp issues

• The IBIS specification says that C_comp should be placed into the 
“top level” model and should represent the total buffer capacitance

• This is easy for the model maker, but tool vendors need to answer 
some difficult questions:

• How is the C_comp compensation done?
• independently, inside the Main and Boost [Model]s?
• collectively?

• If independently, how is the capacitive loading effect of the neighboring model(s) 
accounted for in the compensation algorithm?

• How is the total C_comp divided between the Main and Boost buffers?
• Is the C_comp compensation correct for each transition?

• strong to strong bit
• strong to weak bit
• weak to strong bit

• More C_comp related information:
• http://www.eda.org/pub/ibis/summits/apr04/mirmak2.pdf
• http://www.eda.org/pub/ibis/summits/oct04/mirmak2.pdf

• A constant C_comp value may not be accurate enough at GHz speeds
• Frequency and/or voltage dependence may be important, which can only be modeled 

with the IBIS v4.1 language extensions



page 5
®

Waveforms with independent C_comp compensation

This simulation uses two separate VHDL-AMS models representing the 
“Main” and “Boost” blocks, in which the C_comp compensation is done 

independently.  The reduced edge rate is a result of the two blocks 
loading each other.
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Solving this problem with a modified algorithm

• How about combining the main and boost buffers 
into one single model?

– Have only one I-V curve, representing the Main + Boost 
I-V curves

– Separate V-t curves for the different transition edges
• Strong to strong bit
• Strong to weak bit
• Weak to strong bit

– Use *-AMS to pick the right V-t (KPU(t)) curves to use, 
and scale the IV curve accordingly

– No need to change the C_comp compensation equations
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Combine the Main and Boost blocks into one model
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Block diagram of combined model
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-- One set of analog equations
---------------------------------------------------------------------------
Ipc_p_0   == -1.0            * Lookup("IV", Vpc_p_0, I_pc, V_pc); -- Power clamp eqn’s
Ipu_p_0   == -1.0 * k_pu_p_0 * Lookup("IV", Vpu_p_0, I_pu, V_pu); -- Pull up eqn’s
Igc_p_0   ==                   Lookup("IV", Vgc_p_0, I_gc, V_gc); -- Ground clamp eqn’s
.....
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State machine diagram for the logic

6

6

6

6

7

7

���&	7	�

,�����	6

���&	7

,�����	6	�

���&	6

8

�������

7

7

,�����	

7	�

,�����	

6

���&	6	�

,�����	7

���&	6

,�����	7	�

���&	7

6

6

,�����	

6	�

,�����	

7

7
7

7
6

76

76

7

6

"���	��	9	7

"���	��	9	6

• Each blue bubble represents a buffer state transition 
(6 of them in total, one for each KPU(t) waveform)

• Orange bubbles represent no state changes
• State changes occur at clock edges
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Data extraction

• I-V curves
• Only ONE I-V curve generated, for when both Main and 

Boost are on
• Can re-use existing IBIS data (Sum Main and Boost I-V)
• No need to worry about double-counting Internal terminations 

(between Main and Boost buffers, as in previous techniques)

• V-t curves
• Generate V-t curves for the SIX different transition types
• No need to worry about double-counting Internal terminations

• Same C_comp extraction methodology as before, but 
C_comp doesn’t need to be split between buffer blocks
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Strong bit to strong bit transition overlay
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Strong bit to weak bit transition overlay



page 13
®

Weak bit to strong bit transition overlay
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Notes on correlation results

• Excellent match between SPICE and *-AMS model on all transitions
– No tweaking of the I-V & V-t curves and C_comp was necessary
– Original C_comp compensation algorithm can still be used

http://www.eda.org/pub/ibis/summits/jun03b/muranyi1.pdf (pg. 9)
– This *-AMS model assumes a perfectly symmetric differential buffer in which the 

V-t characteristics are identical for the P and N ouputs
– A small change in the code can account for the asymmetry effects also (next page)

• However, this was done with the clock slowed down, such that the V-t 
curves have settled

– In this case, clock was slowed down from 480 MHz to 30 MHz
– At full speed, some “switching into an unfinished edge” exists

• Effects, such as switching into an unfinished edge, or data pattern 
dependent behaviors are not addressed in this presentation



page 15
®

Block diagram with asymmetric differential capabilities
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Simulation results at full speed (480MHz)

strong bit weak bit
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Details reveal some discontinuities due to unfinished edge

strong2weak
transition

weak2strong
transition
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Conclusions

• This study complements and completes the initial work:
http://www.eda.org/pub/ibis/summits/apr04/muranyi.zip

• The VHDL-AMS model of this presentation simulates 
~2.5x faster than the model developed above

• This model can also include the full differential buffer 
characteristics, discussed at:

http://www.eda.org/pub/ibis/summits/oct03/muranyi.pdf

• Data required for this new approach
– I-V curve is obtained for Main + Boost driving together
– V-t curves need to be to be generated for each switching edge
– C_comp, measured as usual for the complete buffer

• Next steps
– Solve switching into an unfinished edge problem
– Add data pattern dependent behavior effects
– Add frequency and/or voltage dependent C_comp
– Test with other interfaces


