Computer-Assisted Modeling of Digital I/O Buffers for IBIS

F.G.Canavero¹, I.A.Maio¹, I.S.Stievano¹, M.Swaminathan², P.Franzon³

¹ Politecnico di Torino, ITALY (http://www.eln.polito.it/research/emc)
 Georgia 1/2 GaTech, Atlanta, USA
 NC STATE UNIVERSITY ³ NC State University, USA

Discussion within CPMT – TC12

Electrical Design, Modeling and Simulation (EDMS, TC-12) sub-commitee http://www.ewh.ieee.org/soc/cpmt/tc12/

- EDMS sub-committee works on the standardization of design tools and design methodologies in packaging
- Initiative for "Practical Macromodels for Digital I/O"
 - → First meeting @ EPEP, Oct. 2004 in Portland, Oregon, USA. http://www.ewh.ieee.org/soc/cpmt/tc12/standardization_files/IBIS_TC12a.ppt

SPI (Signal Propagation on Interconnets) IEEE Workshop, May. 10-13, 2005 in Garmisch-Partenkirchen, Germany (c.f.p. at http://www.spi.uni-hannover.de/)

I/O Buffers Macromodeling

• Required Goals:

- IP protection
- Vendor-independent format
- Have to capture TX, RX, and package parasitic essentials
- Sufficiently accurate to be useful
- Easy to automatically generate from Spice and Measurements
- Easy to verify
- Easy and fast to simulate

I/O Buffers Macromodeling Current status

Circuit-based modeling

(native IBIS)

- standard,

- large data/model libraries,
- EDA tools support...

specification and tools from http://www.eigroup.org/ibis/

Black-box modeling

i=F(v,d/dt)

...aimed at improving the modeling of latest technologies and high-order effects

- LVDS drivers with pre-emphasis
- DDR memories,
- power supply ports...

e.g., parametric modeling

I/O Buffers Macromodeling The way forward

Black-box modeling @ Politecnico di Torino

 $M\pi log^{\mathbb{C}}$ (Macromodeling via parametric identification (π) of logic gates): Method & Tool

Model parameters (Θ) via system identification methods

$M\pi log$ features

+ { Power Supply ports Temperature effects

	Mπ <i>log</i> Tool	Mpilog 🔲 🔀
Steps 🔤 🖂 🔀 File Help 🛛 🛥	Mpilog - Single-Ended Drivers Macromodeling	Macromodeling via Parametric Identification
1. Port excitation Create	File Help n Device details	of LOgic Gates Single-Ended Drivers About Quit
Collect	Time step (T) 10 ps Macromodel - Implement Driver input signal . amplitude 1.8 V Model settings . rise-time 0.1 ns Model format HSPICE . fall-time 0.1 ns Model format HSPICE	Units {V,A,s}
3. Macromodel Generate Validate Implement	Go Bit time 1 ns Bit stream "01011"	View
	Tool available on request (igor.stievano@po	olito.it)

🗯 emc group

$M\pi log$ Tool

RUN YOUR PREFERRED CIRCUIT SOLVER (e.g. SPICE)

$M\pi log$ Tool

eme group

$M\pi log$ Tool

Steps	Macromodel - Generate
<i>i</i> dd <i>i</i> +Vdd <i>v</i> <i>v</i> 1. Port excitation Create - 2. Port responses	Advanced settings Dynamic order 2 Maximum model size 5 Show curves Go Close
2. Port responses Collect Load 3. Macromodel Generate Validate Implement	Close Macromodel - Implement Model settings Model name DRV2 Model format VHDL-AMS2 (external bit stream) Units {VA,s} Bit time 1 ns generates the IBIS file (ver. 4.1) Bit stream "01011" View Go

enc group.

Conclusions (i)

- \odot \odot IP protection
- ⊕ ⊕ − Have to capture TX, RX, and package parasitic essentials
 ■
- $\odot \odot \odot \odot$ Sufficiently accurate to be useful
- Or Constraints
 Or Co
 - ⊕ ⊕ − Easy to verify
 ■
 - \odot \odot Easy and fast to simulate

Conclusions (ii)

Black-box models are expressed by equations that are used **as they are**, without any interpretation

- no data to model conversion needed
- Ilexible modeling methods
- model enhancements do not affect IBIS and IBIS simulator structures

The distribution of black-box models would be a valuable complement to the distribution of behavioral data

Acknowledgements

Thanks to

- ★ GRAPHER for providing the Analog/Mixed-Signal simulator environment (ADVance MS[™] + Eldo[™])
- Sergio Perazza (Mentor, Italy) for the technical support on Mentors' products
- Arpad Muranyi (Intel) for VHDL templates and code posted on http://www.eda.org/pub/ibis/summits/jun03a/ and http://www.eda.org/pub/ibis/summits/feb04a/

