

Modeling Formats and Procedures at Intel

マイケル マーマク Michael Mirmak インテル コーポレーション Intel Corp.

JEITA IBIS Conference March 24, 2005

Agenda

- Modeling Flow
- Formats Used for External Distribution
- Future Direction and Investigations
- Evaluating Model Formats
- Key Questions for the Industry

*Other names and brands may be claimed as the property of others

A Disclaimer

- The following information is presented as the opinion of one person at Intel. This presentation does not necessarily represent Intel policy, commitments or preferences.
- This is not presented on behalf of the IBIS
 Open Forum and does not represent the official IBIS Open Forum direction.

*Other names and brands may be claimed as the property of others

Modeling Flow

- Buffer Design
 - Internal SPICE-like format
 - Internal tool also supports IBIS, AMS languages
- Conversion to External Formats
 - IBIS is majority model type supported
 - Data generated directly from internal format
 - Other proprietary behavioral formats on case-by-case basis
 - Encrypted HSPICE used for one group of customers
 - Process file conversion used for model generation
- Correlation Over Process, Voltage, Temperature
 - I-V curve-tracing performed to correlate IBIS
 - Time- and frequency-domain analysis of systems
 - "Silicon-to-Simulation" correlation of process files to factory production data

5

*Other names and brands may be claimed as the property of others

Curve-Tracing Example

• Weakest IBIS should be weaker than silicon, etc.

PULLUP CURVE - IBIS vs. SILICON

External Formats

- Different divisions use different formats
 - Format choices based on customer demand and capabilities, internal technical analysis
- Reasons for use of proprietary SPICE
 - Control over buffer features (example: impedance)
 - Latch-to-latch: more ps from timings at core!

Transistor-Level SPICE Modeling

- Why are transistor models popular?
 - Familiar to users
 - More detail seen as more accuracy (misconception)
 - Behavioral models add some effort, burden
 - Encrypted transistor very simple to distribute just include everything and send files to customers
 - Behavioral models require conversion, correlation
 - Transistor simulation faster as computer speed increases
 - PI, SSO still very difficult at transistor-level
 - Behavioral methods sometimes difficult to use
 - Example: impedance control in IBIS
 - Latch-to-latch detail not seen in behavioral models
 - AMS is promising here

Studies of Behavioral Modeling Types

- Intel team is studying formats
 - Behavioral Modeling Workgroup meets weekly
 - <u>Mission</u>: develop methods for IBIS, AMS modeling; analyze new proposals (ex. SPICE macromodeling)
- Key goals

3/26/2005

- Develop standardized methods, templates for AMS
- Add features: latch-to-latch, new controls (ex. impedance)
- Correlate AMS against internal format, proprietary SPICE

• Ideal: a single format that can be used company-wide

- Short term: IBIS, encrypted HSPICE remain
- Longer term: IBIS divisions will move to AMS+IBIS
 - Teams using encrypted HSPICE will evaluate AMS capabilities, consult with customers
- No compelling case for SPICE macromodeling yet

9

*Other names and brands may be claimed as the property of others CHIPSET GROUP

How to Evaluate A Model Format

Seven basic desires for a modeling solution

- "I want it to be accurate"
- "I want it to be fast in my simulator"
- "I want it to protect my IP"
- "I want it to be standardized"
 - Works for more than one tool
- "I want it available soon"
- "I want it easy to use/implement/automate"
- "I want maximum flexibility in describing my buffer design's behavior"
- A "perfect" solution can only meet six desires (so far)

Customer Solutions and the 7 Rules

Parameter	Proprietary Encrypted SPICE	IBIS 3.2/4.0	IBIS + AMS	IBIS + Macromodeling
Accuracy	**	**		
Availability			*	*
Ease of use/implementation				
Flexibility				
IP Protection				
Speed			**	**
Standardization				*

can change, depending on tool support/committee efforts
depends on model implementation

Meets all of need		
Meets most or some of need		
Meets most or some of need, with difficulty		
Cannot meet need		

Questions for Industry

- Transistor encrypted SPICE is very popular
 - Is either AMS or Macromodeling more compelling?

Will customers support behavioral modeling?

- Behavioral models are faster in simulation, but take more effort to generate
- Can customers be convinced they are accurate?

What is the best long-term industry solution?

- Macromodeling standardization will take time
- Should we develop macromodeling specification or educate industry about AMS usage?
- How will IP be protected?
 - Behavioral modeling uses algorithms, not process details or design netlists
 - Some design algorithms may be sensitive
 - Behavioral encryption may require standardization

*Other names and brands may be claimed as the property of others

3/26/2005

BACKUP

*Other names and brands may be claimed as the property of others

What is the greatest use for IBIS?

- IBIS originally consisted of two parts
 - Device model behavioral data: V-t, I-V tables, etc.
 - "Snapshot" at certain conditions (Temp, etc.)
 - Interface specs, for user automation: Vinh, Vmeas, etc.
 - Power supply information fits in both categories
- With AMS or Macromodeling, some of IBIS redundant
 - Behavioral modeling under IBIS very limited (no equations)
 - Both alternatives are much more flexible than IBIS
- IBIS interface specifications are still very useful
 - AMS, Macromodeling describe device design behavior
 - Still a need for a standardized SI "wrapper" around behavior
 - Includes evaluation criteria
 - Would help user judge device performance in system
 - IBIS serves this need! Evaluation parameters for SI
 - Need IBIS-based user-defined specs, measurements

Solutions and the 7 Rules

- IBIS 3.2/4.0
 - Advantages
 - Fast, IP protecting, standard, easy to use/implement
 - Available immediately in tools
 - Disadvantages
 - Not accurate for certain functions (e.g., freq. dep. C)
 - Not flexible (table-based, not equation-based)
- AMS + IBIS

3/26/2005

- Advantages
 - Flexible, standardized, can be fast
 - Can be accurate, depending on correlation effort
- Disadvantages
 - Greater challenges to implementation
 - Additional learning for users, model authors
 - Templates would reduce this problem
 - Not available in tools yet

IP protection?

*Other names and brands may be claimed as the property of others

Solutions and the 7 Rules

- SPICE Macromodeling
 - Advantages:
 - EDA tools already support controlled sources
 - Low barriers to use by *behavioral* experts
 - Has flexibility beyond native IBIS
 - Disadvantages:
 - Obstacles to standards development
 - Creating a standardized SPICE syntax
 - Can this be done is less than two years?
 - New features still require creation of new keywords
 - Same development delay as in traditional IBIS
 - Can controlled sources cover all equations?
 - Still behavioral!
 - More value than transistor-level models?
 - Behavioral modeling expertise required!

16

*Other names and brands may be claimed as the property of others

3/26/2005