Proposal for Verification Unit Extensions for IEEE 1850 PSL
 Version 6.0 – 24 March 2008
Introduction

This proposal addresses the following:

· addition of a 'vpkg' type of verification unit
· revision of the definitions of vmode and vprop
· addition of vunit parameters and instantiation

· clarification of rules for interaction of binding and inheritance and instantiation
· revision of scope and visibility rules to improve reusability
· clarification that PSL features can be used to support various use models

· addition of explicit 'override' specification

The following sections of the LRM need to be revised or rewritten:

4.2.2 Keywords

· add vpkg, override

5.2.1 HDL Expressions

· rewrite scope and visibility rules

· the new version needs to apply to all expressions

· Make it a new section after 5.2 Expression Forms (?)

7.2.4 Verification Unit Instantiation

· Add new section after description of parameterized Verification units.
7.2 Verification units

· needs to be largely rewritten

All of these except 4.2.2 changes are sketched out below.
Note that tools are free to go beyond what the LRM requires, e.g.
· to assume a previously proven assertion in order to prove another assertion

· to verify an assumption in a containing context

· to check both assertions and assumptions in simulation

Proposal
1. Verification Units

A verification unit is used to group PSL declarations, directives, and modeling code.

 Verification_Unit ::=

 Vunit_Type /PSL/_Identifier ['(' Context_Spec ')'] '{'

 { Inherit_Spec }

 { Override_Spec }

 { Vunit_Item }

 '}'

 Vunit_Type ::= 'vunit' | 'vpkg' | 'vmode' | 'vprop'

 Context_Spec ::= Binding_Spec | Formal_Parameter_List

 Binding_Spec ::= Hierarchical_HDL_Name

 Vunit_Item ::= <its current definition> | Vunit_Instance

Verification units can be used in various ways to specify a verification task. For example:

a) An abstract verification task can be modeled using a set of verification units, none of which are bound to a design.
b) A verification task related to a design can be modeled using a set of verification units, all of which are related to one another through inheritance or instantiation, and at least one of which is bound to a design module or instance.
c) A verification task related to a design can also be modeled using multiple sets of verification units, where each set is structured as defined in (b), but each set is bound to possibly different modules or instances in the design.
 A given tool may support any of these or other use models.

Restrictions:
It is an error if a vunit has a binding_spec and is instantiated.
1.1 vunit

A verification unit which has the Vunit_Type as 'vunit' is called a vunit. A vunit is a verification unit intended for general purpose usage.

A vunit may contain any kind of Vunit Item. A vunit may also inherit or instantiate other verification units.

A vunit may be bound to a design module or instance, or instantiated, or inherited.

Restrictions:
1.2 vpkg

A verification unit which has the Vunit_Type as 'vpkg' is called a vpkg. A vpkg is a verification unit specifically intended for encapsulating a set of declarations for reuse.

A vpkg may contain any PSL declaration. A vpkg may also inherit or instantiate other verification units.

A vpkg may be inherited or instantiated.

Restrictions:

A vpkg must not contain PSL directives.

A vpkg must not contain modeling layer code. Also, a vpkg must not be bound to an HDL module or instance. All signals or variables referenced within a vpkg must be defined as parameters of either an individual declaration (local parameters) or of the vpkg itself (global parameters).

If a vpkg A inherits or instantiates a verification unit B, then B must satisfy the restrictions that apply to a vpkg, regardless of whether B is declared as a vpkg or as some other kind of verification unit. This allows the user who wants to create a vpkg to use declarations defined in an existing vunit without having to change the vunit to a vpkg.
Notes:

Since a vpkg cannot be bound, either the vpkg as a whole must be parameterized (and instantiated), or the declarations contained within the vpkg must be parameterized (and instantiated), or some combination of these two approaches must be used, in order to use the vpkg's declarations in a given context.

Example 1:

 // declaration of a parameterized vpkg

 vpkg Pkg1 (boolean req, ack; const T) {

 property ReqAckT = always (req -> next {{ack} within [*T]});

 property AckBeforeReq = always (req -> next (ack before req));

 }

 ...

 // instantiation of this vpkg

 P1: vpkg Pkg1 (rq, ak, 5);

 ...

 // use of this vpkg's declarations

 assert P1.ReqAckT;

 assume P1.AckBeforeReq;

 ...

Example 2:

 // declaration of a vpkg containing parameterized declarations

 vpkg Pkg2 {

 property ReqAckT (boolean req, ack; const T) = always (req ->

next {{ack} within [*T]});

 property AckBeforeReq (boolean req, ack) = always (req ->(next

ack before req));

 }

 ...

 // instantiation of this vpkg

 P2: vpkg Pkg2;

 ...

 // use of this vpkg's declarations

 assert P2.ReqAckT(rq,ak,5);

 assume P2.AckBeforeReq(rq,ak);

 ...

Example 3:

 // declaration of a partially parameterized vpkg containing

parameterized declarations

 vpkg Pkg3 (boolean ack) {

 property ReqAckT (boolean req, const T) = always (req -> next

{{ack} within [*T]});

 }

 ...

 // instantiation of this vpkg

 P3: vpkg Pkg3 (ak); // all requests get a common acknowledge (ak)

 ...

 // use of this vpkg's declarations

 assert P3.ReqAckT(req1, 5); // higher priority request

 assert P3.ReqAckT(req2, 10); // lower priority request

 ...

1.3 vmode

A verification unit which has the Vunit_Type as 'vmode' is called a vmode. A vmode is a verification unit specifically intended for specifying a verification environment.

A vmode can contain modeling code, PSL declarations, and PSL assume, restrict, and fairness directives. A vmode can also contain instantiations of other verification units. A vmode may also inherit other verification units.
A vmode that is named “default” can be used to define constraints that are common to all verification environments or defaults that can be overridden in other verification units. For example, the default verification unit might include a default clock declaration or a sequence declaration for the most common reset sequence.
A default verification unit may not inherit or instantiate other verification units of any type.
A vmode may be bound to a design module or instance, or instantiated, or inherited.

Restrictions:

A vmode must not contain an assert directive or a cover directive.

If a vmode A inherits or instantiates a verification unit B, then B must satisfy the restrictions that apply to a vmode, regardless of whether B is declared as a vmode or as some other kind of verification unit.

1.4 vprop

A verification unit which has Vunit_Type as 'vprop' is called a vprop. A vprop is a verification unit specifically intended for specifying properties to verify.

A vprop can contain modeling code and PSL declarations. It may contain only assert and cover PSL directives. A vprop can also contain instantiations of other verification units. A vprop may also inherit other verification units.
A vprop may be bound to a design module or instance, or instantiated, or inherited.
Restrictions:

If a vprop A inherits or instantiates a verification unit B, then B must satisfy the restrictions that apply to a vprop, regardless of whether B is declared as a vprop or as some other kind of verification unit.
A vprop may not override design signals.
2. Verification Unit Instantiation
This section should be added as a new clause 7.2.4 There should be a note that instantiation rules of 6.3.3 applies to vunit instances as well
7.2.4 Verification unit instantiation

A verification unit instantiation, shown in Syntax ?-??, creates an instance of a verification unit. An instance of a verification unit is also a verification unit.

 Vunit_Instance ::=

 Label ':' Vunit_Type /vunit/_Name ['('

Actual_Parameter_List ')'] ';'

The Vunit_Type specified in the Vunit Instance must agree with that of the verification unit with the specified name.

Informal Semantics:

Each instantiation of a verification unit V within another verification unit V2 creates a unique copy of the instantiated verification unit V, accessible only within verification unit V2.

Examples:

vunit V1 (logic x, y){

…

…

}

vunit V2 (top.i1) {

// top.i1 is a verilog model

…

 V1_inst: vunit V1(D, reset);

}
3 Verification Unit Binding
A verification unit may be bound to a design module or instance. Binding allows a verification unit to reference the names visible in that design module or instance.

Binding does not affect the visibility of names in locations other than the bound verification unit. In particular, if verification units A and B are both bound to design module or instance M, and neither A nor B inherit the other, then the names declared in A are not visible in B, and the names declared in B are not visible in A.

A verification unit A may be bound to a design module or instance M, regardless of whether the flavor of A and the implementation language of M are the same or are different. If they are different, then implicit cross language type conversions are performed as required, following the conventions for mixed-language simulation.
A vunit with no binding_spec is considered to be unbound.
The declarations in an unbound vunit shall get bound using the binding rules of the inheriting or instantiating vunit if the unbound vunit is inherited or instantiated in a bound vunit.
Restrictions:

A parameterized verification unit shall not be bound.
A vpkg shall not be bound.

4 Verification Unit Inheritance
One verification unit may inherit another verification unit. Inheritance allows the inheriting verification unit to reference the declarations contained in the inherited verification unit. Inheritance can also be used as one means of composing a set of directives that, in aggregate, define a verification task.

Inheritance does not affect the visibility of names in locations other than the inheriting verification unit. In particular, if verification units A and B are both inherited by verification unit C, and neither A nor B inherit the other, then the names declared in A are not visible in B, and the names declared in B are not visible in A.

A verification unit A may be inherited by a verification unit B, regardless of whether the flavor of A and the flavor of B are the same or are different. If they are different, then implicit cross-language type conversions are performed as required, following the conventions for mixed-language simulation.

Inheritance only provides access to existing declarations; it does not create local copies of declarations. If a verification unit C contains a variable V, and C is inherited by two verification units A and B, then the variable C.V is visible in both A and B. Only one instance of this variable is created, and that one instance is accessible from both A and B.
Transitive closure applies to vunit inheritance. Thus if vunit A inherits vunit B and vunit B inherits vunit C, then the declarations of C become visible in vunit A.
Restrictions:
· If one verification unit inherits another, and both are bound toinstances, then either both must be bound to the same instance; or one must be bound to an instance that is instantiated directly or indirectly within the instance to which the other is bound.

· If one verification unit inherits another, and one or both are bound to a module, then the binding must be such that if each binding to a module is considered as binding to each of its instances, the restrictions of item #1 are met.

Example:

Module top;

 mod_b mod_b_inst();

 mod_c mod_c_inst();

 endmodule

module mod_b;

 mod_d mod_d_inst();

endmodule

module mod_c;

 mod_e mod_e_inst();

endmodule

Consider vunits/vmodes X and Y where X is inherited by Y.
Valid use models assuming no other instances of module top, mod_b and mod_c
a) X bound to top, Y bound to either

· instance top.mod_b_inst or
· top.mod_c_inst or to top or to mod_b or to mod_c
b) X bound to top, Y bound to either

· top.mod_b_inst.mod_d_inst or

· top.mod_c_inst.mod_e_inst

c) Y bound to top.mod_b_inst, X bound to top.mod_b_inst.mod_d_inst

d) X bound to top.mod_c_inst, Y bound to top.mod_c_inst.mod_e_inst

e) X and Y both bound to top
f) X and Y both bound to top.mod_b_inst

Invalid use models

· X bound to top.mod_b_inst, Y bound to top.mod_c_inst
· X bound to top, Y bound to mod_b
5 Overriding Assignments

A verification unit may declare that it will override assignments made to a variable or signal declared elsewhere.

 Override_Spec ::= 'override' Name_List ;

 Name_List ::= Name { ',' Name }

Any name that appears in an override specification must be visible in the containing verification unit.

If a variable or signal name N appears in the name list of an override specification, then the following effectively occurs:

A. All existing assignments to N in the design and in other verification units are redirected to assign to a new variable N'.
B. The built-in function |original(N)| returns the value of this new variable N'.
C. Any assignments to N made in this verification unit are applied to N.

As a result, assignments made to N in this verification unit effectively mask any assignments made to N elsewhere.

If an override specification is provided for a given variable or signal, and the containing verification unit does not assign to that variable or signal, then the variable or signal will act as a free variable [or have a nondeterministic value, or however we want to explain this}.

6 Scope and Visibility Rules
 [This section replaces the section 7.2.3]
 5.2.1 HDL Expressions

/Informal Semantics/

The meaning of an HDL expression is determined by the rules of the HDL in which the expression is written. If an HDL expression contains a subexpression that is a PSL expression, then the result of the PSL expression is implicitly converted to the appropriate type for the HDL context in which it appears, as defined in clause 5.1.

9. Scope and Visibility Rules

A PSL sequence declaration, property declaration, or verification unit declaration defines a name for a sequence, property, or verification unit, respectively. A PSL verification unit instantiation or PSL directive that includes a label defines the label as the name of the statement. A formal parameter list defines the names of formal parameters to be used within a parameterized construct. A forall property, a parameterized sequence, and a parameterized property each define the name of a parameter used in the replication of a sequence or property.

For each of these named objects, the defined name has a scope, i.e., a portion of the text of a PSL description in which the name can be used to refer to the corresponding object. This scope generally extends throughout the context in which the object is defined, and it may also extend beyond that context.

9.1 Immediate Scope

The following rules define the /immediate/ scope of each kind of name:

A. The immediate scope of the name of a verification unit is global. It extends over the set of verification units defined for use in a given context.
B. The immediate scope of the name of a sequence or property declaration extends throughout the verification unit within which it is declared.

C. The immediate scope of the label on a PSL verification unit instantiation or a PSL directive extends throughout the verification unit within which that construct occurs.

D. The immediate scope of a formal parameter extends throughout the named sequence, property, or verification unit declaration with which the formal parameter is associated.

E. The immediate scope of a replication parameter extends throughout the sequence or property within which it is defined, including any nested sub-sequences or sub-properties.

/Restrictions/

It is an error if a given name is defined more than once within the same immediate scope.

/Notes/

As a consequence of the above rules, it is an error if there are two verification units with the same name, or two property or sequence declarations with the same name in the same verification unit, or if a given name is used as both a sequence or property name and as a label in the same verification unit, or two replication parameters with the same name defined for the same (sub) property, etc.

9.2 Extended Scope

The immediate scope of a name can be extended further as a result of inheritance or instantiation. If a name is declared within a verification unit, and that verification unit is inherited by or instantiated in another verification unit, then the /extended/ scope of the name also extends throughout the inheriting or instantiating verification unit.
The scope of a name declared in a design module or instance can also be extended further, as a result of binding. If the scope of name extends to the end of a design module or instance, and a verification unit V is bound to that design module or instance, then the extended scope of that name also extends throughout the verification unit bound to that design module or instance.
9.3 Direct and Indirect Name References

A direct name reference is a reference that consists of just the name itself.

An indirect name reference involves a prefix that defines the scope within which the name was declared.

Within the immediate scope of a given name, a direct reference to that name is always unambiguous. This is a consequence of the definition of immediate scope and the fact that it is an error for the same name to be declared twice within a given scope.

Within the extended scope of a given name, a direct reference to that name may be illegal, because a direct reference would be ambiguous. In particular, a direct reference to a given name is illegal at a given point if the point of reference is within the immediate scope of another declaration of the same name. A direct reference to a given name would be ambiguous (and is therefore illegal) if the point of reference is within the extended scope of two or more different declarations of the same name. In either case, the given name can be referred to indirectly using a dotted name.

A dotted name consists of a prefix, followed by a '.' character, followed by a suffix. The prefix is the name of a scope: i.e., a design module name or instance pathname, a verification unit, a sequence declaration, or a property declaration. The prefix name must be directly visible at the point where the dotted name occurs. The suffix is a name that is visible within that scope, or is a dotted name whose prefix is a name that is visible within that scope.

Example 1:
If vunit A inherits vunit B, vunit B instantiates vunit C with label C1, and each of the three vunits define sequence S, then in vunit A, one can refer to S (the one defined in A), or B.S (the one defined in B), or B.C1.S (the one defined in instance C1 of C within B).

Example 2:

If vunit A defines a variable X then

a) If vunit B instantiates A, then X shall be accessed in vunit B only using an indirect reference “A.X”

b) If vunit B inherits A, then access to X in vunit B may be using a direct reference to X or using an indirect reference “A.X”

Restriction:

A vunit may not be both inherited and instantiated in any given vunit.

1 A vunit name cannot appear in the suffix of a longer dotted name. It can only begin a dotted name. The scope of this vunit name must extend to the point at which the dotted name appears in the source text.

2. A declaration name or instantiation label whose scope is extended into another vunit via inheritance cannot be used in the suffix of a dotted name except when the dotted name begins with the name of the vunit within which declaration or instantiation label is defined.

These restrictions imply the following:

a. A vunit name that is the prefix of a dotted name must be either the name of the enclosing vunit, or the name of a vunit that is inherited by the enclosing vunit.

b. The suffix of a given dotted name must be either (i) the name of a declaration within the vunit (instance) denoted by the prefix of the dotted name, or (ii) another dotted name beginning with the label of an instantiation within the vunit (instance) denoted by the prefix of the given dotted name.

Examples:

vunit A {

 sequence s = ...

 <can refer to A.s, or directly to s>

}

vunit B {

 inherits A;

 <can refer to A.s, or directly to s>

}

vunit C {

 <can refer to A or B, in order to inherit it>

 inherits B;

 <can refer to A.s, or B.s because of trasitive inheritance property>

 <cannot refer to B.A.s, because this is not a legal form of dotted name>

 <can refer to s (declared in A), as there is no ambiguity on s
}

==

=======

