Hi, Thanks for your comments John. I've been trying to put together the promised examples, however I haven't been able to complete them, in part because I'm finding it more difficult than expected to create a simple, clear testcase that demonstrates the issues without divulging too much about how our generation tools work. I've attached a package with a description of the simple training protocol we use, together with a sample of a SCE-MI function-based transactor ( responder_2_0.v ) and associated "no side effects function outline" ( verilog_no-side_effects_functions.v ) that will support this protocol. I should stress that this has not been fully tested and I have not included a full testcase at this point, however I believe the transactor is essentially correct, and demonstrates some of the coding issues I'm encountering. There are, of course, many ways to simplify the coding, for example the transactor contains two combo blocks that can potentially be compressed into one. Overall however I've found this code hard to create because the return value of the SetResponse() function has to be used in many places, and because the first idle cycle will actually function as a response cycle if the testbench requests zero wait states. In the SCE-MI 1.1 implementation we insert extra request states in the FSM that allow us to request, wait for and latch the response during uncontrolled cycles. I've illustrated the SCE-MI 1.1 response fetch ( responder_hybrid_1_1_response_requesting.v ) which seems cleaner because our transaction argument is always in the same register whenever the 'real' FSM is active. In the light of our previous conversations and my work over the last few days, I think there are really two issues that give rise for concern with the DPI function-based interface: 1) efficiency issues when using function calls in combo-blocks ----------- Johns email addressed this issue. Yes, our response lookup functions are 'safe' in that they don't cause side effects in the testbench. With a small caveat about the synthesizable sub-set of Verilog used by emulators, I agree that in principle the transactors will function correctly, and that the implementation can hide a lot of the work and can potentially handle these calls efficiently PROVIDED IT CAN RECOGNIZE OR CAN BE TOLD THAT THE FUNCTION ONLY NEEDS TO BE PERFORMED ONCE PER CONTROLLED CLOCK CYCLE. While I agree on the functional correctness, I believe it remains important that a couple of areas are addressed: i) I think it's quite unrealistic to expect the C/C++ parser to recognize a single lookup per controlled clock cycle is safe when compiling the testbench. One solution might be a 'ca-pure' qualifier to the DPI function, similar to the existing SV 'pure' however, if this isn't feasible, there needs another solution, for example an agreed naming convention which is supported across all SCE-MI 2.0 implementations. Without a solution of this kind it's certainly true the code will function correctly, however the SCE-MI standard loses value if the user has to tweak the source for performance reasons for each implementation, and I'd hate in the 21st Century to have to resort to synopsys_translate_on / synopsys_translate_off style comments. Note also that the DPI function is certainly not 'pure' in the sense that calls in different cycles may well yield different results, whereas they will certainly not in the same controlled clock cycle. For this reason I don't believe it's possible to use the existing SV keyword because of the risk the function will be optimized away by the compiler. ii) I believe it needs to be made obvious to implementors through some clarification in the standard, that it's expected that an efficient implementation of these 'ca-pure' DPI calls be provided, and if possible the presence or absence of these should be clear from the results of any compliance tests. iii) I have some nervousness about two of the Verilog code constructs we've been forced to use, both of which I've been discouraged from using in synthesis - I freely admit I'm not a synthesis guru and may be worrying un-necessarily here: a) the return value of the SetResponse function has to be assigned to local storage which is used later in the combo block b) the clocked block contains both blocking and non-blocking assignments 2) write-before-read memory coherency requirement ----------- I see this as analogous to the general rule of thumb for all CA environments, which is to evaluate EVERYTHING before changing ANYTHING - essentially we're looking to guarantee that the result of ALL writes are passed to the testbench before ANY 'ca-pure' reads are performed. I believe this will work if the semantics of the emulators are exactly the same as those of the simulators and they evaluate all clocked processes before changing any combo blocks. Can anyone else see a more efficient and elegant way to use function-based interfacing in this application? I accept that the comment about the ease of construction of the 1.1 code may be due in part to my familiarity with this solution, and I'm certainly open to suggestions about cleaner ways to write the 2.0 implementation. While I agree with John that there are conceptual solutions to 1), I'm left with the obvious concerns about vendor support if these requirements are not included in the standard. I also still wonder if hybridizing the solution by allowing the transactor to use the DPI calls, but still 'steal' an extra uncontrolled clock cycle wouldn't have allowed the calls to be put inside clocked blocks, thereby avoiding what looks like a difficult piece of optimization that's going to be required for efficiency reasons - I guess what I'm thinking of is a solution where the DPI calls hide their own manipulation of the clocks, but the user is free to force his own additional cycles as he chooses. Regards Bernard John Stickley wrote: > This is really more of a question of efficiency of > implementation and the standard itself makes no restrictions > on how this could be optimized. And as Per first mentioned, > implementations do have the freedom to use an uncontrolled > clock underneath if necessary to implement DPI calls. > So, in effect, implementations can automatically (implicitly) > do what you're doing in the SCE-MI 1.1 implementation by stopping > the clock (explicitly). > > Now, this said, you do need be careful how you write > the imported function in question. You have to write > it in such a way that if it was called multiple times > in a given clock cycle by the same combo block, it > would not lead to erroneous behavior. In other words, > if each call advances some state on the C side, that could > lead to inconsistent behavior when going from one implementation > to the next. > > But obviously you have to worry about this whether emulating > or simulating - irrespective of whether you're using a > SCE-MI 2 implementation or just a plain SystemVerilog DPI > implementation in a S/W simulator. > > And I'm assuming you've already designed the function > to be somewhat pure in the sense that it is resilient > to side effects of multiple calls. -- This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean. --------------050507080206010403080404 Content-Type: application/x-gzip; name="SCE_MI_2_0_rollup.tar.gz" Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="SCE_MI_2_0_rollup.tar.gz" H4sIALzAg0YAA+29CTyUbfc43tMmKkp6shRTyM4s9jXZ18mgLFkGg7GNMDSE UlGyZI2EsjYiRCpCKLJWyL4kIXt2Wf/3DIrQ0/O+z/t+v7/vv9vneeae6z7X Oec617nOcl/XmdSlZAxUFAwkT508b3DKDuOAMcZYGWCwDlZoGxS3rYnpln/g AgOXABhM/OSHrnxCiJ9gCAQChcC2QMD8vGABXjAEzLcFDBGAQqBbQOB/gvhf XVh7B6QdCLTFCGVng7QzMdkMztrSFmlv77Tp8/9HL+ZT0rJcEG4YGXPJgH8M GR8IDMIYWZCJivIoo2zMHMxB/EALgkcWbeWAsgPxyFohHVDSKGOMCUpcnMze wQ6FtCY7fydFqySwWXZf7hiHLewDJVL5xF0MQruL6VY8Hzd7KQl3KXO9vufe s1fffClo7+8Fw/Ze1HrHfUvxrPKQ27xwRctxmYfWiBcSi+kNqnnP7gdNzG/P Cbox/LXTRuxZZMNZTU1NY685faugQym6DUyKLIPvpZGpisohtXXdGezoJ0FO vWPKiamw+OpDjRrh48YJN3jPRV/tj6yqzlFudli8qdLvkP+6xYwfe8AG+v5L cshsSguUr9wsI0Ghp7nC2t62hlNF95mmwqTLbFCQzEF96iDdiMzU4zafOcwr eTObUtvjuQ7nPPOMn2pMdvIWcfGL1qWWkEZ+DsazVbeVCe29f4yHLL7m/rYh 2+sZTuDSXvPHuta0UWk3Tp0q0TTd4/S0VCeRLix9lGRLsPD8K1dncLqUT66s hnkFdpsRVjueASp+ZsD5I/XFUwKooX2cgY69VnJBhkKXKAXOlfVBIz0at5A1 eT12MOBIs3hJwqeHmA0AZ1WNqusduJ05i6IwtyncZ5NGf82dpKdo680O0Kmr ji2vtWN2jrIObNtt/fllK5b6mZzWk/AOx8DeR1ukE/ZcL+JNpS3csfeqVw6M 67AhrfjuwS+XpQZkTicKKSp8Gpe+InbtWqFzHM0Q9ZetR7o5h1mdPC/sCZM+ /tDp6Sisb8DzIj5rcuf107GTf2QlXKUv7hIOPFXwBXZ6j5sAUvxm4TE9w5lY Fh5FaXtJ8rAumrFbLDfP7BDSCvnwsELSTjqQxMn7rNS+u6U5sdovlftkOpMb 8NsuvsyDh09YSD/llzSfbuCyxYfReF6TBuUJkO3EI0jtL9jmK+N9t2+3AnM0 0pombNUU+8P/sMsFOrYtDX9cazn0MejuExB3h2DXZxLDqAIY134f5+fwe62d O+fkZoTqsbslZN5cCehEmvOTeX2u5D3X6yb0qLPhoLTT3P7Tu47eLarJUUZr Xe8tusFlfw3dkNJuFkCeNljyAUbx8ml2xe5mX2dJhNHEAWT4lj0KjOT77G2O 9Z54KqGNiWZSPuDxwEvW+ZagmnBfGGePtLR++Z6WksqbekZFJ5g85GRf2F/j /TPNMUC6EMcj4n0KurephT5XNe3kpffXQYeL/DyOXOvcK/fJ7QKsYredAUdg /bVLmmbN1gJSlVKcKPpG7bYG5GQLaJ80SUBedwVFsACVaI+kS7XCNhX6HWGy hhxnFerE/NOHJCX9oEEiN+35ryt9Da5ISEb7cNncnZeqPaOnE5jp9aHa/j6F 7DEPM/aGw/F6dz+8a34RK/AprGzbOR/ufFG0wn6FGfSxoSO2M6HzUgLJtvdB bL4CR8xOHc1ryNOsDNN8k8m69X0QlOmMeyCNDuf+oy8prs9x3xMJ/1Ri8Wer 2oQD24De4axtk4sMzH4BPZxnkgN2bb/xcEH8ivhBFmOyBHOaourr176ytl4+ H2z72GhMWINj3sLpmTf/bfuj++/42/XdNbzn3FwWKObsmeqWqXFop4nfZUfO 8urY8d114D/3Rh+rugX3qN1bGMwVZnVUvYHsxU3mEq0UUdPwh6dryeyOZh7z E+9/Kyro1HIZifraskPt6+4Y+63N5zPEnF7NcFzTTX2kiG/Tq8brnG69m/dC 17LiQ+6Njy/2v5tf4Joy1nt+vc3N0YRCkpEKWbZnR86nbMddN+tQNkk1W/5g 8wTx7Wf80Ijf0vKAb3tBsfqRqpYb+Cu7Ryv7hG+dgZWdPBwltk2FxTSSKRJ+ LI9J6Aq818X8Lpb35i7Sd6cXfYd7ElxQeZ8+SglMXvKxDE5SMnuj2pRYcoTz JebjDnYyB+FM8vGO0c9z5gyOJ4zoY/6k4nzVWu547LbI60JLSgPSk0yoql0z Z8s5QnYZv6aMqoEzPILK7vN9HlM8bUbnw/5I8MQrv48y952Y6UXn7zjbCLH8 IR8WxSp8qONjNt3uOYfOrxWoej1lBLTktbJA8aDBtgUJkUtfcju5DJ6yO1+Q vmZC5U4q2V0oQzc9XNdpIPRHkyB+AtZuqlyiehw72H649INKRfb9LotiBuTd q6kjtIaii06H8+zlvBRG41nEr6v6xsZ6QmnoVXNQozskgipugUBHqk35xK5V Ob0tPaSUJ/iRrpcvu4+b+2vEQvLULMqTjxSdkHLfsuWTawM46aWS790jNotv uZjShNy/nBmldpUZLzk5ghLBwZ6paKA/X9LCP1IoK8SVJSv2FX80uGB5+vhX G4qg/OmnhxkcvmIbq7xbPkvzqdh0XArf8iq2XXnhjyqqT4koG5Nl/wPcEXwW /7LvgvDz8a60QYTWOTQo+Fc8WjyiQHEbZF9uD0e36bHjQyY1TC4Hb7B66Gw7 9hGJ16Hqa2KfZnFLhZVmNcfcBynxZ8CGK48PV25lNz6iMZfs0Xt2AL61Ql9G tejTfYpQWPq+qrtT4p9emopGFkkeM9qeeZN+ezfnycGjgma0FGhupvvjTGn8 4ieFD6KnZPW5QrCjamiO9mDyUX2hk+hkkxgnLvtnrqebSs+8f+2oOLGnIpj7 ENlCrFXGwxy6wPAqsfC5wq82rZbTmvCU8smHyVZeB0KYDoyaPbCS2X/E+v2f tdbC9x4Yv2+PhIoY3Xl5VWuL38mAg9aogleGtNVbpb7ImN+wbYCMnkHVD56p zi4Opy7QflOX0nVE9K0NFc29/Soy13IKLhY/+uPrXV1H5c9DF1IdpYriCg/R yUcqLvS9CgtrCainMRZsUNdgwy6YKPedq89UjC+X4BxhnhI7c22U1/8lJBdi nyVa93nx06P5d6isR46MnQpGlAOm5eNu4vl8eodCh7rOoudRe8AvJ6hr8wZQ lAPuLEdl1ZuR+9zS8qnFK3qvTm//aFIPXzffxIkk3PCCv803VHD9fAv9ynxf DahUfAneVzKM8xYyfWE6BonIOnNuv8zblEsyL6Xw/TGnLJ94YD6O3VbOZhBg U0gYW1QxhcI8ToeeSBw2dMjV4mUeOF5gY/7QzDj/QCwI9XyKWaRq8KFX+b5t HOA/CyPAA3wfRIOlkyb3OY9wCrhkMrWnp43S3UDYBDAZIjP3nHMK7Jo8sDvw QN2jwZgqkNceTpMFAQYOTtTl0HpXo8BzBYid1e4ehXvEX4WEXApCzUL05i4W vxZ52Hl8yNP4UdVn/ttR/TOK07acY+Pez9gj/KPDHoiJ8YuwXCB9UqgWcjvm 6PPirLSWmPeJD+NcLr2TMR5veW9EfoOZPYaKLvzL0dOSya92mfZeGMrBi3I+ PoO9oiKDjUqqseVjGm2H0MPou+Ufn67aGqDO/GaUc0Rn7g8SMZz4+slYWWgw MN9KG+/3udDA2aJ4TiHNUDwqKBM08iTmPEiXMH38EChIQAiqRwY8tEPZOIBg hMki40Gg7DFYO2OUPdAXSEuM1VEOujxAqAriUbAGsEgtfyqAeDRQ5x2A7lIY K4ydui3SGAWC8C7hkDnvIKfuAMw2CMK31KIFN7JAGTuAIPxL32UxAEWIAPEL oAwAEhsHgAl7EN9K04oZEfyfGQoU9uNQoLxrhwLlWzUUKP/6oRAt4OqxQAX+ Z8YCg/w4Fhh07VhgsFVjgfGuHwtxda8eC+zbUEDEsYCIg7EH8SihTexBumRL OCBL3aBLE60HAhBiCRRWT/BamQAgSAekFcZsBeEyZ3BblI2ksQMaY0OQE2BT CGMkCnEZnowIr4zEASk0jzraxswKRWgg4zmNRjmh7E7ZoUxRgECJEiTjUcXY yGKtrNSN7VAoGwKcCmCVQIRmoIc82gSlgcFYGQHpqSnSyn65SQVlg13VJI22 t7VC4qQxxhpoByvUasgzaGBsTpoKy20ESa7QWCLxffg/qsS3OQKGfEoFBBEX X5ETdBlSl0fBxgR1HmUCsIByRBujEHInyaB8fGSi4G+XIPH/srKC374JAt+W 2gj/QSUJfzDgkpKSlYXBwGDAkoPJpMBSxBsp4n98vIQ/mCS/jCSfgAzhbwWx 4PLfyp2kIOHvJJTsJPQklPcbkqW/lTswWEpKSEhKikBRmlcaLCUoDSX8SYGl paQAnmRPyoLJwN/YXLpW7sC/eJH9KuBvBL8R/EbwG8H/DxCI6624kFVhIQIC XXIpiFWueNU7SIQA0TWtfsq/ujeMDAL74fn3kIBHHWvkQPBmxJhkbYi4HHmc QZsAGYIgryDgMVFoM3MHED9MiIznJNrB/hTKTgpjbQv4SSBUAJ4v5Q+r04eV BEMAJsAvLv4tkxiMbHaMFd4njRufO6n/ddFdlCXrD4UP1Fe4U/py65kKqVts NFCtosioP376XlYHzEc6KsGuZoq33CmDVjergQXKBptK0r68OMpb46lcA3mc Ywo+XNmXosKCV9gTn8cRHK+ZQtqIf89XdGpbzKfEP6N7a5KxlXc5daIfv9/7 3pb1WrSstOntuyp3e1W6wMOGKjEnFEyK+fYyvhMvYGmqnO+rgFpOBNwDVeY9 fWso9qSRCjbW9bdfJp8KY4hp2MMY4sMQ/PIosyTeZO4uEzkbqSJzJwnzOXmF U+w0EqzXpRQ9EKUA8Al4sDAPQo/pJ1DTkgqHEZTBijsBcOeYWlxA3zGFVVCi D2OpZNjDfVhTCs8f7bQzPatWrhYX+Iw2XpNaIPNZVGisPLM9H5kbu7K+Svkd o6lIha5hkgw+rniWjMQPiYVhKWg2sXCxHRIHi61UlHpLB9im8WBTSx1FuCm8 AH4VoluDcIa6AN19Gm+HVgc1qn9RR1bUZQZHVUR5RJMZZyXEj5tMUu2QUNn9 zm/xhlBbvri3P/eNZViquXHe17P1z0NTj01WztwPjdhTT+x57FNiraT7NP72 t4aBxK9B0X18qhkdSz0/zVGRx3ZLSbx3CFpuuTLnwGso/EVdT6RxiWWZYrg6 79794hkiD/t0l/n09okm55+iiB5U15MKXwJ75R/tJ6t1ELwMcCd64ew54cNG Ia+Wh1vmNvOUVrPm1PKY342pPzfPcUUfc3s5xdi3JC+DELbILF0G+B/N53I6 lYy+jTm88N8Q2ZwG9U9noZfSH6aBeycZI88cdCjeMOxBKu9hloemxfPqsL4K Kyq8CTSGaq/9fPzOIuXH4b7HQpRlCSjjI0KUWin12GkAXfl8HdEjk3SD6b+l iD9AFVMofrwZeFcDumULj90COd0LV2eOfPLcVPbz8U9G+9/OJnmcITS8qdB/ psfdf5bK84ts7EBhS43qoFOz12BgRb3SnAmjsoREl4VcIzwTHut1zxVaxJH+ nKHxxtbEp/eOaPc+P1A+cycgl9XWm64pIKQqUEtVImwhKgB8pAT+xg53IU9j KujepIKOB6Pc108sTYlbXDpZ0KR+h7suR1NLXAXns+zz/JoLV97dHFVkJi56 u7p+lqwfjiJl73CyHzDJu0JjNN+rzXAJVpiCboua6X+3Y+Ax/DIs/mBC+ZbB miqa2T4htbMv2qbRthe+ovkl3Jpm0d5R2jrJRXLP3LIXvkJh+U7KA4kFQV9F KvaNuZjNjacn3hpMTHYDuznvJzfpOT/Wo3nJktkay7+jS0/LfUZZ1O22keWO rnexz0dqMu66ljFnLzwwa4uQGDO6j5u/Tk/VS1kt7no86n7Oh8TkXrHLnYkj c7yDbikREv1+red0cXR10eIHnn20tfioPhvcz2I85nLbTZFc27kHdZwTQF9R Bb9uv/B5GJ0ssfd1Dsb2Q6JQ0v14CrWWU67UZvNs5/eRO+ZXDnf5Rvs8hhel T+7Nm2ETlXlxqugx/JzcsEuAGEPBNFu00nxu/VM2mpOtniM1Znlfe1P1DWQn wPlOt9AR710wryJGpm99zX3WNadfnR/h4YpuxyyyCvbwJku0HrcI7a4Uy190 604JzSLz7ZkbKpoJojGP3l74Vjz80kjQCepiuKmhG4UdjZFbKiRZQpJbKlmC r1h/lqlVhlaoLKzd33xPJ8slsE90xYu5qBPU3VMVL2aAXnXRFSdmmfZ5Tpbu objIPX7a7YizgeYXRUxX/b0pzR2pQIN78M5tQC/Pc5cDBeOYWNcvhW2ALoup 9T2XxwbEBY5sBvVNyf/BZRWenj4lV3vz7jtWr6kHEOYj2z4AI5wu3TM5tz32 osOkKAyGdT9JfdWlCT1zOiJdL9Bndvpte8b+hM55C+jj2AEW48GgzO1yfnaC bjGu3jjbxZaRIofcaJ06/6fRTyU63iKzZ67PHvDkvN41fnkkKADsOh8cewQr QWMRbUhlHj3ZQCdRwAp2aypakuexhKtYF1V6zJtUl25zd+e3aC13yl1FM+qF H6+jYJw94+FdyMzHohEdwDJ6V/RWnPmKp7ZvwAxbelN6dLfPZGndNHGZ0ZjP 976Ae1nDWxyu6g4f566B10sYdFuMuVRTHhYqO9EPJ+GqCe5NvNGg6+6hlpaz QOUTLT7LRiPxSnfM0vujnYnL4AEfj95JtPfg6GR9pvtMRjQ3fKjSJ5qpEOym eC3yCz/iU6JePbcYT76rkRtmHFwxzHznS829G2U+0XbFquXPugJCP7xWk9V1 bxJTPnQnzy+6G/sSS9sEyDUTTho/N97ylCp8SdtIE+ccjPIu5M3tIO2eAh16 MOYyy9Mmo1I5Oc5r3d58400E/8NXpvOkduk5C7UULoNBDofQn1i3uUrEMPgA Wgt2g24bc9mKDGuHbeuHb0VquUO3DQJ4m1hgK3I1xrhRyF76mis2WRcdlyPP KNcxPBz5AtBoroKA2LQFBw+SE4c2sIcMgMr4nbqdbOT2xopaYDOL6naK0it4 e3wgEDxdjGLF6sdly/8EakWr9wC4x6XxY8feywRuDvVNq7ds0R9feKD2IaSt LFVq+AGZfm/KnPB4XhKxoQgGG0rkd6QeSjT1lFsQo3uW7xkCbhmu2ZMJiMM8 uuLLB7fom6V7B18r9iCH3CzAZAKZjByRBEgaCW3SonnxSsNU10DCbD1t7yEd 8I2OYxa0C6ZwM5qjKlzSyIdgLiuKHrYGMWuKh/mCS1LOLjYKr58c5WiCmT0r NZrdHgs2n808z2z3PksEZ7sfMO/UV5ElcPevaPaOxP5oHtiYi2MhYJ98G+Dq mS7efs/2LKORBYztyd0qqDnpWV476qZEy4HuqQTDKUflKqVmOgkFJdtPrML9 8OtnElLw7O/EaSLagwicatRFH0u94ppH0ZmolPfoyQJAfnKmxgXWkD6DJvN/ VqfaaAmsLaamREO7CxlvL5TAYZ2JBUVgt+xiGz/RBUVpk4c3ili7p7YTWLp6 3pHnsNhgXr7TvNKFZAnSK8j50hXZvZhWAAHmDgbOJ3m2RyT/zP66aNAtZH00 uxEgsqFjvodlemb3H0TOAYZvJIgmrP3ALmAR0ywt2G9WteOcfxuGQdjDYfID y+sdvQPpPSy93NWv1ch7ylUUzMDBLy/9b7WKNB+Gh1sv3DAMIquGXMy9gZhM Pe6hyS5fsmWSRzGgbJs9701Vkqjw8GyJjgIRq307HtrDRVTaLWBZSoHnGKJP z+fuVGM/KsZwTkqkzA1aJ97BEqtGLpeVCYdQjE29eQWXjblwPzyZ4ZyEdp7E UTcoZZd6pa174UXm9DuAZ4ZSJqRG22XGDrFIDdZ4Oe3qvusKLOQ5hznyAnqf 6Elw/pmDEwtRIV9z0UdbFlwzB1r4F9pFBdGuwaKPBwR398M11abUHzqWnen7 GIWdfXJe4jydqcj45zhD4ynannuuSd7Z0cmZ8BsLRe0YksE5Xma325f/ZHfN fXG1J03ArRAuG9ug7970Fa0zl8nP1xxQU6Ag53YbOu8wP9b15CVcthCwGgOJ 9Qf62wZf73bLvpY7kUjViL/bAXm8EOwXndAAjxByZEx405n44HJio9HseMcR D6Hkx/BSjdbRly4lJBKDOg8+T3Dn7y2Ga5572w7jc2vKYpSojIguJG97sqAf FR3W/sALYLByeEdzQHSgdt5LyXMQjLWW/mwwzFGniovCDUqLujiRaOsS7iG/ U66XdijvPJewTOo5+qbEpPuzpbaz4y1hRehcnGrrRCW8gIYFOadxECtRaVoC T7UT70x0mAseeD7OH9Z++eyeyuFBs6k2/8va2diPosImwk1Ow7MuhJDt3kt4 HjAek+2AJ5gXi1Wzcpco3OUTnfTxBVy2GC5r6JbK3uf2CJZvtr0uOilmKPHs IOvs9Uk8fR/gAxUBIQq7eRlSFMNdBiqHXc97GZJ3T00CviYm34yXzN19ePtk E8ucCS8Q5bGc9zlxFQi05sHd7O+3oLYbhLDjOhNnkXtOWzqVyeexa44Ww6eK qJNPA7r6FNDsqwtRjWCbzSzlf23VoMvmrotefLBRoHMkKhzVZuxXbaEtl9IS /UWkmbk0h4QqvuBRZLRde+yj6D0XohChXM33QybRbzqL5+2/QmZqquDPhtVa 4BmX3miUGaGKFvS7XTSmap7HybGdyppQrwK+BPm+0VRsSiwAjM10TS1cW6LM 7dFIuKJ22vjzBV6uK83qMxXO40OZg71fnmakLTBpuZ2xjEkSTX4oIWbfLJq5 oMqQO8lJ11yT08N9YjYOeNpfBfd9rN4KT3civ3HeUnU+eCKgaFrhS2JgtCyN hOtEzeEZtCL8DkW0COmYiwfKM7pK3iz4ay7M7Xad1INptH51LBVrPn7CPfKK 1DgKTD8gaBI8kYjpTLyrTKJ+79kj5wuZcI+uQ4/zBnhz6eK1XMcY2Gnvu97e 2rM9el/K3Ev/2jftFq17gue8n0z5ENRfYgYt0XjI6s2z5UEldyZSNY+5FDgK niUrN3mE6UncI5UOjCoKYIz8bpYZzzTblFjWRE3BNBoHZFp3zncgkt+Ks4Wa zWdOep4s0Osd9n0nPtgUfxcnrO/bJOFEWQz3kPCJrh7sbMwb/2LkdnvvhQTE nxxvKodVlCwzb7M3nHtJPeZSkuGi/nqmxVH5wsehZzUEKUbpuDtbb9+rIYzL MwYGGPVWnDR0bjHRBuxGOdcxLOdw+avYq8B8TO3uuujtSgsL+gLm0VRKbxYl nvAAwYn79Oz+VkM3eJqJWyod4FlC5+ZzbQgYVHrKM9oATdgi/Fb3K/azq2YB R26IgVfbmYPPq3W/ziuUxEpDKGX/gWxvy9sD8VU3NA4p/ATq70UwNBFt7lf3 Ethcxzf2vKlpR9Q+hnLhW/oWr9+xhYs07Z+saemil0kE8kcmsqk3Yn8MqmvW zkvPBn9Jc188CySVhMaCorl5UiAuZm2RmNruP+dyl58dxTP/peWtn1W8s3X0 B/FMuAu1hOYrSXeeDFXsvMndvTMPACMcs0c0X4Cg+OMV/R1jI6KvzM5emkgM ZDo41kI+NehXjn8klizhisJ7Y13I2fs0k/Mvx3LXkw+qC8X0OYdIpPpOXPz0 VuhLw17z6DxKZ9aHiV+KbBpDos7RF8NfafG4nlLLR5IrU9V/tKaWcO26EZ3w yK2vdee8JjnMYa9udP0wW5OIl2tOjFvfS/kxl/b58bYovypBin54vOBDbzbx Y9Z3ZbNqTvXD3f2jPehxT8MF3Jz/nG++B+9inc+VkpBxbJqaJmu8Pix3gTmy 6MaFA2daO9TMACvtzSghM3G0L7FCeLC6vTmr05E1KcEk6iNtxXDIx6euZI5V CkdCwtjcC+bazjjqDZ6fNG90G35NI5RrOI+n8nKbUThe7J8wDWR0NWfIPR92 ABERp8gRUfe9TYlGhyuH56WjL58jOVUA78yC9zoP5UjkuS/Q6pfADwrquJN5 f7obCAzmdWeiHiQ18kVOZ6IZMpZLmN1rpObdFGMWog6ujW3umXUpnaSC8ajL qtsVH3z+UIJvdkFfw8A+W7NYzbWn3L7P8Q5F6Y3z1tHTbl/nwZ2Z8MEvwoA3 nSry4XWz2DHmAjjlGvCYSwrALuA8ylJ0URI0aK+mLLgtQ1OiGMCKLQPgMQDv 533BHVP1QBfwWeHzH3YyA9HA1YnEA2/FNV9djjaP3kq/Re/zqgh4OSS+sOXU SbRt5YUr/yv8g/Pi+/sHNEp1k25k3qjOKat6+6mMN3FKU0zm6vP4+dqcPNV3 3xtG1DG3z4Z3i8LK53TnsdxliTmCtb6I6zZuFlSes3hmq1tMnXmM06WyYW5u Ze/9HhHeDJAMp0lSsdHqQQHB+dNNzQILAt2TKKQu8ihk5uk5Cb4ZF9lCh4Hh yhY4l5ECZyKQK/lc6e1PPDx4n+ClyemBeJvKEDN3JdpGDt3HUgw/Otk99aVm kPVhfXTCVVsX7yic2IUhYSCgemp19roNZp5NZjI2mX5vzxT0sfrEEXGuNJz5 /JGBFnJfVUWKOwIlkS/1Zx2+kNNJBxR+nVE39319OkIvhrEnljGQ8U3hNDDb 87mNH6d7gXX0NOJQZGaW1tTct2AKnH9opBVeEOAicbVLUyR9QeMQhVvZO9WS EXVwftoRR7CdM72LED9gOUSngUyDd8fkNbp7+KvRgEkovBSd7BedNfhU/RA8 1H1SfRyaiHSD7+ue+jjYwDvysWbkKZtrOMGO7+qHlzqahGKjjuoUqXRPmYZP Xl9oAwabzzDyHv7GF2ed6Hfmfjfd4IHORIv7s2h65FwmR3dvUDS5au5OQG3P fUjkHKxdXNB/JPbKSgmew0Ku3701WYKgjXaZjCKsCUBASSJBYxk9Y0QMUTu2 AoLi9It2NsK4DX84wn/t2NUxwHkQ4x8nEUXAvSc4Bs+bJLsWwp/EChq4913P HTngln3kFSA7OEH9t0mg0HKtcO15Q8BwAqmSaVq9OBBF2UYljHVlwo/6uzS4 e6miT0EELBNeiVj551rQjXaHFN8/xUXCZzwiNlms/6ojcVbjfujl2+nT9HIx NZUhJH4noV9o/qvvGvNfTvGXPnPa9+L8wNC4+gBKQnyr4In4sdEHE9FknsLn 4+xKdYC0x1swyo29jbEIbrv34LkPLDXIlrvH/BrgHbn50VOae4e25rUZ8z23 POfM8AU1teBXYu+QWudszD7Hy4RwaxIdy66Z6k949WC8PnGrSDKJNYVH/bWp fIZ5q1TKqFPUc9uPkPZMUR6KO02W5UiSUllZcKk0tcxt6+fXCV+wkxfa1UQm a+oE9iS0FG27NV8QNDu5x7BuYNja+PbrXQxzvIk2pPqMDmiwm3AfQ6jnQttN 89ne1uC5wcTPd79MkM9n+kWz83z5mHg0YFQ9bqy/MxFFZizEdDs4bOTABbly +Ejw5POZPvszGBFzci9481u2hvwZdDiQEt+825FYH1zw5rnKwee6ke/P9M7U jNPuFPPd//C0TCrNE6nm8Ob++m0SlzQtHjNWDF2SY/9KKiLpLes+rBT8yG0G l29a+e7AfK5kb+y4u0oMJ1XoQl+iR+rXRWaFh6RutIH0bjO3LBIVgy1qScd4 nrFLsXTemgSa2IEm79ox9fN6nqrFPCnz4zzvVUJYNfG9iYNleyL3ZHYYJNFq TZc8vmQ5JwWL/lryXu2unvswwx2vhba7maPqmEvkJABy/vqMJ4JycQqvPiQW 8vYP8+0rf8vQi48goNzbUz5SYxDHICDFsk3FvDWc5nq3mNi+LaUXtgoovJ2b lR2f8lNo5XWAuvV+cdWac5CegcAIX0YX+b7URI1LmX42mfv4cfGAH7Xsv6Gd ZGpTGLbLnIqRt8yC2UCL8QvCZ3oD37Vz+AQKtrl5u+n19Gsr3tojcVBW4TCP hJh769NWGjePC8Ev02WevXs/65ZUzVwEv6pGWdIGL08RukzXZyMwrGxzm66V U6DpUDtYoy+wg0VQ0tyri/9p+bxdfUQ2Q/tt4ezFoWyeL9QXBTwm0VzHZjk7 H0yH45objvMaNf8xdxXR05WW/2TQe9B+vMKxzMANkW0yPkUWy+T3xs15ajZm SA/sVwg/tYv53IXxmrx8gWG65M8ac9u1Wa93ekSTF8PV00gkJOkVP07XwGuE e3JpmM4fv42QyKJ023pLOULAI691NDIPPQH/UiHqJVL47v2M8FTevl1bttSf Wu/YFh49Dd7OIaPAQS0Rwpwddbn961YJV5YUozmN0A/O5O5mx+fGIzMDR9SZ n4pF7b7ffdx27DTLqXdYXNbUMSf9xPypyMyk3uGQLpa8lx/I5jRut/GRuRbA UV8L1KLuubJXDE/4pNqmsE4gCVgejqjvtZglTT6h8uTSg4Ftfc+4dV3g7m80 wsrmc8uQLZT68DkT1j3tArSB084fWWDIafGBm3H1ByRoSIsW6zffy/tc4G6Z PldLtu6kH2TVYSGEENnS6UqEIJng0g0ETAYBL99CyCCQtduzUNjPN3+hvD/b /IWu3hqGQsmg0CVCUAgZ9EdC0H9hH5gPsmofWOBv7wPzCvCt2QduvZ0kuE/m WabBPczYwrCgvdUlprsnQQqoep328T8OcrI3Ns8JUW7dfAqmTS0oP7lrxGzH Qy/noNWtv+8Bs/MGeSlvgz7mgFEHmGrWJzypZfJEsPxpk6j5ilQoSTO8Aw9R e6RxAz7JZh5C0+JXx2KDhfMd/tMILxkQzmd+wNxZTaiCQyuI1RYGNb7jGWAe /2Hb4PEr2ISox8LltjyVeXVvDfFPGp/Dgj7/7T1gMGW+dDoNYFfOsPZKKV5F lD49qcCAYAc81UHFmZuIexrQh6eqvYLJiBnQlgOsE0ZxM4o/gTp3NVA8TmPp HW7YCfwhxvdnAldBnb8jx+atAd2hpnP1nLTk9T+pkrpYEaV3fKvZfViaqPBL XzzihxKTH6FU011QiK85hVYoJYWyATatPreK01nBcRVRwPOSf6PxmBEefRz3 cVFFPtqAPl6u/UZjWWhgcKO6NOfE+Ov+6DSrRX48NlTu8R7U00fxTKhJKi6l ruMzhngLT+jZRkQg1MU7K75QROm9ZYxHx1JPKq6DFPjCh/EWtGW2S9R0Qpvo RAe1kh7GDiwRjTHBs4WHXDNoPHxmAlHxrS2ydbDIjEOzXt2UQ1cRYQo/h8Ln vju9YwXAHO/PoZZTlOIC0V2i/DS+7SHi/XjwMstMXCEPex4a4OUZRgavCyc2 5ELxc5awrgO48k42IzEb+7nIsBQrNoVwMZmXiATwEg6y0GyGjBAuZraMREP8 LOQfahQu79yl2eZwE5jAYJlnkIpGJ9qAbTt0bFPrPCxgdDLs4R6sTzyFFk93 IhO6K2QDFBNABETxzbFKrVeWdoHBlxA8skmpQArBETx+NP4k3uTsvTgKtoOA VyNjdpXHn/quowD0RdJgZwjClfknUCs6SojMlO/W3gjo41DYHOqbjm7ZAmHO 79lpGwnkTrLDHsSXVnzOhzgJux8PRpSHeHJrmoW7Cq+1mQerhFk24V0ft2op Md9pN2KjQ85oJ2mIfAyNCaEV25MSzLxgxzGrzn1oumrHIKtST4juu0Rfu2cv nLjN5bSF7W2YXY2E3YA85LCS2JOxzk5dklBoraLCA9tPrMOcMhwhRhhO5pTC gNjn6VTG+D2mc9sLwZ1Tl9CmrqZTIQL+CXPzeYXZtbnSIV8wTsRdYJRenzZz gNDHXLZkHldnh60uKbUflHFXe6GyHI8hJVme5FaqhhhOPsE8zoOy1ErWXHzM qRWDdUOxCKXIxWDSiunBIB2LLybiXjSo4uFr8W2OX725NGtZihHuLy833Rxa WND8gFCwjFR5N8merOTKdERJBZ8TM9gW+yi91l6KQ1MRsXDDWj8nHzmpobUQ SPJkfC86XjxQtTUyTePdleiC9Nrzobf5Fzlz8ssPRHTWDaK0bs3IG/m0hns7 pWjg430qp9E67CImQwntMPeC7Fo5/tCyirF7nYnp3HygVPpCv/iTCDV7+EdH +ATyPhb/WVJ0cp6/8wx/KLROcW9JtdS0BX6a6g+4b4NivFjecMTHXtJiRNed vul533uPOmpR1EqunyLixbGLZBbXaPIfKPeLtlvytKqUFFZMXy2GuWnLYbyj ykUuNcu9E/JC6vVBFTqpTm+bnx0WSH6cedpcePf5I3XxnJIczPs8T5dR+sQD MxH6aDvM7VQZK8zNF6lHpggIPwkyqcPWm1f9Ws1zflLamFqJ9AqSE0W6NG9m pHVArzRuFKkO2yVwJiL0/BaHe4A6vcsxJL4k8m3bsZuQox9g3buHWil8byfp P6XLWwy3xuv7aBgo/NsWvsh4uKTh1L13rDkCRRDmI3SGwEi0yignOXfEXnRw xB036+O+Biarz6wZR+g+ClUscPX4PN24q2bEVPBq0/4nwemnFXWuMso1HlF6 p2h93ja1jbALjNJ9F50X/3T3x7fIbB3vHJBpxbOQ8evpwQFgVy7NmCPEFVHA +lZxEFgMO2JfaFkcWpLnLVgl5+xRl+d5eaIHAnvGLpMXZQefoK6Lz6rICnPq tH5tEM5w3GXswY7llVgb2gC7IWCnhLJpfqLBah5v5RsfpyloF5xeF+/I+bh5 a/xeredTFp/JuLAL6sc1IkaCTne8VivWudWEjk44qRT5si2bysejF4s355xo QzRqsbfudof9mcjYbBlvSJX8BKHeF3brVcJg+TAX1jmbBxwauKtIy0LJwvPW LUol65nzX3FdKVQwt1gvZDGm/A+lQdreqHSNUkEL8Sk3Ihd/1MfzU4xdvZ9q jE/zySOXIuqZRbleqPPQHe8KLUXQHmM8lxcn1pBS7M7CDEHvvDto8gdvjQXu NHPF3a4bnozvUeHoMcrg3hEfpn+rzyv3tGJ2Ki8wvDyxdxTFiK1IaiVtDxqJ S+CKaW0PLDBtycD30wBewEQN+AJjoFYCBFxMIXuJJl9vIEVJYSpE1q9wePpI kT4H0QSlcWN9lraBaXN3/0l4m/n+s14a4e0SCWCJ/VlVDCCdZvw+LP/TdjvX 3ZlsNXff7XdU6bnyrPQi23J+JdEyDHlppEjylY7imNC7IZS7pDhQ10kE/rx6 kmiXKeyfWF1We3r3CKqXCKlVpkhtw2lB6pISnEkm51foK+OP3MAyOwUClpk6 4XMv2tV2oVL7FuWuouxatGn93OCbRaY3V45JaVsBgi62jjfNYSrWia6iv/Oy TYtMFvkpvZZFScVJq28uUdmw+I0qtemcKmCIFaOiAo1Vl7VaNcgvPqFBpkaM oM5CgDqj+WFu6uPjzsqlus10SkSXgehHhOslPC7Ijg2B8neyENjblaLE7Hhd xB1TjEhMRmH0AGrTWHy9zfhLIzybePdZS1RqiIfaKXR8DM3Ye5kO7/itxviC InCocKXpR9H5QumPqUFS7Cujc8jjoVewzut0WrjhlkywbXpllJmAapnHcxYQ VZRNCdxJEu8j2nlmf1383eCA+nh2o9SQwCEO38Myfc0HDiI5AbVOD2YOGzmw q8gnmlmLKKJgZnPAML5V1P54zrftFsURSeEcQzbWHb0DRm8Q1a7xAbEDqjER gVXnWXu3/W81i7AXw9N6z6XTFHb0NrzQf9Yyu83HMISsOv3SvN2z+IUXh/fG 1XiZ2SUMeTy1v7o35gXuITqxNz7LhCvEY3b7475pvmsI0t7e67uXbCSZEo3v I5Gy+JCmL2D3VH1OFFNZxG22mZonwV05ICM2RrW293ucJJXD7Tl6DxizMSJn dJKkRcg5UfdDnO2vGpLr4PWABT2Zum+ggGgrk2LaRmC8nQKVL2cX6SvhD0UW h4fuZIqW6d+OFiTrR2iqPdHAOyZp9FndRS22d0986AqfeJsbFBNZ6XLY63QS ex/B/lb+eW3RNdzcGM+WoXGtCT83f4yRvgjQXYBTIzc9C2M8Oqu2+kOynKoI y6C2BXtm7Vd4uLsuwPmefgR8knNiqnB0wPkTKdGMaviNfnrboKV7q6wEoW6B f88Q8a5mNr228ZJGWoNi7rOTYK+C0+wRzyMMzouNFCMi+Dlw+TW3CrSS2MmF 3eqKEf1uRvg0HfahXtf+6RBtb5p85/u6ZR98DDKjtdgjpsqVg20KmwJDHiOY O+9/bZktQMjG+qRzHxx+A6NsPMFm0NZqs/BnbOCUIHmKhmYtFyonxHnoyvkY nisthu2cByPP7SsmCiRNNHSm2ZMxFGCxMSiR+zKNBOurOp92x7zhCcHbT3RN a4KkEnJ7HrqWDD+LZIhuMGJrB8YD9cg97e0X/Y61O18MuR1AdM6QTQSYIHDn mYNYpfDbI7CtK+J+ySXDoUmBJbjBdIHQpvyTaSTGwLRVThPGTwJzy2nQvRXT acZLlt/ptMclhSoUSnsVizcWlb17sk2rz5naPsTisgsvYSPYGN+P3HP6wY4h NVfNpE++8Q+9IFopgLLaHlLMpRZ2My06/y9maT9AfQvIAegX2wHc+LzAn0Ct GHbCLsL7pz2Jk1uqNrHJB9tK/VLeWx8psDv0Uio5HuHoz5a188kgp6az78dQ 6Bd82WSbNV1BteLg6FPbVP0Fn4XHGRq9fH267NTTJiiX5ixkSeoX2iNa7BU0 jw42ZD3WKOUTTgv2hZ/JykR0FmkpfknFx3svvORCdQaFDPrq9vQjapSfS3Sl csphVHUN/PxFgCXg0TzsUamh6dmBxZs5P/ANdR+Tc39TIdJfHlGveoIj/uk8 d4NvPK1l4tV4xOyATXXuTd2kz5e90oM/GDAr7eUNnbHA79O1KIPvyUk9coVG osD6UryfvNldmnzG0NuhUg+WWXM7MLAofN2rf+yFqLPRrUt18Xm+8THW4mne 85q1E7EhlC1u+weiYxPO1AQn8Vw49U4rpZYqnGXmjjmKbSFuQXy348SpSXh2 Puppem32Yh2iuTffXCJYp6yYhaOZ7gmWM8TYrZinyd9LdYQ/YqFZK+mFOmCg bfx12F9exk+8PxDKnlvcHdpEo1RJEeSTcQAeXLw1Jfjj5P34UHE1zqewI/lI HbxKPxUfYvaBRnM9eSEgN//02qov5u4LPBJz/Eo7tkUnW2Ga6SNGIrr50SOa 4y/pi4Bs4c2UCqTcsh/Sez2inhB+fZh8m13brlqr3AXro9upc6uPNCX4Q+ii QRILEDAvTg9ejwJ3Jj7tOhQoXAgAh7aP9AMAH+u+Lr5vPlSM8HCfm5SGA76h BdpZfwAIlp/M+RnAAd/wRIXl3Y2Hai2ILUc+p8xZjHNrEU4TnIl1KiCcQmvf /vVLMKtsofx/Pdb4FQdSVDNb3/JiVXz/nf/O8DtXc1Set9axzasWUTw28e4/ 3Yy415vrr4p5r9EAUmR+emb4qHl8UowNmw6ei2J2qu+gOvIya8gH/Vyv82H5 u2PuklnK4bdP9Ym9vKOLjH5acDppnDmI7b4u3u71lyZF7EkIjQ6eimCH3o5w JKujlWjMr4tb79DUElFk9owaiTD9OM+G6xruGDsXVg2r+mCtZ8Ed1x7/uq5n IfcOwyFFMmyXjdKgQTlGPuh+cMOHfoR9ABBvs6flV45iHGp7+6beK6bsmKET u6MEbruu+Kjl1CBnCGv8aSOpJwi8b/Wot4RTd+IozK/TgvMgm7V6cO8fLjyh b18jrCnpLnBOvELU5Ib2tVK6NrVZ4B0w3I8+XxxM/Mqs1FWbrpH4cmfEyKwN vn4h06n4nGiK0uChumD6APfb7X33IzhDKO6IMPM3ZNf2pGucDaupoikZqVUc ZOfZ35bl5aB2/smb6Vx03G0m/uknLB/971XKIXSu5MgdeVWjZQHHKVxn0046 aURpjMdKWPsGfizzjOv5wtv5ZBFJL0bzCMHJUR0mHCpcO5IjAblOk2/ujjtG o5QbxUojM9+B1uurvMkYqdFGLvzwbXqnk7sRYDhK3URDyVJHujLHZoREHyMw LMUxpVGR5+YO0rq6xKgYWaRoWOB7qiK2il5NTNeoq8bwN0o6abEnNjE5+7/c yaBkzY9EN6f6xUfR0XFVt2VVPWEpdBRJi59h4q/1MWg5lTqrrhgGRA0DPrDz OrdmSs4qv3OaC6Tc+7WNbxA779feej1XKeGuzav86wst4xjfNuv3ec9bAbXZ aXDL4uqDdI3todn0pmnpGhxnK6dlDAE/AYjV8moiFk/NiRWrMOxHpBC1hAvQ Ei79EkTkPuWENNWrZUcv0+QnvXaaO6ndKpymwTpwQKCBPSnNLlgRyAB26eCT zqdRpWiUbbu7ewOd3naR3lq2QFFNfqd4zP/EalsVrl20GF/oxW8j7C+nZl6v zinzextn4vw2x5BC7SgGrTTxMFWKly2cfpy7QUrjNZ3SRIJC6fiH8LMdXFv6 gm+M84w9uY5QSGvRGt9niadqqd2uBKSxbxDxSxGaRQ8ZnXRAjFrAO6JbMlbj RAU7hpJdbVJ7WFtyVTfr3QiMMsG4hMe2POuO0JNAcUgo4bBevGJm5wtEJgL7 xRBY0FQuxmycWCFFdSVIaFmaQKdXPLfcSB43HxCmqY+WtRf1qIuwcFH0RMLe DaYodbG639WM6fAxuOdoYdBRs4PgpGJZ6qWCgka3FVlkX26wjHd8SNju1rrl 3RogaIlVtjNpEDkmMsrqE0+I/3bLliAMOPni53M/xcW3Zpvix6Khi1laZfJA qmGXp8subGeJP+9Sp5as9P7VZYDPGifOgyoCyV6DPjFRJVF+KhyaBylCoU2K KgFS1QnmFki2YkSIrSFbEWEhDbbGwz4Pc4U8r0QCtvsKTX4LIhxTLYOfh2gs 8Hsh9RT31cXzhyrOP1IWYSrPafQxuImO/zyt5/dxvvmAAddEC6mS5eN8u4Pc mQiA13s2ePBrLYsM0hoRpcE7zuRA+PrxBUKmCT16JN/KXVH7Vhw/z8DzSlKt W0neJEoh5nK4i8pE5h7VK068atOyWCTr2L7XbM7HL94ZSGcxxInywOKjiAGV k5BikR8gQyAcSA4pRNwCktr3B5bmAVjNYsjiVHZyTs24IySh7H3E0Frr1qMr uaf7Kg8WnrutGlOjiBJ9iFwki6y+a8Rdp3yDY8Aj9zbdKHc4YV9ZhM94hHav YepQWi2WXaNctVLreXHBZweenkuxN/dckP4PZh/rArr7AW1zcZ8WTm6RevSM 7q01ZnZy/4tK6v5Xz4eKsPbBLrpsxjL80tRw6pqSC7tzXGIN8W1IUaQyg1aS NRUnVqJ4PECHPc94ekw8+V1u0S2XR8UCwlXD9OISubkKdvJDg84WF1DJrz13 dZIaz8gXI+DpXvXtmffdcWx2L8futncNsOGK2FzdfPfnGviacF+K//DnR5r8 il3PImJyKyWVYjPsP6CU/tjzkn0UpejabNz8pLZJwae7o3NbT0/soScptC9k fCaMjCpTOyNe7sZwHrQrkh7eT8dHq3QVqkTD8eho4fnCMPFJrgmLU+K67EKs uHwxJWZ6sXr5b88AYmce2AMehi7hc/LAfB3gJWbBUeAE/1zcUJpWv2v08Ncp wqOJvfW9ow7FmCjHEoQtY8I4ROZRdKh7UaboWd3gV9Y1lo6uroPl2bXO3TML fIHPdoV6zNyxUvHLx0Q+2ZGmyqzUwfo0KMAZ0s6pSRn/YZGZBv86+cqINIPr XPDz0jMTh3T6mo9KNL43YpuWpnCd+3QshbKL3+1R/yvEl+uTM9OlzDrMZb5z Jmd84j8cSJkYCdqdqRis+7X0IY3SpSNudji/F29untlLP02jfkfisr7A+D09 nm65bcJuX8JPz3wevEJXAKDhl2lq3jFVHfc6rfY+7+xr67tlZTC3sfgaxQIW 2j6pQsREoYkhm+CJzrwalcyh0T/uGEpbG7EKSo3pV6QdyW9CQj9P+yqSuO5B 42eQUACFw7sS21CL/ce3Kfl6/7sB/xNEv9/Ou/4Inm4alDer+wN4D/tBmiP5 s2rVJeWIUomer86hiAAknvA9Oj5qMbjFe3BHqIcSa6+xr929N1PzGvHHihBT sXH+KfHdEV6yTvO+Q2dvtzUKPIvFjJ51VlLHA49tfRr2j+U690TMVE1Ft+df nZwDPSt1NIJt8ZJOqX2kcJjX/3H1mcLsjCpMXNW2aQ8Ej+mTzifiIcLmwyET wfBQBDtU2I1AYirUGbslyE2fN6EQYcugOHPeEm9dwmMVkfJJg3NHPGtv55V4 x2KE+vieUA+j4PGRd4ga6P48ZyZn5nCzdqcDoVtTlR+Ixai2zeXmo9NPjSvu GjkwIm+Ji7Y0oN2+5SLlutDT+557ynOl4PSgUg5qpVZVRFxsq3os8fsDwneN uM7Wr/il5zRK7y/rzj+7aGGz40ksdutBvUizIom+3LYcaRqR8OdJvdOtVRid sg9knJqX2kLIXAsQT8Zu4EWlOLASi968XJ901PqKtPpEcHrGeMXaLCqtS7dt du4Y3Nb3TNiyCF5C2Go+kl+GFD1wiC0USuXJw+SrqBOnVaZMnccvwo4LMAJs 33S0yOZbhjs/SmjObVdbv9UMhfwrxbyrNnF5oX9/ExcGWbOJq+f8QHCfNK6i 9aR+4yK9mRHdze1Zkp8TNV2rBAQMrVpsNA4+ZoKHmf31xij1NbzCzUW161Al PRirVETxbfoA3hje3dWgnVRx4awmwjfwrXyXz5nXGVr33TsOCS7TYJV+0E05 qvbA0jNI9mSpPJfbDXhGHd/lk+bzjilDcZ5FYj68VFD7LdZbVXjYvXA7LCl3 eINgjmjq6/SkjpkRZe/DeevYve5tr8yze2somdXoA6lp/9u7ubnTzN6VYESp 4AmFg4imIMXiPxSTblZHaUDJTyGuBk/GBZ67GMgel8lCTPx5T+JVA5I8vzf6 bAvWOBovhjc5fDeOjG0QCM22MGvKo+HE7TnzK4jIY5p7VzWSzJ0lbubSqOlc DWDpFDY9q/itoNe16az80pcdjCHHUq+jVNNnS+NGnS42Hg+lDGxUByPYKvjT g29WRHkEKCKzrsdfMZmk8tEgy1DhZGbKSDSMQ4RZG7EdDRcDuhdaHVAiLR1g o8ZTmUZoKcqbwgvk48HNLxEnoS5lb2Vv/xmzbRHTPT09w+qG1V7GCs0MoK86 Px9WP2h/gM7UVaNc1nOpqxoYYRFJIZtkyli0RIqVFu1mFufc+s7q6RIXRxiv SsV/fSvPZ22y3LKD8cheb3IfjXo5xyUkNO3y6rwl+8QzXPTe+xstcR884uuQ luM+/TmgT7h0mWNyHwde76SVMTv4jJ/r+mxLrfnn8ijlaXsHkxAqLOFLQ5V5 LT+S1D+J9Zre32513967FX48xP1IggPUxlV0h1Vqc24e0/L4aZrkE5YFQCbL fvUflimZrHDJG5qk570gYAJLbyDAFe+daL0O3IJ00sfQ+KL4iVPu7fls4XSs YUIuYTP3OCOBjWqu7Hib7dz/jG6x4k8qumygyAD0213xwjJJtIGba/c3Ylte 8Ai5t+/5IA7kK2Fttw4QNgeu9roKETfdwuQU38RxY/rP7i3uWanohTeHDepU 1D+hJhwnlS177xcX8DlAlkLKvzbaTBa3OP5w59kOT8fxuLEy1n6BG23vL3K0 vPWLcgj1sbPQUxRhRAr7BdA3d418TUkO2DMhX91EJ1QmwviOcR6J8WFKyQ2I fQ6hNI4jqWgivYKssynJTDsidKG7MpbNNT81zU8j9O7+BccS1W4l6uZ+eX/P XZz7h1TGJmsT5Q6l1TPurQrmD+MOdYmLZJ4ctDOy/8PFOK5gBBXXOESNxsSx OZv2xpIzdNH2zmCCw7VzjI0Y90ZV9ICzzAarqHut1W5ZxyXrHGIUIyV5YP98 dtbqxeOALP4Ij0E9LTlhED2jSnqix+A7gLtqYyn/YCWH+TMZzx3de14pjM3w OJ+Km4kFoKLccgzjkhVELhvHjfjwDrol5+T3X2rtzxq0JuB4VNTxvCiHnq1e vth0kNc3+LkJ28vyCtk0P4cXVfLXUeLBjrT98ttGk3aS+/DK7X2ssfdVZK3X H3UBHiQd8pPNyXpt1KVa/ryHLfm+vJfvYNuqSpso522ZPRwxULqzWP7rWfbB KONYkzAHumJ5kguw6sStPLF6YY9zyjMr3+dOfmw971Oe3NpiUsfN1pXwQUun e5BhR88dT2xcs/SRd88bu4fz23GW8SmSneHPZ9P8ahmcmS6Bx+XnkT5M+zwh CPewx5fPWr1p4vPEMr1+NSmMMB4Apu7929dqO2dNpYypGYHJ8qllMB3cXgi2 rGeoC9heuArJ1z8+n8R0HUqY6tpOeKuJdDZQJWTDTtL4D2Y+Jvw+4v9JC/wv rRKa4Db31j1rl8LK2sDFmfT5uYLJpjJrxmPrelgWxe+21L1SDPN7gi2tBRaD z7JSBwDL4k+3p14D08jsNnPO/uikgKfG7W+RT40N3N1Gh7d5ByRf6bWMOzz4 mrb0lP/22BP+VIYYn+2xL6jZLmqLXAJXNImF/1k3L4R7LpZPHx7b2XtDtUg4 8AR1XcCff8I4czocVaO16WVdyjNoZGPkaMX2iFWf/Bz8fj8+gNL/CB266nOA lW9A3GMBu+D9dQGAlW1ofhmp+XSqrxbq6zAvUHbWuk5Vx4VRjgZ5pPcuz22g cb9LvzyYbGd9gAek2oWR2TjuPMatSuKsn1WqnIdaWiOwAOD6xbcn4fkC1V1s OeGQQGnqYvnd6Tv0yb19Mh98rB4bdWEyHZSlKEpuLSRlPNKUWEHNZnYh844u PXrQ9zAqDBvXWuTQ8bmfGq0vp5l4T45yl5R/5qkyef9IpQAaogJl2pbJsyTk 95QbWBvWkdtBBCyfLAaerX1mBYfXTB7JmX6O7tSxqgsAHbrcLz8PrHeFM1LA ADoi9s4bflPTA7uKkvXctQDsRcII98+AIr5lnChpoyaVvQRBXMzVFqHeYTq4 dSBlqXPHcJNrob4/0e6k+Y1fj3bRmJYmzl6HyWW23vHtAF8F8vMF8luRYEpA Y87K4VXvZcLoZBn+YSO8Zcvd/YpYbw0+pp8o+AqxLRcNbBaEuC8qO3Pkg3N5 WAjHbnbXzNoRf4QB7B/89F1DA/LpOy33LMuAcy7kPiaMyiU5aiYWctXy4/Kx Xvfk+t5QPMm7omxjLgcXlui24d0Zaysl4lytDS3DY9kGfa70upTkLevlkkmG UYpVM0wWLyk2HSNE1vlFcuQJatNBVQixsldQlFDZK9QPyAmwdKUfQ3oWRhmF oWaNr40AzQbr+GeGMT2qcRQkVPYaM1FfHSmWj/bhDQFXT7SzwjIcHQGr4RTY IK/ucN5b355myXw4BJ734b3aFl4GhH/oT4AdYWmsbFIp6BjkE8JYL/uKXcmM zMfDs6rw0v4mVssK7XaEDaqg1ZZLw6gHDc7FAtQk6wP0cwouvZdXn75tKRaU S08qixygZwvrb3sOa4dUV1Cjv4B9AlQfRYz65Vfse9b38dT1pQUYeSwqY7ec fM5wk95i4ZGl0fVRiAGL0DluASwL6Bg1XqKiSZK7s7JJ8wpgGlHPsXHeDf0B cQ/uAcxdyLh3zAcYC1i2jyLDcSsy7HE/xQ9I5lpip0q8/ECRW3y2PwP+7yIb +NBT1s9OcN5aUTgWUID/rfbxj4WHrZX+u/jxoMiohhxa1OKeo1rxHg7ORosW VGg+sNy23sxPAYF4kckjFwp3qn0QXrKWZjl/0kw9Q2s2Ebd0Sz3pmgJ4A9Pp SRlpfO0EnePlnEeMF+gfUZfKBwtwBU3A38uHDjd4BfhI4+qhLenD/syxdwAP TUNaUy8v1BTAF3iPvreSZbv9W8YdDXSMR9wJ24RxW0wHk2L0m7DRjyP+LJzP lysvsO5ZbL0cVCdXql5+KQOIIQ5iGbssEg1jubO0pxb5U0l4Eq14xITZGhpz S3CfA5JibOKGxKqPzX3pKRcWYVS5HtB9F67YzpPWLjTgGwAOfMcqWx/gCITU jCmR5ZNlvR/iGBlVwmWzF+i6MDcCfK6cy/VzMInrOdD/bjDkkA/RqrI5HxBl b9CSUyyRV7eKqzyYo/ZuFlL9/o9qq3Q55zHSgsOmznEmW21wH7EffAMc59XH 3W5J7DSOSxJkHbTyCciafy0/ZhqXFjp7uqmL5rp2jvN9utKKZL00Bhq28Byl 5AOY7pT6sv4Au2K58mddBfKysVr6cmRTt75eNdkSzF04JPDmVexnsSopf8LA tQcC6EXsBbUF3uBT8mjYBDuZfIgjbmyj7n0W+Yaa7QgjMwmP6x7TQdCh3RmO s0I59Z2GQ9aRJP760CNHcqb0cswcx7q4ZEd9fbFMjICmsw76yEJmKncygmWT vLcxTtAz0lzSzkkCWAQsxH4tuSTv7AC7x4xoJuc4gG9gJRcAlKYPeIhRA5MW 8diFMPyKph0NunIxmTDaq/mWU6QuYpSyhA3dOPgcobIXUj0P7qZ9zIIK1ids 6MbNIvfwW0qUmecSKnvlp4qorQiVvYL+iMiTaLPNF8u/amu3bDnBGNxHhbeQ /8liWSFGeLFOF/y1xn7Lmd6UucLxvDuE/Vwe5eFyUsI+QKEooux5v06EdaQl N9+7V0dmZzL0bjx3YXrfbsTEqAaECizPJ+VtGZzjLkbTTd20HocP3X5AsMy+ M/adfq7WWcGOsjG2JXlwThpUXfbeLGCdUA0dnSV1jks6DyZYaP0SeepeN8At /6FvNggG5OZoOphwFeuuSp9K8cTekSX1jVyqyPV6bFxSnPVx73hsXMlBg8iM I7ejs65F48RyB6zeJML1Xlj6a9yKDGByRQHxZeRo9owL49VBaK4Aoi5Vslie TyvCiFS9Xt4nwM+HKttYhOoOOD6RQRxLaTpocZMWbxdfktyqZsB7hBbN0Z5E ja5KxtJZecGq7eNmW3QVp6ZPoLXkyErkE314X3Vfn8zwFnGOq35u6hPV+hbT 8GL2D8zRzwGh+CcTBX1eJh/vPQpQXqQrl4+wX3Bjki2zjE0Fyypy95dLDvsG LyjuNjvqOOxIZjpIdoAObWMUpwpo024GV77qkcNtQ/ggYJ2HZWr5V6qjb9aS 2PfL53idSxfAZIira5AlRJWhmVPFEJerh4Z7MH0c6dVV5v7jVfJqXsFzHrqT 5O3DIj4BZEXUvRX54rJkibQfgxRp8E6pY2iRsIBQ7Rx0r/tpgx0kZJ1udTYG vjJ+2kmP7z5sJpdLHI4S3tsv/wrX0PUMNv+w9e0MXbpHENHWIzRr8+fnG8aH A/Z8wPpsn0rnle3zq9cWeeofr50zdF4P0P0chuJqYYQTMP+EGXSO25JqzOTj ILFnyaB9fCGvbc1hGSeUUWed9kpeNgYIVkhTxShbvOjZPpAQ95p+zN3a98cH wIL2mhZ9jv1vZpO/srjCJXvn6ytfcGyScbYOC46gdXtuK+3lWImVm8wB0yrd Qf8o+i7RoixF1lYqtb68Zk/wCQHOU8LRK8vhevTc7EX+pj49+4NAgJOqlru0 pLYUy2ueO9WEysLfDdgzvgQevN8MWB+27t5ROPELolGJ0z4cgN4ExiHpZzvS W/vtblsB/npYu8mwNfryn842ddEFD7gFdoshhGK6nW3co0X6dwfeqrr0zOaE /3jUW9Fz267mt4VK9dL0IH00fCaqSfZOHOp+IXaOo80TiKjzqNHslnFtuVWJ g+DO6rR83MKdmFh7reKDfAgWz7DHszZx9QsODsU4LTn2V+fUlUc4qrnRJgy+ 6X7jOB8qjdYOG8Bupve2jz1v9kM0HaFlG32X95TjE2Ne45coB1NuqHKLqVeq 8G7jOMRhGjYLCjVGVBa6udqm2d8l6r5roMI1S7DlGe9OejZBQRZrDaOPs6QZ jsONITUjd94+WhS+CRN2LhRGsJH7jkdU2DOotLR6YeOmDvsoFWHj6k9ghc8v 0I7LvxK8/XjW1+2P4sdRHgE7BwKqdzSeqcwlVgDLHxTUkSPjL72hSIs/IOUX 4BiBS5kaAvJ8OrrcN+8cqRmPuGYgm8to2R5Y07nXczdGG3WjjpkrVj31AGyR afvjG02WqlNlWvjhcSfVZr+x5hFOfRemvHlXiYotYgiR534BBFsm5ROgU5Cs p1nra+Je9/BgMqOmTKv8M2sONBOjGLyZnnRIyp+KuLqQPlQvALhPSjlCqdYo QENWbGVdgLgk4AUpgHxppnPjVUOxxTiW1870UYEVtes/7xpkWd+zId7f/Mn6 WSFGOBgk8HleLlz1FDMGb2F+KN4pKPJeaQhabrgc502GU6LDO7lExnxvMI5r 430GHTwfF/yVZKj/rK/TlOh9unjKVp9a1j0CtLoND2WKB4XAgb7geZ/gB0cU GGn6A8jFkZdZEbzZJuPyf0gI2LheD/CprpK3T3Acp53oKfYtZiVkAlpNlS3m A6WBaqophOhmOWG9To8np/eR9h/3yoVQymYficcHUDOKpQlYegXYyI088+Pl ujKrPl4x1tH5tkChvwjVo+hAjIPynyfV2NZxq4tgxTukZiNwwIoqGIx/p9C7 u6fSgiW9npEYLcZ9yfajcj42WtMd9Dlk7B1H4JmoqxDAhirlNNZS994ISHga c0NVZ/a+y/eoC1k3VOrEuCO1hY6tRX9if788dsQQ4HQciDKCSJrLyWXl/Ov1 /VSIsw99z6hyieejjZkFkqlYPsTWkMneOM5a4mH7x2fDU7Lebd28FU2kH13q uBv8Wyl5jh3x961+IgRYdo+n+nLek4y3koN2vTtmBbUUKB+XD3Z8Ejs9Z1p0 hlHMsfuxmbA++jZmHHCOSfeAmGqcGv0kPNFJVlhwgraiSfPVpYBHmeojOY6l C1QZXEcHowTPR+wmxKMUsmXv/Npe3KLHs9P7mMTL9d3IhVSPsFzZzXvnMYxP tu96rnbOZXgDyJtKvz7A2Qhz5Hr1kGOwZ7xegiOTr0myXKH8k1jAiQBwxMl4 1S+MgIc9fgCEYyi0XJ289mNuWSilJzZuAYjX2i6cFITX9GKc40gkptIWSSOr 7yJtspRvwBv2uQzyfXI97Kt2T5tcp/ij2YBn7p9F8lP4t5wkXMYjMHLJRJHd FIevmnz4r66DquvD2wPtbxy5eKmhdV9iQ3Oe6/Z9MYjEuetzTzyCyOnxZx+F IsfV1F4Vyb+6weOznUVNbYcs9Igsw0HNl7JkmAvzT1+Z2+4emHCM7Yh0qYkw 5PGacpqPjG0OraMTQMal34RWm4YORo3Ai5Qj9oa6AwlhC7WLDsYvNw8svOA8 npOrdP4kkPmPg+48VvoU7cza0JxrPmhIrh82d9+K6SK9VTW5zc7oOpMS2aZW V3ExVA7H/MynPJJt7ayhjs1Pme1e0DFW4lU8pnYN0gDxkmJB9akm36tZAfqR JWaMMjxk7cNv5fup8aNkXLK0u9kYZbYC8YZON0voLWkYOUzWg8Kchi3qXtQZ qdzUvqxDlR370HT0O0rOMHId6KYm/ZPXZ/wOxXTkE9zFMxIZtOx6crejpCK9 GAs1Ez+LdUaZidi7LDobMoHlUqIuC4nYyjAzdjBqvWMdzJNms4xrr3epO3xU rclXluH6oiUl6l5a9xnGgxfeLPIo2KmAq7XGwdX5GryaMRqxqmHupZo0wjRe mQJAExRoiosKKOyHOkDJ0dZx7njDJGm8ogqj9RnTzyZ3oYuIZy8KJR7uvfOJ wQj3RuJh1dtMjsGFAhzroGxsSIAzh70ggDzz2c1cTaFjKrQ7GUNitNH1J5il Finh1rwElILzvgHiAQtRAMX7Sv3ZKKbbh7BgqHnXkQZzq9vuMteqh8JqZaVY Om+SG+i8kpeLyzfwVC0+qrcgQOaTyTI/SGDr3IjEpC+hCvhfVc+LVn0LQkZv pfCqOOnwraPtfTXPFG/5VD+kUkw6T8M2cy4y1YxND+qjQcasKeo7Pn2uU9yQ mhR6CvHqzy5ZTcL2rJJngOK9OO/cgNAcjZ0CIa1DxuEtgvzZSCsHzjynhFrm Ivkv19+SlKcY3nIpfvgEKpHHY+9A0TShZci9RWC7WHX29QsZPvc+mnVbm0Wk XJvfaXsNEWmn1WTtZdR+WCwjcrRU/hs7mLgz1w9p2hVokTIW6AVrjNTJz1bb tDmpvcNTkz4EWNgtK0zNqFKw32f7ITXEKzlGlX6qyW6fD+HmnnMNUtSkFyDW CbvKnnbNOtVY3PkQjiOnuMJ4f8J1yBVHsWVL3j2NRHlNqTWicg/RVXQJiYnb C8TH+/VeFwwfuBSQF8QPkWWXtj3qlW+/X3ZGtek1NZ63BVy1g9de7+kl/AHz z4qi2Y4Bs77qTa4s1haKOSfnjgskkMAN44zGbRQ/75Zlf8lzenSPGIJtgdvk AtpSBk9hHDccZ+0b4I1oljfcoZMNPavP8LYqpCHbUVFEHcl+yzGkaJrx+U3q 0lPUecd4/xy5+lLetPBL/Pt0eR4mgqFb9N28AtVwgULau/TYBhuzq3+FeX3p 76p/oAHy83pfGPRn9b6w1dXCMDAZ7Efs4H9hfxgq9G/92DOvAOyHH3vuE9wn PR82d1J/YnFR0H5Lc6DVi7rHmk0uKn7WL3i5NGUEjtuR/+VGqyFn6HHJBTlm 7yB2mHyiyg4uf3latds70Pu2QdHHt4fLItFnTA0jTENqE1JrmDwRh6ig5poy J9vQmqZPS4QVu9Ejzc7ndFA7aczn/0wZivIsEqgwpg8/dyHiRPmNMqR+wW3p SyYmxcf2Mr4bfXHZseah8IHnOnp68vGN1e6XZapNM3KUNbf9za3hF0ESSz/2 zKqoeLM6QgMaw8omqYhBlF6LidvOlqvAzOgdSBk3fpz44o3qBJ7i2PuaAEVZ KmZm+V4Vdhq14GBQvADeRFoN4RHcFhe4X0aBFOEcRDzKR3a3liSgr1f+Gwof VokpNe9jIcong08jmRRYc658zDgswx6eo6Zz9V2cSoe237GQilbWMBavTIuQ Z6+GWILKDKgy3rMz02c8MYw6XHH6QfD5ijYPnB1YNwXxEeKyu7u0wOqx4vWS Aa4wFpJfAywKN9MmpZ9e/FBY8uTBl/coyBJEuW037mnHhH+z3xsp88DBpFDs njNEJNAknFHOBTCcr5/64Wm2kbBcmVeiQ5G4Pj6RKtsljMYRJQwzT9XHajP9 OixCKP0bdWX53jSCel6KYnONn+jEvzSeDIVUZmwf274A86rXnGc1faCpKGqK oakRZUksKZcrV68XW27aD3S8f3/rCkCzKMMZR1UvmRUmb/jg2h7O1Dr4Ny7R 2SkAf0qZ7T4Iev6RbifWhriVzlNCCY+xrr9RspBd1K9klLVEv6PCmOwfFuRq wKm5s/fKIsgpgbnMZN1R1OLK0nyWNfuKGNsB9teEn3qmJPzU82IKp3GCH3Ff +ChZd6kk2tIMvzdu6WDmVtYJyThn4fVat04tCZ7tj+AZEELsyHqtW6eWhNR8 i6LrPnyU3+aa/Y3Glrvwsvbhra8Tn4zufpuzC3namSN/S+6NfaaEvYYv8p3h rweNIykNfax5y44qRzlauDftHPiaMytXYcyoLDEWZyFXLJopGut1r6u3CHYj k8GX8qIGNDP2aOSZPxXyJXkVtyBK3/p5OtRxImYeOjQDeYVgN+5wfX+/HNsY tQUuboLfLtipOzy3K523O6Cu+bVaW5jZEIQiwzrWC5k1WPDokYTdTEXEA2a3 /NS0KvU/UykXIv0iK26BJ+tw9FeHG19I6LYs1CY+oGuwxO00u86hfMiS603B zpLsp7ZPL+VC3nyoQNGbWVbY876hFM3Ikkk8g+9+thhRBGl2VDWPKgj6eri4 zar54NjzwTTmCBb8sDcuavoy/FDUghiH7YO43Ko/h8N294vyFELeUM68FonS i/fF0ZPoRGl4jLbvGRWet3/g0jJ54CxVb+O70ee7EittwljQjyo/hJmJjnF6 uWfV5A9eKuqfNOZPHnu+i9NW2OnLwy4FPv/0Rn6VMWkebZFGlCmVVg/uHBhu EkTRyu+LjfoD93iGpfucpExK7uWPQ72X32HphwsZfN0irJXoxqgtcZ7GlhP5 t0vyZV6IZelGpeVPzt8URb4IY4nUbc3q0WKhnTQpCut5JTB2oe85c+2ODOtn nLOHm/s5RfeWJFdkPbPIsFYTsB6hv5FjW8IxHFWeVhWk8vbD01b2xYVZexeu wYO0VS+6ioThDOa47YVvR8cvQfxPUBeLuhpm7UWkCzTXUdfhQAdd+kV90+tH 5accZP2gLwT20BaFyYH2GEeJg5uP7/NszBJPq2Lc54mNEn87uusKQSkoiLWS 3zRqRcUgikfOF4uaFplvqpdbtpzaEi9+TQMut7nF/ab7ADTrRQSDdFLiv23V d8ZMGQx7aPemzG0d5z4ZRnite2L42BVig2g1+DHssM/JKMfbbrXCc3HDHKV/ Mp4udGgxYlITgXZD6kbl+60/sZp13+tSaDkTGFqiGPYwQpd5njXcK7LDk7yo ytZ1WqH9DOWYFmlNvShbUwDU/14oieyl0JKWMOCDoPidXuG4LGvtxio9h1yJ fLGPHiWdh/Q8sfSXwPapY8k7teDzsTeitXkuZ0w0bh97O+pDb9odyuJQ0u3R IBqQWlXZSalDr2tMj871PfyqT/jNdZyqbkia2ugbfd8zMbihxW7b96bNhFVH 9aBflMW6KtA8KqJBt+eSGvhRVacvri2ChXbsitmQkJetyKNcgLMC1fKMK23n w9FC4vNtok8Smw4b018H++AKHzSIetHrXDBwLi+yav6MDLPenUreLfRYORwC LztvlvtEtNqZTsi7FxtVhHqeNoat6MxSq0YtKdZhnuGInnN2HFBjYFA+OL9b 6bp5cM2cZgMIQdMgwOKcQ+i8vTYA5ylfiMz6kofq0bciqB5jv+h82rLqGU3Q 7Zw3rGDcZzoEgUuEWR/YBZuy0pXQ6tkP3AjDJZZVuKCNKFb/Z4381DtMmytS xoi9C9utbxCUmDBXyWMv5z6pdRxQIHxJPLAzIa6GFsC7c2z8j7FdVwpEAV3Z F1NLcq/ZlN/n+H8jXNiExrYtMyYLvWwXpTdaTVv8eRtaLAbAVjbvvcQWr6Qc A/v7go84KcjX+vngzHGyFFLlNV4MWZpXpIm2mcE+QreA1cRcTkrY8k821zPZ 1rKF46003DIiiG5I7ZJchitgLuXG6ArGlCeEozpvWozpTZtlKYDZ1g0Nma/m aisqdzu3WKkNSLxI+A3JaXfRN/XuHnJnA7GcWaJgMsZM0QeQrbsHKeQOCaQL dF9SozauGCsVVSIda1ms7AizzjgAGAuKK93aHl63PvA9QUYCVqRflGFXieiN 4VvxRKbJpcrHLgH0Poo9zz/elTLou+QuJOtxx4w5XRg1Yrog/M3HCezteVZ1 gLpoODuXZqwFGpCLpae+eqkOp5/Yti0C9+ci35QOyIWLwqfwPJe/AE/u7Kuu sBJIN40oYLUoDickFvEc3K6aLTSOzFIB7cmwxpD2NM3tf9ORYz2V/6FYGDCB dbiZE+WAUQtNpPAB1Arc3bstw/pmGXWG9UFkJAmCxjgy8dikDn1vVNVrtZ3z npIy1IDiICtqSEybAejmOpI6oFdaVQ2JDqDvmaKu06XErWBlniMV2/DA/126 A4Z6fQ53OSQ1BTtwxsZtrzDeXNUIoe6OU32X5SccfhICrKjaPxhmmIJ2TudY hzPst0JICqekn9mKWsykJ+wE6xjnb/eupQqLveRgMSZfVFtlyxKdJkn1FL5k JAe+sgxkVCc114EUmeNY9kAzGY3pjbkouiG0XQ68wq7l9vYSpYMkY9SkNVj7 B3EMzGNabTTkY9TXRx+aJrTRDOHOpmIOQ/wDwK6VQTFHiEFD24WTYBIu/2eQ N19ZtruAu5FZKcf7WrO4M6zLvd0Xhi1cbSW+Lo5/Shhkd7Zw/cCePKYh0yqK bypNrn3P3vw1v6j/Y5fffLyZAI7Fa+opORdcs7ayBh1pZoltGfKwH+MMwN2p n3w53KM9RDtZLBpWYk4l1S9KMsb5AJcla+LeZWdXE44LlSao8cjwNZzPlXCb yJ4K0TcsWXJTZ9rAb1QGUsZemitXsFZjIlnoxzjv4RxZDssKDZeIOpGIVhmV j3Uf8BDKzhJ997Jx5mX/JYFuoUypgtnWBWofXBJU8klKe5iZBEVFp+PY9Hwm pjWLdwzcfJoCO+YQaT1WtW1M2t4mQK/wcrNuYmYoC+p5RpsufYUxr/djLP3i hUjGazt5Rwo/j3w520La1imcKaqpJuAfEtpz7uOcAn+PEYcrzN+pBNBOgjyq isN6cA5nKg7442JIMK57TJtBIfoZ1iXPsuofC5hlVWqT8GhX0ZfP2jTDGJ1m r+G6PRejS86WSz2pBOTRDgZvNY5KUjaMojemZwQYPAgweNsatrWfQBKe5GhS IVWuDnD9drSBduwOcb+e3h5YW+JHwy438tv3iwKhoGzHcNYrIG4D+78jGmHi FjDcjdo+pOk2tO+hYgjx2+X3TaHQme/fyAAlhQM66tBc4flO+r+n/htF2R/2 ohYyaV/obWKRKZ2mLOyT1asQBzQG9tQDdjlTzLmPAdBl1gEFWphl+bavb0dN BhSaPsvF3DkIRMmy8QsmAGC3/JNKeSpHzxvaGfIDOfyCRvSMag1BvID5YYeF mU2GloxTdKfv7/LFUfZrvBTdqXMLDsTiTN7p2CgUSsTp3YTjs3b7pzgX8fOt MqZ6PXjFs2Yx4/o9uODR7tD5o1OZJ6cr+nsnTNzF3fp2ZmSJYoXC5KqVcutx F5yeK86Z0+dzh051K8xgS8ISd+pqJiP7bptVQ4Aw4oLcAAVOgHNkMBGud6Ux i/ZlN77lRoRD1mBcpbZqZYZTZVJYCfOkHt1hL9gb+08zoro5XR3b4sMdIkvo xs5C31DSHheE9z19Nxrczdc/ZmWzMEcmTm64G4Ipz1iEOv85PkatQq/B798b nV6RkdPVLhGAq+77zKHuj5t74N993R37FUbq5ZSzPcP6Kmll5+2wxAP8ps1z D1K7haJdRESx++twZAecXkoVadCOjxe8FH7TAR14/cw1y5Q0G5fuj7AwrQtN lHwy2J7vnn7rZba1p06UUzcpbdTnQ43OjjNu7cgKdSDOPePWFF4Szb0Lw46K akspT+w07NY2aw59HNn4/JPYqTA2s2Y/sZQXzJbwiv6MQQqSJwxR2YDHeoXT +oR7NGddWTmpm+bhclyvp5doUvI15wXH0bg94P4wktFese7eqmTAacCHG7OG KrKrpJ5wSSgPY6OGKppGDaPmAK8Q5IcDAwpeLFqR9d5k6xjT+5Rg3Fmj9scF +wFbWCgMr0jmovgkVb7t7dXV8ehygIrxqf58i3RbBpL33wwx/nnfsu3dbKpT QfL4abc/nA8drVDEdB2667S/kNhAj3ZoJ+2oSVcVcmoLibUJVkyDnX0ZlX81 93yVn4Wz5b54SmChSJarHyQYElF3hrD5/TW6l1lDDOHV16IVnDyLRL8iAX+C or/V4GRtW8vacyiwlKk2RVYIkKrDSUh4oy59jYSHWGSZGntBGItHY1bS/YiS j1bNjz5G8xTA3pSXPNYtFBkCNwu/0ZF31w0Y9J93EXaLVGKrjazuFlrkdOdW jkEYFSWPJZdieqo4bvcgZ+td3g96Rz3oatw9/ibnrNJbiRFFaKvwYMUBQsHv 5UzRe8jCwBH3W8kUr5zOmiVB/BPxUmqePIIu0Kuy3eigBrBxFE+3dtntRKf+ 0V6tWtGORh2Ttt1++fcyKg6ol4hGUsJEmidbRVPHugb8+isyq+z1tZSmvacF HNSGqaBw0ReDwWGN2Kg3xvT5DaFBIg9h6uX2SeknjEoWVBJeer/JykWfv83E XyGwZ86Ay8sAhkRG5vWxw3xxVbx/BocF4tiZ+BsIzkU37K5hjORHMdPb1iKL OwbFPscglDkQ0cLdz2qtOaIbDDOs275OngB348RuQptw0BrhNxH3JAWxLocP f3qb3nxaPD29Dudh717Rqc+Y1/Xpq0tF7ejzyODRBANV2Toh3hlPyYiXxda4 k2Oiqm1U77lMacekU6Y69uXev4IzSlLRnJK3CoO86fiQFSrkVDEm2GCOqvLD 5iE/+JVcqqxhgcRmWLvBcqJ5jtpEymjHALMDkJeoMxrNa/4z+P6NN6MadRM5 1vEHXG4pn2wtu/Bg5tzn9sLnIkmu+59JBivuyaiq8cYXi9KHsUj4NELgHAm3 rcdeAFpSUZX12CgBS89QEcRQPCAM5zC1xgnfC93DBb96TrGU4bqd29EwZaNI 9mAgstMMGM56lpkdAvVXIphf9r4UQs1v1QFAEUNoKmBYYA1e2mANklyEnGo6 pGcxhf3nX9H83VT4vNSwxAmHS+w4pQkHcjXnM40Hbwcr6zkf6mBm/8RlHdU2 gb1+nFn9VpvM+etkOOOoNl628GzRavk5xgGs4okZTCyh5ve21QPq9J7oNM3t gLdJiMYhHhMDtzelLFb7ZLxlZWTLg9JTjnVDFEXGnkoPmmv0wYu7TxPf8DRY 2wdhbCZEH9YL+IWVyIfldSu88wsGIvo+8GWcKQbH6QuYOsfghO5wlwpjq6y9 YyZy4WaRZtojb259CO/p6rwXFJFVPvFJ1cGlXxRCmx93u9o2i0tNpEu8Q2o4 B5nlnksydWunwCseh5xcbqPULqGvV/bGyENqhP2HL7+QyhHwOJOdcUY69TkZ EKHcd2o+OwV5c2iME4nheoq2vDFaYb8oUJLP2A2hNO1uzBruHtHH8fq7P+8/ Uofrg17GITJrLCo6VbYM8IjQDIrqu4jwA8bcFAyfCjUbeb6Pn0dp9xi4G/9y ezcE0t34pihPWxAO5MUFzWc9G/kluyOAGE3K68oN0R7jyGlr7iJhf1BNytj2 nkuwrOsXDZG8t63toVwUrVkDrGMXij48wNGz2FheqjrjcVa2vCgskbav+1x3 sajXZd228J5PdS5AXBVCWhEUF0lIV6tu3XS93vPlZWlzy0VsVFKFYRTVoPke EzQQNF7GTS/iBnxwVRJHW+52WOlOQeDwgcqsSOIOexg6MpFlsg73OQslh26w ViIkhD6PRcNYRMqU+0XFgNSsQLRRzVSnp5cUUP3wF6IKTQFQOKL9IBCRE94F DTwWBaK2s4m9GhMtXHDySYmOON77YRW30SOkHMapfp4tjG+pDyZ1xZlyuhUn NDxgrgiCX7UQwtPciH7HGemYeESQrPTF7v+i9lPfso29Hqynu8XHvsE4vqE5 L3erfLEWw6fH/modrChdemLJr4oPG7J14IEVVUWNiM/x4uCLuCbZAlEhavWT 5vTuFJ9KuIPbbF43+wUveD4ccXvdX1RSaaiXltGVcu5m+jG6Y4Qe+3xw9I8c U6NRNV8ngxPnS24sZOXc+rD31pcRMc8pN77A0q1jL1TmGrPkR9MxzzOKbmR5 fvp0tbH7D3AptxmG58vTfKxNVFF35wjXbMKn5qCSULIP0OIZUF721Dn5uzMC 3efS+Z5PfeHq9cWdvY3zOdi4D8kLSbhiP/ac9vqbblJ9quft4bitAm2W51ee bXfPGnwfeJZhbO7ZqxwO5/z5cxU14gRGbfkjBvgP5A6ni7kttHxsfZzfIc52 pCorJag5jCQQHH/l1YHpR/P9oYN2GGZ+A65UoYH5Zzz9orORs7P18scPVGxj ftZ48qx7uzBmt6GXYneByM1iedebmG6F64Ff3E/4aJicLjSvliPNZ8OMavZc 7/46Gdj+ucaI/ny1FGl++uEH0mzFmHEchEIUnXqlXctHM4bqk8DMyzCSqMzT hRjOV+xq3qN0rqYV28Smfa8Kbs2XcrN4+9FJmWaBfObZPf7BGVA+7VvryyGn FT+nfPUwBLAmfHHuz+VU8d4z1pDYmPpu58wD0eYsNwcd4NEpUspu/KHjW8dO nOiMgh/VcWrYokqjdlWLpArdRkKT1XxaRHl7K/+sw6nCm914BgCuIfEGpScM fgO8P6xE/N9MBT5wPF5IEGW9V0uCk9YWrW7vq8lVlJF9wkXCzPy84sCcfXSq E9tBmu5SSQVS+JjogkJjZt+O7ks3WNmQ/oHvjGfdHiACkFGHg4Nted9kY2Oe 5OCfYIyfXkan2aO/aD29F6sRgKS/NvI4f0gh20Y/eyjSNY/ti/N+K7rD1GQn aFO7GslHisdmh8bbjjcXmE6a0WG2WQFxmWqO9azUvTNVUY2Yryb08cdim0Mv B1K2RZi1wtuG43HGDBXb2FjZOlJwfq38TlbeHroQigtyCqQCFfbQbu3ncmCK sycUSBkqM6xqKnPonpt5NA7YtxvSvzVr9P2AfVc3nMMVof3c7M4Ywxc56ebZ T67a5Fu2nF4nMtTn/GOtzGUNpS8P+uCgu8gwmfO7swmVu0+9IfCd+h2+T+xV b7Easxw4A+1m+6M5WuWP92fps1rvbGfPBvmbutS6JhHrfJ8m9WahvhyyDiGH XcI9+qzn+vZQRVABw2Q4jU7U4YWD+lp3HsfUekHeOH3MLhZtrOWn0Lp0++EW GWGSWnvJSdMImwg8OCTHOqSo4pLB+bCSU9R5UcbRaV/A/uHgC5Ba8XMdSHpG 5LQB5YZ7hayLf/DISwat30mG8f7iTrLQd7iTSHuULMbGgUcKg7VDo+yW/s16 QgvZt21gQhPke2/BDXproK1R9lwnMVYmqxHI2BhjTNA2ZiAYH5GXTRDCVv0U NbH3Sj8eabSpKcoOZWOMstclg/CBeYAeSHtzvVX/RjF4U24QGGukzcbs8P+U Hf5fY4eXn+ccFuOAsiPsf69mCfJTASk4IK3Qxr8g51Xb+afsMCZYY5QdqzTG GGuCsrdkI+ORAqbeAY2xkUY6oFilhaFgsACYHyoIFgLz8QkAz1UwJps90kA7 WKFY1aVkDFQUDCRPnTxvABBwwBhjrAwwWAcrtA1qBT/GjpVA7pS0LAjKzccH NEtiHcyBVjYi2xYoYwfCrRIK54SxM7FnZRMXX+b+vB3KlAwMggms+teuQfx8 fMBkm4KW22AwwtQTn9gst8H4eQnnHNa0gWFQfuiPbVB+vnVtYDDkR3xgiABM aB0+PiHwOrpggR/pAm3gH/vC+KGQH+nC+AGE62jwrx8HHwwquK4NSli2P7bx 869vE/qxDQIV5PtxHGCgbR0+iMB6/qDQdbKHgvlhAj/SgIEh6+kKQX4cG9DG C1vfJvBjG1QQClnHHwzMt04uUCjfurmE8sN+lD1UEMb749gAGuv6Am2CP44N 6Av5sQ2YSf4feYHxQ9bpGqAHQqtoONgh0VYoO2CtgnjU0c4oQO9BPAgMxgFE /C19EI+CjSkGtHx4RkEapCvKf5JPUgDGLwmWFToJ45WSOgmDQiQBJqX5ZGQg /LxS4n8NoUcGGAt7B6SdA3GxwfgB3SRjZpaBy5L9zfMnv69/4rJD2dtibExQ dgZQAzC343+EBkHhBMBg4ic/dOUTsmVlIQE6sAUC5ucFC8AE+ARgW8AQXgiY bwsI/B/h5ocLS1BGEGiLEcrOBmlnYrIZnLWlLdLe3mnT5/+PXnvJ9pLxsP8T FwETiHhJYWxxxAADxGrMBiJ4chBI3cEOa+yAtUOZgKRR9mgzG9BpIAgxRRsT 4wFOkIKNMTeIVV36NNsyHg1ztD3IFDBQIODTHmtra4UG+tov+W+QAwbkYI4C AYGMtT0IY0r8AnQm9pTRklQ5pSwDkoJLy4DU4bIaZyQRMiBlBSkZVXUZkKQc QkZGRUZVA8SKdAQMINIIIIF0IPZ0cnLitjdxRAO8GGOseWTOI61trVBSGBOU OsbUwQlph1JGG6Ns7FGSZnYolDXKxoHb1sQUxAZC2piArJE4IhKMjRUOZIQC Ye0Bfk0xdkTebLF2thh7lD0IiEyM7dBGwCO0DfAE6QCyWkIJQn7DuSyBkzgA ByH0c/gmChwGuwRHEABAwwiDBSgb4dYJ428JwskcbWwOMgbiOiTaxp7YFTAL DnZoY8LcAChtiPiNgWkF2OEEmaAJD42whKfEoQOexMbeGm1vT2jAmBIxfGca EKcV1mRpICgA8zks2o440KXxEwGNv6kMEHLaI82WBmBEACcwtSIu1BJGoBfS ygrkQIhPicL6RxSYh4DKcIlbFOgYMcYEmAXiUXtuoPUY4THhzxqIawEmECuW E8RKaCU9JaWsxEn4RMioy2gQ79RllImfktLSCOKNjKrkSWUZ4u0ZhILG8p20 pIbk8p3ByaU2xLc2hIyktDZcU2MF9SkCMTaRJVZ4eED2gP4QZGuLtENaowAd sF9SOsKUII2XpsjODEuQN1FW3+BAhAHCoJJ2ZhoGGt+hCQE9QeNBYiCwyK+D GzgRT9eKgWB/p5MV0t4B6PNzKI5focwFAegamqBMAWX5K6oEkf0lEIE14Z/D bDJQpImJnQEg878cGJEGB2Qzga3g+S5a6F+CrhfoyiOOTTFvJrpvUOvktYac 8AYPNmHTBOmAXC+ZNdg2F8dK518QxzfQ9eJYecSxKebNxPENap041pAT3uDB JmwaodYLYw2uzYWx1PWbKHj/Am69HJYecGyCcjMZLMOsk8AqMsLrmjebJJQV ErdeAKtQ/UQXVvp+k4DgX4NuoAwrzzg2x72pOnwDW68Pa0gKb/RkE2YJ0biB I9JqEzb/Qiorvb8JZdMF8g1yvUxWHnFsingziXyDWieQNeSEN3iwqWNaGclm yIjCIPyhbWyxDqTARXDDImtbiA5ZZHUL4JhXvuvCIMJgPUIjwUuvgVry1mua iF77O/rvnYlO/DvOb62AQwdaMViHVdBL3p2IZenBMpdLjv47+ApugtdfHqYd yuw7zRU0QCPpjygIgBv0BwIGtI0DIdWxAjki7dCE6NeeGMMBHYCwDggfvpFZ 6q3uAARAp5FWWJSBiYEdJ2jV93MGdsuUeJdgl0Iie8C5YQlEljr82PitF5Hn lacIINICYs61XVYal7oskfpRObiWR0m6ysECT5cQ/dB2jtDmgLK2NVj7YAU5 kSMTrLU1zsDOcVlipIDIlnWdEH/aE4YPxPo2QIxKjGHXShEIogGI5VCLIGkz lB2Ac5XUiGiXVw8pYWbgqtIyCAOijhqoa0hqyADw4I1AVOEAgIyyjJSGjPQy JGQjuJOa6trfMEE3goArSX6HgG0EIYNAwBEGkG9AvJsDQb8B8W08MA2E9ipM /JsDfccksBGQ+illBY1VmAQ3B/qOSWglav+m/0BmZwQkT1YYY0tCFmWPcgAt rTcQIS1FWhGnDmnlhMTZg06AWH9QeBAQW2+kn4T29doGJLOkRsDCsgE+jZH2 KNa1yAiPDTfUAc61T9ZPvTAA8A31sikgxkQs5uDlS2TpybJNAB5CWIy+Naqf AhqIFIjaQGxG2ZisJftdk1aTI9yiTVk3lAJhRGsASTdYbgBldZTDSnfWDcQm stwZmC4rDMbyWxptb4syRgOmiyBLIG1F2S0tytXJDpBMOqPsMCAnJNphabWu YCJmqsQMdIkwAZQw9mVahCFtwKyu4eZOXw8kBmRJy4NeM+ql2f5LfGtdpt4K pu/zIrzU8H2mf4oatBr35pnPNzqkkBX8awh8V6f1U7OWxg8xsZ7Idwxr1A6y +sFGqke4ltSPaIJRpkislcNfMLdO1zcgDP57hIE7gnS/f1s9H0Rzt9GE/JSj zRhayw8Rt8jGdInG8T9El4h7E7pEU/ofokvEvY7uN/F/+0q8QVmtTMkqLn7G xCY8bKoC3wgtfX6j953cT6htTGwzWiskfjS1313yJpb9X1qKGy7DX7X+a2KA /yBXG/mk7+thE7ag/5Yb3EgQPyG5Job5Bz3v99W3Ccl/fpQ/IbkmvvoHR/l9 rW9C8p8f5Y8kVzuU/0jQ9N1xEL9vHm6iAG9PeKUMskGdX45P7EHHfyn0JNoP IBBaymcJASchjyV+LmWqKwAbZFygVZEocAfEOstYjhIiGDbQD+Hd2qRvZdDr olSiADbI4FaLbYOcEHjMR5D4cpS3LMFlo0vkghCu2WAcCKEayoHQysNO+D/h Ff1K/PNDWE6MaDaPpX8hmF5l7QniIYj2OMhtWbRrQzzC7c9E9D1uXnYwm8oI 8qMH2sjV/YzU+sH8FUnwDyR/PkHfATfPC1bxCszb0i6Nnb0DiMUIa49jARnj jJd28Yg7YsAaMEU5GJuvDcUJq+JboG6OcUI5ouyWdobMUA6E7SHCRtx5EHpp p88Ga20EPMeYrory7Vcif84VNIR43wSDNbLC/dj/G1nCEaaVNIATZIQyRmIJ rQDdFSRAG8YaQE7oRnxZtjSa5S3HVYnH9yxig7xoowzh30qMCHT+pWRlJfJf w8ryktrAmf9CsrJBtrI2YP+X1Hd1VL5B+P3rFNaEC5siXxNj/zryNV56U+Rr AulfR77GOf4sWVn+/pcLeXWk/c3OrOHnbxm1TQj+bbXkAkHW8/cze7hsZL6t YnOkPbBOUTZAizEK7Ygy+QaGtEOBnAgv7dBL28WEjVIM1mGN2ZD4tqA28pvi IAjbf0hQG5HbUBYbz9WyFAib4HYEG4Y6bw5YLwfCIYmlwxHfIwyQCcqWcPJ2 eSf/O4LlzXiTdYb4f9oufE+H/jP2APKftAd/hfzfsgebI/+37MEPwcBmUcP6 WOCHxHXVcP4Vu/9X9P+FYGV9GvuLPG7gOf5j7EH/V4twff77izxu4B//Y+z9 7xbh+uT6F3ncIAr4j7H3v1CEa14F/+9gadVL4m/J//d0n5DoAw71W8K/tFX4 3SHLqqssO+Xj6/YuVg5qrX0NQDg4aAKgIOxsr03jAXqr0G+MaSUTskPZYuwc gFvcGsCls3/olRTLAYiQiKg3TbL/xq7UZmn02kSbuKW+Pr9eH3SARMVALiAQ Lz8wI5ygpUN1IBiLCRTk+itZ9K8jhKxHuMlb2//fbZD9ZdL5YzAotvqF2fIs Hz/+13g2Tl7/5lbb390Pg26027FyHoAYsRPW0CpErID+bER4g0MKmx1x0uNc ieSI1/czoGvalk+Dfr/+gurKe3fi6QiQK4htXcT3wx7br494I31dj36jrRzi 7cbLcLNDGT9Ze98Dzx82y9dEVD88WxMq/PBs05fRhNtNM6G/p2PQHx3ZX2nX BhT/VeVar1rrFevn5DbRqp+76p+PcAN1YNvY235Xgg3f5v/wHn7FP2JtTQi+ lmDWvnteeweMHcFrEgzedzMIuECi4yd23ch2i4qtM+kmxJNJpD/4SQBwbYAi sgrj6nRfdP1bAJPls06rNxKA26VD54Qv/2z9x/f6H3OckR3aBAhRIQYrDsDA bmmYQFDw75QG/UX9DwQGtK3U/0BhsC1gKIQfAvtd//PfuH7X//yu//ld/0O8 ftf//K7/+V3/87v+53f9z+/6n9/1P7/rf/4v1v8QQwYbDJDsci0FXkbErI8Q rNqD1KVkuFQUQBBuCBDMGtthWOwJYeZyDvjtraA9JwEJ4b0bxtqIGJo5oYE5 Wu4M5QaDpE8pgEyxNkRfx2WEtEetvH0mbr+brrxqRpmsjlLsl5lbxrMcBoII 3YiPnICgESCqYHOK8ArhPMIEJ/JDI4LQaOAEaMsPZRaEd4c/vLNFyADf1GWA TzVNGXUN4qtsovSW3v6wLePWZV3/soWNINUliir2S2+pltmAYx2+Mfe3+ZCS UTgtsxkf35EjVo18U+6WYQH2iGysf8eymmtN4pbFd0KaxEN3378jUEgTnCzG TooIR0TotnGB1nKHJUAZG0JmZbIZHlWUmYyJGYqIbvkc3Jruy8+/YyH8qRuj VNAqS5qxNAMgECMrN+GG+I87saqoyxmcgiM0DM4oSGvIs7GBlqGACJ2UG7F0 OoTIB+salWEjBNfcGktZjMNqAOJcLj1epsv6berZVuLw1Wwti/6v+FoBY11P eK0WLdFew/pqTVjL2up5X8udFEGmUkCGZ4exIrBG/K6KtWaVUoZLKS3xpqqp clIGATC3GliBWM8GmHMip0u6wrr0sUR7SV1Ylz5WuF0906w/KtAS0BotYV3z bSMsy/rAuokWrca5VnVYN2pkW5NC/f+7InIFz5pX/yL/g8WPxOtXKyCJ1+Zl kH9h5zepj/wV07xJ4SSxq7QM4ZXLNwzfOd2wjHJNvSbx2rCQck3RJvHasJTy x8pN4rVhPeWP5ZvEa8Oiyh9rOImX0K8Uci5Nz4aT+WM55xLohlP5Y1HnEij0 d2Hnv1XY+Rdr43+CkQ1X2n+PkY3W7f9goe1/jNzvYrPfxWa/i83+rxWb/Wq5 2e8is/87RWY/+vD/60VnvxKzrJXxmmz53xHwhrHJvyvJXxnUJqLbbFp/udjk FwW9eUy2VtCrX5j8fRlsFHr9nxXupnHmWon+i7V9q6Tz79TvrC/f+dUCqPXF O7/6Sxp/u3DnV38q428X7fzqb2H87YKd9Sck/30d/1ua/NPT7v9S3d7fLBD+ 9aK8v6zJ+3frsf9OQd6vlCT+y8V4P6vF+72Q/x9ayH9ddPe71O53qd3vUrvf pXb/60T4u9TuJ6V2QCiydo+SwNM3If1SId6/WIn3a68i/pn3DT/W463xkP9K Rd5f/orBv1KVt8HPRPzEV/74ZmZdedBP64N+beUS7/+hEqFvVWirxPRfrBLa qAJtgwK0f6lQ6Nt8rS0+++WBbl4stFoTVtWd/dyybWpkVr8l/OUV+J94bbLx 6lh9+GiDVfCXo/1dHfX7WrkcUXZoK4yZgQ2Gyx4NmCKUqSnK2MHeYOX8nv0/ 8G9C/bz+C8zLu6r+i49Y/0X419V+13/9N65v0ZTb92ulJMcEBXLCYK1MQDYY O2uk1VJZ03IdjgOwvo1QNkDEQjATSGNjlD3hnKcjGkk8/mkMgNuvxrlMZeUw 0bfey8Zm7dlWZcAtqdtaoR0kTUzsAMTfTkcRG1cZRfvv5wO/91ZBWWPscArW AFqC60UgCJGAgo6MgYqkFAJO3BYm8rKi4oTQEeDXGGu1YgvXvoFhtWdbktJK h41PXK0u2V+yUUtngTcG1pBcqXDe9AgXiHgM68fna6olluCIxdPIb6L6sce6 A+2EPgTDbrD0sm2DLj8e+CZys1IUSvjRvCXWV5zL0saZCcoYsCCEX+8jBMO4 Nb6D8KN5xNPEaACDHSEaJm6zreac8Pbxx3eOa0tQiBv6qxgnnLBdg0FcHMTP BgS4QORIKEMi/mLBZipD4JjwQwRrMRD7mpqasoHExQi3/IJLb9V/Bim6BAnc rkCuATwqBvpRn9nWZg9rJLvptvK6qOSvRvcLw0MuD+8XxodcHt/fGOCq4GPj Ia769emV6GT9Ty8Dw9yAMzAY4ExMbOlWaH3ktDHB1T+z/dP3uRt3/8lPRn+L qpazgB81edOwfynqh6w9LUAMgF3WcrEcfq/S/+UWIq2N1vvakP+HyqKVoH+N tSSiAm2+AoEcRW8zqmtD/lWKC/0Pje0HMhseuyASW7a1G/xGAOkqmw0ALp97 XYID/rdi8H8w/2AC6XXpyd+x+d/TxlXq8rfSxB8UZkNJE6pDzYkOnHAyF22C WqpFXllHSGLpsAOKC2WzdIaX8HMxR5cyp7+tFSvW+68PZP2d33AgXSflVa+R Np6ltcEMCHhOKDlZiUlAhE0WwLERDi8TA5y1Ecrv/OH39fv6ff2+fl+/r9/X 7+v39fv6ff3fvf4/1ClhxAAYAQA= --------------050507080206010403080404-- -- This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean. -- This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean.Received on Thu Jun 28 07:35:06 2007
This archive was generated by hypermail 2.1.8 : Thu Jun 28 2007 - 07:35:16 PDT