FW: Re: more on Bernard's SCE-MI 2.0 issue

From: Brian Bailey <bbaileyconsulting_at_.....>
Date: Thu Jun 28 2007 - 07:35:23 PDT
Hi,

Thanks for your comments John.

I've been trying to put together the promised examples, however I 
haven't been able to complete them, in part because I'm finding it more 
difficult than expected to create a simple, clear testcase that 
demonstrates the issues without divulging too much about how our 
generation tools work.  I've attached a package with a description of 
the simple training protocol we use, together with a sample of a SCE-MI 
function-based transactor ( responder_2_0.v ) and associated "no side 
effects function outline" ( verilog_no-side_effects_functions.v ) that 
will support this protocol.  I should stress that this has not been 
fully tested and I have not included a full testcase at this point, 
however I believe the transactor is essentially correct, and 
demonstrates some of the coding issues I'm encountering.

There are, of course, many ways to simplify the coding, for example the 
transactor contains two combo blocks that can potentially be compressed 
into one.  Overall however I've found this code hard to create because 
the return value of the SetResponse() function has to be used in many 
places, and because the first idle cycle will actually function as a 
response cycle if the testbench requests zero wait states.  In the 
SCE-MI 1.1 implementation we insert extra request states in the FSM that 
allow us to request, wait for and latch the response during uncontrolled 
cycles.  I've illustrated the SCE-MI 1.1 response fetch ( 
responder_hybrid_1_1_response_requesting.v ) which seems cleaner because 
our transaction argument is always in the same register whenever the 
'real' FSM is active.

In the light of our previous conversations and my work over the last few 
days, I think there are really two issues that give rise for concern 
with the DPI function-based interface:


1) efficiency issues when using function calls in combo-blocks
-----------

Johns email addressed this issue.  Yes, our response lookup functions 
are 'safe' in that they don't cause side effects in the testbench. With 
a small caveat about the synthesizable sub-set of Verilog used by 
emulators, I agree that in principle the transactors will function 
correctly, and that the implementation can hide a lot of the work and 
can potentially handle these calls efficiently PROVIDED IT CAN RECOGNIZE 
OR CAN BE TOLD THAT THE FUNCTION ONLY NEEDS TO BE PERFORMED ONCE PER 
CONTROLLED CLOCK CYCLE.

While I agree on the functional correctness, I believe it remains 
important that a couple of areas are addressed:

i) I think it's quite unrealistic to expect the C/C++ parser to 
recognize a single lookup per controlled clock cycle is safe when 
compiling the testbench.  One solution might be a 'ca-pure' qualifier to 
the DPI function, similar to the existing SV 'pure' however, if this 
isn't feasible, there needs another solution, for example an agreed 
naming convention which is supported across all SCE-MI 2.0 
implementations.  Without a solution of this kind it's certainly true 
the code will function correctly, however the SCE-MI standard loses 
value if the user has to tweak the source for performance reasons for 
each implementation, and I'd hate in the 21st Century to have to resort 
to synopsys_translate_on / synopsys_translate_off style comments.  Note 
also that the DPI function is certainly not 'pure' in the sense that 
calls in different cycles may well yield different results, whereas they 
will certainly not in the same controlled clock cycle.  For this reason 
I don't believe it's possible to use the existing SV keyword because of 
the risk the function will be optimized away by the compiler.

ii) I believe it needs to be made obvious to implementors through some 
clarification in the standard, that it's expected that an efficient 
implementation of these 'ca-pure' DPI calls be provided, and if possible 
the presence or absence of these should be clear from the results of any 
compliance tests.

iii) I have some nervousness about two of the Verilog code constructs 
we've been forced to use, both of which I've been discouraged from using 
in synthesis - I freely admit I'm not a synthesis guru and may be 
worrying un-necessarily here:
    a) the return value of the SetResponse function has to be assigned 
to local storage which is used later in the combo block
    b) the clocked block contains both blocking and non-blocking assignments


2) write-before-read memory coherency requirement
-----------

I see this as analogous to the general rule of thumb for all CA 
environments, which is to evaluate EVERYTHING before changing ANYTHING - 
essentially we're looking to guarantee that the result of ALL writes are 
passed to the testbench before ANY 'ca-pure' reads are performed.  I 
believe this will work if the semantics of the emulators are exactly the 
same as those of the simulators and they evaluate all clocked processes 
before changing any combo blocks.



Can anyone else see a more efficient and elegant way to use 
function-based interfacing in this application?  I accept that the 
comment about the ease of construction of the 1.1 code may be due in 
part to my familiarity with this solution, and I'm certainly open to 
suggestions about cleaner ways to write the 2.0 implementation.


While I agree with John that there are conceptual solutions to 1), I'm 
left with the obvious concerns about vendor support if these 
requirements are not included in the standard.  I also still wonder if 
hybridizing the solution by allowing the transactor to use the DPI 
calls, but still 'steal' an extra uncontrolled clock cycle wouldn't have 
allowed the calls to be put inside clocked blocks, thereby avoiding what 
looks like a difficult piece of optimization that's going to be required 
for efficiency reasons - I guess what I'm thinking of is a solution 
where the DPI calls hide their own manipulation of the clocks, but the 
user is free to force his own additional cycles as he chooses.

Regards

Bernard



John Stickley wrote:
> This is really more of a question of efficiency of
> implementation and the standard itself makes no restrictions
> on how this could be optimized. And as Per first mentioned,
> implementations do have the freedom to use an uncontrolled
> clock underneath if necessary to implement DPI calls.
> So, in effect, implementations can automatically (implicitly)
> do what you're doing in the SCE-MI 1.1 implementation by stopping
> the clock (explicitly).
>
> Now, this said, you do need be careful how you write
> the imported function in question. You have to write
> it in such a way that if it was called multiple times
> in a given clock cycle by the same combo block, it
> would not lead to erroneous behavior. In other words,
> if each call advances some state on the C side, that could
> lead to inconsistent behavior when going from one implementation
> to the next.
>
> But obviously you have to worry about this whether emulating
> or simulating - irrespective of whether you're using a
> SCE-MI 2 implementation or just a plain SystemVerilog DPI
> implementation in a S/W simulator.
>
> And I'm assuming you've already designed the function
> to be somewhat pure in the sense that it is resilient
> to side effects of multiple calls.



-- 
This message has been scanned for viruses and
dangerous content by MailScanner, and is
believed to be clean.


--------------050507080206010403080404
Content-Type: application/x-gzip;
 name="SCE_MI_2_0_rollup.tar.gz"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
 filename="SCE_MI_2_0_rollup.tar.gz"

H4sIALzAg0YAA+29CTyUbfc43tMmKkp6shRTyM4s9jXZ18mgLFkGg7GNMDSE
UlGyZI2EsjYiRCpCKLJWyL4kIXt2Wf/3DIrQ0/O+z/t+v7/vv9vneeae6z7X
Oec617nOcl/XmdSlZAxUFAwkT508b3DKDuOAMcZYGWCwDlZoGxS3rYnpln/g
AgOXABhM/OSHrnxCiJ9gCAQChcC2QMD8vGABXjAEzLcFDBGAQqBbQOB/gvhf
XVh7B6QdCLTFCGVng7QzMdkMztrSFmlv77Tp8/9HL+ZT0rJcEG4YGXPJgH8M
GR8IDMIYWZCJivIoo2zMHMxB/EALgkcWbeWAsgPxyFohHVDSKGOMCUpcnMze
wQ6FtCY7fydFqySwWXZf7hiHLewDJVL5xF0MQruL6VY8Hzd7KQl3KXO9vufe
s1fffClo7+8Fw/Ze1HrHfUvxrPKQ27xwRctxmYfWiBcSi+kNqnnP7gdNzG/P
Cbox/LXTRuxZZMNZTU1NY685faugQym6DUyKLIPvpZGpisohtXXdGezoJ0FO
vWPKiamw+OpDjRrh48YJN3jPRV/tj6yqzlFudli8qdLvkP+6xYwfe8AG+v5L
cshsSguUr9wsI0Ghp7nC2t62hlNF95mmwqTLbFCQzEF96iDdiMzU4zafOcwr
eTObUtvjuQ7nPPOMn2pMdvIWcfGL1qWWkEZ+DsazVbeVCe29f4yHLL7m/rYh
2+sZTuDSXvPHuta0UWk3Tp0q0TTd4/S0VCeRLix9lGRLsPD8K1dncLqUT66s
hnkFdpsRVjueASp+ZsD5I/XFUwKooX2cgY69VnJBhkKXKAXOlfVBIz0at5A1
eT12MOBIs3hJwqeHmA0AZ1WNqusduJ05i6IwtyncZ5NGf82dpKdo680O0Kmr
ji2vtWN2jrIObNtt/fllK5b6mZzWk/AOx8DeR1ukE/ZcL+JNpS3csfeqVw6M
67AhrfjuwS+XpQZkTicKKSp8Gpe+InbtWqFzHM0Q9ZetR7o5h1mdPC/sCZM+
/tDp6Sisb8DzIj5rcuf107GTf2QlXKUv7hIOPFXwBXZ6j5sAUvxm4TE9w5lY
Fh5FaXtJ8rAumrFbLDfP7BDSCvnwsELSTjqQxMn7rNS+u6U5sdovlftkOpMb
8NsuvsyDh09YSD/llzSfbuCyxYfReF6TBuUJkO3EI0jtL9jmK+N9t2+3AnM0
0pombNUU+8P/sMsFOrYtDX9cazn0MejuExB3h2DXZxLDqAIY134f5+fwe62d
O+fkZoTqsbslZN5cCehEmvOTeX2u5D3X6yb0qLPhoLTT3P7Tu47eLarJUUZr
Xe8tusFlfw3dkNJuFkCeNljyAUbx8ml2xe5mX2dJhNHEAWT4lj0KjOT77G2O
9Z54KqGNiWZSPuDxwEvW+ZagmnBfGGePtLR++Z6WksqbekZFJ5g85GRf2F/j
/TPNMUC6EMcj4n0KurephT5XNe3kpffXQYeL/DyOXOvcK/fJ7QKsYredAUdg
/bVLmmbN1gJSlVKcKPpG7bYG5GQLaJ80SUBedwVFsACVaI+kS7XCNhX6HWGy
hhxnFerE/NOHJCX9oEEiN+35ryt9Da5ISEb7cNncnZeqPaOnE5jp9aHa/j6F
7DEPM/aGw/F6dz+8a34RK/AprGzbOR/ufFG0wn6FGfSxoSO2M6HzUgLJtvdB
bL4CR8xOHc1ryNOsDNN8k8m69X0QlOmMeyCNDuf+oy8prs9x3xMJ/1Ri8Wer
2oQD24De4axtk4sMzH4BPZxnkgN2bb/xcEH8ivhBFmOyBHOaourr176ytl4+
H2z72GhMWINj3sLpmTf/bfuj++/42/XdNbzn3FwWKObsmeqWqXFop4nfZUfO
8urY8d114D/3Rh+rugX3qN1bGMwVZnVUvYHsxU3mEq0UUdPwh6dryeyOZh7z
E+9/Kyro1HIZifraskPt6+4Y+63N5zPEnF7NcFzTTX2kiG/Tq8brnG69m/dC
17LiQ+6Njy/2v5tf4Joy1nt+vc3N0YRCkpEKWbZnR86nbMddN+tQNkk1W/5g
8wTx7Wf80Ijf0vKAb3tBsfqRqpYb+Cu7Ryv7hG+dgZWdPBwltk2FxTSSKRJ+
LI9J6Aq818X8Lpb35i7Sd6cXfYd7ElxQeZ8+SglMXvKxDE5SMnuj2pRYcoTz
JebjDnYyB+FM8vGO0c9z5gyOJ4zoY/6k4nzVWu547LbI60JLSgPSk0yoql0z
Z8s5QnYZv6aMqoEzPILK7vN9HlM8bUbnw/5I8MQrv48y952Y6UXn7zjbCLH8
IR8WxSp8qONjNt3uOYfOrxWoej1lBLTktbJA8aDBtgUJkUtfcju5DJ6yO1+Q
vmZC5U4q2V0oQzc9XNdpIPRHkyB+AtZuqlyiehw72H649INKRfb9LotiBuTd
q6kjtIaii06H8+zlvBRG41nEr6v6xsZ6QmnoVXNQozskgipugUBHqk35xK5V
Ob0tPaSUJ/iRrpcvu4+b+2vEQvLULMqTjxSdkHLfsuWTawM46aWS790jNotv
uZjShNy/nBmldpUZLzk5ghLBwZ6paKA/X9LCP1IoK8SVJSv2FX80uGB5+vhX
G4qg/OmnhxkcvmIbq7xbPkvzqdh0XArf8iq2XXnhjyqqT4koG5Nl/wPcEXwW
/7LvgvDz8a60QYTWOTQo+Fc8WjyiQHEbZF9uD0e36bHjQyY1TC4Hb7B66Gw7
9hGJ16Hqa2KfZnFLhZVmNcfcBynxZ8CGK48PV25lNz6iMZfs0Xt2AL61Ql9G
tejTfYpQWPq+qrtT4p9emopGFkkeM9qeeZN+ezfnycGjgma0FGhupvvjTGn8
4ieFD6KnZPW5QrCjamiO9mDyUX2hk+hkkxgnLvtnrqebSs+8f+2oOLGnIpj7
ENlCrFXGwxy6wPAqsfC5wq82rZbTmvCU8smHyVZeB0KYDoyaPbCS2X/E+v2f
tdbC9x4Yv2+PhIoY3Xl5VWuL38mAg9aogleGtNVbpb7ImN+wbYCMnkHVD56p
zi4Opy7QflOX0nVE9K0NFc29/Soy13IKLhY/+uPrXV1H5c9DF1IdpYriCg/R
yUcqLvS9CgtrCainMRZsUNdgwy6YKPedq89UjC+X4BxhnhI7c22U1/8lJBdi
nyVa93nx06P5d6isR46MnQpGlAOm5eNu4vl8eodCh7rOoudRe8AvJ6hr8wZQ
lAPuLEdl1ZuR+9zS8qnFK3qvTm//aFIPXzffxIkk3PCCv803VHD9fAv9ynxf
DahUfAneVzKM8xYyfWE6BonIOnNuv8zblEsyL6Xw/TGnLJ94YD6O3VbOZhBg
U0gYW1QxhcI8ToeeSBw2dMjV4mUeOF5gY/7QzDj/QCwI9XyKWaRq8KFX+b5t
HOA/CyPAA3wfRIOlkyb3OY9wCrhkMrWnp43S3UDYBDAZIjP3nHMK7Jo8sDvw
QN2jwZgqkNceTpMFAQYOTtTl0HpXo8BzBYid1e4ehXvEX4WEXApCzUL05i4W
vxZ52Hl8yNP4UdVn/ttR/TOK07acY+Pez9gj/KPDHoiJ8YuwXCB9UqgWcjvm
6PPirLSWmPeJD+NcLr2TMR5veW9EfoOZPYaKLvzL0dOSya92mfZeGMrBi3I+
PoO9oiKDjUqqseVjGm2H0MPou+Ufn67aGqDO/GaUc0Rn7g8SMZz4+slYWWgw
MN9KG+/3udDA2aJ4TiHNUDwqKBM08iTmPEiXMH38EChIQAiqRwY8tEPZOIBg
hMki40Gg7DFYO2OUPdAXSEuM1VEOujxAqAriUbAGsEgtfyqAeDRQ5x2A7lIY
K4ydui3SGAWC8C7hkDnvIKfuAMw2CMK31KIFN7JAGTuAIPxL32UxAEWIAPEL
oAwAEhsHgAl7EN9K04oZEfyfGQoU9uNQoLxrhwLlWzUUKP/6oRAt4OqxQAX+
Z8YCg/w4Fhh07VhgsFVjgfGuHwtxda8eC+zbUEDEsYCIg7EH8SihTexBumRL
OCBL3aBLE60HAhBiCRRWT/BamQAgSAekFcZsBeEyZ3BblI2ksQMaY0OQE2BT
CGMkCnEZnowIr4zEASk0jzraxswKRWgg4zmNRjmh7E7ZoUxRgECJEiTjUcXY
yGKtrNSN7VAoGwKcCmCVQIRmoIc82gSlgcFYGQHpqSnSyn65SQVlg13VJI22
t7VC4qQxxhpoByvUasgzaGBsTpoKy20ESa7QWCLxffg/qsS3OQKGfEoFBBEX
X5ETdBlSl0fBxgR1HmUCsIByRBujEHInyaB8fGSi4G+XIPH/srKC374JAt+W
2gj/QSUJfzDgkpKSlYXBwGDAkoPJpMBSxBsp4n98vIQ/mCS/jCSfgAzhbwWx
4PLfyp2kIOHvJJTsJPQklPcbkqW/lTswWEpKSEhKikBRmlcaLCUoDSX8SYGl
paQAnmRPyoLJwN/YXLpW7sC/eJH9KuBvBL8R/EbwG8H/DxCI6624kFVhIQIC
XXIpiFWueNU7SIQA0TWtfsq/ujeMDAL74fn3kIBHHWvkQPBmxJhkbYi4HHmc
QZsAGYIgryDgMVFoM3MHED9MiIznJNrB/hTKTgpjbQv4SSBUAJ4v5Q+r04eV
BEMAJsAvLv4tkxiMbHaMFd4njRufO6n/ddFdlCXrD4UP1Fe4U/py65kKqVts
NFCtosioP376XlYHzEc6KsGuZoq33CmDVjergQXKBptK0r68OMpb46lcA3mc
Ywo+XNmXosKCV9gTn8cRHK+ZQtqIf89XdGpbzKfEP6N7a5KxlXc5daIfv9/7
3pb1WrSstOntuyp3e1W6wMOGKjEnFEyK+fYyvhMvYGmqnO+rgFpOBNwDVeY9
fWso9qSRCjbW9bdfJp8KY4hp2MMY4sMQ/PIosyTeZO4uEzkbqSJzJwnzOXmF
U+w0EqzXpRQ9EKUA8Al4sDAPQo/pJ1DTkgqHEZTBijsBcOeYWlxA3zGFVVCi
D2OpZNjDfVhTCs8f7bQzPatWrhYX+Iw2XpNaIPNZVGisPLM9H5kbu7K+Svkd
o6lIha5hkgw+rniWjMQPiYVhKWg2sXCxHRIHi61UlHpLB9im8WBTSx1FuCm8
AH4VoluDcIa6AN19Gm+HVgc1qn9RR1bUZQZHVUR5RJMZZyXEj5tMUu2QUNn9
zm/xhlBbvri3P/eNZViquXHe17P1z0NTj01WztwPjdhTT+x57FNiraT7NP72
t4aBxK9B0X18qhkdSz0/zVGRx3ZLSbx3CFpuuTLnwGso/EVdT6RxiWWZYrg6
79794hkiD/t0l/n09okm55+iiB5U15MKXwJ75R/tJ6t1ELwMcCd64ew54cNG
Ia+Wh1vmNvOUVrPm1PKY342pPzfPcUUfc3s5xdi3JC+DELbILF0G+B/N53I6
lYy+jTm88N8Q2ZwG9U9noZfSH6aBeycZI88cdCjeMOxBKu9hloemxfPqsL4K
Kyq8CTSGaq/9fPzOIuXH4b7HQpRlCSjjI0KUWin12GkAXfl8HdEjk3SD6b+l
iD9AFVMofrwZeFcDumULj90COd0LV2eOfPLcVPbz8U9G+9/OJnmcITS8qdB/
psfdf5bK84ts7EBhS43qoFOz12BgRb3SnAmjsoREl4VcIzwTHut1zxVaxJH+
nKHxxtbEp/eOaPc+P1A+cycgl9XWm64pIKQqUEtVImwhKgB8pAT+xg53IU9j
KujepIKOB6Pc108sTYlbXDpZ0KR+h7suR1NLXAXns+zz/JoLV97dHFVkJi56
u7p+lqwfjiJl73CyHzDJu0JjNN+rzXAJVpiCboua6X+3Y+Ax/DIs/mBC+ZbB
miqa2T4htbMv2qbRthe+ovkl3Jpm0d5R2jrJRXLP3LIXvkJh+U7KA4kFQV9F
KvaNuZjNjacn3hpMTHYDuznvJzfpOT/Wo3nJktkay7+jS0/LfUZZ1O22keWO
rnexz0dqMu66ljFnLzwwa4uQGDO6j5u/Tk/VS1kt7no86n7Oh8TkXrHLnYkj
c7yDbikREv1+red0cXR10eIHnn20tfioPhvcz2I85nLbTZFc27kHdZwTQF9R
Bb9uv/B5GJ0ssfd1Dsb2Q6JQ0v14CrWWU67UZvNs5/eRO+ZXDnf5Rvs8hhel
T+7Nm2ETlXlxqugx/JzcsEuAGEPBNFu00nxu/VM2mpOtniM1Znlfe1P1DWQn
wPlOt9AR710wryJGpm99zX3WNadfnR/h4YpuxyyyCvbwJku0HrcI7a4Uy190
604JzSLz7ZkbKpoJojGP3l74Vjz80kjQCepiuKmhG4UdjZFbKiRZQpJbKlmC
r1h/lqlVhlaoLKzd33xPJ8slsE90xYu5qBPU3VMVL2aAXnXRFSdmmfZ5Tpbu
objIPX7a7YizgeYXRUxX/b0pzR2pQIN78M5tQC/Pc5cDBeOYWNcvhW2ALoup
9T2XxwbEBY5sBvVNyf/BZRWenj4lV3vz7jtWr6kHEOYj2z4AI5wu3TM5tz32
osOkKAyGdT9JfdWlCT1zOiJdL9Bndvpte8b+hM55C+jj2AEW48GgzO1yfnaC
bjGu3jjbxZaRIofcaJ06/6fRTyU63iKzZ67PHvDkvN41fnkkKADsOh8cewQr
QWMRbUhlHj3ZQCdRwAp2aypakuexhKtYF1V6zJtUl25zd+e3aC13yl1FM+qF
H6+jYJw94+FdyMzHohEdwDJ6V/RWnPmKp7ZvwAxbelN6dLfPZGndNHGZ0ZjP
976Ae1nDWxyu6g4f566B10sYdFuMuVRTHhYqO9EPJ+GqCe5NvNGg6+6hlpaz
QOUTLT7LRiPxSnfM0vujnYnL4AEfj95JtPfg6GR9pvtMRjQ3fKjSJ5qpEOym
eC3yCz/iU6JePbcYT76rkRtmHFwxzHznS829G2U+0XbFquXPugJCP7xWk9V1
bxJTPnQnzy+6G/sSS9sEyDUTTho/N97ylCp8SdtIE+ccjPIu5M3tIO2eAh16
MOYyy9Mmo1I5Oc5r3d58400E/8NXpvOkduk5C7UULoNBDofQn1i3uUrEMPgA
Wgt2g24bc9mKDGuHbeuHb0VquUO3DQJ4m1hgK3I1xrhRyF76mis2WRcdlyPP
KNcxPBz5AtBoroKA2LQFBw+SE4c2sIcMgMr4nbqdbOT2xopaYDOL6naK0it4
e3wgEDxdjGLF6sdly/8EakWr9wC4x6XxY8feywRuDvVNq7ds0R9feKD2IaSt
LFVq+AGZfm/KnPB4XhKxoQgGG0rkd6QeSjT1lFsQo3uW7xkCbhmu2ZMJiMM8
uuLLB7fom6V7B18r9iCH3CzAZAKZjByRBEgaCW3SonnxSsNU10DCbD1t7yEd
8I2OYxa0C6ZwM5qjKlzSyIdgLiuKHrYGMWuKh/mCS1LOLjYKr58c5WiCmT0r
NZrdHgs2n808z2z3PksEZ7sfMO/UV5ElcPevaPaOxP5oHtiYi2MhYJ98G+Dq
mS7efs/2LKORBYztyd0qqDnpWV476qZEy4HuqQTDKUflKqVmOgkFJdtPrML9
8OtnElLw7O/EaSLagwicatRFH0u94ppH0ZmolPfoyQJAfnKmxgXWkD6DJvN/
VqfaaAmsLaamREO7CxlvL5TAYZ2JBUVgt+xiGz/RBUVpk4c3ili7p7YTWLp6
3pHnsNhgXr7TvNKFZAnSK8j50hXZvZhWAAHmDgbOJ3m2RyT/zP66aNAtZH00
uxEgsqFjvodlemb3H0TOAYZvJIgmrP3ALmAR0ywt2G9WteOcfxuGQdjDYfID
y+sdvQPpPSy93NWv1ch7ylUUzMDBLy/9b7WKNB+Gh1sv3DAMIquGXMy9gZhM
Pe6hyS5fsmWSRzGgbJs9701Vkqjw8GyJjgIRq307HtrDRVTaLWBZSoHnGKJP
z+fuVGM/KsZwTkqkzA1aJ97BEqtGLpeVCYdQjE29eQWXjblwPzyZ4ZyEdp7E
UTcoZZd6pa174UXm9DuAZ4ZSJqRG22XGDrFIDdZ4Oe3qvusKLOQ5hznyAnqf
6Elw/pmDEwtRIV9z0UdbFlwzB1r4F9pFBdGuwaKPBwR398M11abUHzqWnen7
GIWdfXJe4jydqcj45zhD4ynannuuSd7Z0cmZ8BsLRe0YksE5Xma325f/ZHfN
fXG1J03ArRAuG9ug7970Fa0zl8nP1xxQU6Ag53YbOu8wP9b15CVcthCwGgOJ
9Qf62wZf73bLvpY7kUjViL/bAXm8EOwXndAAjxByZEx405n44HJio9HseMcR
D6Hkx/BSjdbRly4lJBKDOg8+T3Dn7y2Ga5572w7jc2vKYpSojIguJG97sqAf
FR3W/sALYLByeEdzQHSgdt5LyXMQjLWW/mwwzFGniovCDUqLujiRaOsS7iG/
U66XdijvPJewTOo5+qbEpPuzpbaz4y1hRehcnGrrRCW8gIYFOadxECtRaVoC
T7UT70x0mAseeD7OH9Z++eyeyuFBs6k2/8va2diPosImwk1Ow7MuhJDt3kt4
HjAek+2AJ5gXi1Wzcpco3OUTnfTxBVy2GC5r6JbK3uf2CJZvtr0uOilmKPHs
IOvs9Uk8fR/gAxUBIQq7eRlSFMNdBiqHXc97GZJ3T00CviYm34yXzN19ePtk
E8ucCS8Q5bGc9zlxFQi05sHd7O+3oLYbhLDjOhNnkXtOWzqVyeexa44Ww6eK
qJNPA7r6FNDsqwtRjWCbzSzlf23VoMvmrotefLBRoHMkKhzVZuxXbaEtl9IS
/UWkmbk0h4QqvuBRZLRde+yj6D0XohChXM33QybRbzqL5+2/QmZqquDPhtVa
4BmX3miUGaGKFvS7XTSmap7HybGdyppQrwK+BPm+0VRsSiwAjM10TS1cW6LM
7dFIuKJ22vjzBV6uK83qMxXO40OZg71fnmakLTBpuZ2xjEkSTX4oIWbfLJq5
oMqQO8lJ11yT08N9YjYOeNpfBfd9rN4KT3civ3HeUnU+eCKgaFrhS2JgtCyN
hOtEzeEZtCL8DkW0COmYiwfKM7pK3iz4ay7M7Xad1INptH51LBVrPn7CPfKK
1DgKTD8gaBI8kYjpTLyrTKJ+79kj5wuZcI+uQ4/zBnhz6eK1XMcY2Gnvu97e
2rM9el/K3Ev/2jftFq17gue8n0z5ENRfYgYt0XjI6s2z5UEldyZSNY+5FDgK
niUrN3mE6UncI5UOjCoKYIz8bpYZzzTblFjWRE3BNBoHZFp3zncgkt+Ks4Wa
zWdOep4s0Osd9n0nPtgUfxcnrO/bJOFEWQz3kPCJrh7sbMwb/2LkdnvvhQTE
nxxvKodVlCwzb7M3nHtJPeZSkuGi/nqmxVH5wsehZzUEKUbpuDtbb9+rIYzL
MwYGGPVWnDR0bjHRBuxGOdcxLOdw+avYq8B8TO3uuujtSgsL+gLm0VRKbxYl
nvAAwYn79Oz+VkM3eJqJWyod4FlC5+ZzbQgYVHrKM9oATdgi/Fb3K/azq2YB
R26IgVfbmYPPq3W/ziuUxEpDKGX/gWxvy9sD8VU3NA4p/ATq70UwNBFt7lf3
Ethcxzf2vKlpR9Q+hnLhW/oWr9+xhYs07Z+saemil0kE8kcmsqk3Yn8MqmvW
zkvPBn9Jc188CySVhMaCorl5UiAuZm2RmNruP+dyl58dxTP/peWtn1W8s3X0
B/FMuAu1hOYrSXeeDFXsvMndvTMPACMcs0c0X4Cg+OMV/R1jI6KvzM5emkgM
ZDo41kI+NehXjn8klizhisJ7Y13I2fs0k/Mvx3LXkw+qC8X0OYdIpPpOXPz0
VuhLw17z6DxKZ9aHiV+KbBpDos7RF8NfafG4nlLLR5IrU9V/tKaWcO26EZ3w
yK2vdee8JjnMYa9udP0wW5OIl2tOjFvfS/kxl/b58bYovypBin54vOBDbzbx
Y9Z3ZbNqTvXD3f2jPehxT8MF3Jz/nG++B+9inc+VkpBxbJqaJmu8Pix3gTmy
6MaFA2daO9TMACvtzSghM3G0L7FCeLC6vTmr05E1KcEk6iNtxXDIx6euZI5V
CkdCwtjcC+bazjjqDZ6fNG90G35NI5RrOI+n8nKbUThe7J8wDWR0NWfIPR92
ABERp8gRUfe9TYlGhyuH56WjL58jOVUA78yC9zoP5UjkuS/Q6pfADwrquJN5
f7obCAzmdWeiHiQ18kVOZ6IZMpZLmN1rpObdFGMWog6ujW3umXUpnaSC8ajL
qtsVH3z+UIJvdkFfw8A+W7NYzbWn3L7P8Q5F6Y3z1tHTbl/nwZ2Z8MEvwoA3
nSry4XWz2DHmAjjlGvCYSwrALuA8ylJ0URI0aK+mLLgtQ1OiGMCKLQPgMQDv
533BHVP1QBfwWeHzH3YyA9HA1YnEA2/FNV9djjaP3kq/Re/zqgh4OSS+sOXU
SbRt5YUr/yv8g/Pi+/sHNEp1k25k3qjOKat6+6mMN3FKU0zm6vP4+dqcPNV3
3xtG1DG3z4Z3i8LK53TnsdxliTmCtb6I6zZuFlSes3hmq1tMnXmM06WyYW5u
Ze/9HhHeDJAMp0lSsdHqQQHB+dNNzQILAt2TKKQu8ihk5uk5Cb4ZF9lCh4Hh
yhY4l5ECZyKQK/lc6e1PPDx4n+ClyemBeJvKEDN3JdpGDt3HUgw/Otk99aVm
kPVhfXTCVVsX7yic2IUhYSCgemp19roNZp5NZjI2mX5vzxT0sfrEEXGuNJz5
/JGBFnJfVUWKOwIlkS/1Zx2+kNNJBxR+nVE39319OkIvhrEnljGQ8U3hNDDb
87mNH6d7gXX0NOJQZGaW1tTct2AKnH9opBVeEOAicbVLUyR9QeMQhVvZO9WS
EXVwftoRR7CdM72LED9gOUSngUyDd8fkNbp7+KvRgEkovBSd7BedNfhU/RA8
1H1SfRyaiHSD7+ue+jjYwDvysWbkKZtrOMGO7+qHlzqahGKjjuoUqXRPmYZP
Xl9oAwabzzDyHv7GF2ed6Hfmfjfd4IHORIv7s2h65FwmR3dvUDS5au5OQG3P
fUjkHKxdXNB/JPbKSgmew0Ku3701WYKgjXaZjCKsCUBASSJBYxk9Y0QMUTu2
AoLi9It2NsK4DX84wn/t2NUxwHkQ4x8nEUXAvSc4Bs+bJLsWwp/EChq4913P
HTngln3kFSA7OEH9t0mg0HKtcO15Q8BwAqmSaVq9OBBF2UYljHVlwo/6uzS4
e6miT0EELBNeiVj551rQjXaHFN8/xUXCZzwiNlms/6ojcVbjfujl2+nT9HIx
NZUhJH4noV9o/qvvGvNfTvGXPnPa9+L8wNC4+gBKQnyr4In4sdEHE9FknsLn
4+xKdYC0x1swyo29jbEIbrv34LkPLDXIlrvH/BrgHbn50VOae4e25rUZ8z23
POfM8AU1teBXYu+QWudszD7Hy4RwaxIdy66Z6k949WC8PnGrSDKJNYVH/bWp
fIZ5q1TKqFPUc9uPkPZMUR6KO02W5UiSUllZcKk0tcxt6+fXCV+wkxfa1UQm
a+oE9iS0FG27NV8QNDu5x7BuYNja+PbrXQxzvIk2pPqMDmiwm3AfQ6jnQttN
89ne1uC5wcTPd79MkM9n+kWz83z5mHg0YFQ9bqy/MxFFZizEdDs4bOTABbly
+Ejw5POZPvszGBFzci9481u2hvwZdDiQEt+825FYH1zw5rnKwee6ke/P9M7U
jNPuFPPd//C0TCrNE6nm8Ob++m0SlzQtHjNWDF2SY/9KKiLpLes+rBT8yG0G
l29a+e7AfK5kb+y4u0oMJ1XoQl+iR+rXRWaFh6RutIH0bjO3LBIVgy1qScd4
nrFLsXTemgSa2IEm79ox9fN6nqrFPCnz4zzvVUJYNfG9iYNleyL3ZHYYJNFq
TZc8vmQ5JwWL/lryXu2unvswwx2vhba7maPqmEvkJABy/vqMJ4JycQqvPiQW
8vYP8+0rf8vQi48goNzbUz5SYxDHICDFsk3FvDWc5nq3mNi+LaUXtgoovJ2b
lR2f8lNo5XWAuvV+cdWac5CegcAIX0YX+b7URI1LmX42mfv4cfGAH7Xsv6Gd
ZGpTGLbLnIqRt8yC2UCL8QvCZ3oD37Vz+AQKtrl5u+n19Gsr3tojcVBW4TCP
hJh769NWGjePC8Ev02WevXs/65ZUzVwEv6pGWdIGL08RukzXZyMwrGxzm66V
U6DpUDtYoy+wg0VQ0tyri/9p+bxdfUQ2Q/tt4ezFoWyeL9QXBTwm0VzHZjk7
H0yH45objvMaNf8xdxXR05WW/2TQe9B+vMKxzMANkW0yPkUWy+T3xs15ajZm
SA/sVwg/tYv53IXxmrx8gWG65M8ac9u1Wa93ekSTF8PV00gkJOkVP07XwGuE
e3JpmM4fv42QyKJ023pLOULAI691NDIPPQH/UiHqJVL47v2M8FTevl1bttSf
Wu/YFh49Dd7OIaPAQS0Rwpwddbn961YJV5YUozmN0A/O5O5mx+fGIzMDR9SZ
n4pF7b7ffdx27DTLqXdYXNbUMSf9xPypyMyk3uGQLpa8lx/I5jRut/GRuRbA
UV8L1KLuubJXDE/4pNqmsE4gCVgejqjvtZglTT6h8uTSg4Ftfc+4dV3g7m80
wsrmc8uQLZT68DkT1j3tArSB084fWWDIafGBm3H1ByRoSIsW6zffy/tc4G6Z
PldLtu6kH2TVYSGEENnS6UqEIJng0g0ETAYBL99CyCCQtduzUNjPN3+hvD/b
/IWu3hqGQsmg0CVCUAgZ9EdC0H9hH5gPsmofWOBv7wPzCvCt2QduvZ0kuE/m
WabBPczYwrCgvdUlprsnQQqoep328T8OcrI3Ns8JUW7dfAqmTS0oP7lrxGzH
Qy/noNWtv+8Bs/MGeSlvgz7mgFEHmGrWJzypZfJEsPxpk6j5ilQoSTO8Aw9R
e6RxAz7JZh5C0+JXx2KDhfMd/tMILxkQzmd+wNxZTaiCQyuI1RYGNb7jGWAe
/2Hb4PEr2ISox8LltjyVeXVvDfFPGp/Dgj7/7T1gMGW+dDoNYFfOsPZKKV5F
lD49qcCAYAc81UHFmZuIexrQh6eqvYLJiBnQlgOsE0ZxM4o/gTp3NVA8TmPp
HW7YCfwhxvdnAldBnb8jx+atAd2hpnP1nLTk9T+pkrpYEaV3fKvZfViaqPBL
XzzihxKTH6FU011QiK85hVYoJYWyATatPreK01nBcRVRwPOSf6PxmBEefRz3
cVFFPtqAPl6u/UZjWWhgcKO6NOfE+Ov+6DSrRX48NlTu8R7U00fxTKhJKi6l
ruMzhngLT+jZRkQg1MU7K75QROm9ZYxHx1JPKq6DFPjCh/EWtGW2S9R0Qpvo
RAe1kh7GDiwRjTHBs4WHXDNoPHxmAlHxrS2ydbDIjEOzXt2UQ1cRYQo/h8Ln
vju9YwXAHO/PoZZTlOIC0V2i/DS+7SHi/XjwMstMXCEPex4a4OUZRgavCyc2
5ELxc5awrgO48k42IzEb+7nIsBQrNoVwMZmXiATwEg6y0GyGjBAuZraMREP8
LOQfahQu79yl2eZwE5jAYJlnkIpGJ9qAbTt0bFPrPCxgdDLs4R6sTzyFFk93
IhO6K2QDFBNABETxzbFKrVeWdoHBlxA8skmpQArBETx+NP4k3uTsvTgKtoOA
VyNjdpXHn/quowD0RdJgZwjClfknUCs6SojMlO/W3gjo41DYHOqbjm7ZAmHO
79lpGwnkTrLDHsSXVnzOhzgJux8PRpSHeHJrmoW7Cq+1mQerhFk24V0ft2op
Md9pN2KjQ85oJ2mIfAyNCaEV25MSzLxgxzGrzn1oumrHIKtST4juu0Rfu2cv
nLjN5bSF7W2YXY2E3YA85LCS2JOxzk5dklBoraLCA9tPrMOcMhwhRhhO5pTC
gNjn6VTG+D2mc9sLwZ1Tl9CmrqZTIQL+CXPzeYXZtbnSIV8wTsRdYJRenzZz
gNDHXLZkHldnh60uKbUflHFXe6GyHI8hJVme5FaqhhhOPsE8zoOy1ErWXHzM
qRWDdUOxCKXIxWDSiunBIB2LLybiXjSo4uFr8W2OX725NGtZihHuLy833Rxa
WND8gFCwjFR5N8merOTKdERJBZ8TM9gW+yi91l6KQ1MRsXDDWj8nHzmpobUQ
SPJkfC86XjxQtTUyTePdleiC9Nrzobf5Fzlz8ssPRHTWDaK0bs3IG/m0hns7
pWjg430qp9E67CImQwntMPeC7Fo5/tCyirF7nYnp3HygVPpCv/iTCDV7+EdH
+ATyPhb/WVJ0cp6/8wx/KLROcW9JtdS0BX6a6g+4b4NivFjecMTHXtJiRNed
vul533uPOmpR1EqunyLixbGLZBbXaPIfKPeLtlvytKqUFFZMXy2GuWnLYbyj
ykUuNcu9E/JC6vVBFTqpTm+bnx0WSH6cedpcePf5I3XxnJIczPs8T5dR+sQD
MxH6aDvM7VQZK8zNF6lHpggIPwkyqcPWm1f9Ws1zflLamFqJ9AqSE0W6NG9m
pHVArzRuFKkO2yVwJiL0/BaHe4A6vcsxJL4k8m3bsZuQox9g3buHWil8byfp
P6XLWwy3xuv7aBgo/NsWvsh4uKTh1L13rDkCRRDmI3SGwEi0yignOXfEXnRw
xB036+O+Biarz6wZR+g+ClUscPX4PN24q2bEVPBq0/4nwemnFXWuMso1HlF6
p2h93ja1jbALjNJ9F50X/3T3x7fIbB3vHJBpxbOQ8evpwQFgVy7NmCPEFVHA
+lZxEFgMO2JfaFkcWpLnLVgl5+xRl+d5eaIHAnvGLpMXZQefoK6Lz6rICnPq
tH5tEM5w3GXswY7llVgb2gC7IWCnhLJpfqLBah5v5RsfpyloF5xeF+/I+bh5
a/xeredTFp/JuLAL6sc1IkaCTne8VivWudWEjk44qRT5si2bysejF4s355xo
QzRqsbfudof9mcjYbBlvSJX8BKHeF3brVcJg+TAX1jmbBxwauKtIy0LJwvPW
LUol65nzX3FdKVQwt1gvZDGm/A+lQdreqHSNUkEL8Sk3Ihd/1MfzU4xdvZ9q
jE/zySOXIuqZRbleqPPQHe8KLUXQHmM8lxcn1pBS7M7CDEHvvDto8gdvjQXu
NHPF3a4bnozvUeHoMcrg3hEfpn+rzyv3tGJ2Ki8wvDyxdxTFiK1IaiVtDxqJ
S+CKaW0PLDBtycD30wBewEQN+AJjoFYCBFxMIXuJJl9vIEVJYSpE1q9wePpI
kT4H0QSlcWN9lraBaXN3/0l4m/n+s14a4e0SCWCJ/VlVDCCdZvw+LP/TdjvX
3ZlsNXff7XdU6bnyrPQi23J+JdEyDHlppEjylY7imNC7IZS7pDhQ10kE/rx6
kmiXKeyfWF1We3r3CKqXCKlVpkhtw2lB6pISnEkm51foK+OP3MAyOwUClpk6
4XMv2tV2oVL7FuWuouxatGn93OCbRaY3V45JaVsBgi62jjfNYSrWia6iv/Oy
TYtMFvkpvZZFScVJq28uUdmw+I0qtemcKmCIFaOiAo1Vl7VaNcgvPqFBpkaM
oM5CgDqj+WFu6uPjzsqlus10SkSXgehHhOslPC7Ijg2B8neyENjblaLE7Hhd
xB1TjEhMRmH0AGrTWHy9zfhLIzybePdZS1RqiIfaKXR8DM3Ye5kO7/itxviC
InCocKXpR9H5QumPqUFS7Cujc8jjoVewzut0WrjhlkywbXpllJmAapnHcxYQ
VZRNCdxJEu8j2nlmf1383eCA+nh2o9SQwCEO38Myfc0HDiI5AbVOD2YOGzmw
q8gnmlmLKKJgZnPAML5V1P54zrftFsURSeEcQzbWHb0DRm8Q1a7xAbEDqjER
gVXnWXu3/W81i7AXw9N6z6XTFHb0NrzQf9Yyu83HMISsOv3SvN2z+IUXh/fG
1XiZ2SUMeTy1v7o35gXuITqxNz7LhCvEY3b7475pvmsI0t7e67uXbCSZEo3v
I5Gy+JCmL2D3VH1OFFNZxG22mZonwV05ICM2RrW293ucJJXD7Tl6DxizMSJn
dJKkRcg5UfdDnO2vGpLr4PWABT2Zum+ggGgrk2LaRmC8nQKVL2cX6SvhD0UW
h4fuZIqW6d+OFiTrR2iqPdHAOyZp9FndRS22d0986AqfeJsbFBNZ6XLY63QS
ex/B/lb+eW3RNdzcGM+WoXGtCT83f4yRvgjQXYBTIzc9C2M8Oqu2+kOynKoI
y6C2BXtm7Vd4uLsuwPmefgR8knNiqnB0wPkTKdGMaviNfnrboKV7q6wEoW6B
f88Q8a5mNr228ZJGWoNi7rOTYK+C0+wRzyMMzouNFCMi+Dlw+TW3CrSS2MmF
3eqKEf1uRvg0HfahXtf+6RBtb5p85/u6ZR98DDKjtdgjpsqVg20KmwJDHiOY
O+9/bZktQMjG+qRzHxx+A6NsPMFm0NZqs/BnbOCUIHmKhmYtFyonxHnoyvkY
nisthu2cByPP7SsmCiRNNHSm2ZMxFGCxMSiR+zKNBOurOp92x7zhCcHbT3RN
a4KkEnJ7HrqWDD+LZIhuMGJrB8YD9cg97e0X/Y61O18MuR1AdM6QTQSYIHDn
mYNYpfDbI7CtK+J+ySXDoUmBJbjBdIHQpvyTaSTGwLRVThPGTwJzy2nQvRXT
acZLlt/ptMclhSoUSnsVizcWlb17sk2rz5naPsTisgsvYSPYGN+P3HP6wY4h
NVfNpE++8Q+9IFopgLLaHlLMpRZ2My06/y9maT9AfQvIAegX2wHc+LzAn0Ct
GHbCLsL7pz2Jk1uqNrHJB9tK/VLeWx8psDv0Uio5HuHoz5a188kgp6az78dQ
6Bd82WSbNV1BteLg6FPbVP0Fn4XHGRq9fH267NTTJiiX5ixkSeoX2iNa7BU0
jw42ZD3WKOUTTgv2hZ/JykR0FmkpfknFx3svvORCdQaFDPrq9vQjapSfS3Sl
csphVHUN/PxFgCXg0TzsUamh6dmBxZs5P/ANdR+Tc39TIdJfHlGveoIj/uk8
d4NvPK1l4tV4xOyATXXuTd2kz5e90oM/GDAr7eUNnbHA79O1KIPvyUk9coVG
osD6UryfvNldmnzG0NuhUg+WWXM7MLAofN2rf+yFqLPRrUt18Xm+8THW4mne
85q1E7EhlC1u+weiYxPO1AQn8Vw49U4rpZYqnGXmjjmKbSFuQXy348SpSXh2
Puppem32Yh2iuTffXCJYp6yYhaOZ7gmWM8TYrZinyd9LdYQ/YqFZK+mFOmCg
bfx12F9exk+8PxDKnlvcHdpEo1RJEeSTcQAeXLw1Jfjj5P34UHE1zqewI/lI
HbxKPxUfYvaBRnM9eSEgN//02qov5u4LPBJz/Eo7tkUnW2Ga6SNGIrr50SOa
4y/pi4Bs4c2UCqTcsh/Sez2inhB+fZh8m13brlqr3AXro9upc6uPNCX4Q+ii
QRILEDAvTg9ejwJ3Jj7tOhQoXAgAh7aP9AMAH+u+Lr5vPlSM8HCfm5SGA76h
BdpZfwAIlp/M+RnAAd/wRIXl3Y2Hai2ILUc+p8xZjHNrEU4TnIl1KiCcQmvf
/vVLMKtsofx/Pdb4FQdSVDNb3/JiVXz/nf/O8DtXc1Set9axzasWUTw28e4/
3Yy415vrr4p5r9EAUmR+emb4qHl8UowNmw6ei2J2qu+gOvIya8gH/Vyv82H5
u2PuklnK4bdP9Ym9vKOLjH5acDppnDmI7b4u3u71lyZF7EkIjQ6eimCH3o5w
JKujlWjMr4tb79DUElFk9owaiTD9OM+G6xruGDsXVg2r+mCtZ8Ed1x7/uq5n
IfcOwyFFMmyXjdKgQTlGPuh+cMOHfoR9ABBvs6flV45iHGp7+6beK6bsmKET
u6MEbruu+Kjl1CBnCGv8aSOpJwi8b/Wot4RTd+IozK/TgvMgm7V6cO8fLjyh
b18jrCnpLnBOvELU5Ib2tVK6NrVZ4B0w3I8+XxxM/Mqs1FWbrpH4cmfEyKwN
vn4h06n4nGiK0uChumD6APfb7X33IzhDKO6IMPM3ZNf2pGucDaupoikZqVUc
ZOfZ35bl5aB2/smb6Vx03G0m/uknLB/971XKIXSu5MgdeVWjZQHHKVxn0046
aURpjMdKWPsGfizzjOv5wtv5ZBFJL0bzCMHJUR0mHCpcO5IjAblOk2/ujjtG
o5QbxUojM9+B1uurvMkYqdFGLvzwbXqnk7sRYDhK3URDyVJHujLHZoREHyMw
LMUxpVGR5+YO0rq6xKgYWaRoWOB7qiK2il5NTNeoq8bwN0o6abEnNjE5+7/c
yaBkzY9EN6f6xUfR0XFVt2VVPWEpdBRJi59h4q/1MWg5lTqrrhgGRA0DPrDz
OrdmSs4qv3OaC6Tc+7WNbxA779feej1XKeGuzav86wst4xjfNuv3ec9bAbXZ
aXDL4uqDdI3todn0pmnpGhxnK6dlDAE/AYjV8moiFk/NiRWrMOxHpBC1hAvQ
Ei79EkTkPuWENNWrZUcv0+QnvXaaO6ndKpymwTpwQKCBPSnNLlgRyAB26eCT
zqdRpWiUbbu7ewOd3naR3lq2QFFNfqd4zP/EalsVrl20GF/oxW8j7C+nZl6v
zinzextn4vw2x5BC7SgGrTTxMFWKly2cfpy7QUrjNZ3SRIJC6fiH8LMdXFv6
gm+M84w9uY5QSGvRGt9niadqqd2uBKSxbxDxSxGaRQ8ZnXRAjFrAO6JbMlbj
RAU7hpJdbVJ7WFtyVTfr3QiMMsG4hMe2POuO0JNAcUgo4bBevGJm5wtEJgL7
xRBY0FQuxmycWCFFdSVIaFmaQKdXPLfcSB43HxCmqY+WtRf1qIuwcFH0RMLe
DaYodbG639WM6fAxuOdoYdBRs4PgpGJZ6qWCgka3FVlkX26wjHd8SNju1rrl
3RogaIlVtjNpEDkmMsrqE0+I/3bLliAMOPni53M/xcW3Zpvix6Khi1laZfJA
qmGXp8subGeJP+9Sp5as9P7VZYDPGifOgyoCyV6DPjFRJVF+KhyaBylCoU2K
KgFS1QnmFki2YkSIrSFbEWEhDbbGwz4Pc4U8r0QCtvsKTX4LIhxTLYOfh2gs
8Hsh9RT31cXzhyrOP1IWYSrPafQxuImO/zyt5/dxvvmAAddEC6mS5eN8u4Pc
mQiA13s2ePBrLYsM0hoRpcE7zuRA+PrxBUKmCT16JN/KXVH7Vhw/z8DzSlKt
W0neJEoh5nK4i8pE5h7VK068atOyWCTr2L7XbM7HL94ZSGcxxInywOKjiAGV
k5BikR8gQyAcSA4pRNwCktr3B5bmAVjNYsjiVHZyTs24IySh7H3E0Frr1qMr
uaf7Kg8WnrutGlOjiBJ9iFwki6y+a8Rdp3yDY8Aj9zbdKHc4YV9ZhM94hHav
YepQWi2WXaNctVLreXHBZweenkuxN/dckP4PZh/rArr7AW1zcZ8WTm6RevSM
7q01ZnZy/4tK6v5Xz4eKsPbBLrpsxjL80tRw6pqSC7tzXGIN8W1IUaQyg1aS
NRUnVqJ4PECHPc94ekw8+V1u0S2XR8UCwlXD9OISubkKdvJDg84WF1DJrz13
dZIaz8gXI+DpXvXtmffdcWx2L8futncNsOGK2FzdfPfnGviacF+K//DnR5r8
il3PImJyKyWVYjPsP6CU/tjzkn0UpejabNz8pLZJwae7o3NbT0/soScptC9k
fCaMjCpTOyNe7sZwHrQrkh7eT8dHq3QVqkTD8eho4fnCMPFJrgmLU+K67EKs
uHwxJWZ6sXr5b88AYmce2AMehi7hc/LAfB3gJWbBUeAE/1zcUJpWv2v08Ncp
wqOJvfW9ow7FmCjHEoQtY8I4ROZRdKh7UaboWd3gV9Y1lo6uroPl2bXO3TML
fIHPdoV6zNyxUvHLx0Q+2ZGmyqzUwfo0KMAZ0s6pSRn/YZGZBv86+cqINIPr
XPDz0jMTh3T6mo9KNL43YpuWpnCd+3QshbKL3+1R/yvEl+uTM9OlzDrMZb5z
Jmd84j8cSJkYCdqdqRis+7X0IY3SpSNudji/F29untlLP02jfkfisr7A+D09
nm65bcJuX8JPz3wevEJXAKDhl2lq3jFVHfc6rfY+7+xr67tlZTC3sfgaxQIW
2j6pQsREoYkhm+CJzrwalcyh0T/uGEpbG7EKSo3pV6QdyW9CQj9P+yqSuO5B
42eQUACFw7sS21CL/ce3Kfl6/7sB/xNEv9/Ou/4Inm4alDer+wN4D/tBmiP5
s2rVJeWIUomer86hiAAknvA9Oj5qMbjFe3BHqIcSa6+xr929N1PzGvHHihBT
sXH+KfHdEV6yTvO+Q2dvtzUKPIvFjJ51VlLHA49tfRr2j+U690TMVE1Ft+df
nZwDPSt1NIJt8ZJOqX2kcJjX/3H1mcLsjCpMXNW2aQ8Ej+mTzifiIcLmwyET
wfBQBDtU2I1AYirUGbslyE2fN6EQYcugOHPeEm9dwmMVkfJJg3NHPGtv55V4
x2KE+vieUA+j4PGRd4ga6P48ZyZn5nCzdqcDoVtTlR+Ixai2zeXmo9NPjSvu
GjkwIm+Ji7Y0oN2+5SLlutDT+557ynOl4PSgUg5qpVZVRFxsq3os8fsDwneN
uM7Wr/il5zRK7y/rzj+7aGGz40ksdutBvUizIom+3LYcaRqR8OdJvdOtVRid
sg9knJqX2kLIXAsQT8Zu4EWlOLASi968XJ901PqKtPpEcHrGeMXaLCqtS7dt
du4Y3Nb3TNiyCF5C2Go+kl+GFD1wiC0USuXJw+SrqBOnVaZMnccvwo4LMAJs
33S0yOZbhjs/SmjObVdbv9UMhfwrxbyrNnF5oX9/ExcGWbOJq+f8QHCfNK6i
9aR+4yK9mRHdze1Zkp8TNV2rBAQMrVpsNA4+ZoKHmf31xij1NbzCzUW161Al
PRirVETxbfoA3hje3dWgnVRx4awmwjfwrXyXz5nXGVr33TsOCS7TYJV+0E05
qvbA0jNI9mSpPJfbDXhGHd/lk+bzjilDcZ5FYj68VFD7LdZbVXjYvXA7LCl3
eINgjmjq6/SkjpkRZe/DeevYve5tr8yze2somdXoA6lp/9u7ubnTzN6VYESp
4AmFg4imIMXiPxSTblZHaUDJTyGuBk/GBZ67GMgel8lCTPx5T+JVA5I8vzf6
bAvWOBovhjc5fDeOjG0QCM22MGvKo+HE7TnzK4jIY5p7VzWSzJ0lbubSqOlc
DWDpFDY9q/itoNe16az80pcdjCHHUq+jVNNnS+NGnS42Hg+lDGxUByPYKvjT
g29WRHkEKCKzrsdfMZmk8tEgy1DhZGbKSDSMQ4RZG7EdDRcDuhdaHVAiLR1g
o8ZTmUZoKcqbwgvk48HNLxEnoS5lb2Vv/xmzbRHTPT09w+qG1V7GCs0MoK86
Px9WP2h/gM7UVaNc1nOpqxoYYRFJIZtkyli0RIqVFu1mFufc+s7q6RIXRxiv
SsV/fSvPZ22y3LKD8cheb3IfjXo5xyUkNO3y6rwl+8QzXPTe+xstcR884uuQ
luM+/TmgT7h0mWNyHwde76SVMTv4jJ/r+mxLrfnn8ijlaXsHkxAqLOFLQ5V5
LT+S1D+J9Zre32513967FX48xP1IggPUxlV0h1Vqc24e0/L4aZrkE5YFQCbL
fvUflimZrHDJG5qk570gYAJLbyDAFe+daL0O3IJ00sfQ+KL4iVPu7fls4XSs
YUIuYTP3OCOBjWqu7Hib7dz/jG6x4k8qumygyAD0213xwjJJtIGba/c3Ylte
8Ai5t+/5IA7kK2Fttw4QNgeu9roKETfdwuQU38RxY/rP7i3uWanohTeHDepU
1D+hJhwnlS177xcX8DlAlkLKvzbaTBa3OP5w59kOT8fxuLEy1n6BG23vL3K0
vPWLcgj1sbPQUxRhRAr7BdA3d418TUkO2DMhX91EJ1QmwviOcR6J8WFKyQ2I
fQ6hNI4jqWgivYKssynJTDsidKG7MpbNNT81zU8j9O7+BccS1W4l6uZ+eX/P
XZz7h1TGJmsT5Q6l1TPurQrmD+MOdYmLZJ4ctDOy/8PFOK5gBBXXOESNxsSx
OZv2xpIzdNH2zmCCw7VzjI0Y90ZV9ICzzAarqHut1W5ZxyXrHGIUIyV5YP98
dtbqxeOALP4Ij0E9LTlhED2jSnqix+A7gLtqYyn/YCWH+TMZzx3de14pjM3w
OJ+Km4kFoKLccgzjkhVELhvHjfjwDrol5+T3X2rtzxq0JuB4VNTxvCiHnq1e
vth0kNc3+LkJ28vyCtk0P4cXVfLXUeLBjrT98ttGk3aS+/DK7X2ssfdVZK3X
H3UBHiQd8pPNyXpt1KVa/ryHLfm+vJfvYNuqSpso522ZPRwxULqzWP7rWfbB
KONYkzAHumJ5kguw6sStPLF6YY9zyjMr3+dOfmw971Oe3NpiUsfN1pXwQUun
e5BhR88dT2xcs/SRd88bu4fz23GW8SmSneHPZ9P8ahmcmS6Bx+XnkT5M+zwh
CPewx5fPWr1p4vPEMr1+NSmMMB4Apu7929dqO2dNpYypGYHJ8qllMB3cXgi2
rGeoC9heuArJ1z8+n8R0HUqY6tpOeKuJdDZQJWTDTtL4D2Y+Jvw+4v9JC/wv
rRKa4Db31j1rl8LK2sDFmfT5uYLJpjJrxmPrelgWxe+21L1SDPN7gi2tBRaD
z7JSBwDL4k+3p14D08jsNnPO/uikgKfG7W+RT40N3N1Gh7d5ByRf6bWMOzz4
mrb0lP/22BP+VIYYn+2xL6jZLmqLXAJXNImF/1k3L4R7LpZPHx7b2XtDtUg4
8AR1XcCff8I4czocVaO16WVdyjNoZGPkaMX2iFWf/Bz8fj8+gNL/CB266nOA
lW9A3GMBu+D9dQGAlW1ofhmp+XSqrxbq6zAvUHbWuk5Vx4VRjgZ5pPcuz22g
cb9LvzyYbGd9gAek2oWR2TjuPMatSuKsn1WqnIdaWiOwAOD6xbcn4fkC1V1s
OeGQQGnqYvnd6Tv0yb19Mh98rB4bdWEyHZSlKEpuLSRlPNKUWEHNZnYh844u
PXrQ9zAqDBvXWuTQ8bmfGq0vp5l4T45yl5R/5qkyef9IpQAaogJl2pbJsyTk
95QbWBvWkdtBBCyfLAaerX1mBYfXTB7JmX6O7tSxqgsAHbrcLz8PrHeFM1LA
ADoi9s4bflPTA7uKkvXctQDsRcII98+AIr5lnChpoyaVvQRBXMzVFqHeYTq4
dSBlqXPHcJNrob4/0e6k+Y1fj3bRmJYmzl6HyWW23vHtAF8F8vMF8luRYEpA
Y87K4VXvZcLoZBn+YSO8Zcvd/YpYbw0+pp8o+AqxLRcNbBaEuC8qO3Pkg3N5
WAjHbnbXzNoRf4QB7B/89F1DA/LpOy33LMuAcy7kPiaMyiU5aiYWctXy4/Kx
Xvfk+t5QPMm7omxjLgcXlui24d0Zaysl4lytDS3DY9kGfa70upTkLevlkkmG
UYpVM0wWLyk2HSNE1vlFcuQJatNBVQixsldQlFDZK9QPyAmwdKUfQ3oWRhmF
oWaNr40AzQbr+GeGMT2qcRQkVPYaM1FfHSmWj/bhDQFXT7SzwjIcHQGr4RTY
IK/ucN5b355myXw4BJ734b3aFl4GhH/oT4AdYWmsbFIp6BjkE8JYL/uKXcmM
zMfDs6rw0v4mVssK7XaEDaqg1ZZLw6gHDc7FAtQk6wP0cwouvZdXn75tKRaU
S08qixygZwvrb3sOa4dUV1Cjv4B9AlQfRYz65Vfse9b38dT1pQUYeSwqY7ec
fM5wk95i4ZGl0fVRiAGL0DluASwL6Bg1XqKiSZK7s7JJ8wpgGlHPsXHeDf0B
cQ/uAcxdyLh3zAcYC1i2jyLDcSsy7HE/xQ9I5lpip0q8/ECRW3y2PwP+7yIb
+NBT1s9OcN5aUTgWUID/rfbxj4WHrZX+u/jxoMiohhxa1OKeo1rxHg7ORosW
VGg+sNy23sxPAYF4kckjFwp3qn0QXrKWZjl/0kw9Q2s2Ebd0Sz3pmgJ4A9Pp
SRlpfO0EnePlnEeMF+gfUZfKBwtwBU3A38uHDjd4BfhI4+qhLenD/syxdwAP
TUNaUy8v1BTAF3iPvreSZbv9W8YdDXSMR9wJ24RxW0wHk2L0m7DRjyP+LJzP
lysvsO5ZbL0cVCdXql5+KQOIIQ5iGbssEg1jubO0pxb5U0l4Eq14xITZGhpz
S3CfA5JibOKGxKqPzX3pKRcWYVS5HtB9F67YzpPWLjTgGwAOfMcqWx/gCITU
jCmR5ZNlvR/iGBlVwmWzF+i6MDcCfK6cy/VzMInrOdD/bjDkkA/RqrI5HxBl
b9CSUyyRV7eKqzyYo/ZuFlL9/o9qq3Q55zHSgsOmznEmW21wH7EffAMc59XH
3W5J7DSOSxJkHbTyCciafy0/ZhqXFjp7uqmL5rp2jvN9utKKZL00Bhq28Byl
5AOY7pT6sv4Au2K58mddBfKysVr6cmRTt75eNdkSzF04JPDmVexnsSopf8LA
tQcC6EXsBbUF3uBT8mjYBDuZfIgjbmyj7n0W+Yaa7QgjMwmP6x7TQdCh3RmO
s0I59Z2GQ9aRJP760CNHcqb0cswcx7q4ZEd9fbFMjICmsw76yEJmKncygmWT
vLcxTtAz0lzSzkkCWAQsxH4tuSTv7AC7x4xoJuc4gG9gJRcAlKYPeIhRA5MW
8diFMPyKph0NunIxmTDaq/mWU6QuYpSyhA3dOPgcobIXUj0P7qZ9zIIK1ids
6MbNIvfwW0qUmecSKnvlp4qorQiVvYL+iMiTaLPNF8u/amu3bDnBGNxHhbeQ
/8liWSFGeLFOF/y1xn7Lmd6UucLxvDuE/Vwe5eFyUsI+QKEooux5v06EdaQl
N9+7V0dmZzL0bjx3YXrfbsTEqAaECizPJ+VtGZzjLkbTTd20HocP3X5AsMy+
M/adfq7WWcGOsjG2JXlwThpUXfbeLGCdUA0dnSV1jks6DyZYaP0SeepeN8At
/6FvNggG5OZoOphwFeuuSp9K8cTekSX1jVyqyPV6bFxSnPVx73hsXMlBg8iM
I7ejs65F48RyB6zeJML1Xlj6a9yKDGByRQHxZeRo9owL49VBaK4Aoi5Vslie
TyvCiFS9Xt4nwM+HKttYhOoOOD6RQRxLaTpocZMWbxdfktyqZsB7hBbN0Z5E
ja5KxtJZecGq7eNmW3QVp6ZPoLXkyErkE314X3Vfn8zwFnGOq35u6hPV+hbT
8GL2D8zRzwGh+CcTBX1eJh/vPQpQXqQrl4+wX3Bjki2zjE0Fyypy95dLDvsG
LyjuNjvqOOxIZjpIdoAObWMUpwpo024GV77qkcNtQ/ggYJ2HZWr5V6qjb9aS
2PfL53idSxfAZIira5AlRJWhmVPFEJerh4Z7MH0c6dVV5v7jVfJqXsFzHrqT
5O3DIj4BZEXUvRX54rJkibQfgxRp8E6pY2iRsIBQ7Rx0r/tpgx0kZJ1udTYG
vjJ+2kmP7z5sJpdLHI4S3tsv/wrX0PUMNv+w9e0MXbpHENHWIzRr8+fnG8aH
A/Z8wPpsn0rnle3zq9cWeeofr50zdF4P0P0chuJqYYQTMP+EGXSO25JqzOTj
ILFnyaB9fCGvbc1hGSeUUWed9kpeNgYIVkhTxShbvOjZPpAQ95p+zN3a98cH
wIL2mhZ9jv1vZpO/srjCJXvn6ytfcGyScbYOC46gdXtuK+3lWImVm8wB0yrd
Qf8o+i7RoixF1lYqtb68Zk/wCQHOU8LRK8vhevTc7EX+pj49+4NAgJOqlru0
pLYUy2ueO9WEysLfDdgzvgQevN8MWB+27t5ROPELolGJ0z4cgN4ExiHpZzvS
W/vtblsB/npYu8mwNfryn842ddEFD7gFdoshhGK6nW3co0X6dwfeqrr0zOaE
/3jUW9Fz267mt4VK9dL0IH00fCaqSfZOHOp+IXaOo80TiKjzqNHslnFtuVWJ
g+DO6rR83MKdmFh7reKDfAgWz7DHszZx9QsODsU4LTn2V+fUlUc4qrnRJgy+
6X7jOB8qjdYOG8Bupve2jz1v9kM0HaFlG32X95TjE2Ne45coB1NuqHKLqVeq
8G7jOMRhGjYLCjVGVBa6udqm2d8l6r5roMI1S7DlGe9OejZBQRZrDaOPs6QZ
jsONITUjd94+WhS+CRN2LhRGsJH7jkdU2DOotLR6YeOmDvsoFWHj6k9ghc8v
0I7LvxK8/XjW1+2P4sdRHgE7BwKqdzSeqcwlVgDLHxTUkSPjL72hSIs/IOUX
4BiBS5kaAvJ8OrrcN+8cqRmPuGYgm8to2R5Y07nXczdGG3WjjpkrVj31AGyR
afvjG02WqlNlWvjhcSfVZr+x5hFOfRemvHlXiYotYgiR534BBFsm5ROgU5Cs
p1nra+Je9/BgMqOmTKv8M2sONBOjGLyZnnRIyp+KuLqQPlQvALhPSjlCqdYo
QENWbGVdgLgk4AUpgHxppnPjVUOxxTiW1870UYEVtes/7xpkWd+zId7f/Mn6
WSFGOBgk8HleLlz1FDMGb2F+KN4pKPJeaQhabrgc502GU6LDO7lExnxvMI5r
430GHTwfF/yVZKj/rK/TlOh9unjKVp9a1j0CtLoND2WKB4XAgb7geZ/gB0cU
GGn6A8jFkZdZEbzZJuPyf0gI2LheD/CprpK3T3Acp53oKfYtZiVkAlpNlS3m
A6WBaqophOhmOWG9To8np/eR9h/3yoVQymYficcHUDOKpQlYegXYyI088+Pl
ujKrPl4x1tH5tkChvwjVo+hAjIPynyfV2NZxq4tgxTukZiNwwIoqGIx/p9C7
u6fSgiW9npEYLcZ9yfajcj42WtMd9Dlk7B1H4JmoqxDAhirlNNZS994ISHga
c0NVZ/a+y/eoC1k3VOrEuCO1hY6tRX9if788dsQQ4HQciDKCSJrLyWXl/Ov1
/VSIsw99z6hyieejjZkFkqlYPsTWkMneOM5a4mH7x2fDU7Lebd28FU2kH13q
uBv8Wyl5jh3x961+IgRYdo+n+nLek4y3koN2vTtmBbUUKB+XD3Z8Ejs9Z1p0
hlHMsfuxmbA++jZmHHCOSfeAmGqcGv0kPNFJVlhwgraiSfPVpYBHmeojOY6l
C1QZXEcHowTPR+wmxKMUsmXv/Npe3KLHs9P7mMTL9d3IhVSPsFzZzXvnMYxP
tu96rnbOZXgDyJtKvz7A2Qhz5Hr1kGOwZ7xegiOTr0myXKH8k1jAiQBwxMl4
1S+MgIc9fgCEYyi0XJ289mNuWSilJzZuAYjX2i6cFITX9GKc40gkptIWSSOr
7yJtspRvwBv2uQzyfXI97Kt2T5tcp/ij2YBn7p9F8lP4t5wkXMYjMHLJRJHd
FIevmnz4r66DquvD2wPtbxy5eKmhdV9iQ3Oe6/Z9MYjEuetzTzyCyOnxZx+F
IsfV1F4Vyb+6weOznUVNbYcs9Igsw0HNl7JkmAvzT1+Z2+4emHCM7Yh0qYkw
5PGacpqPjG0OraMTQMal34RWm4YORo3Ai5Qj9oa6AwlhC7WLDsYvNw8svOA8
npOrdP4kkPmPg+48VvoU7cza0JxrPmhIrh82d9+K6SK9VTW5zc7oOpMS2aZW
V3ExVA7H/MynPJJt7ayhjs1Pme1e0DFW4lU8pnYN0gDxkmJB9akm36tZAfqR
JWaMMjxk7cNv5fup8aNkXLK0u9kYZbYC8YZON0voLWkYOUzWg8Kchi3qXtQZ
qdzUvqxDlR370HT0O0rOMHId6KYm/ZPXZ/wOxXTkE9zFMxIZtOx6crejpCK9
GAs1Ez+LdUaZidi7LDobMoHlUqIuC4nYyjAzdjBqvWMdzJNms4xrr3epO3xU
rclXluH6oiUl6l5a9xnGgxfeLPIo2KmAq7XGwdX5GryaMRqxqmHupZo0wjRe
mQJAExRoiosKKOyHOkDJ0dZx7njDJGm8ogqj9RnTzyZ3oYuIZy8KJR7uvfOJ
wQj3RuJh1dtMjsGFAhzroGxsSIAzh70ggDzz2c1cTaFjKrQ7GUNitNH1J5il
Finh1rwElILzvgHiAQtRAMX7Sv3ZKKbbh7BgqHnXkQZzq9vuMteqh8JqZaVY
Om+SG+i8kpeLyzfwVC0+qrcgQOaTyTI/SGDr3IjEpC+hCvhfVc+LVn0LQkZv
pfCqOOnwraPtfTXPFG/5VD+kUkw6T8M2cy4y1YxND+qjQcasKeo7Pn2uU9yQ
mhR6CvHqzy5ZTcL2rJJngOK9OO/cgNAcjZ0CIa1DxuEtgvzZSCsHzjynhFrm
Ivkv19+SlKcY3nIpfvgEKpHHY+9A0TShZci9RWC7WHX29QsZPvc+mnVbm0Wk
XJvfaXsNEWmn1WTtZdR+WCwjcrRU/hs7mLgz1w9p2hVokTIW6AVrjNTJz1bb
tDmpvcNTkz4EWNgtK0zNqFKw32f7ITXEKzlGlX6qyW6fD+HmnnMNUtSkFyDW
CbvKnnbNOtVY3PkQjiOnuMJ4f8J1yBVHsWVL3j2NRHlNqTWicg/RVXQJiYnb
C8TH+/VeFwwfuBSQF8QPkWWXtj3qlW+/X3ZGtek1NZ63BVy1g9de7+kl/AHz
z4qi2Y4Bs77qTa4s1haKOSfnjgskkMAN44zGbRQ/75Zlf8lzenSPGIJtgdvk
AtpSBk9hHDccZ+0b4I1oljfcoZMNPavP8LYqpCHbUVFEHcl+yzGkaJrx+U3q
0lPUecd4/xy5+lLetPBL/Pt0eR4mgqFb9N28AtVwgULau/TYBhuzq3+FeX3p
76p/oAHy83pfGPRn9b6w1dXCMDAZ7Efs4H9hfxgq9G/92DOvAOyHH3vuE9wn
PR82d1J/YnFR0H5Lc6DVi7rHmk0uKn7WL3i5NGUEjtuR/+VGqyFn6HHJBTlm
7yB2mHyiyg4uf3latds70Pu2QdHHt4fLItFnTA0jTENqE1JrmDwRh6ig5poy
J9vQmqZPS4QVu9Ejzc7ndFA7aczn/0wZivIsEqgwpg8/dyHiRPmNMqR+wW3p
SyYmxcf2Mr4bfXHZseah8IHnOnp68vGN1e6XZapNM3KUNbf9za3hF0ESSz/2
zKqoeLM6QgMaw8omqYhBlF6LidvOlqvAzOgdSBk3fpz44o3qBJ7i2PuaAEVZ
KmZm+V4Vdhq14GBQvADeRFoN4RHcFhe4X0aBFOEcRDzKR3a3liSgr1f+Gwof
VokpNe9jIcong08jmRRYc658zDgswx6eo6Zz9V2cSoe237GQilbWMBavTIuQ
Z6+GWILKDKgy3rMz02c8MYw6XHH6QfD5ijYPnB1YNwXxEeKyu7u0wOqx4vWS
Aa4wFpJfAywKN9MmpZ9e/FBY8uTBl/coyBJEuW037mnHhH+z3xsp88DBpFDs
njNEJNAknFHOBTCcr5/64Wm2kbBcmVeiQ5G4Pj6RKtsljMYRJQwzT9XHajP9
OixCKP0bdWX53jSCel6KYnONn+jEvzSeDIVUZmwf274A86rXnGc1faCpKGqK
oakRZUksKZcrV68XW27aD3S8f3/rCkCzKMMZR1UvmRUmb/jg2h7O1Dr4Ny7R
2SkAf0qZ7T4Iev6RbifWhriVzlNCCY+xrr9RspBd1K9klLVEv6PCmOwfFuRq
wKm5s/fKIsgpgbnMZN1R1OLK0nyWNfuKGNsB9teEn3qmJPzU82IKp3GCH3Ff
+ChZd6kk2tIMvzdu6WDmVtYJyThn4fVat04tCZ7tj+AZEELsyHqtW6eWhNR8
i6LrPnyU3+aa/Y3Glrvwsvbhra8Tn4zufpuzC3namSN/S+6NfaaEvYYv8p3h
rweNIykNfax5y44qRzlauDftHPiaMytXYcyoLDEWZyFXLJopGut1r6u3CHYj
k8GX8qIGNDP2aOSZPxXyJXkVtyBK3/p5OtRxImYeOjQDeYVgN+5wfX+/HNsY
tQUuboLfLtipOzy3K523O6Cu+bVaW5jZEIQiwzrWC5k1WPDokYTdTEXEA2a3
/NS0KvU/UykXIv0iK26BJ+tw9FeHG19I6LYs1CY+oGuwxO00u86hfMiS603B
zpLsp7ZPL+VC3nyoQNGbWVbY876hFM3Ikkk8g+9+thhRBGl2VDWPKgj6eri4
zar54NjzwTTmCBb8sDcuavoy/FDUghiH7YO43Ko/h8N294vyFELeUM68FonS
i/fF0ZPoRGl4jLbvGRWet3/g0jJ54CxVb+O70ee7EittwljQjyo/hJmJjnF6
uWfV5A9eKuqfNOZPHnu+i9NW2OnLwy4FPv/0Rn6VMWkebZFGlCmVVg/uHBhu
EkTRyu+LjfoD93iGpfucpExK7uWPQ72X32HphwsZfN0irJXoxqgtcZ7GlhP5
t0vyZV6IZelGpeVPzt8URb4IY4nUbc3q0WKhnTQpCut5JTB2oe85c+2ODOtn
nLOHm/s5RfeWJFdkPbPIsFYTsB6hv5FjW8IxHFWeVhWk8vbD01b2xYVZexeu
wYO0VS+6ioThDOa47YVvR8cvQfxPUBeLuhpm7UWkCzTXUdfhQAdd+kV90+tH
5accZP2gLwT20BaFyYH2GEeJg5uP7/NszBJPq2Lc54mNEn87uusKQSkoiLWS
3zRqRcUgikfOF4uaFplvqpdbtpzaEi9+TQMut7nF/ab7ADTrRQSDdFLiv23V
d8ZMGQx7aPemzG0d5z4ZRnite2L42BVig2g1+DHssM/JKMfbbrXCc3HDHKV/
Mp4udGgxYlITgXZD6kbl+60/sZp13+tSaDkTGFqiGPYwQpd5njXcK7LDk7yo
ytZ1WqH9DOWYFmlNvShbUwDU/14oieyl0JKWMOCDoPidXuG4LGvtxio9h1yJ
fLGPHiWdh/Q8sfSXwPapY8k7teDzsTeitXkuZ0w0bh97O+pDb9odyuJQ0u3R
IBqQWlXZSalDr2tMj871PfyqT/jNdZyqbkia2ugbfd8zMbihxW7b96bNhFVH
9aBflMW6KtA8KqJBt+eSGvhRVacvri2ChXbsitmQkJetyKNcgLMC1fKMK23n
w9FC4vNtok8Smw4b018H++AKHzSIetHrXDBwLi+yav6MDLPenUreLfRYORwC
LztvlvtEtNqZTsi7FxtVhHqeNoat6MxSq0YtKdZhnuGInnN2HFBjYFA+OL9b
6bp5cM2cZgMIQdMgwOKcQ+i8vTYA5ylfiMz6kofq0bciqB5jv+h82rLqGU3Q
7Zw3rGDcZzoEgUuEWR/YBZuy0pXQ6tkP3AjDJZZVuKCNKFb/Z4381DtMmytS
xoi9C9utbxCUmDBXyWMv5z6pdRxQIHxJPLAzIa6GFsC7c2z8j7FdVwpEAV3Z
F1NLcq/ZlN/n+H8jXNiExrYtMyYLvWwXpTdaTVv8eRtaLAbAVjbvvcQWr6Qc
A/v7go84KcjX+vngzHGyFFLlNV4MWZpXpIm2mcE+QreA1cRcTkrY8k821zPZ
1rKF46003DIiiG5I7ZJchitgLuXG6ArGlCeEozpvWozpTZtlKYDZ1g0Nma/m
aisqdzu3WKkNSLxI+A3JaXfRN/XuHnJnA7GcWaJgMsZM0QeQrbsHKeQOCaQL
dF9SozauGCsVVSIda1ms7AizzjgAGAuKK93aHl63PvA9QUYCVqRflGFXieiN
4VvxRKbJpcrHLgH0Poo9zz/elTLou+QuJOtxx4w5XRg1Yrog/M3HCezteVZ1
gLpoODuXZqwFGpCLpae+eqkOp5/Yti0C9+ci35QOyIWLwqfwPJe/AE/u7Kuu
sBJIN40oYLUoDickFvEc3K6aLTSOzFIB7cmwxpD2NM3tf9ORYz2V/6FYGDCB
dbiZE+WAUQtNpPAB1Arc3bstw/pmGXWG9UFkJAmCxjgy8dikDn1vVNVrtZ3z
npIy1IDiICtqSEybAejmOpI6oFdaVQ2JDqDvmaKu06XErWBlniMV2/DA/126
A4Z6fQ53OSQ1BTtwxsZtrzDeXNUIoe6OU32X5SccfhICrKjaPxhmmIJ2TudY
hzPst0JICqekn9mKWsykJ+wE6xjnb/eupQqLveRgMSZfVFtlyxKdJkn1FL5k
JAe+sgxkVCc114EUmeNY9kAzGY3pjbkouiG0XQ68wq7l9vYSpYMkY9SkNVj7
B3EMzGNabTTkY9TXRx+aJrTRDOHOpmIOQ/wDwK6VQTFHiEFD24WTYBIu/2eQ
N19ZtruAu5FZKcf7WrO4M6zLvd0Xhi1cbSW+Lo5/Shhkd7Zw/cCePKYh0yqK
bypNrn3P3vw1v6j/Y5fffLyZAI7Fa+opORdcs7ayBh1pZoltGfKwH+MMwN2p
n3w53KM9RDtZLBpWYk4l1S9KMsb5AJcla+LeZWdXE44LlSao8cjwNZzPlXCb
yJ4K0TcsWXJTZ9rAb1QGUsZemitXsFZjIlnoxzjv4RxZDssKDZeIOpGIVhmV
j3Uf8BDKzhJ997Jx5mX/JYFuoUypgtnWBWofXBJU8klKe5iZBEVFp+PY9Hwm
pjWLdwzcfJoCO+YQaT1WtW1M2t4mQK/wcrNuYmYoC+p5RpsufYUxr/djLP3i
hUjGazt5Rwo/j3w520La1imcKaqpJuAfEtpz7uOcAn+PEYcrzN+pBNBOgjyq
isN6cA5nKg7442JIMK57TJtBIfoZ1iXPsuofC5hlVWqT8GhX0ZfP2jTDGJ1m
r+G6PRejS86WSz2pBOTRDgZvNY5KUjaMojemZwQYPAgweNsatrWfQBKe5GhS
IVWuDnD9drSBduwOcb+e3h5YW+JHwy438tv3iwKhoGzHcNYrIG4D+78jGmHi
FjDcjdo+pOk2tO+hYgjx2+X3TaHQme/fyAAlhQM66tBc4flO+r+n/htF2R/2
ohYyaV/obWKRKZ2mLOyT1asQBzQG9tQDdjlTzLmPAdBl1gEFWphl+bavb0dN
BhSaPsvF3DkIRMmy8QsmAGC3/JNKeSpHzxvaGfIDOfyCRvSMag1BvID5YYeF
mU2GloxTdKfv7/LFUfZrvBTdqXMLDsTiTN7p2CgUSsTp3YTjs3b7pzgX8fOt
MqZ6PXjFs2Yx4/o9uODR7tD5o1OZJ6cr+nsnTNzF3fp2ZmSJYoXC5KqVcutx
F5yeK86Z0+dzh051K8xgS8ISd+pqJiP7bptVQ4Aw4oLcAAVOgHNkMBGud6Ux
i/ZlN77lRoRD1mBcpbZqZYZTZVJYCfOkHt1hL9gb+08zoro5XR3b4sMdIkvo
xs5C31DSHheE9z19Nxrczdc/ZmWzMEcmTm64G4Ipz1iEOv85PkatQq/B798b
nV6RkdPVLhGAq+77zKHuj5t74N993R37FUbq5ZSzPcP6Kmll5+2wxAP8ps1z
D1K7haJdRESx++twZAecXkoVadCOjxe8FH7TAR14/cw1y5Q0G5fuj7AwrQtN
lHwy2J7vnn7rZba1p06UUzcpbdTnQ43OjjNu7cgKdSDOPePWFF4Szb0Lw46K
akspT+w07NY2aw59HNn4/JPYqTA2s2Y/sZQXzJbwiv6MQQqSJwxR2YDHeoXT
+oR7NGddWTmpm+bhclyvp5doUvI15wXH0bg94P4wktFese7eqmTAacCHG7OG
KrKrpJ5wSSgPY6OGKppGDaPmAK8Q5IcDAwpeLFqR9d5k6xjT+5Rg3Fmj9scF
+wFbWCgMr0jmovgkVb7t7dXV8ehygIrxqf58i3RbBpL33wwx/nnfsu3dbKpT
QfL4abc/nA8drVDEdB2667S/kNhAj3ZoJ+2oSVcVcmoLibUJVkyDnX0ZlX81
93yVn4Wz5b54SmChSJarHyQYElF3hrD5/TW6l1lDDOHV16IVnDyLRL8iAX+C
or/V4GRtW8vacyiwlKk2RVYIkKrDSUh4oy59jYSHWGSZGntBGItHY1bS/YiS
j1bNjz5G8xTA3pSXPNYtFBkCNwu/0ZF31w0Y9J93EXaLVGKrjazuFlrkdOdW
jkEYFSWPJZdieqo4bvcgZ+td3g96Rz3oatw9/ibnrNJbiRFFaKvwYMUBQsHv
5UzRe8jCwBH3W8kUr5zOmiVB/BPxUmqePIIu0Kuy3eigBrBxFE+3dtntRKf+
0V6tWtGORh2Ttt1++fcyKg6ol4hGUsJEmidbRVPHugb8+isyq+z1tZSmvacF
HNSGqaBw0ReDwWGN2Kg3xvT5DaFBIg9h6uX2SeknjEoWVBJeer/JykWfv83E
XyGwZ86Ay8sAhkRG5vWxw3xxVbx/BocF4tiZ+BsIzkU37K5hjORHMdPb1iKL
OwbFPscglDkQ0cLdz2qtOaIbDDOs275OngB348RuQptw0BrhNxH3JAWxLocP
f3qb3nxaPD29Dudh717Rqc+Y1/Xpq0tF7ejzyODRBANV2Toh3hlPyYiXxda4
k2Oiqm1U77lMacekU6Y69uXev4IzSlLRnJK3CoO86fiQFSrkVDEm2GCOqvLD
5iE/+JVcqqxhgcRmWLvBcqJ5jtpEymjHALMDkJeoMxrNa/4z+P6NN6MadRM5
1vEHXG4pn2wtu/Bg5tzn9sLnIkmu+59JBivuyaiq8cYXi9KHsUj4NELgHAm3
rcdeAFpSUZX12CgBS89QEcRQPCAM5zC1xgnfC93DBb96TrGU4bqd29EwZaNI
9mAgstMMGM56lpkdAvVXIphf9r4UQs1v1QFAEUNoKmBYYA1e2mANklyEnGo6
pGcxhf3nX9H83VT4vNSwxAmHS+w4pQkHcjXnM40Hbwcr6zkf6mBm/8RlHdU2
gb1+nFn9VpvM+etkOOOoNl628GzRavk5xgGs4okZTCyh5ve21QPq9J7oNM3t
gLdJiMYhHhMDtzelLFb7ZLxlZWTLg9JTjnVDFEXGnkoPmmv0wYu7TxPf8DRY
2wdhbCZEH9YL+IWVyIfldSu88wsGIvo+8GWcKQbH6QuYOsfghO5wlwpjq6y9
YyZy4WaRZtojb259CO/p6rwXFJFVPvFJ1cGlXxRCmx93u9o2i0tNpEu8Q2o4
B5nlnksydWunwCseh5xcbqPULqGvV/bGyENqhP2HL7+QyhHwOJOdcUY69TkZ
EKHcd2o+OwV5c2iME4nheoq2vDFaYb8oUJLP2A2hNO1uzBruHtHH8fq7P+8/
Uofrg17GITJrLCo6VbYM8IjQDIrqu4jwA8bcFAyfCjUbeb6Pn0dp9xi4G/9y
ezcE0t34pihPWxAO5MUFzWc9G/kluyOAGE3K68oN0R7jyGlr7iJhf1BNytj2
nkuwrOsXDZG8t63toVwUrVkDrGMXij48wNGz2FheqjrjcVa2vCgskbav+1x3
sajXZd228J5PdS5AXBVCWhEUF0lIV6tu3XS93vPlZWlzy0VsVFKFYRTVoPke
EzQQNF7GTS/iBnxwVRJHW+52WOlOQeDwgcqsSOIOexg6MpFlsg73OQslh26w
ViIkhD6PRcNYRMqU+0XFgNSsQLRRzVSnp5cUUP3wF6IKTQFQOKL9IBCRE94F
DTwWBaK2s4m9GhMtXHDySYmOON77YRW30SOkHMapfp4tjG+pDyZ1xZlyuhUn
NDxgrgiCX7UQwtPciH7HGemYeESQrPTF7v+i9lPfso29Hqynu8XHvsE4vqE5
L3erfLEWw6fH/modrChdemLJr4oPG7J14IEVVUWNiM/x4uCLuCbZAlEhavWT
5vTuFJ9KuIPbbF43+wUveD4ccXvdX1RSaaiXltGVcu5m+jG6Y4Qe+3xw9I8c
U6NRNV8ngxPnS24sZOXc+rD31pcRMc8pN77A0q1jL1TmGrPkR9MxzzOKbmR5
fvp0tbH7D3AptxmG58vTfKxNVFF35wjXbMKn5qCSULIP0OIZUF721Dn5uzMC
3efS+Z5PfeHq9cWdvY3zOdi4D8kLSbhiP/ac9vqbblJ9quft4bitAm2W51ee
bXfPGnwfeJZhbO7ZqxwO5/z5cxU14gRGbfkjBvgP5A6ni7kttHxsfZzfIc52
pCorJag5jCQQHH/l1YHpR/P9oYN2GGZ+A65UoYH5Zzz9orORs7P18scPVGxj
ftZ48qx7uzBmt6GXYneByM1iedebmG6F64Ff3E/4aJicLjSvliPNZ8OMavZc
7/46Gdj+ucaI/ny1FGl++uEH0mzFmHEchEIUnXqlXctHM4bqk8DMyzCSqMzT
hRjOV+xq3qN0rqYV28Smfa8Kbs2XcrN4+9FJmWaBfObZPf7BGVA+7VvryyGn
FT+nfPUwBLAmfHHuz+VU8d4z1pDYmPpu58wD0eYsNwcd4NEpUspu/KHjW8dO
nOiMgh/VcWrYokqjdlWLpArdRkKT1XxaRHl7K/+sw6nCm914BgCuIfEGpScM
fgO8P6xE/N9MBT5wPF5IEGW9V0uCk9YWrW7vq8lVlJF9wkXCzPy84sCcfXSq
E9tBmu5SSQVS+JjogkJjZt+O7ks3WNmQ/oHvjGfdHiACkFGHg4Nted9kY2Oe
5OCfYIyfXkan2aO/aD29F6sRgKS/NvI4f0gh20Y/eyjSNY/ti/N+K7rD1GQn
aFO7GslHisdmh8bbjjcXmE6a0WG2WQFxmWqO9azUvTNVUY2Yryb08cdim0Mv
B1K2RZi1wtuG43HGDBXb2FjZOlJwfq38TlbeHroQigtyCqQCFfbQbu3ncmCK
sycUSBkqM6xqKnPonpt5NA7YtxvSvzVr9P2AfVc3nMMVof3c7M4Ywxc56ebZ
T67a5Fu2nF4nMtTn/GOtzGUNpS8P+uCgu8gwmfO7swmVu0+9IfCd+h2+T+xV
b7Easxw4A+1m+6M5WuWP92fps1rvbGfPBvmbutS6JhHrfJ8m9WahvhyyDiGH
XcI9+qzn+vZQRVABw2Q4jU7U4YWD+lp3HsfUekHeOH3MLhZtrOWn0Lp0++EW
GWGSWnvJSdMImwg8OCTHOqSo4pLB+bCSU9R5UcbRaV/A/uHgC5Ba8XMdSHpG
5LQB5YZ7hayLf/DISwat30mG8f7iTrLQd7iTSHuULMbGgUcKg7VDo+yW/s16
QgvZt21gQhPke2/BDXproK1R9lwnMVYmqxHI2BhjTNA2ZiAYH5GXTRDCVv0U
NbH3Sj8eabSpKcoOZWOMstclg/CBeYAeSHtzvVX/RjF4U24QGGukzcbs8P+U
Hf5fY4eXn+ccFuOAsiPsf69mCfJTASk4IK3Qxr8g51Xb+afsMCZYY5QdqzTG
GGuCsrdkI+ORAqbeAY2xkUY6oFilhaFgsACYHyoIFgLz8QkAz1UwJps90kA7
WKFY1aVkDFQUDCRPnTxvABBwwBhjrAwwWAcrtA1qBT/GjpVA7pS0LAjKzccH
NEtiHcyBVjYi2xYoYwfCrRIK54SxM7FnZRMXX+b+vB3KlAwMggms+teuQfx8
fMBkm4KW22AwwtQTn9gst8H4eQnnHNa0gWFQfuiPbVB+vnVtYDDkR3xgiABM
aB0+PiHwOrpggR/pAm3gH/vC+KGQH+nC+AGE62jwrx8HHwwquK4NSli2P7bx
869vE/qxDQIV5PtxHGCgbR0+iMB6/qDQdbKHgvlhAj/SgIEh6+kKQX4cG9DG
C1vfJvBjG1QQClnHHwzMt04uUCjfurmE8sN+lD1UEMb749gAGuv6Am2CP44N
6Av5sQ2YSf4feYHxQ9bpGqAHQqtoONgh0VYoO2CtgnjU0c4oQO9BPAgMxgFE
/C19EI+CjSkGtHx4RkEapCvKf5JPUgDGLwmWFToJ45WSOgmDQiQBJqX5ZGQg
/LxS4n8NoUcGGAt7B6SdA3GxwfgB3SRjZpaBy5L9zfMnv69/4rJD2dtibExQ
dgZQAzC343+EBkHhBMBg4ic/dOUTsmVlIQE6sAUC5ucFC8AE+ARgW8AQXgiY
bwsI/B/h5ocLS1BGEGiLEcrOBmlnYrIZnLWlLdLe3mnT5/+PXnvJ9pLxsP8T
FwETiHhJYWxxxAADxGrMBiJ4chBI3cEOa+yAtUOZgKRR9mgzG9BpIAgxRRsT
4wFOkIKNMTeIVV36NNsyHg1ztD3IFDBQIODTHmtra4UG+tov+W+QAwbkYI4C
AYGMtT0IY0r8AnQm9pTRklQ5pSwDkoJLy4DU4bIaZyQRMiBlBSkZVXUZkKQc
QkZGRUZVA8SKdAQMINIIIIF0IPZ0cnLitjdxRAO8GGOseWTOI61trVBSGBOU
OsbUwQlph1JGG6Ns7FGSZnYolDXKxoHb1sQUxAZC2piArJE4IhKMjRUOZIQC
Ye0Bfk0xdkTebLF2thh7lD0IiEyM7dBGwCO0DfAE6QCyWkIJQn7DuSyBkzgA
ByH0c/gmChwGuwRHEABAwwiDBSgb4dYJ428JwskcbWwOMgbiOiTaxp7YFTAL
DnZoY8LcAChtiPiNgWkF2OEEmaAJD42whKfEoQOexMbeGm1vT2jAmBIxfGca
EKcV1mRpICgA8zks2o440KXxEwGNv6kMEHLaI82WBmBEACcwtSIu1BJGoBfS
ygrkQIhPicL6RxSYh4DKcIlbFOgYMcYEmAXiUXtuoPUY4THhzxqIawEmECuW
E8RKaCU9JaWsxEn4RMioy2gQ79RllImfktLSCOKNjKrkSWUZ4u0ZhILG8p20
pIbk8p3ByaU2xLc2hIyktDZcU2MF9SkCMTaRJVZ4eED2gP4QZGuLtENaowAd
sF9SOsKUII2XpsjODEuQN1FW3+BAhAHCoJJ2ZhoGGt+hCQE9QeNBYiCwyK+D
GzgRT9eKgWB/p5MV0t4B6PNzKI5focwFAegamqBMAWX5K6oEkf0lEIE14Z/D
bDJQpImJnQEg878cGJEGB2Qzga3g+S5a6F+CrhfoyiOOTTFvJrpvUOvktYac
8AYPNmHTBOmAXC+ZNdg2F8dK518QxzfQ9eJYecSxKebNxPENap041pAT3uDB
JmwaodYLYw2uzYWx1PWbKHj/Am69HJYecGyCcjMZLMOsk8AqMsLrmjebJJQV
ErdeAKtQ/UQXVvp+k4DgX4NuoAwrzzg2x72pOnwDW68Pa0gKb/RkE2YJ0biB
I9JqEzb/Qiorvb8JZdMF8g1yvUxWHnFsingziXyDWieQNeSEN3iwqWNaGclm
yIjCIPyhbWyxDqTARXDDImtbiA5ZZHUL4JhXvuvCIMJgPUIjwUuvgVry1mua
iF77O/rvnYlO/DvOb62AQwdaMViHVdBL3p2IZenBMpdLjv47+ApugtdfHqYd
yuw7zRU0QCPpjygIgBv0BwIGtI0DIdWxAjki7dCE6NeeGMMBHYCwDggfvpFZ
6q3uAARAp5FWWJSBiYEdJ2jV93MGdsuUeJdgl0Iie8C5YQlEljr82PitF5Hn
lacIINICYs61XVYal7oskfpRObiWR0m6ysECT5cQ/dB2jtDmgLK2NVj7YAU5
kSMTrLU1zsDOcVlipIDIlnWdEH/aE4YPxPo2QIxKjGHXShEIogGI5VCLIGkz
lB2Ac5XUiGiXVw8pYWbgqtIyCAOijhqoa0hqyADw4I1AVOEAgIyyjJSGjPQy
JGQjuJOa6trfMEE3goArSX6HgG0EIYNAwBEGkG9AvJsDQb8B8W08MA2E9ipM
/JsDfccksBGQ+illBY1VmAQ3B/qOSWglav+m/0BmZwQkT1YYY0tCFmWPcgAt
rTcQIS1FWhGnDmnlhMTZg06AWH9QeBAQW2+kn4T29doGJLOkRsDCsgE+jZH2
KNa1yAiPDTfUAc61T9ZPvTAA8A31sikgxkQs5uDlS2TpybJNAB5CWIy+Naqf
AhqIFIjaQGxG2ZisJftdk1aTI9yiTVk3lAJhRGsASTdYbgBldZTDSnfWDcQm
stwZmC4rDMbyWxptb4syRgOmiyBLIG1F2S0tytXJDpBMOqPsMCAnJNphabWu
YCJmqsQMdIkwAZQw9mVahCFtwKyu4eZOXw8kBmRJy4NeM+ql2f5LfGtdpt4K
pu/zIrzU8H2mf4oatBr35pnPNzqkkBX8awh8V6f1U7OWxg8xsZ7Idwxr1A6y
+sFGqke4ltSPaIJRpkislcNfMLdO1zcgDP57hIE7gnS/f1s9H0Rzt9GE/JSj
zRhayw8Rt8jGdInG8T9El4h7E7pEU/ofokvEvY7uN/F/+0q8QVmtTMkqLn7G
xCY8bKoC3wgtfX6j953cT6htTGwzWiskfjS1313yJpb9X1qKGy7DX7X+a2KA
/yBXG/mk7+thE7ag/5Yb3EgQPyG5Job5Bz3v99W3Ccl/fpQ/IbkmvvoHR/l9
rW9C8p8f5Y8kVzuU/0jQ9N1xEL9vHm6iAG9PeKUMskGdX45P7EHHfyn0JNoP
IBBaymcJASchjyV+LmWqKwAbZFygVZEocAfEOstYjhIiGDbQD+Hd2qRvZdDr
olSiADbI4FaLbYOcEHjMR5D4cpS3LMFlo0vkghCu2WAcCKEayoHQysNO+D/h
Ff1K/PNDWE6MaDaPpX8hmF5l7QniIYj2OMhtWbRrQzzC7c9E9D1uXnYwm8oI
8qMH2sjV/YzU+sH8FUnwDyR/PkHfATfPC1bxCszb0i6Nnb0DiMUIa49jARnj
jJd28Yg7YsAaMEU5GJuvDcUJq+JboG6OcUI5ouyWdobMUA6E7SHCRtx5EHpp
p88Ga20EPMeYrory7Vcif84VNIR43wSDNbLC/dj/G1nCEaaVNIATZIQyRmIJ
rQDdFSRAG8YaQE7oRnxZtjSa5S3HVYnH9yxig7xoowzh30qMCHT+pWRlJfJf
w8ryktrAmf9CsrJBtrI2YP+X1Hd1VL5B+P3rFNaEC5siXxNj/zryNV56U+Rr
AulfR77GOf4sWVn+/pcLeXWk/c3OrOHnbxm1TQj+bbXkAkHW8/cze7hsZL6t
YnOkPbBOUTZAizEK7Ygy+QaGtEOBnAgv7dBL28WEjVIM1mGN2ZD4tqA28pvi
IAjbf0hQG5HbUBYbz9WyFAib4HYEG4Y6bw5YLwfCIYmlwxHfIwyQCcqWcPJ2
eSf/O4LlzXiTdYb4f9oufE+H/jP2APKftAd/hfzfsgebI/+37MEPwcBmUcP6
WOCHxHXVcP4Vu/9X9P+FYGV9GvuLPG7gOf5j7EH/V4twff77izxu4B//Y+z9
7xbh+uT6F3ncIAr4j7H3v1CEa14F/+9gadVL4m/J//d0n5DoAw71W8K/tFX4
3SHLqqssO+Xj6/YuVg5qrX0NQDg4aAKgIOxsr03jAXqr0G+MaSUTskPZYuwc
gFvcGsCls3/olRTLAYiQiKg3TbL/xq7UZmn02kSbuKW+Pr9eH3SARMVALiAQ
Lz8wI5ygpUN1IBiLCRTk+itZ9K8jhKxHuMlb2//fbZD9ZdL5YzAotvqF2fIs
Hz/+13g2Tl7/5lbb390Pg26027FyHoAYsRPW0CpErID+bER4g0MKmx1x0uNc
ieSI1/czoGvalk+Dfr/+gurKe3fi6QiQK4htXcT3wx7br494I31dj36jrRzi
7cbLcLNDGT9Ze98Dzx82y9dEVD88WxMq/PBs05fRhNtNM6G/p2PQHx3ZX2nX
BhT/VeVar1rrFevn5DbRqp+76p+PcAN1YNvY235Xgg3f5v/wHn7FP2JtTQi+
lmDWvnteeweMHcFrEgzedzMIuECi4yd23ch2i4qtM+kmxJNJpD/4SQBwbYAi
sgrj6nRfdP1bAJPls06rNxKA26VD54Qv/2z9x/f6H3OckR3aBAhRIQYrDsDA
bmmYQFDw75QG/UX9DwQGtK3U/0BhsC1gKIQfAvtd//PfuH7X//yu//ld/0O8
ftf//K7/+V3/87v+53f9z+/6n9/1P7/rf/4v1v8QQwYbDJDsci0FXkbErI8Q
rNqD1KVkuFQUQBBuCBDMGtthWOwJYeZyDvjtraA9JwEJ4b0bxtqIGJo5oYE5
Wu4M5QaDpE8pgEyxNkRfx2WEtEetvH0mbr+brrxqRpmsjlLsl5lbxrMcBoII
3YiPnICgESCqYHOK8ArhPMIEJ/JDI4LQaOAEaMsPZRaEd4c/vLNFyADf1GWA
TzVNGXUN4qtsovSW3v6wLePWZV3/soWNINUliir2S2+pltmAYx2+Mfe3+ZCS
UTgtsxkf35EjVo18U+6WYQH2iGysf8eymmtN4pbFd0KaxEN3378jUEgTnCzG
TooIR0TotnGB1nKHJUAZG0JmZbIZHlWUmYyJGYqIbvkc3Jruy8+/YyH8qRuj
VNAqS5qxNAMgECMrN+GG+I87saqoyxmcgiM0DM4oSGvIs7GBlqGACJ2UG7F0
OoTIB+salWEjBNfcGktZjMNqAOJcLj1epsv6berZVuLw1Wwti/6v+FoBY11P
eK0WLdFew/pqTVjL2up5X8udFEGmUkCGZ4exIrBG/K6KtWaVUoZLKS3xpqqp
clIGATC3GliBWM8GmHMip0u6wrr0sUR7SV1Ylz5WuF0906w/KtAS0BotYV3z
bSMsy/rAuokWrca5VnVYN2pkW5NC/f+7InIFz5pX/yL/g8WPxOtXKyCJ1+Zl
kH9h5zepj/wV07xJ4SSxq7QM4ZXLNwzfOd2wjHJNvSbx2rCQck3RJvHasJTy
x8pN4rVhPeWP5ZvEa8Oiyh9rOImX0K8Uci5Nz4aT+WM55xLohlP5Y1HnEij0
d2Hnv1XY+Rdr43+CkQ1X2n+PkY3W7f9goe1/jNzvYrPfxWa/i83+rxWb/Wq5
2e8is/87RWY/+vD/60VnvxKzrJXxmmz53xHwhrHJvyvJXxnUJqLbbFp/udjk
FwW9eUy2VtCrX5j8fRlsFHr9nxXupnHmWon+i7V9q6Tz79TvrC/f+dUCqPXF
O7/6Sxp/u3DnV38q428X7fzqb2H87YKd9Sck/30d/1ua/NPT7v9S3d7fLBD+
9aK8v6zJ+3frsf9OQd6vlCT+y8V4P6vF+72Q/x9ayH9ddPe71O53qd3vUrvf
pXb/60T4u9TuJ6V2QCiydo+SwNM3If1SId6/WIn3a68i/pn3DT/W463xkP9K
Rd5f/orBv1KVt8HPRPzEV/74ZmZdedBP64N+beUS7/+hEqFvVWirxPRfrBLa
qAJtgwK0f6lQ6Nt8rS0+++WBbl4stFoTVtWd/dyybWpkVr8l/OUV+J94bbLx
6lh9+GiDVfCXo/1dHfX7WrkcUXZoK4yZgQ2Gyx4NmCKUqSnK2MHeYOX8nv0/
8G9C/bz+C8zLu6r+i49Y/0X419V+13/9N65v0ZTb92ulJMcEBXLCYK1MQDYY
O2uk1VJZ03IdjgOwvo1QNkDEQjATSGNjlD3hnKcjGkk8/mkMgNuvxrlMZeUw
0bfey8Zm7dlWZcAtqdtaoR0kTUzsAMTfTkcRG1cZRfvv5wO/91ZBWWPscArW
AFqC60UgCJGAgo6MgYqkFAJO3BYm8rKi4oTQEeDXGGu1YgvXvoFhtWdbktJK
h41PXK0u2V+yUUtngTcG1pBcqXDe9AgXiHgM68fna6olluCIxdPIb6L6sce6
A+2EPgTDbrD0sm2DLj8e+CZys1IUSvjRvCXWV5zL0saZCcoYsCCEX+8jBMO4
Nb6D8KN5xNPEaACDHSEaJm6zreac8Pbxx3eOa0tQiBv6qxgnnLBdg0FcHMTP
BgS4QORIKEMi/mLBZipD4JjwQwRrMRD7mpqasoHExQi3/IJLb9V/Bim6BAnc
rkCuATwqBvpRn9nWZg9rJLvptvK6qOSvRvcLw0MuD+8XxodcHt/fGOCq4GPj
Ia769emV6GT9Ty8Dw9yAMzAY4ExMbOlWaH3ktDHB1T+z/dP3uRt3/8lPRn+L
qpazgB81edOwfynqh6w9LUAMgF3WcrEcfq/S/+UWIq2N1vvakP+HyqKVoH+N
tSSiAm2+AoEcRW8zqmtD/lWKC/0Pje0HMhseuyASW7a1G/xGAOkqmw0ALp97
XYID/rdi8H8w/2AC6XXpyd+x+d/TxlXq8rfSxB8UZkNJE6pDzYkOnHAyF22C
WqpFXllHSGLpsAOKC2WzdIaX8HMxR5cyp7+tFSvW+68PZP2d33AgXSflVa+R
Np6ltcEMCHhOKDlZiUlAhE0WwLERDi8TA5y1Ecrv/OH39fv6ff2+fl+/r9/X
7+v39fv6ff3fvf4/1ClhxAAYAQA=

--------------050507080206010403080404--

-- 
This message has been scanned for viruses and
dangerous content by MailScanner, and is
believed to be clean.




-- 
This message has been scanned for viruses and
dangerous content by MailScanner, and is
believed to be clean.
Received on Thu Jun 28 07:35:06 2007

This archive was generated by hypermail 2.1.8 : Thu Jun 28 2007 - 07:35:16 PDT