

Axis Review of SCE-MI Specification (Revision 1.9 dated March 20, 2002)
December 12, 2002

In these comments RCC refers to the Axis emulation engine.

General comments about Software API

The software side interface should be a C API. The current specification is backwards.
C++ can always call C functions. If C++ is desired C++ can wrap C functions. The spec
provides more information in the C++ section. A user reading only the C section does not
get all the information without also reading the C++ section. C will be easier to
understand for more users so primary focus should be on C.

Section 2.1.1

Multi-threading relies on SystemC or the user to implement their own thread library. A C
thread library should be included for users that do not want to use SystemC or write their
own implementation. Axis is willing to donate a lightweight user level, non-preemptive
thread library specifically designed for verification users with C test programs.

SCE-MI requires users to call the ServiceLoop() function to give processing time to SCE-
MI. Axis prefers to first give to control to SCE-MI and have it activate the user program
as necessary. This eliminates the need for the ServiceLoop() function. The combination
of the ServiceLoop() and callback functions is confusing for users.

Hardware Interface

The clocking is the most restrictive portion of the specification because it contains
hardware dependent information and far too much detail. RCC uses an event-driven
algorithm with dynamic event signaling (just as in an event-driven software simulator).
Users do not control the physical hardware clock in the emulator. Any discussion about
the relationship between the testbench clock and the emulator clock should not be part of
the spec.

RCC can run software tasks without the emulator advancing. There is no need for the
concept of controlled and uncontrolled time. All references should be removed.

4.1.4 SceMiClockPort Macro

Section 4.1.4.1

The specified clock generation is hardware implementation dependent and cannot be part
of the spec. RCC has different parameters to specify a design clock. Vendor differences
in clock generation should be allowed. The generation of clocks is independent of SCE-
MI. Axis proposes to remove this macro from the specification.

4.1.5 SceMiClockControl Macro

This macro uses a gated clock. Axis RCC engine is event-driven and this type of design
is a poor practice in an event-driven engine because glitches can occur. It can also lead to
mismatches between software simulation and emulation. RCC can handle using a clock
as a data input, but introducing it results in extra risk that is not necessary. This
information is too low-level for users developing models with SCE-MI. Axis proposes to
remove this macro from the specification.

Clocking Summary

Both SceMiClockPort() and SceMiClockControl() are too detailed for a specification.
The spec should allow for implementations that to not require the user to learn about the
relationship between the controlled clock and the uncontrolled clock. Some
implementations may require only a user clock for each interface. These two modules
should be removed from the spec and left to the implementation.

The main purpose of the interface is to move data using SceMiMessageInPort() and
SceMiMessageOutPort(). The spec should focus on providing these 2 interfaces. Adding
a clock and user defined reset signal will make them general purpose and remove the
requirement for the clocking macros.

Proposed Interfaces:

module SceMiMessageInPort(clk, reset, ReceiveReady, TransmitReady, Message);

parameter PortWidth = 1;

input clk;
input reset; /* can be any user signal to reset the module */
input ReceiveReady;
output TransmitReady;
output [PortWidth-1:0] Message;

module SceMiMessageOutPort(clk, reset, TransmitReady, ReceiveReady, Message);
parameter PortWidth = 1;

input clk;
input reset;
input TransmitReady;
output ReceiveReady;
input [PortWidth-1:0] Messsage;

4.2 Infrastructure Linkage

All of the linkage can be instance-based. For RCC, everything can be determined by the
SCE-MI implementation at time 0. There is no need for the infrastructure linkage
information. Other vendors that cannot determine this automatically can use a
configuration file or hardcode the information in C or verilog, but the configuration file
should not be part of the spec.

Number of transactors – determined by instantiation

Transactor Name is the HDL instance name

Number of Message Input and Output Channels are determined by instantiation

Port Name is the HDL port name

Message Input or Output Port Width can be an instance parameter

Message Output Port Priority is not necessary since all ports must be serviced.

Number of Controlled Clocks is automatically determined by transactor ports.

Controlled Clock Name is determined by transactor port connections.

Controlled Clock Ratio is too low-level and should be transparent to the user. It is
implementation dependent and should not be part of the spec.

Controlled Clock Duty Cycle and Phase is too low-level, user does not care.

Controlled Reset Cycles is too-low level, interface should reset automatically at the start
or by a user reset signal.

4.2.1.1 Parameter File

There is no need for any centralized file in the specification; the interface can operate
based on module instantiation alone. Individual vendors should be free to require such
configuration files if necessary.

The corresponding C API calls related to the infrastructure linkage and parameter files
should be removed from the spec.

	General comments about Software API
	Section 2.1.1
	Hardware Interface
	Clocking Summary

