January 27, 2005

BRCM thoughts on SCEMI 2.0

BRCM has had a lot of experience using SCEMI. We helped develop the pre-SCEMI interface technology with IKOS in 2000/2001 (which was then called MMCT). We have used SCEMI-like comodeling on scores of chip verifications over the last four years. We have a number of concerns and desires regarding the present use model of SCEMI 1.x.

Deficiencies of SCEMI 1.x and desires for SCEMI 2.0:

Not just emulators and emulation anymore

Vendors supporting SCEMI or working on SCEMI support run the gamut from simulation event accelerators, custom processor architectures, resynthesized cycle-accurate FPGA emulators, to FPGA prototyping emulators. Furthermore, there has never been a clear consensus on just what the differences are between “cosimulation”, “coemulation”, and “comodeling” – terms bandied about to describe various flavors of hardware acceleration, and increasingly blurred after the advent of what used to be called “targetless emulation”.
Probably the most suitable of the above terms to what SCEMI tries to address is “comodeling”. If this term doesn’t convey the meaning of a direct C/C++ testbench messaging an HDL-based design put into a hardware acceleration box, than another term is sorely needed. In any case, the “E” needs to be removed from SCEMI.

No support for a software-only usage mode.

SCEMI defines an interface from C/C++ to a hardware acceleration box. As anyone who uses hw boxes ought to know, if one had a choice between debugging using a hw box and its associated debug environment, and the typical pure simulation debug environment, that would be a no-brainer; the pure simulation environment wins every time.

Thus, it is vitally necessary to be able to debug a SCEMI testbench in pure simulation. Any vendor supporting SCEMI 1.x would do well to include their own support for running a SCEMI testbench separate from the vendor’s hw box – i.e., in a pure simulation environment. However, the SCEMI standard gives no guidance, and lays down no requirements to guarantee portability of a SCEMI testbench running in pure simulation mode.
One example of an issue in running a software-only simulation using a SCEMI testbench is: what happens to main.c? A SCEMI testbench setup running C on a workstation and connected to a hw box is the equivalent of a 2 process software environment. The software process communicates to the hw box via IPC implemented underneath “ServiceLoop()”. However, if a vendor implemented a PLI equivalent of the SCEMI interface and ran the hw side of the SCEMI testbench in a verilog simulator, the PLI would then take the user’s C code and link it into the verilog process – creating a single process software environment. So what happens to main.c ? Do various vendors implementing a sw-only support product for a SCEMI testbench use a straight PLI or would they implement a 2 process model – using a socket or some other IPC method – to better mimic the hw box approach (and allow the user’s C code to be used as-is)?
There are other issues as well. SCEMI 2.0 should address them. It could either go into great detail addressing these issues, or look at merging an existing software-only interface with the hw box interface – perhaps by utilizing something like the SystemVerilog DPI as a common standard.
Level of abstraction is too low – (who cares about uclock and cclock)?

The hw side of the SCEMI specification is derived directly from the particular cycle-based FPGA technology used by the IKOS (now Mentor) VLEStation product. There is nothing surprising or necessarily bad about that. However, an increasing number of other hw box vendors support or aspire to support a SCEMI interface, and it’s safe to say those vendors’ internal hw box technologies would lead them to implement a C <-> emulator/hw box interface differently than SCEMI 1.x if those vendors had carte blanch to do it their way without considering other hw box technologies.
It makes little sense for a hw box vendor whose technology is based on event acceleration to implement on the hw side a specification suited more for synthesis into FPGAs. We suspect that those vendors whose technology is not FPGA-based implement the SCEMI hw side in a less than optimal way for their technology -- making trade-offs to support the standard.

Indeed, after discussing SCEMI with a number of vendors, BRCM increasingly suspects that compatibility issues will be commonplace when attempting to port a SCEMI testbench from one vendor to another due in part to these differences in internal technologies from one hw acceleration vendor to another. Furthermore, some vendors will be strongly tempted to offer “enhancements” or supersets of the SCEMI standard to provide their customers a means of boosting performance when using those vendors’ hw boxes -- sacrificing portability and defeating the purpose of the standard.
Defining SCEMI at a higher level of abstraction would give vendors more direct control over what is “under the hood” when generating the infrastructure to implement the standard. The specification should be written in terms of preserving event ordering (from the point of view of event acceleration vendors) and/or guaranteeing cycle-accurate operation (from the FPGA-based “emulation” vendors), not in defining clocks and signals and displaying timing diagrams.
A higher layer of abstraction for the standard ought to be useful in allowing support of variable length messaging -- it is the hard-coded size parameters on the macros that are part of the barrier to VLM.

SCEMI 1.x omits any discussion or guidelines on achieving repeatability (determinism)
One of the primary purposes of the SceMiClockControl macro is to allow deterministic “simulation runs” by properly turning off controlled clocks when necessary. However, the SCEMI specification says nothing about this. Instead it says (about the ReadyForCclock control input to the macro): “One of the most useful applications of this feature is to perform complex algorithmic operations on the data content of a transaction before presenting it to the DUT”. Frankly, this misses the point as to why stoppage of the controlled clock is desireable, and why this macro is necessary in the SCEMI scheme: to achieve repeatability and deterministic operation.
Repeatability boils down to (almost) never letting the C side and the hw side run at the same time. An analogy we came up with several years ago is that of the moving escalator. If one pictures the hw side as an escalator running at a steady rate, and the sw side as a person stepping on and off the escalator at various times, the source of indeterminism is the erratic behavior of the person. Once he gets off the escalator (analogous to unblocking and resuming execution of sw), there is no way to know precisely how many escalator steps will go by before he gets on again. The person is involved in relating to the real world at the same time as getting on and off the escalator (he is in a multi-tasking operating system environment); he might see an old friend (get an interrupt from the network or another job), and spend a lot more time than usual talking with that friend before finishing up his escalator work and getting back on the escalator (blocking and waiting for the next interrupt).

A way to guarantee determinism (the person always steps on the same escalator steps in sequence even if he gets on and off the escalator continuously for years at a time), is to stop the escalator while the person is off. This corresponds, in SCEMI, to stopping the controlled clocks every time a SceMiMessageOut is being processed, and not restarting them until ServiceLoop() is reentered. It also requires ServiceLoop() to be used in the blocking mode. When done this way, SCEMI operation mimics the way a PLI operates – activity in the C testbench commences and completes in zero simulation time (“zero simulation time” in SCEMI is represented by controlled clock stoppage and no advancement of the cycle stamp).
Nowhere in the SCEMI specification is there any discussion, or any “aid” to the SCEMI user in implementing a deterministic environment – except for the hints to the possibility of such operation given by the existence of the SceMiClockControl macro. SCEMI 2.0 should address this shortcoming. Indeed, raising the level of abstraction of the interface, and writing the specification in terms of maintaining event order fidelity or cycle accurate operation could and should make deterministic operation automatic.
