User Models for Variable Length Messaging in SCEMI
I contend that what is embraced by the term “Variable Length Messaging” is a blending of two distinct user models. The first is described as the sending of a large finite length message across the interface in zero simulation time (“zero simulation time” refers to the stoppage of the controlled clocks in the context of SCEMI 1.1). To distinguish it from a normal message transfer, the message is assumed to be large enough to warrant a different mechanism of transfer other than a single message going through a very wide port. I’ll call this first user model Automatic Message Fragmentation and Reassembly (AMFR).
The second user model is a passing of a stream of data across the interface without requiring that simulation time be stopped for the duration of the whole stream. (When and if simulation time is allowed to advance in the midst of the transfer, this user model is distinguished from the first). I will call this second user model “Streaming”.
Notes:

There is nothing to preclude the Streaming user model from utilizing the first user model (AMFR) for implementing (at a lower level) the transporting of data across the interface.

I have not described the Streaming model as “continuous” -- although that would be the most likely implementation – what differentiates Streaming is the allowing of simulation time to advance somewhere but not necessarily everywhere during the transfer. What I mean by “continuous” is the rate of data transfer (bytes per advance of simulation time) is constant.

Streaming could indicate a continuous transfer of data from time zero to the end of the simulation (non fixed length), or it could indicate a finite length message.

Streaming also implies a certain independence between the sequences of messages sent across the interface, and the passage of simulation time. It’s not that something is controlling the streaming AND at the same time being a controller over the advance of simulation time, it’s that the emptying and filling of the streaming buffers is caused by the advance of simulation time, and streaming is tied to the emptying and filling of those buffers.
Determinism considerations:

Streaming must be used carefully to avoid non-deterministic behavior. What needs to be avoided is the streaming operation presenting data directly to the DUT, or taking data directly from the DUT. In both cases, a buffer (probably a FIFO) ought to be used so that the streaming never alters the timing of the sequence of data going to or coming from the DUT as simulation time advances. An example of a streaming operation that preserves determinism is loading a FIFO with the almost full and almost empty flags used to throttle the streaming.
Characteristics of the AMFR user model:

Most important: it ought to be invisible to the user. That is, whenever a user needs to send a large message across the interface, it should be accomplished in the same way that a small message is sent. The use model should put the burden on the vendor tool to decide the proper threshold of message size whereupon fragmentation and reassembly are useful, and to implement the infrastructure generator to accomplish it.

Characteristics of the Streaming user model:

Because Streaming can consume finite or non-fixed length messages, the user model should have an accessible indicator to alert either side of the interface that the transfer is over. The usage model is not as obvious as just defining it to be “invisible to the user”. Probably, the C side of the streaming operation needs to be running on a separate thread from the rest of the C code in order to allow concurrency which is how optimum performance is achieved. It’s an interesting subject for discussion as to whether this multiple threading should be below the abstraction level of the user model, or should be something implemented (perhaps with a good example included in the spec) by the user. For cases when the user doesn’t care about concurrency, the user model could allow turning off any multiple-threaded features of the implementation; this might conceivably help in quickly allowing a user to convert an (errantly designed) non-deterministic simulation to a repeatable one.
