1.1 SCE-MI Transaction pipe objects – introduction
All pipes within a given HDL module scope are created as System Verilog modules (also named objects) presenting task level interfaces. The module instance (named pipe object) name becomes a unique identifier of the pipe. This allows, for example, to instantiate multiple pipes with names such as pipe0, pipe1, pipe3, pipe4, etc in a single HDL module. All pipe operations on the HDL side must indicate the pipe object name and the task name used for the operation.

Here is an example how to instantiate and use a pipe object on the HDL side:
module bfm;

 scemi_in_pipe #(32) pipe0 (); //instantiates input pipe0 with 32 bits per element
 always @(posedge clk)

 pipe0.receive(num_elements, num_elements_read,

data, eom);

//calling pipe0 receive task
 scemi_out_pipe #(36) pipe1 ();//instantiates output pipe1 with 36 bits per element
 always @(posedge clk) begin

 pipe1.send(num_elements, data, eom); //calling pipe1 send task
 pipe1.flush();

// No arguments required when calling flush

 end

endmodule

Note that this proposal suggests to further simplify the implementation of SCE-MI 2.0 by defining the pipe bit- per-element as a static parameter passed to pipe instance during instantiation.

On the C side a pipe must be identified by its HDL scope as follows:

void thread0()

{

 scemiScope scope;

 scope = scemiGetScopeFromName("bfm.pipe0");

//derive handle from object instance name
 while(1) {

 svBitVecVal message;

 /* fill in the message */

 scemiSetScope(scope); // sets current scope
 scemi_pipe_send(bytes_per_element, num_elements,

data, eom);

//sends message to current pipe scope
 }

}

void thread1()

{

 scemiScope scope;

 scope = scemiGetScopeFromName("bfm.pipe2");

 while(1) {

 svBitVecVal message[2];

 scemiSetScope(scope);

 scemi_pipe_receive(bytes_per_element, num_elements,

 num_elements_read, data, eom);
 /* do something with message */

 }

}

Notes:

· Deriving the scope from the name no longer requires retrieving it from the combination of a pipe’s intra-module ID and its HDL but simply from the pipe object name instantiated in the transactor. Scope is defined as local handle to pipe object and binds the C side tasks to their corresponding HDL side tasks.

· SV DPI utility functions (such as svGetScopeFromName) have been replaced by equivalent utility functions prefixed by scemi (scemiGetScopeFromName). This leaves it to the implementation to choose what facilities to use for implementing these functions and removes dependencies on DPI.
1.2 SCE-MI Transaction pipes object decleration

A SCE-MI transaction pipe can be of input type or of output type. A transaction input pipe implements a unidirectional channel that can only send transactions from the C side to the HDL side. A transaction output pipe implements a unidirectional channel that can only send transactions from the HDL side to the C side.

On the HDL side, the infrastructure will supply the implementation of a SCEMI pipes as modules that present tasks. The modules can be provided in an include file which can be included in the user’s HDL module scope where pipes are used.
1.2.1 Transaction input pipe object decleration

A transaction input pipe on the HDL side is simply a module named scemi_in_pipe. The pipe is accessed from the HDL side by calling normal SystemVerilog tasks using standard notation:

InstanceName.TaskName(TaskArgumets)

Here is how the transaction input pipe is declared in SystemVerilog:

module scemi_in_pipe();

{List of task declerations}

endmodule

1.2.2 Transaction output pipe object decleration

A transaction output pipe on the HDL side is simply a module named scemi_out_pipe. The pipe is accessed from the HDL side by calling normal SystemVerilog task using standard notation:

InstanceName.TaskName(TaskArgumets)

Here is how the transaction output pipe is declared in SystemVerilog:

module scemi_out_pipe();

{List of task declerations}

endmodule

1.3 Transaction pipe blocking tasks declerations

Transactions pipe tasks are declared as SystemVerilog tasks of the scemi_in_pipe or scemi_out_pipe modules. Each pipe, depending on its type (input or output) contains a unique list of tasks on the HDL side for sending or receiving data to or from the corresponding C side tasks.
In addition, each pipe offers:

· a configuration function on the C side that controls the pipe’s semantics

· a flush blocking function that is only available on the producer side.
1.3.1 Transaction input pipe blocking task decleration

1.3.1.1 Tranasction input pipe HDL side blocking tasks

A transaction input pipe contains a blocking task named receive on the HDL side. Here is how the HDL blocking task receive is declared in SystemVerilog:

task receive;

 // This task implements blocking scemi_hdl_receive

input int num_elements; // input: #elements consumer wishes to read

output int num_elements_read; // output: #elements actually read

output bit [`SCEMI_PIPE_MAX_BITS-1:0] data; // output: data

output bit eom; // output: end-of-message marker flag

begin

{implementation code}

// inplementation of the task

end

endtask

The receive task implements a blocking task that blocks according to the semantics of the channel based on its mode configuration setting.
The receive arguments consist of:
· num_elements - number of elements the consumer wishes to read on this receive operation - can vary from call to call which facilitates data shaping. If num_elements is set to zero, it is indicative that the receiver wishes to read all elements until eom is encountered.
· num_elements_read - number of elements actually read, in the case that the number of elements provided does not fulfill the entire request.

· data - a target array to which the requested num_elements will be deposited

· eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of elements. Note that data and eom always have an output direction.

Note that pipe Id is no longer required. Note that bytes_per_element on the argument list is no longer require and is replaced by bits_per_element defined as a parameter during the pipe object instantiation.
1.3.1.2 Corresponding C side blocking tasks

A transaction input pipe contains a blocking task named scemi_pipe_c_send() on the C side that corresponds to the HDL side blocking receive task. Here is how the task scemi_pipe_c_send() is declared in C:
void scemi_pipe_c_send(
 int bytes_per_element, // input: bytes per element
 int num_elements, // input: #elements to be written

 const unsigned *data, // input: data

 char eom); // input: end-of-message marker flag

Note the following properties:

· The num_elements argument is the same as described above for the HDL endpoint of the pipe. A zero value for the num_elements argument is not allowed.
· The data and eom arguments are the same as well but have an input rather than output direction.

· The eom flag is a user defined flag indicating end of message. Whatever is passed to the send endpoint of the pipe will be received at the receive endpoint. This is useful for creating end-of-message markers in variable length messages to the other end or for controlling pipe channel implicit flush semantics.
Note that pipe Id on the argument list is no longer required. It shall be an error if bytes_per_element* num_elements is greater than SCEMI_PIPE_MAX_BITS.
1.3.2 Transaction output pipe blocking task decleration

1.3.2.1 Tranasction output pipe HDL side blocking tasks

A transaction output pipe contains a blocking task named send() on the HDL side. Here is how the HDL blocking task send() is declared in SystemVerilog:

task send; // This task implements blocking scemi_hdl_send

input int num_elements, // input: #elements to be written

input bit [`SCEMI_PIPE_MAX_BITS-1:0] data, // input: data

input bit eom; // input: end-of-message marker flag

begin

{implementation code}

// inplementation of the task

end

endtask

The send() task implements a blocking task that blocks according to the semantics of the channel based on its configuration setting.

The send() arguments consist of:

· num_elements - number of elements to be read on this receive operation- can vary from call to call which again, facilitates data shaping
· data - a target array to which the requested num_elements of requested size bytes_per_element will be deposited

· eom – a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of elements.
Note that all arguments have an input direction.
Note that pipe Id and bytes_per_element on the argument list is no longer required. The bits_per_element value is defined as a pipe module parameter.
1.3.2.2 Corresponding C side blocking tasks

A transaction input pipe contains a blocking task named scemi_pipe_c_receive() that corresponds to the HDL side blocking send task. Here is how the HDL blocking task scemi_pipe_c_receive() is declared in C:
void scemi_pipe_c_receive(

 int bytes_per_element, // input: bytes per element

 int num_elements, // input: #elements to be read

 int *num_elements_read, // output: #elements actually read

 unsigned *data, // output: data

 char *eom); // output: end-of-message marker flag

Note the following properties:

· The num_elements argument is the same as described above for the HDL endpoint of the pipe. A zero value for the num_elements argument is not allowed.
· The data and eom arguments are the same as well but have an output rather than input direction.
· The eom flag is a user defined flag indicating end of message. Whatever is passed to the send endpoint of the pipe will be received at the receive endpoint. This is useful for creating end-of-message markers in variable length messages to the other end or for controlling pipe channel implicit flush semantics.
· num_elements_read - number of elements actually read, in the case that the number of elements provided does not fulfill the entire request.
1.4 Non-Blocking, Thread-Neutral Pipes Interface

Everything described so far has pertained to the blocking pipes interface. Additionally it is desirable to support a non-blocking pipes interface that is thread-neutral and can be used to implement higher level interfaces such as the OSCI-TLM standard which supports a FIFO style of interface channel. Indeed, even the blocking interface functions described above can be implemented over a lower level non-blocking interface.

The non-blocking pipe interface calls have the following semantics.

• Thread-neutral - no thread-awareness required in the implementation

• Compatible with OSCI-TLM interface model and can be directly used to implement OSCI- TLM compliant interfaces

• Support user configuration mode setting and query of buffer depth

• Provide primitive non-blocking operations which can be used to build higher level interfaces that have blocking operations implemented in selected threading systems

On the C side endpoint of an input pipe, the non-blocking pipe access interface consists of callin functions and callback functions classified as data transfer operations, query operations, and notify operations for each pipe direction,

· Data transfer operations:

scemi_pipe_c_try_send()

scemi_pipe_c_try_receive()

scemi_pipe_c_try_flush()/* Not sure it scemi_pipe_c_try_flush() is necessary */
· Query operations:

scemi_pipe_c_can_send()

scemi_pipe_c_can_receive()

· Notify operations:

(*scemi_pipe_c_notify_ok_to_send)()

(*scemi_pipe_c_notify_ok_to_receive)()

The scemi_pipe_c_try_send() and scemi_pipe_c_try_receive() functions are non-blocking operations that attempt to send a transaction to an input pipe or receive a transaction from an output pipe, respectively. They return the number of elements actually transferred which can be used as an indication whether the operation was successful. Similarly the scemi_pipe_c_try_flush() function attempts a flush on a pipe and returns an indication of whether it was successful or not. *Not clear why this was needed*
The scemi_pipe_c_can_send() and scemi_pipe_c_can_receive() functions are used to query the number of elements that can potentially be transferred into/from the pipe. For an input pipe, scemi_pipe_c_can_send() returns how much space (expressed in number of elements) exists in an input pipe. For an output pipe, scemi_pipe_c_can_receive() returns how may elements exist in an output pipe that are available for receiving.

The (*scemi_pipe_c_notify_ok_to_send)()) and (*scemi_pipe_c_notify_ok_to_receive)() functions are programmable callbacks that can be called from within the infrastructure to notify the application that there is potentially room to send a message or a message to receive, respectively. They are denoted here as function pointers rather than actual functions. They get registered by the application at initialization time. The infrastructure calls these functions whenever data has been received by the HDL side from an input pipe or whenever data has been sent by the HDL side into an output pipe respectively.

The notify_ok_to_send() and notify_ok_to_receive() functions are callbacks that can be called directly or indirectly from within the thread-neutral implementation code to notify thread-aware application code on the C side when it is OK to respectively send or receive. By implementing the bodies of these functions a user can put in thread specific code that takes some action such as notifying an sc_event.

So the key here is that the data transfer and query functions have thread-neutral implementation. And the notify functions are callbacks called from within thread-neutral code that can be filled in by some application wishing to create a thread-aware adapter that implements blocking send() and receive() functions.

1.4.1 Transaction input pipe non-blocking task decleration

1.4.1.1 HDL Side non-blocking transfer operations

This is the transfer task for transaction pipes. It can be called by an application from the HDL side to attempt to receive transactions from an input pipe.

task try_receive;
 input int byte_offset; // input: byte offset within data array /* ??? */
 input int num_elements; // input: #elements to be read

 output int *num_valid_elements; // output: #elements that are valid

 output bit [`SCEMI_PIPE_MAX_BITS-1:0] data; // output: data

output bit eom; // output: end-of-message marker flag

begin

{implementation code}

// inplementation of the task

end

endtask
Note the following properties:

• The arguments num_elements, data, and eom are identical to those described for the blocking task send() described in 1.4.2.1.
• The byte_offset argument is the byte offset within the data buffer designated by data.
• The try_receive task returns the number of elements actually transferred.

1.4.1.2 HDL side non-blocking query operations

This is the status query task for transaction pipes. It can be called by an application from the HDL side to see if a receive operation can be performed on a pipe.

function int can_receive(); // return: #elements that can be received

Note the following properties:

• The task returns the number of elements that currently could be received from the pipe, i.e. the number of elements available in an input pipe

1.4.1.3 HDL side Non-blocking notify operations

event ok_to_get;

Seems to be the cleanest way to support notification in SystemVerilog/Verilog.
1.4.1.4 C Side non-blocking transfer operations

These is the basic non-blocking send function to access a transaction pipe from the C side. The scemi_pipe_c_try_send function is called to attempt to send transactions to an input pipe.

int scemi_pipe_c_try_send(

 int byte_offset, // input: byte offset within data array

 int bytes_per_element,

 int num_elements, // input: #elements to be written

 const unsigned *data, // input: data

 char eom); // input: end-of-message marker flag

Note the following properties:

· The arguments bytes_per_element, num_elements, data, and eom are identical to those described for the blocking function, scemi_pipe_c_send()described in section 1.4.1.2
· The byte_offset argument is the byte offset within the data buffer designated by data.
· The try_send function returns the number of elements actually transferred.

By using the byte_offset argument, it is possible to create blocking functions that operate on unlimited data buffers on the C side. Even if buffers in the internal implementation are of limited size, multiple calls to the non-blocking send function can be made until all the data is transferred. This makes it easy to build blocking data transfer functions that handle buffers of unlimited size on top of the non-blocking data transfer functions. Each call to the non-blocking function is made with the same base data buffer pointer but an increasing byte offset. Each call returns the actual number of elements transferred. This number can be translated to in increment amount for the byte offset to be passed to the next call in the loop - without changing the base svBitVecVal *data pointer.

Not clear why this should be handled by the infrastructure vs. the user domain.

1.4.1.5 C side non-blocking query operations

These is the status query function for transaction pipes. It can be called by an application from the C side to see if a send operation can be performed on a pipe.

int scemi_pipe_c_can_send(); // return: #elements that can be sent

Note the following properties:

· The argument bytes_per_element is identical to those described for the blocking function, scemi_pipe_c_send() described in 1.4.1.2.

· The function returns the number of elements that currently could be transferred in the pipe, i.e. the amount of room in an input pipe.

1.4.1.6 C side non-blocking notify operations

The following is a function declaration for a notification callback functions that is used to notify the C side that an operation is possible on an input or output transaction pipe.

typedef void (*scemi_pipe_notify_callback)(
void *notify_context); // input: C model context

All notification callbacks must be registered using the following call:

void scemi_pipe_set_notify_callback(

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context); // input: notify context

The following call can be used to retrieve a notify context object for a given pipe:

void *scemi_pipe_get_notify_context(); // return: notify context object pointer
Not clear why this is needed, since callback has notify_context argument?

This call is useful to determine whether or not a notify context object is been established for the first time. It is guaranteed that this call will return a NULL if a notify context has not yet been established. This is useful for performing first time initializations inside pipe operations rather than requiring initialization to be performed outside of them. See the example of the blocking send function implementation in section 1.8.1.2 for an example of how this might be done.

Note the following properties:

· notify_callback - the name of the user callback function being registered

· notify_context - the user defined context object to be passed to the function whenever it is called

At one point, fixed named callbacks were considered rather than programmable function callbacks. But after reconsideration it was realized that they do not allow much flexibility in terms of implementing higher thread-aware interfaces on top of the thread-neutral calls. For example you might want one function if you're implementing TLM proxies but another if you're implementing blocking DPI ops directly over the non-blocking ones.

To accommodate this, it turns out to be a lot more flexible if the notify callback can be changed to different functions on a pipe by pipe basis. For this reason the notify callback has been changed to be programmable on the C side.
1.4.2 Transaction output pipe non-blocking task decleration

1.4.2.1 HDL Side non-blocking transfer operations

The try_send function is called to attempt to send transactions to an output pipe.

task try_send;
 int byte_offset; // input: byte offset within data array

 int num_elements; // input: #elements to be written

 output bit [`SCEMI_PIPE_MAX_BITS-1:0] data; // output: data

 output bit eom; // input: end-of-message marker flag

endtask

Note the following properties:

· The arguments num_elements, data, and eom are identical to those described for the blocking task send described in section 1.4.1.1
· The byte_offset argument is the byte offset within the data buffer designated by data.
· The try_send task returns the number of elements actually sent.

1.4.2.2 HDL side non-blocking query operations

These is the non-blocking status query task that can be called by an application from the HDL side to see if a send operation can be performed on a pipe.

task can_send; // return: #elements that can be sent

Note the following properties:

· The task returns the number of elements that currently could be sent into the pipe, i.e. the amount of room in an input pipe.

1.4.2.3 HDL side non-blocking notify operations

event ok_to_put;

1.4.2.4 C Side non-blocking query operations

These are the basic non-blocking receive functions to access a transaction pipe from the C side. The receive function is called to attempt to receive transactions from an output pipe.

int scemi_pipe_c_try_receive(

 int byte_offset, // input: byte offset within data array

 int bytes_per_element,

 int num_elements, // input: #elements to be read

 int *num_valid_elements, // output: #elements that are valid

 unsigned *data, // output: data

 char *eom); // output: end-of-message marker flag

Note the following properties:

· The arguments bytes_per_element, num_elements, data, and eom are identical to those described for the blocking function, scemi_pipe_c_send() described in 1.4.1.2
· The byte_offset argument is the byte offset within the data buffer designated by data.
· The try_receive functions return the number of elements actually transferred.

By using the byte_offset argument, it is possible to create blocking functions that operate on unlimited data buffers on the C side. Even if buffers in the internal implementation are of limited size, multiple calls to the non-blocking send/receive functions can be made until all the data is transferred. This makes it easy to build blocking data transfer functions that handle buffers of unlimited size on top of the non-blocking data transfer functions. Each call to the non-blocking function is made with the same base data buffer pointer but an increasing byte offset. Each call returns the actual number of elements transferred. This number can be translated to in increment amount for the byte offset to be passed to the next call in the loop - without changing the base svBitVecVal *data pointer.

1.4.2.5 C Side Non-blocking query operations

These are the status query functions for transaction pipes. They can be called by an application from the C side to see if a send or receive operation can be performed on a pipe.

int scemi_pipe_c_can_receive(); // return: #elements that can be received

Note the following properties:

· The function returns the number of elements that currently could be transferred in the pipe, i.e. the number of elements available in an output pipe

1.4.2.6 C Side Non-blocking notify operations

The following is a function declaration for a notification callback functions that are used to notify the C side that an operation is possible on an input or output transaction pipe.

typedef void (*scemi_pipe_notify_callback)(

 void *context); // input: C model context

All notification callbacks must be registered using the following call:

void scemi_pipe_set_notify_callback(

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context); // input: notify context

The following call can be used to retrieve a notify context object for a given pipe:

void *scemi_pipe_get_notify_context();// return: notify context object pointer

This call is useful to determine whether or not a notify context object is been established for the first time. It is guaranteed that this call will return a NULL if a notify context has not yet been established. This is useful for performing first time initializations inside pipe operations rather than requiring initialization to be performed outside of them. See the example of the blocking send function implementation in section 1.8.1.2 for an example of how this might be done.

Note the following properties:

• notify_callback - the name of the user callback function being registered

• notify_context - the user defined context object to be passed to the function whenever it is called

At one point, fixed named callbacks were considered rather than programmable function callbacks. But after reconsideration it was realized that they do not allow much flexibility in terms of implementing higher thread-aware interfaces on top of the thread-neutral calls. For example you might want one function if you're implementing TLM proxies but another if you're implementing blocking DPI ops directly over the non-blocking ones.

To accommodate this, it turns out to be a lot more flexible if the notify callback can be changed to different functions on a pipe by pipe basis. For this reason the notify callback has been changed to be programmable on the C side.

1.5 Tranasction pipes configuration setting
1.5.1 Buffer depth query and setting

By default, depth of a transaction pipe is assumed to be implementation defined. The user can query and override this default on any individual pipe. The function is called on the C-side as follows:

int scemi_pipe_c_get_depth(); return: current depth (in elements) of the pipe

void scemi_pipe_c_set_depth(

 int num_elements); // input: number of elements

Which buffer? If the bytes_per_element is dynamically configurable, how do these functions apply?
Note the following properties:

· Before calling the function, the pipe scope needs to be identified using scemiSetScope(scope) as described in section 1.2
· The num_elements is the number of elements that this pipe must be able to hold.

· The depth of any pipe is always expressed in elements whose size is designated by bits_per_element parameter defined for the pipe upon instantiation.
1.5.2 Automatic flush mode setting
The following call lets an application to enable or disable automatic flush on eom (called autoflush) for a designated pipe. Autoflush Mode setting is always initiated only on the C side for both input and output pipes.

For any given pipe on which Autoflush Mode is enabled, an implicit flush will occur as if flush was explicitly called by the producer of messages on the pipe.
 void scemi_pipe_set_auto_flush(

 int enabled); // input: enable/disable

Note the following properties:

· Before calling the function, the pipe scope needs to be identified using scemiSetScope(scope) as described in section 1.2.

· When the enabled flag is set, Autoflush Mode is enabled for the pipe in current scope
· When the enabled flag is unset, Autoflush Mode is disabled for the pipe in current scope

1.6 Tansaction pipes semantics

1.6.1 Explicit Flush functions

SCEMI 2.0 infrastructure provides tasks or functions to the producer to issue an explicit flush(). The HDL side provides a flush task only for a transaction output pipe while the C side provides a flush function only for transaction input pipe. When flush task is called, it allows the caller of the task to wait for the consumption of all in-flight messages. A flush initiated event allows the consumer to consume the message.
1.6.1.1 HDL side blocking flush

On the HDL side endpoint of an output pipe, the flush task provided by the infrastructure is declared as follows:

task flush;

begin

{implementation code}

// inplementation of the task

end

endmodule

The blocking flush task will return when all the messages on the C side of the pipe have been consumed.

1.6.1.2 C side blocking flush

On the C side endpoint of an input pipe, the scemi_pipe_c_flush() task provided by the infrastructure is declared as follows:

void scemi_pipe_c_flush() // Flush applied based on pipe object current scope.

The blocking scemi_pipe_c_flush() task will return when all messages on the HDL side of the pipe have been consumed.

1.6.2 Implict flush

Implict flush takes place for a pipe when the pipe Autoflush mode is enabled and is disabled when the pipe AutoFlush mode is disabled. Setting a pipe to Autoflush Mode enabled does not preclude the producer from issuing an explicit flush by calling explicitly the task flush defined in section 1.7.1.

Implicit flush governs that exact semantics of calling explicit flush tasks or functions, but it is issued automatically by the implementation when eom was set by the producer.
1.6.2.1 Implict flush for blocking calls

In Autoflush Mode, when a blocking send or blocking scemi_pipe_c_send() set the eom flag, implict flush will be initiated and the task will block until all messages on the other end of the pipe are consumed. When flush is complete the blocking send or blocking scemi_pipe_c_send() will return and could be called again to send additional transaction elements. However if a blocking send or blocking scemi_pipe_c_send() was called w/o setting the eom flag, the caller is using data shaping by sending a partial transaction. In this case the blocking send or blocking scemi_pipe_c_send() will return immediately.
1.6.2.2 Implict flush for non-blocking calls

When scemi_pipe_c_try_send() set the eom flag, implicit flush will be initiated but will return immediately. When flush is complete, the (notify_ok_to_send) callback function will be called to notify the application that it can call the scemi_pipe_c_try_send() again.
When try_send sets the eom flag, implicit flush will be initiated but will return immediately. When flush is complete, the ok_to_send event will notify the application that it can call the try_send again.

1.7 Transaction pipes examples

1.7.1 Example using input pipe

1.7.1.1 Using input pipe blocking calls

Figure 7 shows an example of the use of an input pipe on both the C and HDL sides:

Figure 7: Example of receive pipe
	C side
	HDL side

	void genRandomDataThread(void *context){

scemiScope scope;

scope = scemiGetScopeFromName (“Producer.pipe1”);

 svBitVecVal pipeData[2];

 for(fillCount = 0; fillCount < fillSize;

fillCount++)

 { ...

pipeData[0] = count; pipeData[1] = data;

svSetScope(scope);

scemi_pipe_c_send(4, 2, pipeData, 0);

 }

 pipeData[0] = 0; pipeData[1] = 0xffffffff;
 scemi_pipe_c_send(4, 2, pipeData, 1);

 scemi_pipe_c_flush();

}

• On the writing end (C side), the pipe is written to by

calling the scemi_pipe_c_send task
• On the reading end (HDL side), the pipe is read from by

calling the pipe receive task
• When the last transaction is sent, the end-of-message

(eom) argument is set to 1, this is followed by an explicit flush

• Both the writing and reading end make calls to the same
transaction pipe identified by the pipe instance name on the HDL side and by scope derived from instance name on the C side

	module Producer(Clock, Reset, DataOut, CountOut);

...

`include "dpi_pipes.vh"

int num_read;

int last_data;

reg pipeData[63:0];

assign CountOut = dataOut[31:0];

assign DataOut = pipeData[63:32];

scemi_pipe #(32) pipe1();
...

while(last_data == 0) begin

...

 // Read from receive pipe

 ...

 always @ (posedge clk)

 pipe1.receive(2, num_read, pipeData, last_data);

 ...

end

1.7.1.2 implement the blocking send function on top of the non-blocking send function.

{this original code need to be changed to be consistent with this proposal}

The following example shows how this can be used to implement the blocking send function on top of the non-blocking send function:

static void notify_ok_to_send_or_receive(

 void *context){ // input: notify context

 sc_event *me = (sc_event *)context;

 me->notify();

}

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int bytes_per_element, // input: #bits/element

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom) // input: end-of-message marker flag

{

 int byte_offset = 0, elements_sent;

 while(num_elements){

 elements_sent =

 scemi_pipe_c_try_send(

 pipe_handle, byte_offset,

 bytes_per_element, num_elements, data, eom)

 * bytes_per_element;

 // if(pipe is full) wait until OK to send more

 if(elements_sent == 0){

 sc_event *ok_to_send = (sc_event *)

 scemi_pipe_get_notify_context(pipe_handle);

 // if(notify ok_to_send context has not yet been set up) ...

 if(ok_to_send == NULL){

 ok_to_send = new sc_event;

 scemi_pipe_set_notify_callback(

 pipe_handle, notify_ok_to_send_or_receive, ok_to_send);

 }

 wait(*ok_to_send);

 }

 else {

 byte_offset += elements_sent * bytes_per_element;

 num_elements -= elements_sent;

 }

 }

}

The execution remains inside this send function repeatedly calling scemi_pipe_c_try_send() until all elements in an arbitrarily sized user buffer have been transferred. Each call to scemi_pipe_c_try_send() returns the number of elements transferred in that call.

That number is used to increment the byte_offset within the user’s data buffer.

Between the calls the thread waits on the ok_to_send event and suspends execution until there is a possibility of more room in the pipe for data.

If this event has not yet been created, it is created and passed as the context when the notify callback is registered for the first time.

The callback function notify_ok_to_send_or_receive() is called by the infrastructure whenever it moves data and therefore leaves room for at least 1 element in the pipe. This function simply posts to the ok_to_send event shown above.

It should be noted that the above example is just a reference model of how a blocking access function could be implemented in a given threading system. Implementations are not required to do it this way as long as they accomplish the same semantics.
1.7.2 Example using output pipe

1.7.2.1 Using output pipe blocking calls

Figure 8 shows an example of the use of an output pipe on both the C and HDL sides:

Figure 8: Example of output pipe

	C side
	HDL side

	void write2LogThread(void *context){
scemiScope scope;

scope = scemiGetScopeFromName (“Consumer.pipe2”);
 svBitVecVal pipeData[2];

 int num_read;

 do {
svSetScope(scope);
 scemi_pipe_c_receive(2, &num_read,

pipeData, &eom);...

} while(!eom);

}

• On the writing end (HDL side), the pipe is written to by

calling the pipe instance send task
• On the reading end (C side), the pipe is read from by

calling the scemi_pipe_c_receive() task
• When the last transaction is sent, the end-of-message

(eom) argument is set to 1, this is followed by a flush

• Both the writing and reading end make calls to the same transaction pipe identified by the pipe instance name on the HDL side and by scope derived from instance name on the C side.
	module Consumer(Reset, DataIn, Id, Done, Clock);

...

`include "dpi_pipes.vh"

reg pipeData[63:0];

...

assign pipeData = (data, count);
scemi_pipe #(32) pipe2();

forever begin

 @(posedge Clock);

 if({status, data, count} != 128'h0) begin

...

if(status == 32'h0) begin

 pipe2.send(2, pipeData, 1);

 pipe2.flush();

 Done = 1;

 end

 else

 pipe2.send(2, pipeData, 0);
 end

end //end forever

...

