Appendix F Scope of Calling DPI exported functions
The Accellera SystemVerilog working group Mantis 1488c defines the following:

The SystemVerilog context of DPI export tasks and functions must be known when they are called, including when they are called by imports. When an import invokes the svSetScope utility prior to calling the export, it sets the context explicitly. Otherwise, the context will be the context of the instantiated scope where the import declaration is located. Because imports with diverse instantiated scopes can export the same task or function, multiple instances of such an export can exist after elaboration. Prior to any invocations of svSetScope, these export instances would have different contexts, which would reflect their imported caller’s instantiated scope.

The concept of ‘call chains’ is useful for understanding how context works as control weaves in and out of SystemVerilog and another language through a DPI interface. A DPI import call chain is a series of task or a function invocation that begins with a call from SystemVerilog into a task or function that is defined in a DPI-supported language and is declared in a DPI import declaration. The import call chain consists of successive calls to routines in the imported language. One of those routines becomes the last routine in the import call chain when it calls a SystemVerilog exported task or function. The import call chain can also end by simply unwinding without calling any SystemVerilog export. Once entered, an exported SystemVerilog task or function can transfer control to new import chains by invoking imports and, when exiting, can return control to its caller in the original import call chain.

In addition, Accellera SystemVerilog working group Mantis item 1456d states that the behavior of DPI utility functions that manipulate context is undefined when they are invoked by any function or task that is not part of a DPI context call chain (see 26.4.3).
In this appendix we describe the following main use cases where DPI exported functions and Context DPI utility functions (to be unified under the term ‘exported functions’) could be called from an application linked with the C side which is considered by the SystemVerilog LRM being “outside a context DPI imported function call chain”. Each use case will describe the use model assumption and the use model constraints.
The calling application is linked with the simulation kernel:

This use case applies to standard languages linked with DPI C side that are linked with a simulation kernel running on the HW side. The term ‘linked with’ implies that the language is either simulated directly by the simulator or is handled by the simulation kernel as a direct extension to the simulator running the HDL side. Examples for such languages are SystemC, SystemVerilog and Specman e that are ‘tightly integrated” or running with SystemVerilog simulator running the HDL side or with a simulator linked with an accelerator or an emulator.
In this case, assume you call a DPI imported function which triggers a thread in the calling application that calls an exported function via the SCE-MI 2 C side. According to Mantis 1488c and 1456d, such a call is considered outside a context DPI exported function call chain and thus its result is undefined.
However SCE-MI 2 allows such calls to be made if the calling application is linked with the simulation kernel as long as it meets the following requirements:

DPI exported functions can be invoked by C code called from an application linked with a simulation kernel, and outside a DPI imported function call chain as long as the calling application is triggered (or notified from a context DPI imported function call chain and executed in zero simulation time or delta simulation time from when the imported DPI function was invoked. Calling exported functions from the C side under any other conditions may result in undefined behavior.

Note that any calls to DPI exported functions during any other time not covered by the above may result in undefined behavior. These include calling DPI exported functions during HDL side compilation, by C code called by PLI, VPI, VHPI callbacks or from a SystemVerilog system task. It also includes any calls from C code executing concurrently with the SystemVerilog code.
The key constraints when calling exported functions from an application linked with the simulation kernel are:

a. The context of the DPI exported function must be known (or obtainable) before its being called.

b. Only exported functions (that do not consume time) can be called. Calling DPI exported tasks will result in undefined behavior.

c. There is no control of any event ordering meaning no control how events get processed on both the calling application and the HDL side

d. An imported DPI function call cannot return arguments that are dependent on the exported function calls.

Calling application is not linked with the simulation kernel:

In this case, the simulation is not aware of the calling application running on the SW side and therefore the simulation kernel doesn’t suspend its execution to let the calling application external to the simulation kernel to run and furthermore to call the DPI exported function. In other words, if the DPI imported function returned, the simulator will proceed and none of the external threads of the calling application will ever wake up.

However assuming that the C code is running under the control of a foreign threading package, then the imported C function can suspend itself allowing other threads of the application to run and call DPI exported functions, and then resume before returning. In this case, the call to a DPI exported function is considered as being made from a Context DPI imported function call chain given that SystemVerilog simulation kernel is not aware of any context switching that is taking place. Furthermore, it really doesn’t matter if the external calling application is a simulator that consumes time, and calls the simulator after waiting on time. Until the imported C function called from by the HDL side returns, the simulator kernel on the HDL side is not aware that the imported function was suspended and that an exported function is being called from another thread. Therefore, the imported DPI function call can return arguments that are dependent on the exported function calls and event ordering is defined, meaning that the exported function returns before the DPI imported function returns.
The key constraints when calling exported functions from an application not linked with the simulation kernel are:

a. The context of the DPI exported function must be known (or obtainable) before its being called.

b. Only exported functions (that do not consume time) can be called. Calling DPI exported tasks will result in undefined behavior.

