Appendix A Tutorial

(informative)

A.1 Hardware side interfacing

The hardware side interface of the SCE-MI consists of a set of parametrized macros which can be instantiated inside transactors that are to interact with the SCE-MI infrastructure. The macros are parametrized so, at the point of instantiation, the user can easily specify crucial parameters that determine the dimensions of the SCE-MI bridge to software. It is the job of the infrastructure linker to learn the values of these parameters, customize implementation components, and insert them underneath the macros accordingly.

The following four macros fully characterize how the hardware side interface of the SCE-MI is presented to the transactors and the DUT:

· SceMiMessageInPort macro

· SceMiMessageOutPort macro

· SceMiClockControl macro

· SceMiClockPort macro

Any number of these macros can be instantiated as needed. One SceMiMessageInPort macro shall be instantiated for each required message input channel and one SceMiMessageOutPort macro for each output channel. Message port macro bit-widths are parametrized at the point of instantiation.

Exactly one SceMiClockPort macro is instantiated for each defined clock in the system. This SceMiClockPort macro instance shall (via a set of parameters) fully characterize a particular clock. The SceMiClockPort macro is instantiated at the top level and provides a controlled clock and reset directly to the DUT. The SceMiClockPort macro instance is named and assigned a reference ClockNum parameter that is used to associate it with one or more counterpart SceMiClockControl macros inside one or more transactors. The SceMiClockControl macro is used by its transactor for all clock controlling operations for its associated clock. These two macros are mutually associated by the ClockNum parameter and every SceMiClockPort macro shall have a minimum of one SceMiClockControl macro associated with it.

The infrastructure linker (not the user) is responsible for properly hooking up these, essentially empty, macro instances to the internally generated SCE-MI infrastructure and clock generation circuitry.

A.1.1 Required dimensions

The following parameters, specified at the points of instantiation of the macros, fully specify the required dimensions of the SCE-MI infrastructure components (see 5.3.1 for more details):

· number of transactors

· number of input and output channels

· name and width of each channel

· number of controlled clocks

· name, clock ratio, and duty cycle of each controlled clock

A.1.2 Hardware side interface connections

 Figure A.1 shows a simple example of how a transactor and DUT might connect to the hardware side interface of the SCE-MI.

[image: image1.emf]TransmitReadyReceiveReadyMessage []SceMiMessageInPort#64 p1TransmitReadyReceiveReadyMessage []SceMiMessageOutPort#128 p2TxRdyInUclockUresetReadyForCclockSceMiClockControl#1 c1CclockEnabledCclockNegEdgeEnabledRxRdyInUclkRstReadyForCclockCclockEnabledMessageIn [63:0]TxRdyOutRxRdyOutMessageOut [127:0]TransactorCoreDutInCtrlDutInData []DutOutCtrlDutOutData []User-DefinedTransactort1u1DutInCtrlDutInData []DutOutCtrlDutOutData []ClkRstd1DUTCclockCresetSceMiClockPort#(1, 1, 1, 50, 50, 0, 8) cclockReadyForCclockNegEdge‘1’

Figure A.1: Connection of SCE-MI macros on hardware side to transactor and DUT

This example features a single transactor interacting with a DUT and interfacing to the software side through a SceMiMessageInPort and a SceMiMessageOutPort. In addition, it defines a single clock that is controlled by the transactor internally using the SceMiClockControl macro. This clock drives the DUT from the top level through a SceMiClockPort macro.

A key point of this example is only the transactor implementor (see 4.3) needs to be aware of all the SCE-MI interface macros (except for the SceMiClockPort). Because the transactor encapsulates the message port macros and the SceMiClockControl macro, the end-user only has to be aware of how to hook-up to the transactor itself and to the SceMiClockPort macro.

A.1.3 SceMiClockPort macro instantiation

The SceMiClockPort macro instantiation is where all the clock parameters are specified. The numbers shown in the component instantiation label (see Figure A.1) as:

#(1, 1, 1, 50, 50, 0, 8) cclock

map to the parameters defined for the SceMiClockPort macro (see 5.2.4). They are summarized here:

ClockNum = 1

RatioNumerator = 1

RatioDenominator = 1

DutyHi = 50

DutyLo = 50

Phase = 0

ResetCycles = 8

Of these parameters, the ClockNum parameter is used to uniquely identify this particular clock and also to associate it with its one or more counterpart SceMiClockControl macros, which shall be parametrized to the same ClockNum value, in this case 1. In addition to learning the clock specification parameters, the infrastructure linker also learns the name of each clock by looking at the instance label of each SceMiClockPort instance, in this case cclock.

Similarly, message ports have a parametrized PortWidth parameter.

A.1.4 Analyzing the netlist

To summarize, the infrastructure linker learns the following specific information from analyzing this netlist.

· It has a single transactor called Bridge.u1 (assuming top level module is called Bridge).

· It has a single “divide-by-1” controlled clock called cclock.

· The controlled clock has a 1/1 ratio which, when enabled, is ideally (depending on implementation) the same frequency as the uncontrolled clock.

· The controlled clock is parametrized to 50/50 duty cycle with 0 phase shift (a user can also specify a don’t care duty cycle - see 5.2.4.1 for details).

· The controlled reset is parametrized to eight controlled clock cycles of reset.

· It has a single SceMiMessageInPort called p1, parametrized to bit-with of 64.

· It has a single SceMiMessageOutPort called p2, parametrized to bit-width of 128.

A more complicated example which involves two transactors and three clocks is shown in Appendix B.

A.2 The Routed tutorial

The Routed tutorial documents a real-life example which uses the SCE-MI to interface between untimed software models modeled in SystemC, and hardware models of transactors and a DUT modeled in RTL Verilog. This tutorial illustrates how the use model of the SCE-MI can be applied in a multi-threaded SystemC environment. It assumes some familiarity with the concepts of SystemC including abstract ports, autonomous threads, slave threads, module and port definition, and module instantiation and interconnect. See [B2] for a description of these concepts.

A.2.1 What the design does

The Routed design is a small design that simulates air passengers traveling from Origins to Destinations by traversing various interconnected Pipes and Hubs in a RouteMap. In this design, the Origins and Destinations are the transactors and the RouteMap model is the DUT. Each Origin transactor interfaces to a SceMiMessageInPort to gain access to messages arriving from the software side. Each Destination transactor interfaces to a SceMiMessageOutPort to send messages to the software side. There is also an OrigDest module that has both an Origin and Destination transactor contained within it.

The “world” consists of these Origins:

Anchorage, Cupertino, Noida, SealBeach, UK, or Waltham,

and these Destinations:

Anchorage, Cupertino, Maui, SealBeach, or UK.

Travel from any Origin to any Destination is possible by traversing the RouteMap (DUT) containing the following Pipe-interconnected Hubs:

Chicago, Dallas, Newark, SanFran, or Seattle.

Each controlled-clock cycle represents one hour of travel or layover time.

 Figure A.2 shows how the Routed world is interconnected. The numbers shown by the directed arcs are the travel time (in hours) to travel the indicated Pipe. Layover time in each Hub is two hours.

The RouteMap is initialized by injecting TeachRoute messages for the entire system through the Waltham Origin transactor. Each TeachRoute message contains a piece of routing information addressed to a particular Hub to load the route into its RouteTable module (see Figure A.5). Using this simple mechanism, the software-side RouteConfig model progressively teaches each Hub its routes (via Waltham) so that it can, in turn, pass additional TeachRoute tokens to Hubs more distant from Waltham. In other words, by first teaching closer hubs, the RouteMap learns to pass routes bound for more distant hubs. This process continues until the entire mesh is initialized, at which point it is ready to serve as a backbone for all air travel activity.

After initiating the route configuration, the testbench then executes the itineraries of four passengers over a period of 22 days. Each itinerary consists of several legs, each with a scheduled departure from a specified Origin and a specified Destination. The scheduled leg is sent as a message token to its designated Origin transactor. The transactor needs to count the number of clocks until the specified departure time before sending the token into the RouteMap mesh.

[image: image2.emf]3LegendHubPipe (withtravel time)OriginDestinationOrigDestNoida14Anchorage5Seattle4Maui21CupertinoSanFranSealBeach13Dallas2Chicago35Newark31Waltham7UKAnchorageCupertinoNoidaSealBeachUKWalthamAnchorageCupertinoMauiSealBeachUKChicagoDallasNewarkSanFranSeattle“Polar Route”Destinations

Figure A.2: The Routed world

A.2.2 System hierarchy
The hierarchy of the whole system is textually shown in the following subsections.

A.2.2.1 Software side hierarchy

The software side hierarchy of models is as follows.

System

Testbench

Calendar <--> ClockAdvancer

Scheduler <--> OrigDest, Origin, Destination

RouteConfig

SceMiDispatcher

Notice the interactions shown between the Calendar and Scheduler software side models and the OrigDest, Origin, and Destination hardware side models occur over SCE-MI message channels.

A.2.2.2 Hardware side hierarchy

The hierarchy of the hardware side components instantiated under the Bridge netlist is shown here.

Bridge

SceMiClockPort

OrigDest anchorage, cupertino, sealBeach, UK

 Origin

 SceMiMessageInPort

 SceMiClockControl

 Destination

 SceMiMessageOutPort

 SceMiClockControl

Origin noida, waltham

Destination maui

RouteMap

 Hub chicagoHub, dallasHub, newarkHub, sanFranHub, seattleHub

 Funnel

 Nozzle

 RouteTable

 Pipe

ClockAdvancer

 SceMiMessageInPort

 SceMiMessageOutPort

 SceMiClockControl

Notice at the Bridge level, only the SceMiClockPort macro, transactor components, and the DUT appear. The SceMiMessageInPort, SceMiMessageOutPort, and SceMiClockControl macros are encapsulated within the Origin and Destination transactors. The ClockAdvancer transactor has both message input and output ports, in addition to the required SceMiClockControl macro.

A.2.3 Hardware side

The hardware side of this example consists of a bridge netlist which instantiates the DUT, transactors, and the clock ports. The transactors in turn communicate with the DUT and instantiate the message port macros, as shown in Figure A.3.

A.2.3.1 Bridge

The bridge between the hardware and software side of the design is depicted in Figure A.3. Notice this diagram more or less follows the structure of the generalized abstraction bridge shown in Figure 6. The design uses 13 message channels in all: two message (input and output) channels for the Calendar <-> ClockAdvancer connection, six message input channels for the Scheduler <-> Origin connections, and five output channels for the Scheduler <-> Destination connections.

[image: image3.emf]UKMessageIn/Out PortProxyCalendarAdvanceCalendarNewDayAdvanceClockTodaysDate MessageIn/OutPortClockAdvancerMessageChannelsTransactorsSoftware ModelsAnchorageMessageIn/Out PortProxyNoidaIn PortProxyClockAdvMessageIn/Out PortProxyRouteMapProxyTodaysDateAnnounceArrivalScheduleLegLoadRouteSchedulerMessageIn/OutPortMessageIn/OutPortMessageIn PortNoidaDestinationAnchorageOrigDestUKOrigDestRouteMapDUTMessage

Figure A.3: The bridge

The two software models that interact with the hardware side are the Calendar model and the Scheduler model. These models encapsulate message port proxies which give them direct access to the message channels leading to the Origin and Destination transactors on the hardware side. These two software models are the only ones that are aware of the SCE-MI link. They converse with the other models through SystemC abstract ports.

On the hardware side, there is a set of Origin and Destination transactors which service the message channels that interface with the Scheduler and route tokens to or from the DUT. Some locations, such as Anchorage and the UK, are both Origin and Destination (called OrigDest).

In addition, there is a ClockAdvancer transactor which interfaces directly with the Calendar model. The ClockAdvancer is a stand-alone transactor which does not converse with the DUT. Its only job is to allow time to advance a day at a time (see A.2.3.5 for more details).

A.2.3.2 DUT and transactor interconnect

 Figure A.4 shows a representative portion of the RouteMap to illustrate how it interconnects DUT components to form the RouteMap mesh.

[image: image4.emf]HubSeattleOrigDestAnchorage 5AnchorageSeattleMaui4

Figure A.4: DUT and transactor interconnect

Pipes are inserted between two Hubs or between an Origin or Destination transactor and a Hub. Longer Pipes can be created by cascading primitive one-hour Pipes to form the proper length. Each Pipe primitive represents one hour of travel (one clock). In this diagram, a Pipe4 model is inserted between the Seattle Hub and Maui Destination for a four-hour flight leg. Since travel can occur in either direction between Anchorage and Seattle, a Pipe5 is inserted between them for each direction.

A.2.3.3 DUT and transactor components

 Figure A.5 shows the structure of the DUT and transactor components.

[image: image5.emf]MessageIn PortClockControlMessageOut PortClockControlMessageIn PortMessageOut PortOriginTokenOutTokenInDestinationClockControlClockAdvancerRouteMap(DUT)Interface3232Transactor Components DUT ComponentsFunnelTokenIn0TokenIn1TokenIn2TokenIn3TokenOut0TokenOut1TokenOut2TokenOut3NozzleTokenOutTokenInRouteTableHub323232323232323232PipeTokenInTokenOut3232‘TeachRoute’ Token03071113Destination ID of HubLearn Route IDAssociated Port ID‘Passenger Arrival’ Token‘Passenger Departure’ Token> 030711152331Passenger IDDestination IDLayover CountLayover 0 ID (Origin)Layover 1 IDLayover 4 IDPassenger ID> 0Destination IDTime of Departure1531

Figure A.5: DUT and transactor components

Each Origin transactor contains a clock-control macro and a message-input port macro to receive departure tokens from the Scheduler on the software side. Each received token is passed to the TokenOut port when the scheduled departure time has matured. Although the Origin transactor has a clock-control macro, it does not actively control the clock. Its only use of the clock-control macro is to monitor the ReadyForCclock signal to know on which uclocks the cclock is active, so it can properly count cclocks until the scheduled departure time of a pending departure token.

Each Destination transactor contains a clock-control macro and a message-output port macro to send arrival tokens back to the Scheduler on the software side. The arrival tokens represent a passenger emerging from the RouteMap mesh and arriving at a Destination through its TokenIn port. See A.2.3.4 for a detailed description of the Destination transactor. This transactor was chosen because it provides a simple example of clock control and message port interfacing.

Each token is a 32-bit vector signal. There are no handshakes in the system. Rather, the tokens are “self announcing.” Normally, 0’s (zeroes) are clocked through the mesh so if, on any given cycle, a Hub or Destination senses a non-zero value on its input port, it knows it has received a token that needs to be processed.

Token formats are also shown in Figure A.5. A departure token contains the passenger ID, destination ID, and scheduled time of departure. As the departure token travels through the mesh, it collects layover information consisting of the IDs of all the Hubs encountered before reaching its Destination, which is transformed into an arrival token. The arrival token then has a complete record of layover information which is passed back to the software side and displayed to the console.

A Hub consists of a Funnel which accepts tokens from a maximum of four different sources and a Nozzle which routes a token to a maximum of four different destinations. The Nozzle contains a small RouteTable which is initialized at the beginning of the simulation with routing information by receiving TeachRoute tokens.

A.2.3.4 The Destination transactor: interfacing with the DUT and controlling the clock

The Destination transactor accepts tokens arriving from a point-of-exit on the RouteMap and passes them to the message output port.

The Destination transactor uses clock control to avoid losing potentially successive tokens arriving from the RouteMap (through the TokenIn input) to this destination portal. It de-asserts the readyForCclock if a token comes in, but the message output port is not able to take it because of tokens simultaneously arriving at other destination portals. This way, it guarantees that the entire RouteMap is disabled until all tokens are off-loaded from the requesting Destination transactors.

The Verilog source code for the Destination transactor is shown in the following listing.

module Destination (

 //inputs outputs

 //-------------------------- ----------------------------

 // DUT port interface

 TokenIn);

 input [31:0] TokenIn;

// {

 wire [3:0] destID;

 reg readyForCclock;

 reg outTransmitReady;

 reg [31:0] outMessage;

 assign destID = TokenIn[7:4];

 SceMiClockControl sceMiClockControl(

 //Inputs Outputs

 //---------------------------- ----------------------------

 .Uclock(uclock),

 .Ureset(ureset),

 .ReadyForCclock(readyForCclock), .CclockEnabled(cclockEnabled),

 .ReadyForCclockNegEdge(1'b1), .CclockNegEdgeEnabled());

 SceMiMessageOutPort #32 sceMiMessageOutPort(

 //Inputs Outputs

 //---------------------------- ----------------------------

 .TransmitReady(outTransmitReady), .ReceiveReady(outReceiveReady),

 .Message(outMessage));

 always@(posedge uclock) begin // {

 if(ureset == 1) begin

 readyForCclock <= 1;

 outMessage <= 0;

 outTransmitReady <= 0;

 end

 else begin // {

 // if(DUT clock has been disabled)

 // It means that this destination transactor is waiting to

 // unload its pending token and does not want to re-enable the

 // DUT until that token has been offloaded or else it may

 // loose arriving tokens in subsequent DUT clocks.

 if(readyForCclock == 0) begin

 // When the SceMiMessageOutPort finally signals acceptance

 // of the token, we can re-enable the DUT clock.

 if(outReceiveReady) begin

 readyForCclock <= 1;

 outTransmitReady <= 0;

 end

 end

 else if(cclockEnabled && destID != 0) begin

 outMessage <= TokenIn;

 outTransmitReady <= 1;

 // if(token arrives but portal is not ready)

 // Stop the assembly line ! (a.k.a. disable the DUT)

 if(outReceiveReady == 0)

 readyForCclock <= 0;

 end

 else if(outTransmitReady == 1 && outReceiveReady == 1)

 outTransmitReady <= 0;

 end // }

 end // }

endmodule // }

A.2.3.5 The ClockAdvancer transactor: controlling time advance

The ClockAdvancer transactor simply counts controlled clocks until the requested number of cycles has transpired, then sends back a reply transaction.

The Verilog source code for the ClockAdvancer is listed here.

 module ClockAdvancer(

 //inputs outputs

 //-------------------------- ----------------------------

 Uclock);

 parameter ClockNum = 1;

 parameter SampleWidth = 32;

// {

 // Internal signals

 wire [31:0] advanceDelta;

 reg [31:0] cycleCount;

 wire inReceiveReady;

 reg outTransmitReady;

 reg readyForCclock;

 wire [SampleWidth-1:0] inMessage, outMessage;

 assign inReceiveReady = 1;

 assign advanceDelta = inMessage[31:0];

 assign outMessage = 0;

 SceMiClockControl #(ClockNum) sceMiClockControl(

 //Inputs Outputs

 //---------------------------- ----------------------------

 .Uclock(uclock), .Ureset(ureset),

 .ReadyForCclock(readyForCclock), .CclockEnabled(cclockEnabled),

 .ReadyForCclockNegEdge(1'b1), .CclockNegEdgeEnabled());

 SceMiMessageInPort #(SampleWidth)32 sceMiMessageInPort(

 //Inputs Outputs

 //---------------------------- ----------------------------

 .ReceiveReady(inReceiveReady), .TransmitReady(inTransmitReady),

 .Message(inMessage));

 SceMiMessageOutPort #32 sceMiMessageOutPort(

 //Inputs Outputs

 //---------------------------- ----------------------------

 .TransmitReady(outTransmitReady), .ReceiveReady(outReceiveReady),

 .Message(outMessage));

 always @(posedge uclock) begin // {

 if (ureset) begin

 outTransmitReady <= 0;

 cycleCount <= 0;

 readyForCclock <= 0;

 end

 else begin // {

 // Start operation command

 if(inTransmitReady &&

 !outTransmitReady) begin

 cycleCount <= advanceDelta;

 readyForCclock <= 1;

 end

 if(readyForCclock && cclockEnabled) begin

 if (cycleCount == 1) begin

 outTransmitReady <= 1;

 readyForCclock <= 0;

 end

 cycleCount <= cycleCount - 1;

 end

 if (outReceiveReady == 1 && outTransmitReady == 1)

 outTransmitReady <= 0;

 end // }

 end // }

endmodule // }

Notice the SceMiClockControl macro references the same cclock as that in the Destination transactor (i.e., it uses the default ClockNum=1). This means the ClockAdvancer and the Destination transactor share in the control of the same cclock. In fact there is only one cclock in the entire system that is specified at the default 1/1 ratio.

Also, although the ClockAdvancer handshakes with the message output port, the data that it sends is always 0. This is because the only thing that the software side needs from the ClockAdvancer is the cycle stamp, which is automatically included in each message output response (see 5.4.5.3).

A.2.4 The software side

The software side of the Routed design is written completely in SystemC and C++. It is compiled as an executable program that links with the SCE-MI software side.

A.2.4.1 The System model: interconnect of SystemC modules

The System model is the top level “software netlist” of SystemC modules (SC_MODULE()). It specifies the construction and interconnect of the component models as well. A block diagram of the System model is shown in Figure A.6.

[image: image6.emf]TestBenchNewDayAnnounceArrivalAdvanceCalendarScheduleLegLoadRouteMapDoneCalendarAdvanceCalendarAdvanceClockNewDayTodaysDateSceMi DispatcherDoneSchedulerTodaysDateScheduleLegLoadRouteAnnounceArrivalRouteConfigLoadRouteMapLoadRouteAdvanceClockSceMi::ServiceLoop() Message Channels

Figure A.6: Interconnect of SystemC models

The source code for the System model is shown here.

class System: public sc_module {

 public:

 sc_link_mp<unsigned> newDay;

 sc_link_mp<const Routed::ArrivalRecord *> announceArrival;

 sc_link_mp<unsigned> advanceCalendar;

 sc_link_mp<const Routed::Itinerary *> scheduleLeg;

 sc_link_mp<> loadRouteMap;

 sc_link_mp<> done;

 sc_link_mp<> advanceClock;

 sc_link_mp<Routed::Date> todaysDate;

 sc_link_mp<const Routed::Route *> loadRoute;

 //---

 // Module declarations

 Testbench *testbench;

 Calendar *calendar;

 Scheduler *scheduler;

 RouteConfig *routeConfig;

 SceMiDispatcher *dispatcher;

 System(sc_module_name name, SceMi *sceMi) : sc_module(name) {

 testbench = new Testbench("testbench");

 testbench->NewDay(newDay);

 testbench->AnnounceArrival(announceArrival);

 testbench->AdvanceCalendar(advanceCalendar);

 testbench->ScheduleLeg(scheduleLeg);

 testbench->LoadRouteMap(loadRouteMap);

 testbench->Done(done);

 calendar = new Calendar("calendar", sceMi);

 calendar->AdvanceCalendar(advanceCalendar);

 calendar->AdvanceClock(advanceClock);

 calendar->NewDay(newDay);

 calendar->TodaysDate(todaysDate);

 scheduler = new Scheduler("scheduler", sceMi);

 scheduler->TodaysDate(todaysDate);

 scheduler->ScheduleLeg(scheduleLeg);

 scheduler->LoadRoute(loadRoute);

 scheduler->AnnounceArrival(announceArrival);

 routeConfig = new RouteConfig("routeConfig");

 routeConfig->LoadRouteMap(loadRouteMap);

 routeConfig->LoadRoute(loadRoute);

 routeConfig->AdvanceClock(advanceClock);

 dispatcher = new SceMiDispatcher("dispatcher", sceMi);

 dispatcher->Done(done);

 }

};

SystemC interconnect channels are declared as sc_link_mp<> data types. These can be thought of as abstract signals that interconnect abstract ports. The parametrized data type associated with each sc_link_mp<> denotes the data type of the message the channel is capable of transferring from an output abstract port to an input abstract port.

Notice the todaysDate channel is declared with a “by value” data type (i.e., Routed::Date), whereas some of the other channels, such as the announceArrival, are declared as “by reference” data types (i.e., const Routed::ArrivalRecord *). The former is less efficient, but safer, because the message is passed by value and, therefore, there is no danger of the receiver corrupting the sender’s data, or worse, having the sender’s data go out-of-scope, leaving the receiver with a possibly dangling reference. However, passing messages by reference is more efficient, but potentially problematic. Declaring them as const pointers helps alleviate some, but not all, of the safety problems.

Module pointers are declared inside the SC_MODULE(System) object and constructed in its SystemC constructor (SC_CTOR(System)). After each child module is constructed, its abstract ports are mapped to one of the declared interconnect channels.

NOTE—SystemC channels, while conceptually the same, are distinctly different from SCE-MI message channels. Both types of channels pass messages, but SystemC channels are designed strictly to pass messages of arbitrary C++ data types between SystemC modules. An entire simulation can be built of just software models communicating with each other. See [B2] for more details about SystemC interconnect channels.

SCE-MI message channels have a completely different interface and are optimized for implementing abstraction bridges between a software subsystem and a hardware subsystem. In the use model presented in this example (see Figure A.6), their interfaces are encapsulated by SystemC models.

The thick round arrows in Figure A.6 represent the SystemC autonomous threads contained in the Testbench and SceMiDispatcher modules. These two threads are the only autonomous threads in the system. All the other code is executed inside slave threads.

A.2.4.2 The sc_main() routine and error handler

The following listing shows the sc_main() routine which is the top-level entrypoint to the program. The sc_main() is required when linking to a SystemC kernel facility, but it is very much like a conventional main() C or C++ entrypoint and has the same program argument passing semantics.

int sc_main(int argc, char *argv[]){

 //---

 // Instantiate SceMi

 SceMi::RegisterErrorHandler(errorHandler, NULL);

 SceMi *sceMi = NULL;

 try {

 int sceMiVersion = SceMi::Version(SCEMI_VERSION_STRING);

 SceMiParameters parameters("mct");

 sceMi = SceMi::Init(sceMiVersion, ¶meters);

 //---

 // Instantiate the system here. Autonomous threads nested

 // inside the DispatcherDriver and the Testbench will advance

 // untimed activity. Such threads are senstitive to UTick defined

 // at the top of this file.

 // -- johnS 8-29-00

 System system("system", sceMi);

 //---

 // Kick off SystemC kernel ...

 cerr << "Let 'er rip !" << endl;

 sc_start(-1);

 }

 catch(string message) {

 cerr << message << endl;

 cerr << "Fatal Error: Program aborting." << endl;

 if(sceMi) SceMi::Shutdown(sceMi);

 return -1;

 }

 catch(...) {

 cerr << "Error: Unclassified exception." << endl;

 cerr << "Fatal Error: Program aborting." << endl;

 if(sceMi) SceMi::Shutdown(sceMi);

 return -1;

 }

 return 0;

}

static void errorHandler(void */*context*/, SceMiEC *ec) {

 char buf[32];

 sprintf(buf, "%d", (int)ec->Type);

 string messageText("SCE-MI Error[");

 messageText += buf;

 messageText += "]: Function: ";

 messageText += ec->Culprit;

 messageText += "\n";

 messageText += ec->Message;

 throw messageText;

}

The first routine defined is the errorHandler(). This is the master error-handling function that is registered with the SCE-MI. Whenever an error occurs, this function is called to format the message before throwing a C++ exception. The exceptions are caught in the catch { ... } blocks at the end of the sc_main() routine, where they are displayed before exiting the program.

Once the error handler is registered, the SCE-MI is initialized by calling SceMi::Init(). This method returns a pointer to a SceMi object that manages the whole SCE-MI software side infrastructure.

Next, the System model described in A.2.4.1 is constructed. The constructor (SC_CTOR(System)) causes all of its child software models to get constructed by calling, in turn, their SC_CTOR() constructors.

Once the whole system is statically constructed, models that interface with SCE-MI are given the master SceMi object pointer so they can access its methods, by calling special ::Bind() accessor methods on those models.

Finally, the SystemC main kernel loop is initialized by calling the sc_start() function. The -1 parameter tells it to go indefinitely until the program decides to end (as explained in A.2.4.3).

A.2.4.3 The SceMiDispatcher module: interfacing with the SCE-MI service loop

The SceMiDispatcher module contains an autonomous thread that yields to the SCE-MI infrastructure so it can service its message port proxies by making repeated calls to the SceMi::ServiceLoop() method (see 5.4.3.7). By placing this logic on its own dedicated thread, other models in the system do not have to worry about yielding to the SCE-MI.

The source code for the SceMiDispatcher is shown here.

class SceMiDispatcher: public sc_module {

 public:

 sc_slave<> Done;

 private:

 SC_HAS_PROCESS(SceMiDispatcher);

 //---

 // Thread declarations

 void dispatchThread(); // Autonomous SCEMI dispatcher thread

 void doneThread();

 //---

 // Context declarations

 SceMi *dSceMi;

 static int dInterruptReceived;

 //---

 // Context declarations

 static void signalHandler(int){

 cout << "Interrupt received ! Terminating SCEMI" << endl;

 dInterruptReceived = 1;

 }

 public:

 SceMiDispatcher(sc_module_name name, SceMi *sceMi)

 : sc_module(name), dSceMi(sceMi)

 {

 //--------------------------------------

 // Thread bindings

 SC_THREAD(dispatchThread);

 sensitive << UTick;

 // Sensitize to global "Untimed Tick" clock to provide for

 // atomic advance of this along with other autonomous threads

 // in the system. UTick is declared at the top of System.cpp.

 // -- johnS 8-3-00

 // Clients of this dispatcher will be responsible for binding

 // to their respective message port proxies in their respective

 // constructors.

 SC_SLAVE(doneThread, Done);

 signal(SIGINT, signalHandler);

 }

};

int SceMiDispatcher::dInterruptReceived = 0;

void SceMiDispatcher::dispatchThread() {

 // This is all the dispatcher does !! Deceptively simple, eh ?

 // It just calls the SCEMI dispatcher poll function and returns.

 for(;;){

 wait();

 dSceMi->ServiceLoop();

 if(dInterruptReceived){

 SceMi::Shutdown(dSceMi);

 exit(1);

 }

 }

}

void SceMiDispatcher::doneThread() {

 SceMi::Shutdown(dSceMi);

 exit(0);

}

Between each call to the service loop, the autonomous thread yields to other threads in the system by calling the wait() function. Actually, the only other autonomous thread in the Routed system is the one in the Testbench model. Both of these threads are represented by the thick round arrows in Figure A.6.
The other job of the SceMiDispatcher is to shut down the system when it detects a notification on its Done port that the simulation is complete. The Done inslave port is bound to the slave thread, ::doneThread(), on construction. The Done port is driven from its associated outmaster port on the Testbench module, so it is the Testbench that ultimately decides when the simulation is complete (see A.2.4.5).

A.2.4.4 Application-specific data types for the Routed system

The following data types are defined in the Routed.hxx header file. They are referenced throughout the subsequent discussion. They are data types which are specific to this application.

class Routed {

 public:

 typedef enum Parameters {

 NumPassengers = 4,

 NumLocations = 12,

 MessageSize = 15

 };

 typedef enum PassengerIDs {

 Nobody,

 BugsBunny,

 DaffyDuck,

 ElmerFudd,

 SylvesterTheCat

 };

 typedef enum LocationIDs {

 // Location Origin Destination Hub

 // -------- ------ ----------- ---

 Unspecified,

 Anchorage, // 1: X X

 Chicago, // 2: X

 Cupertino, // 3: X X

 Dallas, // 4: X

 Maui, // 5: X

 Newark, // 6: X

 Noida, // 7: X

 SanFran, // 8: X

 SealBeach, // 9: X X

 Seattle, // 10: X

 UK, // 11: X X

 Waltham // 12: X

 };

 typedef struct Itinerary {

 unsigned DateOfTravel;

 unsigned TimeOfDeparture;

 PassengerIDs PassengerID;

 LocationIDs OriginID;

 LocationIDs DestinationID;

 };

 typedef struct ArrivalRecord {

 PassengerIDs PassengerID;

 unsigned DateOfArrival;

 unsigned TimeOfArrival;

 unsigned LayoverCount;

 LocationIDs OriginID;

 LocationIDs LayoverIDs[4];

 LocationIDs DestinationID;

 };

 typedef struct Route {

 LocationIDs RouterID;

 LocationIDs DestinationID;

 unsigned PortID;

 };

 typedef struct Date {

 SceMiU64 CycleStamp;

 unsigned Day;

 };

};

A.2.4.5 The Testbench model: main control loop

The Testbench model contains a SystemC autonomous thread which serves as the main driver for the Routed design. It looks at the four passenger itineraries and schedule the legs in those itineraries on the appropriate dates and at the appropriate departure times by interacting with the Scheduler model.

The condensed source code for the passenger itinerary declarations for the Testbench model is shown here.

const Routed::Itinerary Routed::BugsesTrip[] = {

/*

On day, at, departs from, enroute to, */

{ 2, 8, BugsBunny, Anchorage, Cupertino },

{ 3, 5, BugsBunny, Cupertino, UK },

{ 8, 4, BugsBunny, UK, SealBeach },

{ 20, 10, BugsBunny, SealBeach, Maui },

{ 0, 0, BugsBunny, Unspecified, Unspecified } };

const Routed::Itinerary Routed::DaffysTrip[] = {

/*

On day, at, departs from, enroute to, */

{ 1, 8, DaffyDuck, Waltham, Cupertino },

{ 4, 2, DaffyDuck, Cupertino, SealBeach },

{ 5, 11, DaffyDuck, SealBeach, Anchorage },

{ 10, 3, DaffyDuck, Anchorage, UK },

{ 15, 4, DaffyDuck, UK, Cupertino },

{ 22, 7, DaffyDuck, Cupertino, Maui },

{ 0, 0, DaffyDuck, Unspecified, Unspecified } };

const Routed::Itinerary Routed::ElmersTrip[] = {

/*

On day, at, departs from, enroute to, */

{ 3, 5, ElmerFudd, SealBeach, Anchorage },

{ 4, 2, ElmerFudd, Anchorage, SealBeach },

{ 8, 15, ElmerFudd, SealBeach, Cupertino },

{ 23, 3, ElmerFudd, Cupertino, Maui },

{ 0, 0, ElmerFudd, Unspecified, Unspecified } };

const Routed::Itinerary Routed::SylvestersTrip[] = {

/*

On day, at, departs from, enroute to, */

{ 1, 1, SylvesterTheCat, Noida, SealBeach },

{ 4, 2, SylvesterTheCat, SealBeach, Cupertino },

{ 5, 11, SylvesterTheCat, Cupertino, UK },

{ 10, 4, SylvesterTheCat, UK, SealBeach },

{ 15, 9, SylvesterTheCat, SealBeach, Anchorage },

{ 20, 7, SylvesterTheCat, Anchorage, Maui },

{ 0, 0, SylvesterTheCat, Unspecified, Unspecified } };

static const char *passengerNames[] = {

 "Nobody ",

 "BugsBunny ",

 "DaffyDuck ",

 "ElmerFudd ",

 "SylvesterTheCat" };

static const char *locationNames[] = {

 "Unspecified",

 "Anchorage",

 "Chicago ",

 "Cupertino",

 "Dallas ",

 "Maui ",

 "Newark ",

 "Noida ",

 "SanFran ",

 "SealBeach",

 "Seattle ",

 "UK ",

 "Waltham " };

There are four passengers whose itineraries are given as lists of Routed::Itinerary records. Each record represents a leg of that passenger’s journey consisting of a date of departure, time of departure, passenger, origin, and destination. The passengerNames and locationNames are strings use for printing messages.

The SystemC module definition (class sc_module) for the Testbench model with its standard constructor is shown here.

class Testbench: public sc_module {

 public:

 //---

 // Abstract port declarations

 sc_master<> LoadRouteMap;

 sc_master<> Done;

 sc_outmaster<unsigned> AdvanceCalendar;

 sc_inslave<unsigned> NewDay;

 sc_outmaster<const Routed::Itinerary *> ScheduleLeg;

 sc_inslave<const Routed::ArrivalRecord *> AnnounceArrival;

 private:

 SC_HAS_PROCESS(Testbench);

 //---

 // Context declarations

 unsigned dNumMauiArrivals;

 unsigned dDayNum;

 const Routed::Itinerary *dItineraries[Routed::NumPassengers];

 //---

 // Thread declarations

 void driverThread(); // Autonomous "master" thread.

 void newDayThread() { dDayNum = NewDay; }

 void announceArrivalThread();

 //---

 // Helper declarations

 public:

 Testbench(sc_module_name name)

 : sc_module(name), dNumMauiArrivals(0), dDayNum(0)

 {

 //--------------------------------------

 // Thread bindings

 // This autonomous thread forms the main body of the TIP driver.

 SC_THREAD(driverThread);

 sensitive << UTick;

 SC_SLAVE(newDayThread, NewDay);

 SC_SLAVE(announceArrivalThread, AnnounceArrival);

 // Initialize itinerary pointers.

 dItineraries[0] = Routed::BugsesTrip;

 dItineraries[1] = Routed::DaffysTrip;

 dItineraries[2] = Routed::ElmersTrip;

 dItineraries[3] = Routed::SylvestersTrip;

 }

};

A.2.4.5.1 Main driver loop

The autonomous thread for the main driver loop is shown here.

void Testbench::driverThread(){

 LoadRouteMap(); // Signal RouteConfig model to begin

 // configuration RouteMap.

 unsigned dayNum = dDayNum;

 AdvanceCalendar = 1; // Advance to day 1.

 for(;;){

 wait(); // Wait for day to advance (i.e., ‘NewDay’ arrives.)

 if(dayNum != dDayNum){

 unsigned date, minDate = 1000;

 // Check itineraries to see if any passengers are

 // traveling today. If so, advance calendar to tomorrow

 // in case next leg of itinerary is tomorrow.

 for(int i=0; i<Routed::NumPassengers; i++){

 if((date=dItineraries[i]->DateOfTravel)){

 if(date == dDayNum){

 cout << “On day “ << setw(2) << dDayNum << “ at “

 << setw(2) << dItineraries[i]->TimeOfDeparture

 << “:00 hrs, “

 << passengerNames[dItineraries[i]->PassengerID]

 << “ departs “

 << locationNames[dItineraries[i]->OriginID]

 << “ enroute to “

 << locationNames[dItineraries[i]->DestinationID]

 << endl;

 ScheduleLeg = dItineraries[i]++;

 minDate = dDayNum+1;

 }

 else if(date < minDate)

 minDate = date;

 }

 }

 dayNum = dDayNum;

 AdvanceCalendar = minDate - dDayNum;

 }

 }

}

Before entering its main loop, the autonomous ::driverThread() does two things. First, it triggers the RouteConfig model (by signaling the LoadRouteMap outmaster port) to teach all the routes to the RouteTables of all the Hubs in the RouteMap. Each taught route that is injected to the hardware is staggered by one clock, which are done when the RouteConfig model signals the AdvanceClock port on the Calendar model. Passenger travel in the RouteMap is not possible until all the Hubs have been properly programmed with their routes.

Once all the routes have been taught to the RouteMap, the Calendar is advanced to day one. This causes the Calendar model to announce the arrival of day one via the NewDay inslave port. Once the day change has been detected, the ::driverThread() then enters into a loop where it schedules any travel on the itineraries scheduled for the current day. If no travel is scheduled, it advances the Calendar to the first day on which travel is scheduled to occur. Legs of each itinerary are scheduled by sending the Itinerary record over the ScheduleLeg outmaster port to the Scheduler model, which encodes it into a token and sends it to the hardware.

This operation continues for each leg of each itinerary until all passengers have traveled all legs of their trip and have finally arrived at the Maui Destination. This serves as the termination condition, which is conveyed to the SceMiDispatcher model by signaling the Done outmaster port (see A.2.4.5.2). Upon receiving this notification, the SceMiDispatcher model gracefully shuts down the SCE-MI and exits the program with a normal exit status.

A.2.4.5.2 Announcing arrivals

The Testbench model also announces arrivals of passengers at their destinations as they occur. The ::announceArrivalThread() slave thread detects an arrival by receiving an ArrivalRecord on its AnnounceArrival inslave port (which was sent from the message output port proxy-receive callback in the Scheduler). It prints out the arrival information to the console. The source code is shown here.

void Testbench::announceArrivalThread(){

 const Routed::ArrivalRecord *arrivalRecord = AnnounceArrival;

 cout << “On day “ << setw(2) << arrivalRecord->DateOfArrival

 << “ at “ << setw(2) << arrivalRecord->TimeOfArrival << “:00 hrs,\n”

 << “ “ << passengerNames[arrivalRecord->PassengerID]

 << “ arrives in “ << locationNames[arrivalRecord->DestinationID]

 << “ from “ << locationNames[arrivalRecord->OriginID]

 << “ after layovers in,”;

 for(unsigned i=0; i<arrivalRecord->LayoverCount; i++)

 cout << “\n “

 << locationNames[arrivalRecord->LayoverIDs[i]];

 cout << endl;

 // Check for termination condition.

 if(arrivalRecord->DestinationID == Routed::Maui &&

 ++dNumMauiArrivals == Routed::NumPassengers){

 cout << “Everyone has arrived in Maui. We’re done. Let’s party !”

 << endl;

 Done(); // Signal the dispatcher that the simulation has ended.

 }

}

A.2.4.6 The Scheduler module: interfacing with message port proxies

The SystemC module definition and constructor for the Scheduler model is shown here.

class Scheduler: public sc_module {

 public:

 //---

 // Abstract port declarations

 sc_inmaster<Routed::Date> TodaysDate;

 sc_inslave<const Routed::Itinerary *> ScheduleLeg;

 sc_inslave<const Routed::Route *> LoadRoute;

 sc_outmaster<const Routed::ArrivalRecord *> AnnounceArrival;

 private:

 SC_HAS_PROCESS(Scheduler);

 //---

 // Context declarations

 SceMiMessageData dSendData;

 SceMiMessageInPortProxy *dOriginAnchorage;

 SceMiMessageInPortProxy *dOriginCupertino;

 SceMiMessageInPortProxy *dOriginNoida;

 SceMiMessageInPortProxy *dOriginSealBeach;

 SceMiMessageInPortProxy *dOriginUK;

 SceMiMessageInPortProxy *dOriginWaltham;

 SceMiMessageOutPortProxy *dDestinationAnchorage;

 SceMiMessageOutPortProxy *dDestinationCupertino;

 SceMiMessageOutPortProxy *dDestinationMaui;

 SceMiMessageOutPortProxy *dDestinationSealBeach;

 SceMiMessageOutPortProxy *dDestinationUK;

 Routed::ArrivalRecord dArrivalRecord;

 //---

 // Thread declarations

 void scheduleLegThread();

 void loadRouteThread();

 //---

 // Helper declarations

 static void replyCallback(void *context, const SceMiMessageData *data);

 void announceArrival(SceMiU64 cycleStamp, SceMiU32 arrivalToken);

 public:

 Scheduler(sc_module_name name, SceMi *sceMi)

 : sc_module(name),

 dSendData(Routed::MessageSize),

 dOriginAnchorage(NULL),

 dOriginCupertino(NULL),

 dOriginNoida(NULL),

 dOriginSealBeach(NULL),

 dOriginUK(NULL),

 dOriginWaltham(NULL),

 dDestinationAnchorage(NULL),

 dDestinationCupertino(NULL),

 dDestinationMaui(NULL),

 dDestinationSealBeach(NULL),

 dDestinationUK(NULL)

 {

 SC_SLAVE(scheduleLegThread, ScheduleLeg);

 SC_SLAVE(loadRouteThread, LoadRoute);

 // Establish message input portals.

// SceMiMessageInPortBinding inBinding = { NULL, NULL, NULL };

 dOriginAnchorage = sceMi->BindMessageInPort(

 "Bridge.anchorage.origin", "sceMiMessageInPort", NULL);

 dOriginCupertino = sceMi->BindMessageInPort(

 "Bridge.cupertino.origin", "sceMiMessageInPort", NULL);

 dOriginNoida = sceMi->BindMessageInPort(

 "Bridge.noida", "sceMiMessageInPort", NULL);

 dOriginSealBeach = sceMi->BindMessageInPort(

 "Bridge.sealBeach.origin", "sceMiMessageInPort", NULL);

 dOriginUK = sceMi->BindMessageInPort(

 "Bridge.UK.origin", "sceMiMessageInPort", NULL);

 dOriginWaltham = sceMi->BindMessageInPort(

 "Bridge.waltham", "sceMiMessageInPort", NULL);

 // Establish message output portals.

 SceMiMessageOutPortBinding outBinding = { this, replyCallback, NULL };

 dDestinationAnchorage = sceMi->BindMessageOutPort(

 "Bridge.anchorage.destination", "sceMiMessageOutPort",

 &outBinding);

 dDestinationCupertino = sceMi->BindMessageOutPort(

 "Bridge.cupertino.destination", "sceMiMessageOutPort",

 &outBinding);

 dDestinationMaui = sceMi->BindMessageOutPort(

 "Bridge.maui", "sceMiMessageOutPort",

 &outBinding);

 dDestinationSealBeach = sceMi->BindMessageOutPort(

 "Bridge.sealBeach.destination", "sceMiMessageOutPort",

 &outBinding);

 dDestinationUK = sceMi->BindMessageOutPort(

 "Bridge.UK.destination", "sceMiMessageOutPort",

 &outBinding);

 }

};

There are two slave threads defined in this model: the ::scheduleLegThread() and the ::loadRouteThread(). The ::loadRouteThread() is responsible for sending TeachRoute tokens into the RouteMap mesh via the Waltham Origin transactor when the RouteMap is first being configured at the beginning of the simulation. This thread is activated each time the RouteConfig module wants to teach a new route during its LoadRouteMap operation.

The Scheduler::Bind() method is called prior to simulation from the sc_main() routine (see A.2.4.2). Here is where the SCE-MI message input and output port proxies leading to each of the Origin and Destination transactors are bound. Notice for each of the output port proxies, the output receive callback, replyCallback(), is specified in the binding structure. See 5.4.3.6 for more information about message output port binding.

A.2.4.6.1 ::scheduleLegThread()
The ::scheduleLegThread() is activated when the Scheduler receives Routed::Itinerary messages on its ScheduleLeg inslave port from the Testbench model. It sends those legs encoded as departure tokens across the message input channels to their designated Origin transactors. The Scheduler has pointers to each of the message input port proxies that are connected to Origin transactors. Each departure token is encoded with the passenger ID and destination ID from the Routed::Itinerary record. The source code for the ::scheduleLegThread() is shown here.

void Scheduler::scheduleLegThread(){

 const Routed::Itinerary *leg = ScheduleLeg;

 // Form a ‘Passenger Departure’ token based on the contents of

 // the given ‘Itinerary’ record.

 SceMiU32 passengerDepartureToken =

 leg->PassengerID |

 (leg->DestinationID << 4) |

 (leg->OriginID << 12) |

 (leg->TimeOfDeparture << 16);

 dSendData.Set(0, passengerDepartureToken);

 switch(leg->OriginID){

 case Routed::Anchorage: dOriginAnchorage->Send(dSendData);

break;

 case Routed::Cupertino: dOriginCupertino->Send(dSendData);

break;

 case Routed::Noida: dOriginNoida ->Send(dSendData);

break;

 case Routed::SealBeach: dOriginSealBeach->Send(dSendData);

break;

 case Routed::UK: dOriginUK ->Send(dSendData);

break;

 case Routed::Waltham: dOriginWaltham ->Send(dSendData);

break;

 default:

 assert(0);

 }

}

A.2.4.6.2 Processing arrivals

The Scheduler is also responsible for processing of arrivals. Once the Calendar is advanced, arrivals can occur at any time over the course of 24 hours (i.e., 24 clocks). Each arrival token is sent by a Destination transactor over a message output port to the Scheduler. The SCE-MI infrastructure dispatches the arriving messages to the replyCallback() function registered in the ::Bind() method. The replyCallback() function, in turn, passes the message to the private ::announceArrival() method (see A.2.4.6.3). The code for the replyCallback() function is shown here.

void Scheduler::replyCallback(void *context, const SceMiMessageData *data){

 ((Scheduler *)context)->announceArrival(data->CycleStamp(),

 data->Get(0)); }

A.2.4.6.3 ::announceArrival()

The ::announceArrival() method processes the arrival token. It converts the encoded arrival token to the Routed::ArrivalRecord data type, stamps it with TodaysDate (an output from the Calendar), and sends it out through the AnnounceArrival outmaster port to the Testbench model, which displays the arrival information to the console as shown here.

void Scheduler::announceArrival(SceMiU64 cycleStamp,

 SceMiU32 arrivalToken){

 Routed::Date todaysDate = TodaysDate;

 // Read today’s date from Calendar

 dArrivalRecord.DateOfArrival = todaysDate.Day;

 dArrivalRecord.TimeOfArrival = cycleStamp - todaysDate.CycleStamp;

 dArrivalRecord.PassengerID = (Routed::PassengerIDs)

 (arrivalToken & 0xf);

 dArrivalRecord.DestinationID = (Routed::LocationIDs)

 ((arrivalToken >> 4) & 0xf);

 dArrivalRecord.OriginID = (Routed::LocationIDs)

 ((arrivalToken >> 12) & 0xf);

 dArrivalRecord.LayoverCount = (arrivalToken >> 8) & 0xf ;

 assert(dArrivalRecord.LayoverCount < 5);

 arrivalToken >>= 16;

 for(unsigned i=0; i<dArrivalRecord.LayoverCount; i++){

 dArrivalRecord.LayoverIDs[i] = (Routed::LocationIDs)

 (arrivalToken & 0xf);

 arrivalToken >>= 4;

 }

 AnnounceArrival = &dArrivalRecord;

 // Arrival record is passed by reference.

}

A.2.4.7 The Calendar module: interfacing with the clock advancer

The Calendar model is responsible for advancing time on the RouteMap one or more days at a time. Once a set of scheduled departures has been programmed in each Origin transactor which has departures scheduled for a particular day, the Calendar allows the DUT to advance by 24 clocks (i.e., 24 hours) or some multiple of 24 clocks if the next scheduled departure occurs more than one day from now. The Calendar advances time by sending a message to the ClockAdvancer transactor in the hardware which has direct control of the DUT clock via the ClockControl macro. The source code for the Calendar module is very similar in structure to that for the Scheduler; therefore, most of it is not shown here.

The Calendar model has two slave threads that respond to requests to advance time. The ::advanceCalendarThread() responds to requests on the AdvanceCalendar port to advance a given number of days.

A.2.4.7.1 ::advanceClockThread()

The ::advanceClockThread() responds to requests to advance one clock at a time which occurs during RouteMap configuration to stagger the injection of each TeachRoute token by one clock. This method is shown here.

void Calendar::advanceClockThread(){

 dSendData.Set(0, 1);

 // Tell ClockAdvancer to advance by 1 clock.

 dInputPort->Send(dSendData);

 // Send message out on port proxy.

 // Pend until the cycle stamp gets updated by the

 // output port proxy reply callback.

 SceMiU64 currentCycleStamp = dCycleStamp;

 while(dCycleStamp == currentCycleStamp)

 wait();

}

Notice this method enters a loop that calls wait() to yield to the SystemC kernel. This guarantees the clock has completed its advance before returning. By yielding to the SystemC kernel while it is waiting for this condition, the autonomous SceMiDispatcher thread (see A.2.4.3) is naturally given a chance to service the message output ports. This is necessary to reach the condition the::advanceClockThread() is waiting for, namely, for the Calendar::dCycleStamp data member to change value.

A.2.4.7.2 replyCallback()

The ::dCycleStamp changes value when the ClockAdvancer (on the hardware side) indicates on its output port it has completed its one clock time advance which, in turn, causes the Calendar::replyCallback() function to get called from the SceMi::ServiceLoop(). The replyCallback() function is shown here.

void Calendar::replyCallback(void *context,

 const SceMiMessageData *data){

 ((Calendar *)context)->dCycleStamp = data->CycleStamp(); }

The cycle stamp is updated directly from the ::CycleStamp() method on the SceMiMessageData object. This reflects a count of elapsed controlled clock counts that had occurred from the beginning of the simulation to the time this message was sent from the hardware side. This is a convenient way for software to keep track of elapsed clock time in the hardware. Once the ::dCycleStamp is updated, the wait() loop in the ::advanceClockThread() (see A.2.4.7.1), is released and the function can return.

Keep in mind the ::advanceClockThread() and replyCallback() functions are being called under two different autonomous threads which each frequently yield to each other. The former is called from the autonomous Testbench::driverThread(); the latter is called from the SceMi::ServiceLoop() function which is called from underneath the autonomous SceMiDispatcher::dispatchThread().

This illustrates the clean interaction between a general multi-threaded application software environment and the SCE-MI service loop.

A.3 Complete example Using SystemC TB Modeling Environment

The following diagram and source code depicts a complete example of a small system modeled using the SCE-MI 2 DPI. The testbench is written in SystemC and consists of a Producer model that produces transactions of a custom user defined class MyType. Those transactions are fed via a C proxy model called PipelineIngressProxy to a transactor on the HDL side called PipelineIngressTransactor. DPI input pipes are used as the conduit between the proxy model and the transactor. The transactor formats the transactions as tokens that are fed to a simple DUT called Pipeline.

After propagating through the DUT the tokens are fed back to a transactor called PipelineEgressTransactor. This transactor, in turn forms transactions to be sent up to the Consumer module in the TB via the PipelineEgressProxy C proxy model (using DPI output pipes as the conduit).

This example also demonstrates compatibility with multi-threaded TB environments such as SystemC. In this case there are 4 threads in the TB which are depicted with the circular arrows. Details of the various models are described in the comments in the accompanying source code.

[image: image7.emf]Testbench

Top

SystemCVerilog

Pipeline “DUT”

PipelineIngressTransactor

PipelineEgressTransactor

scemi_pipe_hdl_receive(

 1, 4, 4, num_read,

 pipeData, lastData);

scemi_pipe_hdl_send(

 1, 4, 4,

 TokenOut, 0);

SCE-MI 2

Infrastructure

(DPI input pipe)

SCE-MI 2

Infrastructure

(DPI output pipe)

PipelineIngressProxy

PipelineEgressProxy

“service”

thread

“service”

thread

sc_fifo<MyType> ingress

sc_fifo<MyType> ingress

sc_fifo_in<MyType> DataIn

sc_fifo_out<MyType>

DataOut

“produce”

thread

“consume”

thread

DPI Interfacing between a SystemC TB and a Verilog DUT

A.3.1 Testbench

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <vector>

using namespace std;

#include "systemc.h"

#include "mytype.h"

#include "svdpi.h"

#include "scemi.hxx"

#include "scemi_pipes.h"

#include "testbench.h"

static void errorHandler(void */*context*/, SceMiEC *ec) {

 char buf[128];

 sprintf(buf, "%d", (int)ec->Type);

 string messageText("SCE-MI Error[");

 messageText += buf; messageText += "]: Function: ";

 messageText += ec->Culprit; messageText += "\n";

 messageText += ec->Message;

 cerr << messageText;

 throw messageText;

}

//---

// sc_main()

//

// This is the SystemC "main()" from which all else happens.

//---

int sc_main(int /*argc*/, char */*argv*/[]){

 // Register error handler with the SCE-MI infrastructure.

 SceMi::RegisterErrorHandler(errorHandler, NULL);

 SceMi *sceMi = NULL;

 try {

 int sceMiVersion = SceMi::Version(SCEMI_VERSION_STRING);

 SceMiParameters parameters("myconfig");

 sceMi = SceMi::Init(sceMiVersion, ¶meters);

 // Instantiate the top level testbench.

 Testbench testbench("testbench");

 // Kick off SystemC kernel ...

 sc_start(-1);

 SceMi::Shutdown(sceMi);

 }

//_________________

// class Testbench ___

//

// This is the top level SystemC testbench that instantiates the Producer

// and Consumer modules which drive the Pipeline DUT on the Verilog side.

//---

class Testbench : public sc_module {

 private:

 sc_fifo<MyType> ingressChannel0;

 sc_fifo<MyType> egressChannel0;

 sc_buffer<bool> done0;

 Producer producer0;

 Consumer consumer0;

 PipelineIngressProxy pipelineIngressProxy0;

 PipelineEgressProxy pipelineEgressProxy0;

 vector<MyType> dValues0;

 SC_HAS_PROCESS(Testbench);

 void terminateThread(){

 int doneCount = 0;

 while(doneCount < 1){

 wait();

 if(done0.event()){

 printf("Pipeline0 done.\n");

 doneCount++;

 }

 }

 printf("Termination condition detected, calling sc_stop() ...\n");

 sc_stop();

 }

 public:

 Testbench(sc_module_name name)

 : sc_module(name),

 producer0("producer0", dValues0),

 consumer0("consumer0"),

 pipelineIngressProxy0("pipelineIngressProxy0",

 "Top.pipelineIngressTransactor0"),

 pipelineEgressProxy0("pipelineEgressProxy0",

 "Top.pipelineEgressTransactor0")

 { SC_THREAD(terminateThread);

 sensitive << done0;

 // Map all data channel ports.

 producer0.DataOut(ingressChannel0);

 consumer0.DataIn(egressChannel0);

 consumer0.Done(done0);

 pipelineIngressProxy0.Ingress(ingressChannel0);

 pipelineEgressProxy0.Egress(egressChannel0);

 // Intialize transaction vectors for Producer modules.

 dValues0.push_back(MyType(5, 12.0, 3L));

 dValues0.push_back(MyType(11, 21.0, 1L));

 dValues0.push_back(MyType(8, 0.0, 0L));

};

A.3.2 C Proxies

//_____________________________

// class PipelineIngressProxy ___

//

// The PipelineIngressProxy module accepts data received over a data channel

// (in this case an sc_fifo) from producer sends it to the Pipeline DUT on the

// Verilog side passing transactions over a DPI input pipe to the

// PipelineIngressTransactor.

//---

class PipelineIngressProxy : public sc_module {

 public:

 sc_fifo_in<MyType> Ingress;

 sc_event dResetComplete;

 private:

 svScope dHdlContext;

 SC_HAS_PROCESS(PipelineIngressProxy);

 void serviceThread(){

 MyType localIngress;

 // Wait for confirmation that reset has occurred ...

 wait(dResetComplete);

 printf("PipelineIngressProxy::serviceThread(): reset detected !\n");

 for(;;){

 svBitVecVal pipeData[4];

 // Do blocking read on fifo channel.

 localIngress = Ingress.read();

 pipeData[0] = localIngress.Count;

 // Coerce double to long long integer.

 long long llData = (long long)localIngress.Data;

 pipeData[1] = (svBitVecVal)llData;

 llData >>= 32;

 pipeData[2] = (svBitVecVal)llData;

 pipeData[3] = localIngress.Status;

 // Send transaction to PipelineIngressTransactor via a

 // DPI transaction input pipe.

 svSetScope(dHdlContext);

 scemi_pipe_c_send(1, 4, 4, pipeData, (localIngress.Status==0));

 // Flush to input pipe if last transaction.

 if(localIngress.Status == 0)

 scemi_pipe_c_flush(1);

 }

 }

 public:

 PipelineIngressProxy(sc_module_name name, const char *transactorName)

 : sc_module(name){

 SC_THREAD(serviceThread);

 // Establish binding to HDL transactor module instance.

 dHdlContext = svGetScopeFromName(transactorName);

 // Install 'this' sc_module into HDL scope as user context.

 // Use static function address as unique key.

 svPutUserData(dHdlContext, (void *)(&ResetComplete), this);

 }

};

//---

// ResetComplete()

//

// Imported DPI function. This is used to sync S/W to the

// H/W reset.

//---

void ResetComplete() {

 // First retrieve local sc_module context from HDL scope

 // using svGetScope(), svGetUserData() with static function

 // address of ResetComplete as unique key:

 PipelineIngressProxy *me = (PipelineIngressProxy *)svGetUserData(

 svGetScope(), (void *)(&ResetComplete));

 me->dResetComplete.notify();

}

//____________________________

// class PipelineEgressProxy __

//

// The PipelineEgressProxy module waits for output transactions from the DUT

// Pipeline module. Those transactions arrive on a DPI output pipe.

//---

class PipelineEgressProxy : public sc_module {

 public:

 sc_fifo_out<MyType> Egress;

 private:

 svScope dHdlContext;

 SC_HAS_PROCESS(PipelineEgressProxy);

 void serviceEgressThread(){

 long long llData;

 svBitVecVal pipeData[4];

 MyType localEgress;

 char lastData;

 int numRead;

 for(;;){

 // Block on a DPI transaction output pipe for transactions from

 // the H/W side.

 svSetScope(dHdlContext);

 scemi_pipe_c_receive(1, 4, 4, &numRead, pipeData, &lastData);

 assert(numRead == 4);

 localEgress.Count = pipeData[0];

 // Extract data from sv bit packed array.

 llData = pipeData[2];

 llData <<= 32;

 llData |= pipeData[1];

 // Coerce long long to double.

 localEgress.Data = (double)llData;

 localEgress.Status = pipeData[3];

 // Send to consumer over fifo channel.

 Egress.write(localEgress);

 if(lastData)

 printf("PipelineEgressProxy: last data received.\n");

 }

 }

 public:

 PipelineEgressProxy(sc_module_name name, const char *transactorName)

 : sc_module(name)

 { SC_THREAD(serviceEgressThread);

 // Establish binding to HDL transactor module instance.

 dHdlContext = svGetScopeFromName(transactorName);

 }

};

A.3.3 Transactors

//===

//PipelineIngressTransactor johnS

//

// The PipelineIngressTransactor module contains an DPI input

// pipe that is used to stream transactions from the PipelineIngressProxy

// on the S/W side and routes to the ingress port of the Pipeline DUT.

//

// A separate PipelineEgressTransator handles output from the pipeline

// (see PipelineEgressTransactor.v).

//

// The 'count' field of the input transaction is used to decide how many

// clock cycles to hold the data for before submitting the transaction to the

// DUT pipeline. Once the transaction is submitted as a "token" to the

// pipeline, transactor immediately blocks on the transaction input pipe

// for the next transaction from the S/W side.

//

// When the transaction sent back to the Consumer module, the 'count' argument

// will indicate the total number of clock cycles the transaction spent in

// hardware. This will be the sum of the number of clock advance cycles the

// data is held prior to submission to the pipeline + the number of stages

// in the pipeline (@1 clock/stage).

//===

module PipelineIngressTransactor(

 //inputs outputs

 //-------------------------- ----------------------------

 TokenIn,

 Clock, Reset);

// { output [127:0] TokenIn;

 reg [127:0] TokenIn;

 input Clock, Reset;

 reg [31:0] holdingCount;

 reg done;

 `include "scemi_pipes.vh"

 byte lastData;

 int num_read;

 reg [31:0] receivedCount;

 reg [63:0] receivedData;

 reg [31:0] receivedStatus;

 initial lastData = 0;

 import "DPI-C" context function void ResetComplete();

 always begin // {

 @(posedge Clock);

 while(Reset == 1) @(posedge Clock);

 ResetComplete; // Call DPI import function to sync S/W to reset

 while(lastData == 0) begin // {

 // Obtain next transaction from S/W.

 scemi_pipe_hdl_receive(1, 4, 4, num_read,

 {receivedStatus, receivedData, receivedCount}, lastData);

 holdingCount <= receivedCount;

 @(posedge Clock);

 // Hold the token for the designated holding period.

 while(holdingCount > 0) begin

 holdingCount <= holdingCount - 1;

 @(posedge Clock);

 end

 // Ok, now after the holding period submit the token to the

 // pipeline ...

 TokenIn <= { receivedStatus, receivedData, receivedCount };

 @(posedge Clock);

 // Be sure to reset back to 0 so that only idle tokens propagate

 // through the pipeline until the next valid token arrives.

 TokenIn <= 0;

 @(posedge Clock);

 end // }

 while(1) @(posedge Clock); // Wait indefinitely now the we’re done.

 end // }

endmodule // }

//===

// PipelineEgressTransactor johnS

//

// The PipelineEgressTransactor module waits for output from the pipeline and

// returns the data as an output transaction back to the Consumer module on the

// software side by sending it over a DPI output pipe.

//===

module PipelineEgressTransactor(

 //inputs outputs

 //-------------------------- ----------------------------

 TokenOut,

 Clock, Reset);

// {

 input [127:0] TokenOut;

 input Clock, Reset;

 `include "scemi_pipes.vh"

 wire [31:0] countOut;

 wire [63:0] dataOut;

 wire [31:0] statusOut;

 // FSM States

 parameter GetNextOutput = 3'h0;

 parameter Done = 3'h1;

 reg [2:0] state;

 assign countOut = TokenOut[31:0];

 assign dataOut = TokenOut[95:32];

 assign statusOut = TokenOut[127:96];

 always @(posedge Clock) begin // {

 if(Reset)

 state <= GetNextOutput;

 else begin // {

 case(state) // {

 GetNextOutput: begin // {

 // Here we wait for output tokens from the Pipeline module.

 // if(token detected)

 // Send egress transaction to consumer model via

 // DPI output pipe.

 if(TokenOut != 0) begin

 scemi_pipe_hdl_send(1, 4, 4,

 {statusOut, dataOut, countOut}, 0);

 if(statusOut == 0) begin

 state <= Done;

 scemi_pipe_hdl_flush(1);

 end

 end

 end // }

 Done: begin end

 endcase // }

 end // }

 end // }

endmodule // }
_1218535237.doc
[image: image1.wmf]3

Legend

Hub

Pipe (with

t

ravel time)

Origin

Destination

OrigDest

Noida

14

Anchorage

5

Seattle

4

Maui

2

1

Cupertino

SanFran

SealBeach

1

3

Dallas

2

Chicago

3

5

Newark

3

1

Waltham

7

UK

Anchorage

Cupertino

Noida

SealBeach

UK

Waltham

Anchorage

Cupertino

Maui

SealBeach

UK

Chicago

Dallas

Newark

SanFran

Seattle

“Polar Route”

Destinations

_1218535375.doc
[image: image1.wmf]Hub

Seattle

OrigDest

Anchorage

5

Anchorage

Seattle

Maui

4

_1218535487.doc
[image: image1.wmf]TestBench

NewDay

AnnounceArrival

AdvanceCalendar

ScheduleLeg

LoadRouteMap

Done

Calendar

AdvanceCalendar

AdvanceClock

NewDay

TodaysDate

SceMi Dispatcher

Done

Scheduler

TodaysDate

ScheduleLeg

LoadRoute

AnnounceArrival

RouteConfig

LoadRouteMap

LoadRoute

AdvanceClock

SceMi

::ServiceLoop()

Message Channel

s

_1218535696.doc
[image: image1.wmf]Testbench

Top

SystemC

Verilog

Pipeline “DUT”

PipelineIngressTransactor

PipelineEgressTransactor

scemi_p

ipe_hdl_receive(

 1, 4, 4, num_read,

 pipeData, lastData);

scemi_p

ipe_hdl_send(

 1, 4, 4,

 TokenOut, 0);

SCE-MI 2

Infrastructure

(DPI

input p

ipe)

SCE-MI 2

Infrastructure

(DPI

output pipe)

PipelineIngressProxy

PipelineEgressProxy

“service”

thread

“service”

thread

sc_fifo<MyType> ingress

sc_fifo<MyType> ingress

sc_fifo_in<MyType> DataIn

sc_fifo_out<MyType>

DataOut

“produce”

thread

“consume”

thread

_1218535428.doc
[image: image1.wmf]MessageIn Port

ClockControl

MessageOut Port

ClockControl

MessageIn Port

MessageOut Port

Origin

TokenOut

TokenIn

Destination

Clock

Control

ClockAdvancer

RouteMap

(

DUT)

Interface

32

32

Transactor Components

DUT Components

Funnel

TokenIn0

TokenIn1

TokenIn2

TokenIn3

TokenOut0

TokenOut1

TokenOut2

TokenOut3

Nozzle

TokenOut

TokenIn

RouteTable

Hub

32

32

32

32

32

32

32

32

32

Pipe

TokenIn

TokenOut

32

32

‘TeachRoute’ Token

0

30

7

11

13

Destination ID of Hub

Learn Route ID

Associated Port ID

‘Passenger Arrival’ Token

‘Passenger Departure’ Token

> 0

30

7

11

15

23

31

Passenger ID

Destination ID

Layover Count

Layover 0 ID (Origin)

Layover 1 ID

Layover 4 ID

Passenger ID

> 0

Destination ID

Time of Departure

15

31

_1218535332.doc
[image: image1.wmf]UK

Message

In/Out Port

Proxy

Calendar

AdvanceCalendar

NewDay

AdvanceClock

TodaysDate

Message

In/Out

Port

Clock

Advancer

Message

Channel

s

Transactors

Software Models

Anchorage

Message

In/Out Port

Proxy

Noida

In Port

Proxy

ClockAdv

Message

In/Out Port

Proxy

RouteMap

Proxy

TodaysDate

Announce

Arrival

ScheduleLeg

LoadRoute

Schedule

r

Message

In/Out

Port

Message

In/Out

Port

Message

In Port

Noida

Dest

ination

Anchorage

OrigDest

UK

OrigDest

RouteMap

DUT

Message

_1218535153.doc
[image: image1.wmf]TransmitReady

ReceiveReady

Message []

SceMiMessageInPort

#64 p1

TransmitReady

ReceiveReady

Message []

SceMiMessageOutPort

#128 p2

TxRdyIn

Uclock

Ureset

ReadyForCclock

SceMiClockControl

#1 c1

CclockEnabled

CclockNegEdgeEnabled

RxRdyIn

Uclk

Rst

ReadyForCclock

CclockEnabled

MessageIn [63:0]

TxRdyOut

RxRdyOut

MessageOut [127:0]

TransactorCore

DutInCtrl

DutInData []

DutOutCtrl

DutOutData []

User-DefinedTransactor

t1

u1

DutInCtrl

DutInData []

DutOutCtrl

DutOutData []

Clk

Rst

d1

DUT

Cclock

Creset

SceMiClockPort

#(1, 1, 1, 50, 50, 0, 8) cclock

ReadyForCclockNegEdge

‘1’

