NOTE: While this was section 3 of the old document, it will have a new number within the context of the new document

3 Detailed Description of the DPI Proposal for SCE-MI 2

3.1 The DPI C-layer

3.1.1 Compliant subset of the SystemVerilog DPI C-Layer

The SCE-MI 2 standard constitutes a compliant SystemVerilog DPI C-Layer in terms of what data types are supported. That subset must exactly conform to the DPI C-Layer as described in Annex E of SystemVerilog LRM P1800-2005 Draft 3 (see reference []).

As such, the SCE-MI 2 specification development process can be “fast-tracked” by leveraging the existing proven, and formally specified SystemVerilog DPI standard.
3.1.2 Binding is automatic - based on static names

Binding between where functions are defined and where they are called from is based on simple static C symbol names. This makes things very easy for a user. Simply define a function on one side and call it from the other. It will be up to the infrastructure linker to make sure wrappers with matching symbol names are provided where appropriate.

This circumvents the use of complex binding schemes that involve function pointers and callback handing.

All C DPI symbol names conform to ANSI-C naming conventions and linkage. This provides a “lowest common denominator” C symbol linkage mechanism that is adaptable to virtually any HVL language environment (SystemC, C++, even possibly Vera, Specman e since they support C interfaces) for maximum flexibility.

3.1.2.1 Avoiding namespace pollution with DPI function identifiers
In order to avoid symbol clash with DPI function identifiers, which is a general issue with C libraries, it pays to follow a few simple guidelines. Traditionally this has been handled using schemes with prefixes in C identifiers to avoid pollution of name spaces.
Perhaps it would make sense to provide IP vendor guidelines how this could be done with DPI based IP. If public IP interfaces to vendor IP (say proxy libraries) are C++ this can be largely alleviated using C++ class encapsulation and/or namespaces. Suppose a vendor wants to provide a function PortId() to query the port ID in an HDL transactor model. In such cases the underlying ANSI C DPI communication calls could have a vendor prefix such as, Vendor1PortId().
You can be reasonably sure Vendor2 or Vendor3 would not choose that name for their PordId() calls.
Then, you can have a proxy class,
 class Vendor1ModelX {

 public:

 int PortId(){

 svSetScope(hdlContext);

 return Vendor1IpPortId(); // Concealed DPI function call

 }

 };

that confines PordId() to be within the Vendor1ModelX class. The user need only be concerned with using Vendor1ModelX::PortId().
Or, you could even have class IpModelX be part of an overall Vendor1 IP namespace enclosing a family of IpModel interface classes:

namespace Vendor1IpSpace {

class IpModelX

public:

int PortId(){ ... }

};

class IpModelY

public:

int PortId(){ ... }

};

};

In this case, by declaring,

using namespace Vendor1IpSpace;

The user need only be concerned with using IpModelX::PortId() or IpModelY::PortId().
All of these approaches would avoid symbol clash. As a side note, the last example hints that DPI does fundamentally allow use of a single ANSI C identifier for different model types - so long as no overloading is done - i.e.. the ANSI C arg profile must be identical in all uses of the symbol.
For example suppose all your models used the same convention for returning the port ID via a DPI call to Vendor1IpPortId(). There's no reason that different model types cannot reuse the same function. This has proven to be quite a useful feature in fact with DPI. I.e. you can implement "virtual functions" of sorts in both directions between C and HDL.
3.1.3 [Re: IM 201] Supported types, static mapping

The SystemVerilog DPI supports a variety of flexible data types ranging from simple scalar types such as integers to bit vectors to complex structures and dynamic arrays. The following table (taken directly from section 26.4.6 and Annex F sections F.6 and F.9 of reference [] lists the supported data types and their mappings between C data types and SystemVerilog DPI types:

	Supported SystemVerilog DPI formal argument types
	Corresponding types mapped to C respectively

	Scalar basic types:

 void

 byte, byte unsigned

 shortint, shortint unsigned

 int, int unsigned

 longint, longint unsigned

 real

 shortreal

 chandle

 string
	Scalar basic types:

 void

 char, unsigned char

 short int, unsigned short int

 int, unsigned int

 long long, unsigned long long

 double

 float

 void *

 const char *

	scalar values of type bit and logic
	unsigned char (with specifically defined values)

	packed one-dimensional arrays of type bit and logic
	canonical arrays (see E.9 of reference [],)

	types constructed from the supported types with the help of these constructs:

 struct

 union

 unpacked array

 typedef
	same as those for SystemVerilog

	open arrays
	special helper functions and data types to support this

The philosophy that was used in the development of the DPI was to make the type mappings between C and SystemVerilog as common sense and simple as possible and to minimize the requirements for special helper functions that are used to convert from one type to the other. In other words, define a type in SystemVerilog, define the same type in C the way your common sense would tell you to, and the two will match.
Basic C scalar types, structures, and unpacked arrays of such types, will map directly to equivalent SystemVerilog types almost literally. There are some caveats to this however:
• SystemVerilog integer types are specified to be of fixed size regardless of the inherent data width of a given machine architecture. For example the SystemVerilog types byte, shortint, int, and longint specifically have widths of 8, 16, 32, and 64 bits respectively.
Unfortunately, by contrast in ANSI C, integer types do not have widths that are as cast in stone as the corresponding types in SystemVerilog (see Wikipedia reference for ANSI C data types at http:// en.wikipedia.org/wiki/C_variable_types_and_declarations and http://www.opengroup.org/public/ tech/aspen/lp64_wp.htm for a further explanation of this paradox). What this means is that even though there is a fixed correspondence between fixed sized SystemVerilog integer types and non- fixed sized ANSI C integer types as shown in the table above, it will be up to the user to understand which bits of data passed between SystemVerilog and C are significant and where padding/mask​ing is implied/required. But despite this caveat, the user of scalar types to pass small data values by value back and forth between the language domains is extremely useful and should be supported to the extent possible in the SCE-MI 2 standard (see proposed type support for SCE-MI 2 below).
• Although there is a SystemVerilog type called integer which is a scalar data type that represents 4-state rather than 2 state bit values, this type is not supported across DPI and therefore has no C data types correspondence.
• While byte is always unsigned in SystemVerilog, shortint, int, and longint are always signed. The 4 of these types correspond to the C types char, short int, int, long long signed types respectively. The correspondence of byte to C char is a bit of an oddity that may have been overlooked by the SystemVerilog C language interfaces committee. It would really make more sense that this is unsigned char.
• By contrast to SystemVerilog integer types, the SystemVerilog chandle type does vary with machine architectures. This makes sense when once considers that pointers on 64 bit machines must be 64 bits and pointers on 32 bit machines must be 32 bits.
Additional complexities arise with bit vector (packed array) types and open arrays. But even for these, great care was taken to make their mappings as easy to use and intuitive as possible.
For SCE-MI 2 we will most likely want to choose some flexible subset of the full range of DPI types that will be optimal for support with synthesis tools and emulation environments. Our feeling is that these types should include, at a minimum, the simple integer scalar types and 2 state bits and bit vectors (packed one-dimensional arrays of bit). Supporting types beyond these should be considered very carefully as it represents a trade-off between complexity of the implementation and keeping a useful, flexible subset for the benefit of user applications.
Of the type mappings listed in the table above, the following table lists the subset of those mappings that will be supported for SCE-MI 2 and the corresponding the mappings to Verilog 2001 and VHDL:

	SystemVerilog DPI formal argument types for SCE-MI 2
	Corresponding types mapped to C
	Corresponding types mapped to Verilog 2001
	Corresponding types mapped to VHDL 1993

	Scalar basic types:

 byte

 byte unsigned

 shortint

 shortint unsigned

 int

 int unsigned

 longint

 longint unsigned

 string
	Scalar basic types:

 char

 unsigned char

 short int

 unsigned short int

 int

 unsigned int

 long long

 unsigned long long

 const char *
	Scalar basic types:

 integer

 integer

 integer

 integer

 integer

 integer

 integer

 integer

 reg [8*<size>:1]
	Scalar basic types:

 integer range -128 to 127

 integer range 0 to 255

 integer range -215 to 215-1

 integer range 0 to 216-1

 integer range -231 to 231-1

 integer range 0 to 232-1

 integer range -263 to 263-1

 integer range 0 to 264-1

 STD type STRING

	scalar values of type bit
	unsigned char (with specifically defined val ues)
	basic reg, net type
	std_logic

	packed one-dimen sional arrays of type bit and logic
	canonical arrays (see F.6.7 of reference [])
	basic reg, net vector type
	std_logic_vector

These recommendations come with the following considerations:
• Integer types, although supported, come with the caveat described above that for C their widths are not cast in stone but for SystemVerilog they are. As a result, the user will have to be aware of this when using these types in terms of knowing when padding is implied and when masking is required. That said, scalar data types that can be passed by value are extremely useful and should be supported in SCE-MI 2. It shall of course be assumed that the fixed sizes of these types on the HDL side will be maintained and will always synthesize to the same number of bits.
Note the following points:

• Scalar integer types for Verilog 2001 will all have to be integer since there is limited support for different scalar integer types. This will have implications for padding/truncation. Data types with widths > machine bits in width will be truncated going from C to Verilog and sign extended going from Verilog to C
A scheme using Verilog string attributes shall encode the intended width and sign of the integer. This is because otherwise there is no way for the infrastructure compiler to know which C type the Verilog integer type is intended to map to. A strawman proposal of this scheme using Verilog 2001+ function argument attributes is detailed in on page .

• Scalar types for VHDL can be tuned using VHDL type range specifications. A special package can be possibly be created to define those types.
• String types should be supported. For Verilog 2001, they would map to the standard usage of packed bit vectors ASCII characters as per the Verilog 2001 convention for strings.
• For VHDL string types would map to STD type STRING.
• See on page for more details on string type mapping.
Ultimately the committee can work out what types make most sense to support for the SCE-MI 2 application space. It will probably be something greater than current SCE-MI 1 which is essentially packed one-dimensional arrays of type bit, but something less than the complete supported set in SystemVerilog DPI. Factors such as synthesis and model portability will have to be taken into account here. This also has very much to do with modeling subset. We will probably want to err on the side of supporting fewer types in the short term with the possibility of adding more in future revisions of the standard as the need becomes evident.
3.1.3.1 Use of string attributes for Verilog integer argument clarification

The following example of a function declaration illustrates the use of string attributes to first, declare a Verilog function as an imported DPI function and second, to specify the types of its arguments:

(* sce_mi=”import DPI-C” *)
function integer all_possible_integer_types(

 (* sce_mi=”byte” *) input integer arg1,
 (* sce_mi=”byte unsigned” *) input integer arg2,
 (* sce_mi=”shortint” *) input integer arg3,
 (* sce_mi=”shortint unsigned” *) input integer arg4,
 (* sce_mi=”int” *) input integer arg5,
 (* sce_mi=”int unsigned” *) input integer arg6,
 (* sce_mi=”longint” *) input integer arg7,
 (* sce_mi=”longint unsigned” *) input integer arg8);
begin end
endfunction

The idea of this attributed mapping scheme is to specify which of the SystemVerilog types the integer is intended to map to. It should be noted that in the case of longint, it is possible that truncation or padding will occur if the Verilog machine representation of integer is only 32 bits.

3.1.3.2 Details of string mapping

String passing semantics shall follow exactly the semantics detailed in section F.7.10 of reference []. As stated there, all strings passed to C must be null terminated. Note: as per reference [] the infrastructure guarantees null termination of the contents of any string passed from the HDL side. And it is the user’s responsibility to terminate strings passed from the C side.

Since there is no explicit string argument type per se in Verilog 2001+, the following convention is used to represent string arguments in Verilog 2001+:

• The string is represented as packed bit vector containing an array of ASCII character codes as per the Verilog convention.
• The string argument is attributed in a manner similar to integer arguments shown above to designate it as a string.
The following example of a function declaration illustrates the use of string attributes to declare a string function argument:

(* sce_mi=”import DPI-C” *)
function integer a_string_type(

 (* sce_mi=”string” *) input [8*‘MAX_STRING_SIZE:1] arg1);
begin end
endfunction

If the length of a string passed from the C side exceeds the size of the ASCII vector shown in the argument above, the infrastructure shall automatically truncate it to fit, in this case taking only the first ‘MAX_STRING_SIZE characters, again as per section F.7.10 of reference [].

3.1.3.3 4-State logic types

<insert 4-state proposal (Re: IM 212) here>
3.1.4 Context handling

Context handing in DPI is the term used to refer to the mapping of an imported function call to an instance of user C data (such as an object pointer) that was previously associated with the Verilog caller module instance. This is useful for maintaining an association between, for example, a pointer to a SystemC proxy module and the instance of the Verilog transactor associated with it. Because an imported function call is just an ANSI C free function, by definition, it has no context as would say a method or member function of a C++ class.

Context handling in SystemVerilog DPI is very similar to context handling for receive callbacks in the SCE-MI 1 standard (see reference []). In the case of SCE-MI 1 the Context data member of the SceMiMessageOutPortBinding struct is used to pass a user model context to the receive callback function that can be associated with an instance of an output message port, as shown in Figure :

FIGURE 2. Context handling in SCE-MI 1PI
[image: image1.wmf]// Define the function and model class on the C++ side:

class MyCModel {

private:

int locallyMapped(int portID); // Does something interesting...

sc_event notifyPortIdRequest;

int portId;

public:

// Constructor

MyCModel(const char* instancePath) {

SceMiMessageOutPortBinding outBinding =

= { this, MyCFunc, NULL }

SceMiMessageOutPortProxy outPort = outPort->BindMessageOutPort(

instancePath, "sceMiMessageOutPort", outBinding);

 }

friend int MyCFunc(int portID);

};

// Implementation of receive callback function SCE-MI

1

void MyCFunc(void *context, const SceMiMessageData *data) {

MyCModel* me = (MyCModel*)context;

me->portId = data->Get(0);

me->notifyPortIdRequest.notify();

}

In SystemVerilog DPI, context binding is similarly established at initialization time by storing a context pointer with a Verilog module instance scope and later retrieving it via svGetScope() and svGetUserData(). This is very similar to the PLI calls tf_setworkarea(), tf_getworkarea() used for the same purpose.

Figure shows an example of context handing in SystemVerilog DPI:

FIGURE 2. Context handling in SystemVerilog DPI
[image: image2.wmf]SV Side:

// Declare an imported context sensitive C function with cname "MyCFunc"

import "DPI-C" context MyCFunc = function integer MapID(int portID);

C Side:

// Define the function and model class on the C++ side:

class MyCModel {

private:

int locallyMapped(int portID); // Does something interesting...

public:

// Constructor

MyCModel(const char* instancePath) {

svScope

sc

ope = svGetScopeByName(instancePath);

// Associate "this" with the corresponding SystemVerilog scope

// for fast retrieval during runtime.

svPutUserData(

sc

ope, (void*) MyCFunc, this);

}

friend int MyCFunc(int portID);

};

// Implementation of imported context function callable in SV

int MyCFunc(int portID) {

// Retrieve SV instance scope (i.e. this function’s context).

svScope = svGetScope();

// Retrieve and make use of user data stored in SV scope

MyCModel* me = (MyCModel*)svGetUserData(svScope, (void*) MyCFunc);

return me->locallyMapped(portID);

}

In this example notice that because functions can have both input and output arguments, the return argument can be sent directly out of the function return argument. In the SCE-MI 1 version, the receive callback must notify another thread to send the mapped portID.

3.2 The DPI HDL-Layer

The DPI HDL-layer is described in detail in chapter 27 of SystemVerilog LRM P1800-2005 Draft 3 (see reference []).

The HDL layer of DPI is designed to allow imported and exported function calls to be used with identical semantics to plain SystemVerilog functions. This means that argument passing and calling conventions remain identical.

In addition, all scoping considerations (and all their “peculiarities”) remain identical. For example the calling scope of a call to any Verilog function call is the scope where the function is defined not the caller site. In the case of an imported function a special function declaration syntax serves as a place holder for where the function would actually be defined if it were a plain Verilog function. That placeholder represents a declaration of the actual function definition itself which is on the C side. As with plain Verilog functions, the calling scope of this function is considered to be the scope of this import declaration rather than the caller site. This becomes important when understanding calling scope for purposes of context handling as described in on page . Here is an example of an imported function declaration in SystemVerilog:

// Declare an imported context sensitive C function with cname "MyCFunc"

import "DPI-C" context MyCFunc = function integer MapID(int portID);

Notice that this declaration also shows a nice feature of the SystemVerilog DPI called C-name aliasing.

Basically this declaration is telling the Verilog side that, “there’s a C function called MyCFunc() that can be called directly from Verilog as the aliased Verilog name MapID()”.

So when the Verilog code makes a call to MapID(), this results in the C function MyCFunc() being called. This is very useful when resolving incompatibilities in legal names between the C language and the Verilog language. For example a Verilog name could be an escaped identifier that is illegal in C. This can be easily fixed by choosing a legal C name and using aliasing in the import declaration.

For exported functions, the entire function body is defined in some module scope in Verilog. A special additional declaration syntax is used to declare that function is allowed to be called from the C side, for example,

export “DPI-C” SetParityGetConfig = function configQuery;

function bit [7:0] configQuery;

input bit enableParity;

begin

isParityEnabled = enableParity;

configQuery = currentState;

end

endfunction

In this example the variables isParityEnabled and currentState are defined in the same module scope as the function configQuery() and can thus be accessed freely by the function itself.

Like imported functions, C-name aliasing works for exported functions as well. In this case, when the C side calls the function SetParityGetConfig() the HDL function configQuery() will actually get called. It will be the responsibility of the infrastructure compiler to provide a C wrapper function that will be visible on the C side and to generate infrastructure code to that causes this function wrapper to call the actual Verilog function configQuery().

3.2.1 Attribute syntax adaptation

The SCE-MI 2, retains the look and feel of the SystemVerilog DPI HDL layer but with a special adaptation for Verilog and VHDL since part of the SCE-MI requirements is for the API to be multi- lingual and require no language syntax extensions. As described in the previous section, the import and export declarations in SystemVerilog are part of the language syntax. Because these syntax extensions do not exist for Verilog or VHDL, another mechanism must be deployed to declare functions as imported or exported.

For both Verilog and VHDL an attribute syntax is used for this purpose. Both of these languages allow attachment of attributes to function declarations. The attribute values will be string types that follow a syntax similar to the import/export syntax of SystemVerilog.

These attributes are used to alert infrastructure compilers that they are expected to interpret the value of the attribute and make any special adjustments necessary to implement bindings to the imported or exported functions. The SCE-MI 2 infrastructure compilers are expected to interpret these attributes but standard IEEE compliant Verilog or VHDL analyzers are not.

Figure 5 shows Verilog and VHDL attribute syntax compared to SystemVerilog native syntax used when declaring an imported function. For VHDL 1992, since the FOREIGN attribute is part of package STD, it can easily be used to attribute DPI functions in the manner shown.

FIGURE 2. Attribute syntax to declare imported DPI function in Verilog and VHDL
[image: image3.wmf](* sce_mi="import DPI-C" *)

function nb_put

;

 input type;

 input status;

 input [`DATA_WIDTH-1:0] d;

 begin end // Empty function

endfunction

import "DPI-C" function bit nb_put

 (

 input bit type;

 input bit status;

 input bit [`DATA_WIDTH-1:0] d);

SystemVerilog Import Declaration

Verilog Import Declaration

function nb_put

(

 t

ype

: std_logic;

s

tatus

: std_logic

;

d: std_logic_vector(D

ATA_WIDTH-1

 downto 0))

 return std_logic i

s

b

egin end

-- E

mpty functio

n

attribute foreign of nb_put: function is

 "sce_mi import DPI-C";

VHDL I

mport Declaration

In both the Verilog and VHDL cases, an empty “place-holder” function is used to represent the imported function. It is shown with the string attribute that alerts the infrastructure compiler that this function represents a foreign function that is actually defined on the C side.

Figure 6 shows Verilog and VHDL attribute syntax compared to SystemVerilog native syntax used when declaring an exported function.

FIGURE 2. Attribute syntax to declare exported DPI function in Verilog and VHDL
[image: image4.wmf]export “DPI-C” function configQuery;

function bit [7:0] configQuery;

input bit enableParity;

begin

isParityEnabled = enableParity;

configQuery = currentState;

end

endfunction

SystemVerilog Export Declaration

(* sce_mi="export DPI-C" *)

function [7:0] configQuery

;

input enableParity;

begin

isParityEnabled = enableParity;

configQuery = currentState;

end

endfunctio

n

Verilog Export Declaration

f

unction

configQuery(

 enableParity: std_logic)

 return std_logic_vector(7 downto 0) i

s

b

egi

n

 isParityEnabled := enableParity

 return currentState;

e

nd

attribute foreign of configQuery: function is

 "sce_mi export DPI-C";

VHDL Exp

ort Declaration

For exported functions, in the SystemVerilog, Verilog, and VHDL cases the function body is declared in a similar way (actually identically in Verilog since it is a subset of SystemVerilog). But in SystemVerilog an additional export declaration designates this function as callable from the C side. Whereas in Verilog and VHDL again, a string attribute is used.Note: For VHDL, forward declarations can be used as well such that

Note: For VHDL, forward declarations can be used as well such that the forward declaration can be followed by an attribute declaration and that can be separate from the exported function definition itself.

3.3 0-time vs. time consuming functions

The SystemVerilog DPI supports both 0-time and time consuming functions. An imported or exported function always executes in 0-time. An exported Verilog task, by contrast, can consume time.

For the SCE-MI 2 standard we will want to carefully examine to what extent we will want to support exported time consuming tasks. It is advisable that we support exported tasks although very useful transaction based use models can be developed based only on 0-time functions.
3.4 Support for multiple messages in 0-time

On important point to make about the DPI approach is that it does not preclude the ability to support transmission of multiple messages in 0-time either by calling the same function or by calling multiple functions between two clocks.

This is interfacing feature is fundamentally missing from any macro based approach where macros supporting controlled time interfacing are fed user clocks. The only way of accomplishing this is to use some sort of over-clocking scheme in which the message clock (still a controlled clock) has a frequency that is some multiple of the main clock being used in the transactor.
For example, if I am using a message macro that is clocked by transactor_clock and I wish to send 3 messages between posedges of transactor_clock, I must define essentially a message_clock that is at least 3 times the frequency of transactor_clock. Short of this over-clocking there is no other way to fundamentally accomplish transmission of multiple messages between clocks. And over-clocking can have the ultimate effect of reducing usable emulator design clock bandwidth especially for high speed messaging interfaces.
With the DPI approach, multiple messaging is possible. In fact, it is quite feasible. Take the following code example:

always @(posedge transactor_clock) begin

 if(reset == 1) begin

 // Do the reset thing ...

 else switch (fsm_state) begin

 case ‘FSM_STATE_1: begin

 ...

 c_function1(data1, data2);

 c_function1(data2, data3);

 c_function2(data3, data4);

 end

 ...

 end

 ...

end

In this case, there are two consecutive calls to c_function_1(). The first takes data1 as the input and returns data2 as the output. The second takes data2 as the input and returns data3 as the output. The third call is actually a call to a different function (which could be to different SCE-MI 1 message ports underneath).

Given that the infrastructure compiler can replace these function calls with RTL code interfacing to SCE-MI 1 macros, that RTL code has the ability to explicitly stop the transactor clock as long as is needed while allowing the 3 message exchanges. In simulator implementations you would not even need underlying SCE-MI 1 macros replacements as the simulator’s time advance is naturally stopped during 0-time function calls. And there does not need to be a notion of uncontrolled time except, possibly to accommodate legacy SCE-MI 1 models.
Using a macro based approach it is impossible transmit successive messages at the user level (short of using over-clocking or explicit use of uncontrolled time SCE-MI 1 macros) since the macro itself must be driven with the same controlled clocks that the user code is using.
3.5 [Re: IM 202] Rules for DPI function call nesting and recursion

It shall be an error for exported DPI functions to call imported DPI functions. Imported DPI functions may however, call exported DPI functions.

This would retain, at a minimum, the basic functionality provided by SCE-MI 1 in terms of call recursion. At this point I don't see a reason to go beyond this for SCE-MI 2

