NOTE: While this was section 5 of the old document, it will have a new number within the context of the new document

5 Time Access

5.1 [Re: IM 203] Time access from the C side

Assuming a pure SCE-MI 2.0 environment, it shouldn't be necessary to force the user to instantiate the SCE-MI object from SCE-MI 1.1 to get time information from the HDL side. To do so would unnecessarily damage the SCE-MI 2 goal of being able to design and run the testbench environment in pure simulation, and have that port fairly seamlessly to emulation (or H/W acceleration).
For this example, we'll neglect the VHDL case and look at only the Verilog/SystemVerilog case. Actually, this example will work even for VHDL as long as the simulator supports mixed language (and therefore VPI) which all of them that I'm aware of do.
To access current simulation time on the C side two calls from Verilog standard VPI interface API can be used to get current time and global precision. In any SCE-MI 2 implementation that already supports VPI, no additional work is needed on the part of the implementation to support time access. In SCE-MI 2 implementations that do not already support VPI, these two calls must be implemented at least as described below at a minimum, to provide time access capability.

The vpi_get_time() call can be used to obtain current time expressed in simulation units:

void vpi_get_time(vpiHandle obj, s_vpi_time *time_p);

The vpi_get() call can be used to obtain the global precision units in which current time is expressed:

int vpi_get(int prop, vpiHandle obj);

Given the ability to obtain current time in simulation units and the precision of those simulation units, one can easily derive current time expressed in any units desired.

Here is an example of a small “reference code library" that can return current time in NS in any environment that supports the two VPI calls in the manner described above:

static double timescale_factor = 1.0;

static double precision_conversion_factors[] = {

 1.0, // 1 s (0)

 1.0, // 100 ms (-1)

 1.0, // 10 ms (-2)

 1.0, // 1 ms (-3)

 1.0, // 100 us (-4)

 1.0, // 10 us (-5)

 1.0, // 1 us (-6)

 1.0, // 100 ns (-7)

 1.0, // 10 ns (-8)

 1.0, // 1 ns (-9)

 10.0, // 100 ps (-10)

 100.0, // 10 ps (-11)

 1000.0, // 1 ps (-12)

 10000.0, // 100 fs (-13)

 100000.0, // 10 fs (-14)

 1000000.0, // 1 fs (-15)

};

// Call this at init time.

void init_time_library(){

 int precision_code = -vpi_get(vpiTimePrecision, NULL);

 if(precision_code < 9)

 Error("Precisions courser than 1 ns not handled")

 timescale_factor = precision_conversion_factors[precision_code];

}

// Call this whenever you want time in NS

unsigned long long time_in_ns() {

 static s_vpi_time time = { vpiSimTime, 0, 0, 0.0 };

 vpi_get_time(NULL, &time);

 unsigned long long ret =

 (((unsigned long long)time.high) << 32) | time.low;

 return (unsigned long long)((double)ret/timescale_factor+.5);

In in emulation environment it will be up to the vendor's infrastructure to keep the C side's internal notion of time properly updated with the emulator's notion.

This can be done by carrying something like the old "cyclestamp" along with each internal output transaction associated with an alternating implementation of imported and exported calls.
For streaming threads, the current time access would only be guaranteed at "synchronization points" defined by flushes of DPI pipes.

5.2 [Re: IM 203, IM 216 - proposed enhancement to SCE-MI 1] Establishing a time base on the HDL side

Currently in the SCE-MI 1.1 specification, since all clock definitions are ratio based, there is no way of specifying the time base on the H/W side.
In order for to be able to implement time accesses from the C side (as described in Part I above), there must be a way of fixing the H/W side time base.
The easiest way to do this is to specify the period of at least the fastest user cclock. By doing this, the cyclestamp can be associated directly with actual absolute time units.
A special variant of the SceMiClockPort macro is defined that allows specification of a clock period and therefore establishes a timed based on the HDL side that is not provided by macros that are strictly ratio based. This form of the macro is called SceMiClockPortP defined as follows:

 module SceMiClockPortP(Cclock, Creset);

 parameter ClockNum=1;

 parameter ClockPeriod = "1 ps";

 parameter DutyHi=0, DutyLo=100, Phase=0;

 parameter ResetCycles=8;

 output Cclock, Creset;

 endmodule

 component SceMiClockPortP

 generic(

 ClockNum : natural := 1;

 ClockPeriod : string := "1 ps";

 DutyHi : natural := 0;

 DutyLo : natural := 100;

 Phase : natural := 0;

 ResetCycles : natural := 8);

 port(

 Cclock : out std_logic;

 Creset : out std_logic) ;

 end component;

The clock period specification is given as a string which will be parsed by the infrastructure to establish the period of that clock. The string follows exactly with both Verilog and VHDL syntax for specifying literal values of type time.

The default period shall be 1 ps. Notice that the period specification replaces the ratio specification in the current SceMiClockPort macro.

A typical application can specify the fastest clock in the system with this macro then, specify all other clocks in the usual way as ratios to this clock. Or, alternatively, all clocks can be specified with periods using SceMiClockPortP macros in which case, ratios between them are implied and easily derived.

5.2.1 SCE-MI 2 support for clock definitions

The SceMiClockPort continues to be supported in SCE-MI 2 and can be used to provide clocks to DPI SCE-MI 2 models. This continues to be a nice flexible way to define multiple clocks with specific frequency relationships.
However, although clock port macros continue to be supported, SCE-MI 2 makes no requirement that clocks must be specified using only clock ports. Alternative clock specifications are allowed such as simple behavioral clock generation blocks that are traditionally used with HDL languages. The SCE-MI 2 standard does not preclude use of such specifications in place of clock port macros.

Additionally, although there are no changes to clock ports for definitions of clocks, it is recognized that with the SCE-MI 2 DPI approach no clock control is needed as there is explicit no notion of uncontrolled time in SCE-MI 2 models.

Use of the SceMiClockControl macro is only needed for clock control in legacy SCE-MI 1 transactor models.

It has been mentioned in the ITC meetings that there are some weaknesses in SCE-MI 1 clock port definition - particularly with regard to time-base control. The committee is open to improvements to SCE-MI 1 clock port macros such as allowing period/frequency specification to establish time base, and such a capability has been under discussion.
Bear in mind that in some simulation environments where DPI is natively supported, but SCE-MI is not, SCE-MI 2 transactor models will run in those environments unaltered. This is because SceMiClockPort’s typically serve as clock sources external to DPI based transactor models. Therefore, it does not matter if those clocks are sourced from SceMiClockPorts or from generic Verilog clock generation statements.
This tells a nice story for compatibility of SCE-MI 2 DPI based transactor models with native S/W simulation environment

