NOTE: While this was section 4 of the old document, it will have a new number within the context of the new document

4 Variable Length Messaging and Streaming Extensions: Transaction Pipes

4.1 Overview

For variable length messaging and streaming extensions, a special facility is built over the DPI standard. As currently defined, the DPI standard handles strictly reactive semantics for function calls. There are no extensions for variable length messaging and streaming.

The SCE-MI 2 supports constructs called transaction pipes which can implemented as optmizable built- in macro functions that are built over the DPI.

A transaction pipe is a function call that provides a means for streaming transactions to and from the HDL side.

Transaction pipes are as easy to use as function calls, yet have semantics that be thought of as a hybrid between UNIX sockets, UNIX file streams and UNIX named pipes.

•  Like UNIX sockets, transaction pipes provide a facility for sending one-way message passing through simple function calls. Transaction pipes are composed of send and receive calls that look very much like write and read calls to UNIX sockets (but are much easier to create and bind endpoints).

•  Like UNIX file streams, items written to the pipe can be buffered by the infrastructure which allows for more optimal streaming throughput. Pipes leverage the fact that in some cases round trip latency issues can be avoided by using pipelining, and therefore more effective throughput of streamed transactions can be realized.
•  And, like UNIX file streams, transaction pipes can be flushed. Flushing a transaction pipe has the effect of guaranteeing to the writer of the transaction that the reader of the transaction at the other end has taken it. This is useful for providing synchronization points in streams.
•  Like UNIX named pipes, each transaction pipe can be uniquely identified within a module scope using a numeric enumeration scheme. And standard DPI module scope binding (svGetScope(), svGetScopeFromName()) calls can be used to obtain scope handles for binding of transaction pipes.

Transaction pipes are uni-directional meaning that in any given pipe, the transactions only flow in one direction. The data sent by the sender is guaranteed to be received by the receiver in the same order when the receiver asks for the data (by calling a function). However, the data is not guaranteed to be available to the receiver immediately after it was sent (as would happen if the implementor decides to deploy buffering).

Transaction pipes that pass one-way transactions from the C side to the HDL side are called input pipes. Pipes that pass transactions from the HDL side to the C side are called output pipes.

Unlike normal DPI calls, in which one end calls and the other end is called, models on both ends of a transaction pipe call into the pipe - one end calling the send function and the other calling the receive function.

4.1.1 [Re: IM 208 ] Reference vs. vendor optimized implementations of DPI compliant pipes
It is possible to implement pipes as a reference model or library macros of source code built over basic DPI function calls that would work on any DPI compliant simulator.
As such they can be made to run on any DPI compliant software simulator. Such a reference model would provide a reactive implementation of pipes which could be used as the basis for more optimized "built-in" implementations that might deploy buffered batching, streaming, and concurrency optimizations.
It is an absolute requirement however that such optimizations do not change functional and deterministic behavior of a design that runs on the basic reactive reference model implementation of pipes as described above.
In other words, code using a pipe interface must behave identically whether running over the reactive "reference" implementation or running over an optimized custom implementation.
Within this constraint, vendors are free to perform any optimizations of pipes that are appropriate to their platform.
Per Bojsen wrote:
> Note that the text said that concurrency could be introduced by the
> implementation as long as it does not alter behavior.  So we've
> established and all agreed upon that the new DPI/function based subset
> of SCE-MI 2.0 is a system that uses alternating execution.  This
> follows directly from the DPI definition.  However, this applies
> only to the behavior of the system, not necessarily to what is actually
> going on under the hood.  There are plenty of opportunities to
> optimize the transport and execution that does not change the behavior.
> This includes introducing some degree of concurrent operation.  Do
> you agree that it does not matter that there is some degree of
> concurrent operation as long as it behaves exactly like a purely
> alternating system would?  SCE-MI 2.0 will describe the semantics
> of the DPI/function based interface in terms of alternating execution.
> The implementation is compliant as long as it preserves this semantics.
> It does not matter one bit how the implementation achieves this
> under the hood.
4.2 Pipe Ids, Pipe Handles

All pipes within a given HDL module scope are designated with a unique user chosen pipe ID. This ID can be thought of as a unique intra-module pipe identifier to differentiate between different pipes in the same module scope. Input pipes and output pipes each have their own ID space so it is possible, for example, to have both an input pipe and an output pipe with ID=1. ID=0 is always reserved and so it is an error for a user to use this ID.

On the HDL side, all pipe operations must indicate the ID of the pipe on which the operation is being performed.

On the C side a pipe must be identified from a pipe handle. A pipe handle is uniquely derived from the combination of a pipe’s intra-module ID and its HDL scope as follows:

void *scemi_pipe_c_handle(  // return: pipe handle

    svScope hdl_context,     // input: HDL context

    int pipe_id,             // input: intra-module pipe identifier

    svBit input_or_output ); // input: 1 for input pipe,

                             //        0 for output pipe

Originally the C side used pipe ID arguments to all C-side calls just as the HDL side does. It was decided to replace this with a pipe handle argument instead. The pipe handle can be derived once at initialization time and reused many times without having to set scope each time and requiring the internal implementation to do a lookup based on the scope and the pipe ID to retrieve the internal data structure associated with a pipe.
Doing this not only made the user application code a lot cleaner looking but made the implementation more efficient as well (fewer lookups and pointer indirections on each call).
4.3 Transaction input pipes

An input pipe sends transactions from the C side to the HDL side.

4.3.1 Blocking input pipe access functions

Here is the input pipe blocking receive function declaration in SystemVerilog:

import "DPI-C" context task scemi_pipe_hdl_receive(


input  int pipe_id,             // input: intra-module pipe identifier


input  int bytes_per_element,   // input: #bytes/element


input  int num_elements,        // input: #elements to be read


output int num_elements_read,   // output: #elements actually read


output bit [`SCEMI_PIPE_MAX_BITS-1:0] data, // output: data


output byte eom );              // output: end-of-message marker flag

The infrastructure will supply the definition of this imported task - essentially it is a built-in function and its declaration can be placed in an implementation provided include file which can be included right in the user’s module scope where the pipe is used (see  on page   for an example of implementation supplied include files).

Note the following properties:

•  A transaction input pipe can be declared as a standard DPI import declaration.

•  It looks like a normal DPI function except that it has the required name scemi_pipe_hdl_receive

•  The arguments consist of:
•  pipe_id - unique intra-module pipe identifier (just an ordinal unique within a module scope that is chosen by user - value=0 is reserved)

•  bytes_per_element - number of bytes in each individually readable element - comes into play for data shaping (see  on page  )

•  num_elements - number of elements to be read on this receive operation - can vary from call to call which again, facilitates data shaping
•  num_elements_read - number of elements actually read, in the case of data shaping this can be less than the requested number of bytes read if the eom comes at some residual number of elements that does not fill out an entire request

•  data - a target array to which the requested num_elements of requested size bytes_per_element will be deposited

•  eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of transactions

•  Note that data and eom always have an output direction.

On the C side endpoint of an input pipe, the blocking send function provided by the infrastructure is declared as follows:

void scemi_pipe_c_send(

    void *pipe_handle,       // input: pipe handle

    int bytes_per_element,   // input: #bytes/element

    int num_elements,        // input: #elements to be written

    const svBitVecVal *data, // input: data

    char eom );              // input: end-of-message marker flag

Note the following properties:

•  The pipe_handle is the handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section  on page  ).

•  The bytes_per_element, and num_elements arguments are the same as those described above for the HDL endpoint of the pipe.

•  The data and eom are the same as well but have an input rather than output direction.

•  The eom flag is strictly a user defined flag. Whatever is passed to the send endpoint of the pipe will be received at the receive endpoint. This is useful for creating end-of-message markers in variable length messages or indicating flush points to the other end.

4.3.2 The input pipe flush function

On the C side endpoint of an input pipe, the flush function provided by the infrastructure is declared as follows:

void scemi_pipe_c_flush(

    void *pipe_handle )  // input: pipe handle

Note the following properties:

•  The pipe_handle is the handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section  on page  ).

4.3.3 Automatic flush-on-eom

The following call lets an application specify that automatic flush-on-eom mode is enabled/disabled for a pipe designated by a given handle. This configuration call is always initiated only on the C side for both input and output pipes.

For any given pipe on which this mode is enabled, a pipe scemi_pipe_c/hdl_send() call with an eom value of 1 will have the same effect as if a scemi_pipe_c/hdl_flush() call was made following that data send call.

   void scemi_pipe_set_eom_auto_flush(

     void *pipe_handle,  // input: pipe handle

     svBit enabled );    // input: enable/disable

Note the following properties:

•  The pipe_handle is the handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section  on page  ).

•  The enabled flag indicates to enable or disable this mode.

4.3.4 Example of input pipe

Figure  shows an example of the use of an input pipe on both the C and HDL sides:

FIGURE 2.  Example of input pipe
[image: image1.wmf]module Producer(Clock, Reset, DataOut

, CountOut

);

...

`include "

scemi_p

ipes.vh"

int num_read;

int last_data;

reg pipeData[63:0];

assign CountOut = dataOut[31:0];

assign DataOut = pipeData[63:32];

...

while(

last_data ==

 

0

) begin

...

// Read from 

input pipe

scemi_p

ipe_hdl_receive(

1, 32, 2, num_read, pipeData, last_data )

;

..

.

@

(posedge Clock);

...

end

v

oid genRandomDataThread( void *context ){

svScope hdlContext = (svScope)context

;

void *handle = scemi_pipe_c_handle(

hdlContext, 1, 1 );

svBitVecVal pipeData[2];

for(fillCount = 0; fillCount < fillSize;

        fillCount++)

    {

..

.

pipeData[0] = count; pipeData[1] = data

;

scemi_p

ipe_c_send(

handle,

 

32, 2, pipeData, 0 )

;

}

pipeData[0] = 0; pipeData[1] = 0xffffffff

;

scemi_p

ipe_c_send( 

handle,

 32, 2, pipeData, 1 )

;

scemi_p

ipe_c_flush( 

handle )

;

}

•

On the 

writing end (C

 side

)

, the pipe is written to by 

calling 

the 

send

 function

•

On the 

reading e

nd (

HDL s

ide)

, the pipe is read from by 

calling the 

receive

 function

•

When the last transaction is sent,

 the 

end-of-message 

(

eom

) argument is set to 1, this is followed by a 

flush

•

B

oth the writing and reading end make calls to the 

transaction 

same 

pipe

 identifier=1 in the given scope 

instance

C Side

HDL Side

Transaction 

Input P

ipe


.

4.4 Transaction output pipes

An output pipe sends transactions from the HDL side to the C side. 

4.4.1 Blocking output pipe access functions

Here is the output pipe blocking send function declaration in SystemVerilog:

import "DPI-C" context task scemi_pipe_hdl_send(


input  int pipe_id,          // input: intra-module pipe identifier


input int bytes_per_element, // input: #bytes/element


input int num_elements,      // input: #elements to be written


input bit [`SCEMI_PIPE_MAX_BITS-1:0] data, // input: data


input byte eom );            // input: end-of-message marker flag

The infrastructure will supply the definition of this imported task - essentially it is a built-in function and its declaration can be placed in an implementation provided include file which can be included right in the user’s module scope where the pipe is used (see  on page   for an example of implementation supplied include files).

Note the following properties:

•  A transaction output pipe can be declared as a standard DPI import declaration.

•  It looks like a normal DPI function except that it has the required name scemi_pipe_hdl_send

•  The arguments consist of:

•  pipe_id - unique intra-module pipe identifier (just an ordinal unique within a module scope that is chosen by user - value=0 is reserved)

•  bytes_per_element - number of bytes in each individually readable element - comes into play for data shaping (see  on page  )

•  num_elements - number of elements to be read on this receive operation- can vary from call to call which again, facilitates data shaping
•  data - a target array to which the requested num_elements of requested size bytes_per_element will be deposited

•  eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of transactions

•  Note that all arguments have an input direction.

On the C side endpoint of an output pipe, the blocking receive function provided by the infrastructure is declared as follows:

void scemi_pipe_c_receive(

    void *pipe_handle,      // input: pipe handle

    int bytes_per_element,  // input: #bytes/element

    int num_elements,       // input: #elements to be read

    int *num_elements_read, // output: #elements actually read

    svBitVecVal *data,      // output: data

    char *eom );            // output: end-of-message marker flag

Note the following properties:

•  The pipe_handle is the handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section  on page  ).

•  The bytes_per_element, and num_elements arguments are the same as those described above for the HDL endpoint of the pipe.

•  The data and eom are the same as well but have an output rather than input direction.

•  The eom flag is strictly a user defined flag. Whatever is passed to the send endpoint of the pipe will be received at the receive endpoint. This is useful for creating end-of-message markers in variable length messages or, when used in conjunction with flush calls, indicating flush points to the other end.

•  num_elements_read - number of elements actually read, in the case of data shaping this can be less than the requested number of bytes read if the eom comes at some residual number of elements that does not fill out an entire request

4.4.2 The output pipe flush function

On the HDL side endpoint of an output pipe, the flush function provided by the infrastructure can be declared as follows:

import "DPI-C" context task scemi_pipe_hdl_flush(


input int pipe_id );    // input: intra-module pipe identifier

Note the following properties:

•  The pipe_id is a unique intra-module pipe identifier (just an ordinal unique within a module scope that is chosen by user - value=0 is reserved).

4.4.3 Example of output pipe

Figure  shows an example of the use of an output pipe on both the C and HDL sides:

FIGURE 2.  Example of output pipe
[image: image2.wmf]module Consumer(Reset, DataIn, Id, Done

, Clock

);

...

`include "

scemi_p

ipes.vh"

reg pipeData[63:0];

...

assign pipeData = (data, count);

forever begin

@(posedge Clock);

if({status, data, count} != 128'h0) begin

...

if(status == 32'h0) begin

scemi_p

ipe_hdl_send(

1, 32, 2, pipeData, 1 );

scemi_p

ipe_hdl_flush( 1 );

D

one = 1;

end

else

scemi_p

ipe_hdl_send(

1, 32, 2, pipeData, 0 )

;

end

end //end forever

...

void write2LogThread( void *context ){

svScope hdlContext = (svScope)context;

svBitVecVal pipeData[2];

    int num_read;

void *handle = scemi_pipe_c_handle(hdlContext,1,1);

do 

{

scemi_p

ipe_c_receive(

 

handle,

 32, 4, &num_read,

pipeDa

ta, 

&eom )

;

...

} while( 

!eom )

;

}

•

On the writing end (HDL side), the pipe is written to by 

calling the 

send

 function

•

On the reading end (C side), the pipe is read from by 

calling the 

receive

 function

•

When the last transaction is sent, the 

end-of-message 

(

eom

) argument is set to 1, this is followed by a 

flush

•

Both the writing and reading end make calls to the same 

transaction pipe identifier=1 in the given scope instance

C Side

HDL Side

Transaction 

Output Pipe


4.5 Transaction pipes are deterministic

Transaction pipes are designed to retain deterministic time advance on the HDL.

Specifically to ensure this, on the HDL side only blocking reads are supported for input pipes. If an attempt is made to read a starved pipe, all simulator time advance on the HDL side will naturally be stopped (just as it does during an imported function call) until the C side is yielded to and has a chance to replenish data in the pipe. This ensures that all input pipe reads are done at the same times from simulation to simulation.

Similarly, to ensure determinism, on the HDL side only blocking writes are supported for output pipes. If an attempt is made to write to a full pipe, all simulator time advance on the HDL side is stopped (just as it does during an imported function call) until the C side is yielded to and has a chance to consume data in the pipe. This ensures that all output pipe writes are done at the same times from simulation to simulation.

On the C side, writes to a full input pipe and reads from a starved output pipe will block the calling thread until the full or starved condition is rectified by the HDL side.

[Re: IM 210] Determinism is guaranteed because consumption of data from an input pipe on the H/W side or production of data to an output pipe will always occur on the same clock cycles from one simulation to another.

4.6 Variable length messaging

In addition to providing a means of highly optimizing streaming performance, transaction pipes can be a natural mechanism to implement variable length messaging.

Consider the case of the transmission of an ethernet frame transaction. As per protocol, a frame can be anywhere up to 1500 bytes. However, in some applications, typical frames may be far smaller. This is a classic example of where a variable length transaction would be useful as it saves the overhead of transmitting a fixed width 1500 byte transaction every time regardless of actual length.

Using pipes one could implement this example as follows (let’s assume for the sake of simplicity that we are transmitting frames from the C side to the HDL side):

•  The HDL side declares an input pipe in its transactor module scope and makes calls to it with a bytes_per_element = 1 and num_elements = 1
•  Using the data shaping capability, each time the C side calls the send function it sends an array of bytes with bytes_per_element=1 and num_elements set to whatever the desired number of bytes is which can vary from call to call (hence variably sized messages)

•  On each send call, the C side sets eom to 1 since it is sending all the bytes at once

•  Because the receive side is only reading a byte at a time, it will not see the eom indication until the last byte is received.

Because pipes can, at the option of the implementor, be optimized for streaming, one can imagine that if there are several such interfaces generating traffic simultaneously (say with a multi-port ethernet packet router) the benefit from concurrency of execution (between the multiple threads on the workstation and the emulator) within the transmission of each frame could be appreciable.

One can also envision another scenario where a sequence of several sequential frames could be sent before an actual flush is performed. This would support streaming of multiple sequential variable length frames before synchronization is required.

One can also consider a pure streaming data thread to be one long variable length message (or sequence of them) that lasts the entire simulation, essentially requiring no synchronizations in the interim, such as feeding the entire contents of a file as traffic for an interface with a flush only occurring at the very end.

4.6.1 Variable length messaging features of transaction pipes

Three areas have been identified that are desirable to support with transaction pipes:

•  Data shaping
•  End-of-message <eom> marking mechanism

•  Support for multiple pipe transactions in 0-time

4.6.1.1 Data shaping

Data shaping is a concept that addresses the need for random access to variable length messages. We feel that this and several other issues discussed with streaming and variable length messaging can all be collectively addressed with a simple concept called data shaping. Data shaping simply allows a transaction pipe to have a different width at one end than the other.

For example suppose a frame of 100 bytes of data is desired to be sent over an input pipe 1 byte at a time, but the reader of the frame wants random access to the entire variable length message, it could define the width of the read end of the pipe as 100 bytes (bytes_per_element=1, num_elements=100 or bytes_per_element=100, num_elements=1). The writing end would define the width as 1 byte (bytes_per_element=1, num_elements=1).

In this case transmission of the bytes would be buffered but time would be stopped on the reading end until all 100 bytes are received since, as stated above, all reads are blocking. Once received, any or all bytes could be accessed.

In this case the send end of the pipe is narrower than the receive end. One can refer to such a pipe as a nozzle.

Conversely suppose the writer wished send the frame of 100 bytes of data all at once but the reader only wanted to read 1 byte at a time. The writer would define bytes_per_element=1, num_elements=100 or bytes_per_element=100, num_elements=1. The reader end of the pipe would define bytes_per_element=1, num_elements=1.

In this case, transmission of the bytes would be buffered but time could advance on the reading end between each byte read since each is a separate call that can be separated by @(posedge clock) statements for example.

In this case the send end of the pipe is wider than the receive end. One can refer to such a pipe as a funnel.

4.6.1.2 End-of-message <eom> marking mechanism

The committee has already had discussions about the fact that an end-of-message marking mechanism for variable length messages would be useful. Using the eom the user can mark the end of a message or “last data”. This flag can be queried at the receive end to know if it is the end of the message. The infrastructure does nothing with this flag, it is simply passed as received. However, if data shaping is involved, the infrastructure does not pass the eom flag until the last element of size bytes_per_element is read by the receiver, regardless of the shape of the data.

So for example, if the sender sends 100 bytes all at once and sets the eom flag to 1 and the receiver only reads one byte at a time, it will not see the eom set to 1 until the last byte.

Conversely if the sender sends 1 byte at a time and only sets the eom flag to 1 on the last one, and the receiver reads 100 bytes at a time, the receiver will see the eom flag set to 1 on the first read of the message.

4.6.1.3 [Re: IM 211] Support for multiple pipe transactions in 0-time

Operation of pipes is identical whether successive access operations (sends or receives) are done in 0- time or over user clock time, i.e. 1 access per clock. It is strictly a function of modeling subset as to whether 0-time operations are supported or not. But the pipe interface itself does nothing to preclude transmission of multiple transactions in 0-time without requiring the need for user awareness of uncontrolled time. This is true whether the transactions are variable or fixed length messages transmitted through a pipe or whether they are just simple DPI calls (see  on page  ).

Whether this feature can be used will depend largely on the modeling subset that is used with the API but, as stated the API itself has no limitations that prevent this type of operation. One can conceive of a modeling subset that has some support for data dependent loops between clock edges. Each iteration of such a loop can make a DPI call to get or send a data transaction. All calls in the loop will occur in 0- time. And no notion of uncontrolled time is required.It is useful to compare and contrast the semantics
4.7 Streaming Pipes vs. TLM FIFOs
So far all of the discussion on variable length messaging and streaming access in section  has been centered around a blocking interface. This is well suited to true streaming applications and follows the easy use model of UNIX streams as discussed previously.
It is useful to compare and contrast the semantics of streaming pipes to those of fifos - particularly the fifos that follow the semantics of TLM fifos described in the OSCI-TLM standard. A possible reason we often stumble when discussing issues like user vs. implementation specified buffer depth, its effect on determinism, etc. is because people are thinking of a fifo model rather than a pipe model.
Both pipes and fifos are deterministic and have similar functions in term of providing buffered data throughput capability. But they have different basic semantics.
Here is a small listing that tries to compare and contrast the semantics of fifos vs. pipes:
Fifos
•  Follow classical OSCI-TLM like FIFO model
•  User specified fixed sized buffer depth
•  Automatic synchronization
•  Support blocking and non-blocking put/get operations
•  "Under the hood" optimizations possible - batching
•  No notion of a flush
Pipes
•  Follows Unix stream model (future/past/present semantics)
•  Implementation specified buffer depth
•  User controlled synchronization
•  Makes concurrency optimization more straightforward
•  Support only blocking operations (for determinism)
•  "Under the hood" optimizations possible - batching, concurrency
•  More naturally supports data shaping, vlm, eom, flushing
One could argue that we may wish to entertain the notion of a "scemi_fifo" reference library to augment the "scemi_pipe" reference library currently proposed and thus provide two alternative DPI extension libraries that are part of the SCE-MI II proposal that address different sets of user needs.
But it is useful to make the clear distinction between fifos and pipes and, for now, at least converge on the semantics of proposed pipes and making sure they address the original requirements of variable length messaging.
Per Bojsen wrote:
> It is my understanding that pipes are intended for streaming, batching,
> variable length messages, and potentially can be used even for more
> exotic purposes if the modeling subset allows it.  Given that pipes
> can be implemented at the application layer, the choice between using
> pipes and DPI is one of convenience in many cases.  However, since an
> implementation can choose to provide an optimized version of the pipes,
> this would be a factor as well in the choice to use them.
In order to facilitate this fifo model, the following chapter proposes TLM compatible, thread-neutral transaction fifo interface.
4.8 Non-Blocking, Thread-Neutral Pipes Interface

Everything described so far has pertained to the blocking pipes interface that is ideally suited for streaming operations. Additionally it is desirable to support a non-blocking pipes interface that is thread-neutral and can be used to implement higher level interfaces such as the OSCI-TLM standard which supports a FIFO style of interface channel. Indeed, even the blocking interface functions described above can be implemented over a lower level non-blocking interface.

The non-blocking pipe interface calls have the following semantics.

•  Thread-neutral - no thread-awareness required in the implementation

•  Fully compatible with OSCI-TLM interface model and can be directly used to implement OSCI- TLM compliant interfaces

•  Support user configuration and query of buffer depth

•  Provide primitive non-blocking operations which can be used to build higher level interfaces that have blocking operations implemented in selected threading systems
•  Synchronization is automatic - no notion of a flush as in transaction pipes 
4.8.1 C-side access

On the C side, the non-blocking pipe access interface consists of callin functions and callback functions classified as data transfer operations, query operations, and notify operations for each pipe direction,

•  Data transfer operations:


scemi_pipe_c_try_send()


scemi_pipe_c_try_receive()


scemi_pipe_c_try_flush()

•  Query operations:


scemi_pipe_c_can_send()


scemi_pipe_c_can_receive()

•  Notify operations:


(*scemi_pipe_c_notify_ok_to_send)()


(*scemi_pipe_c_notify_ok_to_receive)()

The scemi_pipe_c_try_send() and scemi_pipe_c_try_receive() functions are non-blocking operations that attempt to send a transaction to an input pipe or receive a transaction from an output pipe, respectively. They return the number of elements actually transferred which can be used as an indication whether the operation was successful. Similarly the scemi_pipe_c_try_flush() function attempts a flush on a pipe and returns an indication of whether it was successful or not.

The scemi_pipe_c_can_send() and scemi_pipe_c_can_receive() functions are used to query the number of elements that can potentially be transferred in the pipe. For an input pipe scemi_pipe_c_can_send() returns how much space (expressed in elements) exists in an input pipe. For an output pipe scemi_pipe_c_can_receive() returns how may elements exist in an output pipe that are available for receiving.

The (*scemi_pipe_c_notify_ok_to_send)() and (*scemi_pipe_c_notify_ok_to_receive)() functions are programmable callbacks that can be called from within the infrastructure to notify the application that there is potentially room to send a message or a message to receive, respectively. They are denoted here as function pointers rather than actual functions. They get registered by the application at initialization time. The infrastructure calls these functions whenever data has been read by the HDL side of an input put or data has been written by the HDL side of an output pipe respectively.

The notify_ok_to_send() and notify_ok_to_receive() functions are callbacks that can be called directly or indirectly from within the thread-neutral implementation code to notify thread-aware application code on the C side when it is OK to send or receive. By implementing the bodies of these functions a user can put in thread specific code that takes some action such as posting to an sc_event.
So the key here is that the data transfer and query functions have thread-neutral implementation. And the notify functions are callbacks called from within thread-neutral code that can be filled in by some application wishing to create a thread-aware adapter that implements blocking send() and receive() functions.
4.8.1.1 Non-blocking data transfer operations

These are the basic non-blocking send/receive functions to access a transaction pipe from the C side. The send function is called to attempt to send transactions to an input pipe. The receive function is called to attempt to receive transactions from an output pipe. The flush function is called to attempt to flush an input pipe.

int scemi_pipe_c_try_send(

    void *pipe_handle,       // input: pipe handle

    int byte_offset,         // input: byte offset within data array

    int bytes_per_element,   // input: #bytes/element

    int num_elements,        // input: #elements to be written

    const svBitVecVal *data, // input: data

    svBit eom );             // input: end-of-message marker flag

int scemi_pipe_c_try_receive(

    void *pipe_handle,      // input: pipe handle

    int byte_offset,        // input: byte offset within data array

    int bytes_per_element,  // input: #bits/element

    int num_elements,       // input: #elements to be read

    int *num_valid_elements, // output: #elements that are valid

    svBitVecVal *data,      // output: data

    svBit *eom );           // output: end-of-message marker flag

int scemi_pipe_c_try_flush(  // indication of whether flush was successful

    void *pipe_handle );     // input: pipe handle

Note the following properties:

•  The arguments, pipe_handle, bytes_per_element, num_elements, data, and eom are identical to those described for the blocking function, scemi_pipe_c_send() described in  on page  
•  The byte_offset argument is the byte offset within the data buffer designated by data.
•  The try_send/try_receive functions return the number of elements actually transferred.

•  The try_flush function returns 1 if flush successful, 0 if not

By using the byte_offset argument, it is possible to create blocking functions that operate on unlimited data buffers on the C side. Even if buffers in the internal implementation are of limited size, multiple calls to the non-blocking send/receive functions can be made until all the data is transferred. This makes it easy to build blocking data transfer functions that handle buffers of unlimited size on top of the non-blocking data transfer functions. Each call to the non-blocking function is made with the same base data buffer pointer but an increasing byte offset. Each call returns the actual number of elements transferred. This number can be translated to in increment amount for the byte offset to be passed to the next call in the loop - without changing the base svBitVecVal *data pointer. The following example shows how this can be used to implement the blocking send function on top of the non-blocking send function:

static void notify_ok_to_send_or_receive(

    void *context ){           // input: notify context

    sc_event *me = (sc_event *)context;

    me->notify();

}

void scemi_pipe_c_send(

    void *pipe_handle,         // input: pipe handle

    int bytes_per_element,     // input: #bits/element

    int num_elements,          // input: #elements to be written

    const svBitVecVal *data,   // input: data

    svBit eom )                // input: end-of-message marker flag

{

    int byte_offset = 0, elements_sent;

    while( num_elements ){

        elements_sent =

            scemi_pipe_c_try_send(

                pipe_handle, byte_offset,

                bytes_per_element, num_elements, data, eom )

            * bytes_per_element;

        // if( pipe is full ) wait until OK to send more

        if( elements_sent == 0 ){

            sc_event *ok_to_send = (sc_event *)

                scemi_pipe_get_notify_context( pipe_handle );

            // if( notify ok_to_send context has not yet been set up ) ...

            if( ok_to_send == NULL ){

                ok_to_send = new sc_event;

                scemi_pipe_set_notify_callback(

                    pipe_handle, notify_ok_to_send_or_receive, ok_to_send );

            }

            wait( *ok_to_send );

        }

        else {

            byte_offset += elements_sent * bytes_per_element;

            num_elements -= elements_sent;

        }

    }

}

The execution remains inside this send function repeatedly calling scemi_pipe_c_try_send() until all elements in an arbitrarily sized user buffer have been transferred. Each call to scemi_pipe_c_try_send() returns the number of elements transferred in that call.

That number is used to increment a the byte_offset within the user’s data buffer.

Between the calls the thread waits on the ok_to_send event and suspends execution until there is a possibility of more room in the pipe for data.

If this event has not yet been created, it is created and passed as the context when the notify callback is registered for the first time.

The callback function notify_ok_to_send_or_receive() is called by the infrastructure whenever it moves data and therefore leaves room for at least 1 element in the pipe. This function simply posts to the ok_to_send event shown above.

It should be noted that the above example is just a reference model of how a blocking access function could be implemented in a given threading system. Implementations are not required to do it this way as long as they accomplish the same semantics.

4.8.1.2 Non-blocking query operations

These are the status query functions for transaction pipes. They can be called by an application from the C side to see if a send or receive operation can be performed on a pipe.

int scemi_pipe_c_can_send(  // return: #elements that can be sent

    void *pipe_handle,       // input: pipe handle

    int bytes_per_element ); // input: #bytes/element

int scemi_pipe_c_can_receive( // return: #elements that can be received

    void *pipe_handle,         // input: pipe handle

    int bytes_per_element );   // input: #bytes/element

Note the following properties:

•  The arguments, pipe_handle and bytes_per_element to  those described for the blocking function, scemi_pipe_c_send() described in  on page  
•  The functions return the number of elements that currently could be transferred in the pipe, i.e. the amount of room in an input pipe or number of elements available in an output pipe

4.8.1.3 Non-blocking notify operations

The following is a function declaration for a notification callback functions that are used to notify the C side that an operation is possible on an input or output transaction pipe.

typedef void (*scemi_pipe_notify_callback)(

    void *context );       // input: C model context

All notification callbacks must be registered using the following call:

void scemi_pipe_set_notify_callback(

    void *pipe_handle,      // input: pipe handle

    scemi_pipe_notify_callback notify_callback,

                            // input: notify callback function

    void *notify_context ); // input: notify context

The following call can be used to retrieve a notify context object for a given pipe:

void *scemi_pipe_get_notify_context( // return: notify context object pointer

    void *pipe_handle );  // input: pipe handle void scemi_pipe_set_notify_callback(

This call is useful to determine whether or not a notify context object is been established for the first time. It is guaranteed that this call will return a NULL if a notify context has not yet been established. This is useful for performing first time initializations inside pipe operations rather than requiring initialization to be performed outside of them. See the example of the blocking send function implementation in section  on page   for an example of how this might be done.

Note the following properties:

•  The pipe_handle is the handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section  on page  ).

•  notify_callback - the name of the user callback function being registered

•  notify_context - the user defined context object to be passed to the function whenever it is called

At one point, fixed named callbacks were considered rather than programmable function callbacks. But after reconsideration it was realized that they do not allow much flexibility in terms of implementing higher thread-aware interfaces on top of the thread-neutral calls. For example you might want one function if you're implementing TLM proxies but another if you're implementing blocking DPI ops directly over the non-blocking ones.
To accommodate this, it turns out to be a lot more flexible if the notify callback can be changed to different functions on a pipe by pipe basis. For this reason the notify callback has been changed to be programmable on the C side.
4.8.2 Query and specification of buffer depth

By default, depth of a transaction pipe is assumed to be implementation defined. The user can query and override this default on any individual pipe with the following C-side calls:

int scemi_pipe_c_get_depth(  return: current depth (in elements) of the pipe

    void *pipe_handle,       // input: pipe handle

    int bytes_per_element ); // input: #bytes/element

void scemi_pipe_c_set_depth(

  void *pipe_handle,       // input: pipe handle

  int bytes_per_element,   // input: #bytes/element

  int num_elements );      // input: number of elements 

 Note the following properties:

•  The pipe_handle is the handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section  on page  ).

•  The bytes_per_element is the number of bytes in each individually readable element

•  The num_elements is the number of elements that this pipe must be able to hold.

•  The depth of any pipe is always expressed in elements whose size is designated by bytes_per_element. If bytes_per_element has already been established for a pipe, the bytes_per_element passed into these calls is checked against the pre-established bytes_per_element and an error is given if they do not match.

•  It shall be an error to set the depth of a pipe after the first time that pipe has carried data. In other words, all depths intended to override the default depths must be specified at initialization time prior to use of the pipes in question.
By not specifying depth, pipes used in streaming applications can benefit from pipe depths that are optimal for a given implementation. However in some use models such as TLM FIFO applications, it is desirable for the user to specify a FIFO depth so that consistent, deterministic interaction between the two endpoints of the pipe is realized.
4.8.2.1 [Re: IM 208, 209] Implementation defined buffer depth for pipes, user defined buffer depth for fifos
Buffer depth is implementation specified. This allows vendors to chose buffer depth that is optimal to their platform. The flush mechanism is what gives the user the chance to specify a "synchronization point" to the infrastructure indicating that an HVL thread is switching from a "streaming mode" where it is doing pipe operations to a "reactive mode" where it is doing conventional reactive DPI function call interactions.
It is at this point where queries of the H/W simulator time will make sense as well (see  on page   about time access).
Per Bojsen wrote:
>  > IM209 - We had some discussion about setting buffer depth for pipes. It
>  > was my understanding that Mentor proposes setting the buffer depth by
>  > the infrastructure and not by the user. Is this correct?
>
> This is my understanding as well.  If the system is deterministic and
> observes alternating semantics, then I do not see any need for a user
> setting of buffer depth.  This is because the buffer depth setting
> would have no observable impact on the behavior of the system.  There
> are other problems with a user specifiable buffer depth: it is unlikely
> that a given buffer depth setting would achieve optimum performance
> in all implementations.  Note, I am saying that I do not think a user
> setting for buffer depth should be in the SCE-MI 2.0 standard.  However,
> any implementation is free to provide its own performance optimization
> knobs outside of the standard which could include buffer depth setting.
> I do not see such features as leading to a non-compliant implementation
> (necessarily).
The main point here is that it does not matter who sets the delay [buffer depth] or what the delay is so long as there is a mechanism to re-synchronize the times of the pipe producer and pipe consumer if it becomes necessary to enter back into a mode of reactive (alternating) interactions.  This is the purpose of the flush call - to provide this re-synchronization.
For example, a pipe producer thread can be sitting there jamming transactions into a pipe to its heart's content. The consumer meanwhile is only consuming transactions which the producer had written well into the past.
So in this scenario at any given point the consumer's time, the producer is well into the future - how far into it, we don't care. Or, put differently, at any given point in the producer's time, the consumer is well into the past. How far into it, we don't care.
But suppose producer and consumer now want to interact reactively, say with plain DPI function call interactions. They must synchronize. i.e. the producer's present must become one and the same as the consumer's present. To do this, producer issues a flush. This guarantees that the producer thread blocks until all the future transactions have dissipated to the consumer and now the two are synchronized in time. At this point in time, the two have a common present and are free to communicate reactively. And all this can be done deterministically where interactions take place on the same clocks on timed side regardless of how much buffering an implementation provided or how much concurrency it chose to use.
4.8.3 Implementation of pipes in multi-threaded C environments
A concern that came up in the committee, and perhaps with some justification, is that the blocking access functions for pipes did not have a thread-neutral API that can be used to aid vendors in adapting the implementations of user friendly (but thread-aware) blocking pipe functions to arbitrary threading systems on the C side.
What is really needed to satisfy this requirement is both of the following:
•  A user-friendly, but thread-aware pipe interface (which the blocking pipe functions already provide).
•  A lower level implementation-friendly, but thread-neutral pipe interface - essentially implementation "hooks" to facilitate easy creation of adapters that allow implementation of the user-friendly API in selected C threading environments (which the committee expressed a desire for).
It turns out that the transaction pipes provide a solution to the second requirement. This solution is,
•  Compatible with the existing easy-to-use blocking pipe access API at the user level
•  Provides thread neutral "hooks" that implementations can choose to use to create adapter layers that implement pipes over a selected threading system
•  Easy to demonstrate a reference implementation of the blocking pipe calls that uses the pipe functions in their implementation. In fact, the example below shows a working reference model of such an implementation for the HDL side.
The basic solution is to consider that the non-blocking callin and callback functions for fifos described in detail in  on page   provide thread-neutral functions that can be used by any implementation to implement the thread-aware blocking pipe access calls.
