1. Overview
While the 1.0 version of the Standard Co-Emulation API was a technical success in every one of its original goals, it has not managed to attract a large community of independent model developers. This is deemed a necessary step for the broader acceptance of emulation and is thus a priority for this new version of the standard. 
The broad attempt of the draft standard is to create a modeling interface that is as close as possible to that likely to be used for simulation, so that transactor models could be easily migrated from simulation to emulation as long as they adhere to a number of restrictions imposed by the additional demands of emulators.
Recently, the Verilog language was extended to create SystemVerilog (see Bibliography [3]) and as part of this new standard a new interface was created call the Direct Programming Interface (DPI). This interface is intended to allow the efficient connection of an HDL model with a C model, a very similar task compared to one of the goals of this standard. We have thus tried to adopt the DPI interface for SystemVerilog wherever we can and to add additional capabilities to facilitate the efficient connection of the host based code with an emulator through additional mechanism such as pipes.

It is customary for Accellera standards to have been verified in practice before a standard is established. This ensures that the basis for the standard has been tested in the field on a number of real cases and is thus likely to be reasonably stable. This is not the case with this draft standard, since it contains a lot of material devised and created as part of the operations of this standards group. Even though the contributors to the standard have taken very effort to ensure its completeness, correctness and future stability, we cannot at this time guarantee that changes will not be necessary, and have thus designated it as a draft standard. Once it has been proven in the field we will if necessary make any changed, and change the document status to a fully ratified standard.
1.1 Scope
The scope of this document shall be restricted to what is specifically referred to herein as the Standard Co-Emulation API: Modeling Interface (SCE-MI).

1.2 Purpose

There is an urgent need for the EDA industry to meet the exploding verification requirements of SoC design teams. While the industry has delivered verification performance in the form of a variety of emulation and rapid prototyping platforms, there remains the problem of connecting them into SoC modeling environments while realizing their full performance potential. Existing standard verification interfaces were designed to meet the needs of design teams of over 10 years ago. A new type of interface is needed to meet the verification challenges of the next 10 years. This standard defines a multi-channel communication interface which addresses these challenges and caters to the needs of both emulation end-users and emulation suppliers.
The SCE-MI can be used to solve the following emulation customer problems. 

· All emulators on the market today have proprietary APIs. The proliferation of APIs makes it very difficult for software-based verification products to port to the different emulators, thus restricting the solutions available to customers. This also leads to low productivity and low return on investment (ROI) for emulator customers who build their own solutions.
· The emulation “APIs” which exist today are oriented to gate-level and not system-level verification.
· The industry needs an API which takes full advantage of emulation performance.
· This enables the portability of transactor models between emulation vendors, making it possible for IP providers to write a single model. In addition, with the extension for the 2.0 version of this standard, it enables transactor models to be migrated from a simulation environment into an emulation environment so long as certain restrictions are adhered to. Models will also migrate in the other direction without any necessary changes.
The SCE-MI can also be used to solve the following emulation supplier problems.

· Customers are reluctant to invest in building applications on proprietary APIs.
· Traditional simulator APIs like programmable language interface (PLI) and VHDL PLI slow down emulators.
· Third parties are reluctant to invest in building applications on proprietary APIs. 
· The establishment of a common API between simulation and emulation will encourage more third part model developers to make transactor available that are suitable for emulators.
1.3 Usage

This specification describes a modeling interface which provides multiple channels of communication that allow software models describing system behavior to connect to structural models describing implementation of a device under test (DUT). Each communication channel is designed to transport un-timed messages of arbitrary abstraction between its two end points or “ports” of a channel.
These message channels are not meant to connect software models to each other, but rather to connect software proxy models to message port interfaces on the hardware side of the design. The means to interconnect software models to each other shall be provided by a software modeling and simulation environment, such as SystemC, which is beyond the scope of this document.
Although the software side of a system can be modeled at several different levels of abstraction, including un-timed, cycle-accurate, and even gate-level, the focus of SCE-MI Version 1.1.0 and 2.0.0 is to interface purely un-timed software models with a register transfer level- (RTL) or gate-level DUT. 
This can be summarized with the following recommendations regarding the API.
Do not use it to bridge event-based or subcycle-accurate simulation environments.

· It is possible, but not ideal, to use this to bridge cycle accurate simulation environments.

· It is best used for bridging an un-timed simulation environment with a cycle-accurate simulation environment.

NOTE — There are many references in the document to SystemC (see Bibliography [2]) as the modeling environment for un-timed software models. This is because, although SystemC is capable of modeling at the cycle accurate RTL abstraction level, it is also considered ideally suited for un-timed modeling. As such, it has been chosen for use in many of the examples in this document. However it should not be inferred that the only possible environment that SCE-MI supports is SystemC and could equally be ANSI C, C++, or a number of other languages.
1.4 Performance goals

While software side of the described interface is generic in its ability to be used in any C/C++ modeling environment, it is designed to integrate easily with non-preemptive multi-threaded C/C++ modeling environments, such as SystemC. Similarly, its hardware side is optimized to prevent undue throttling of an emulator during a co-modeling session run.
Throughout this document the term emulation or emulator is used to denote a structural or RTL model of a DUT running in an emulator, rapid prototype, or other simulation environment, including software HDL simulators. 

That said, however, the focus of the design of this interface is to avoid communication bottlenecks which might become most apparent when interfacing software models to an emulator as compared to interfacing them to a slower software HDL simulator or even an HDL accelerator. Such bottlenecks can severely compromise the performance of an emulator, which is otherwise very fast. Although some implementations of the interface can be more inefficient than others, there shall be nothing in the specification of the interface itself that renders it inherently susceptible to such bottlenecks.
For this reason, the communication channels described herein are message- or transaction-oriented, rather than event-oriented, with the idea that a single message over a channel originating from a software model can trigger dozens to hundreds of clocked events in the hardware side of the channel. Similarly, it can take thousands of clocked events on the hardware side to generate the content of a message on a channel originating from the hardware which is ultimately destined for an un-timed software model.
1.5 Document conventions

This standard uses the following documentation notations.

· Any references to actual literal names that can be found in source code, identifiers that are part of the API, file names, and other literal names are represented in courier font.

· Key concept words or phrases are in bold type. See Chapter five for further definitions of these terms.
· Due to the draft nature of this document, informative and normative text is intermixed to allow easier understanding of the concepts. The normative text is shown in regular types, and the informative is shown in blue italicized type.
1.6 Contents of this standard

The organization of the remainder of this standard is:


Chapter 2 provides references to other applicable standards that are assumed or required for this standard.


Chapter 3 defines terms used throughout this standard.


Chapter 4 provides an overall description and use model for the SCE Modeling Interface (SCE-MI).


Chapter 5 is a formal functional specification of the API itself.


Appendix A is a tutorial showing the use model in a simple application.


Appendix B provides a simple multi-clock, multi-transactor schematic example and its VHDL code listing.


Appendix C provides a VHDL package which can be used to supply SCE-MI macro component declarations to an application.


Appendix D Using transaction pipes compatibly with OSCI-TLM applications

Appendix E (Sample header files for the SCE-MI) provides headers for both C and C++ implementations.


Appendix F Bibliography - provides additional documents, to which reference is made only for information or background purposes.

