3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of Electrical and Electronics Terms (see Bibliography [B1]) should be referenced for terms not defined in this standard.

3.1 Terminology

This section defines the terms used in this standard.

3.1.1 abstraction bridge:

A collection of abstraction gasket components that disguise a bus-cycle accurate, register transfer level, device under test (BCA RTL DUT) model as a purely untimed model. The idea is that to the untimed testbench models, the DUT itself appears untimed (see Figure 5) when, in fact, it is a disguised BCA model (see Figure 6 ).

3.1.2 abstraction gasket:

A special model that can change the level of abstraction of data flowing from its input to output and vice versa. For example, an abstraction gasket might convert an un-timed transaction to a series of cycle accurate events. Or, it might assemble a series of events into a single message. BCASH (bus-cycle accurate shell) models and transactors are examples of abstraction gaskets.

3.1.3 behavioral model:

See: un-timed model.

3.1.4 bridge netlist:

The bridge netlist is the top level of the user-supplied netlist of components making up the hardware side of a co-modeling process. The components typically found instantiated immediately under the bridge netlist are transactors, DUT, and SceMiClockPort macros. By convention, the top level netlist module the user supplies to the infrastructure linker is called Bridge and, for Verilog (see IEEE Std 1364-2001)
, is placed in a file called Bridge.v.

3.1.5 co-emulation:

A shorthand notation for co-emulation modeling, also known as co-modeling. See also: co-modeling.

3.1.6 co-modeling: 

Although it has broader meanings outside this document, here co-modeling specifically refers to transaction-oriented co-modeling in contrast to a broader definition of co-modeling which might include event-oriented co-modeling. Also known as co-emulation modeling, transaction-oriented co-modeling describes the process of modeling and simulating a mixture of software models represented with an un-timed level of abstraction, simultaneously executing and inter-communicating through an abstraction bridge, with hardware models represented with the RTL level of abstraction, and running on an emulator. Figure 1 depicts such a configuration, where the Standard Co-Emulation API - Modeling Interface (SCE-MI) is being used as the abstraction bridge. See section 3.2 for the definitions of the acronyms used here.


[image: image1.emf]ISS

B

F

M

BCASH

RTC

SCE-MI

gate

netlist

Hardware

Emulator

Software

Models

Abstraction

BridgeModels

 


Figure 1. Using the SCE-MI as an abstraction bridge

Another illustration can be seen in Figure 4.

3.1.7 controlled clock (cclock):

The clock that drives the DUT and can be disabled by any transactor during operations which would result in erroneous operation of the DUT when it is clocked. When performing such operations, any transactor can “freeze” controlled time long enough to complete the operation before allowing clocking of the DUT to resume. The term cclock is often used throughout this document as a synonym for controlled clock.

3.1.8 controlled time:

Time which is advanced by the controlled clock and frozen when the controlled clock is suspended by one or more transactors. Operations occurring in uncontrolled time, while controlled time is frozen, appear between controlled clock cycles.

3.1.9 co-simulation:

The execution of software models modeled with different levels of abstraction that interact with each other through abstraction gaskets similar to BCASH (bus-cycle accurate shell) models. Figure 2 illustrates such a configuration. (See section 3.2 for definitions of the acronyms used here.)


[image: image2.emf]ISS

B

F

M

BCASH

UTC

BCASH

RTC

HDL

C-algorithm

 


Figure 2. Modeling abstraction gaskets

The key difference between co-simulation and co-emulation is the former typically couples software models to a traditional HDL simulator interface through a proprietary API, whereas the latter couples software models to an emulator through an optimized transaction oriented message passing interface, such as SCE-MI.

3.1.10 cycle stamping:

A process where messages are tagged with the number of elapsed counts of the fastest controlled clock in the hardware side of a co-modeled design.

3.1.11 don’t care duty cycle:

A posedge active don’t care duty cycle is a way of specifying a duty cycle where the user only cares about the posedge of the clock and does not care about where in the period the negedge falls, particularly in relation to other cclocks in a functional simulation. In such a case, the DutyHi parameter is given as a 0. The DutyLo can be given as an arbitrary number of units which represent the whole period such that the Phase offset can still be expressed as a percentage of the period (i.e., DutyHi+DutyLo). See 5.2.4.1 for more details. A negedge active don’t care duty cycle is a way of specifying a duty cycle where the user only cares about the negedge of the clock and does not care about where in the period the posedge falls, particularly in relation to other cclocks in a functional simulation. In such a case, the DutyLo parameter is given as a 0. The DutyHi can be given as an arbitrary number of units that represent the whole period such that the Phase offset can still be expressed as a percentage of the period (i.e., DutyHi+DutyLo). See 5.2.4.1 for more details.

3.1.12 device or design under test (DUT):

A device or design under test that can be modeled in hardware and stimulated and responded to by a software testbench through an abstraction bridge such as the SCE-MI shown in Figure 3.


[image: image3.emf]SW model

(testbench)

SCE-MI

Hardware Emulator

DUT

CPU

IP

MEM

core

In

file

Out

file

 


Figure 3. Modeling a DUT via an abstraction bridge

3.1.13 DUT proxy:

A model or collection of models that presents (to the rest of the system) an interface to the design under test which is un-timed. This is accomplished by a translation of un-timed messages to cycle-accurate pin activity. A DUT proxy contains one or more abstraction bridges which perform this function. If the abstraction bridge is SCE-MI, the un-timed communication is handled by message port proxy interfaces to the message channels. See Figure 6 for an illustration of DUT proxies.

3.1.14 Fastest Clock:

If the user instantiates a 1/1 cclock without a don't care duty cycle, then that becomes the fastest clock in the system, although it limits performance to be only half as fast as the uclock, since in this case, both edges must be scheduled on posedges of uclock.

3.1.15 hardware model:

A model of a block that has a structural representation (i.e., as a result of synthesis or a gate netlist generated by an appropriate tool) which is mapped onto the hardware side of a co-modeling process (i.e., an emulator or other hardware simulation platform). It can also be real silicon (i.e., a CPU core or memory chip) plugged into an emulator or simulation accelerator.

3.1.16 hardware side:

See: software side.

3.1.17 infrastructure linkage process:

The process that reads a user description of the hardware, namely the source or bridge netlist describing the interconnect between the transactors, the DUT, and the SCE-MI interface components, and compiles that netlist into a form suitable for executing in a co-modeling session. Part of this compile process can include adding more structure to the bridge netlist it properly interfaces the user-supplied netlist to the SCE-MI infrastructure implementation components.

3.1.18 macros: 

These are implementation components provided by a hardware emulator vendor to implement the hardware side of the SCE-MI infrastructure, examples include: SceMiMessageInPort, SceMiMessageOutPort, SceMiClockControl, and SceMiClockPort.

3.1.19 message: 

A data unit of arbitrary size and abstraction to be transported over a channel. Messages are generally not associated with specific clocked events, but can trigger or result from many clocks of event activity. For the most part, the term message can be used interchangeably with transaction. However, in some contexts, transaction could be thought of as including infrastructure overhead content in addition to user payload data (and handled at a lower layer of the interface), whereas the term message denotes only user payload data.

3.1.20 message channel:

A two-ended conduit of messages between the software and hardware sides of an abstraction bridge.

3.1.21 message port: 

The hardware side of a message channel. Transactors use these ports to gain access to messages being sent across the channel to or from the software side.

3.1.22 message port proxy: 

The software side of a message channel. DUT proxies or other software models use these proxies to gain access to messages being sent across the channel to or from the hardware side.

3.1.23 negedge: 

This refers to the falling edge of a clock.

3.1.24 posedge: 

This refers to the rising edge of a clock. 

3.1.25 service loop:

This function or method call allows a set of software models running on a host workstation to yield access to the SCE-MI software side so any pending input or output messages on the channels can be serviced. The software needs to frequently call this throughout the co-modeling session in order to avoid backup of messages and minimize the possibility of system deadlock. In multi-threaded environments, place the service loop call in its own continually running thread. See 5.4.3.7 for more details.

3.1.26 software model:

A model of a block (hardware or software) that is simulated on the software side of a co- modeling session (i.e., the host workstation). Such a model can be an algorithm (C or C++) running on an ISS, a hardware model that is modeled using an appropriate language environment, such as SystemC, or an HDL simulator.

3.1.27 software side: 

This term refers to the portion of a user’s design which, during a co-modeling session, runs on the host workstation, as opposed to the portion running on the emulator (which is referred to as the hardware side). The SCE-MI infrastructure itself is also considered to have software side and hardware side components.

3.1.28 structural model: 

A netlist of hardware models or other structural models. Because this definition is recursive, by inference, structural models have hierarchy.

3.1.29 transaction: 

See: message.

3.1.30 transactor:

A form of an abstraction gasket. A transactor decomposes an un-timed transaction to a series of cycle-accurate clocked events, or, conversely, composes a series of clocked events into a single message. When receiving messages, transactors have the ability to “freeze” controlled time long enough to allow message decomposition operations to complete before presenting clocked data to a DUT. And when sending messages, they can freeze controlled time and allow message composition operations to complete before new clocked data is flooded in from a DUT.

3.1.31 uncontrolled clock (uclock):

A free-running system clock, generated internally by the SCE-MI infrastructure, which is used only within transactor modules to advance states in uncontrolled time. The term uclock is often used throughout this document as a synonym for uncontrolled clock.

3.1.32 uncontrolled reset:

This is the system reset, generated internally by the SCE-MI infrastructure, which is used only with transactor modules. This signal is high at the beginning of simulated time and transitions to low an arbitrary (implementation-dependent) number of uclocks later. It can be used to reset a transactor. The controlled reset is generated exactly once by the SCE-MI hardware side infrastructure at the very beginning of a co- modeling session.

3.1.33 uncontrolled time: 
Time that is advanced by the uncontrolled clock, even when the controlled clock is suspended (and controlled time is frozen). 

3.1.34 un-timed model:

A block that is modeled algorithmically at the functional level and exchanges data with other models in the form of messages. An un-timed model has no notion of a clock. Rather, its operation is triggered by arriving messages and it can, in turn, trigger operations in other un-timed models by sending messages.

3.2 Acronyms and abbreviations

This section lists the acronyms and abbreviations used in this standard.

API

Application Programming Interface

BCA

Bus-Cycle Accurate model - sometimes used interchangeably with RTL model

BCASH

Bus-Cycle Accurate SHell model

BFM

Bus Functional Model

BNF

extended Backus-Naur Form

DPI

SystemVerilog Direct Programming Interface

DUT

Device or Design Under Test

EDA

Electronic Design Automation

HDL

Hardware Description Language

ISS

Instruction Set Simulator

RTC

Register Transfer Level C model

RTL

Register Transfer Level

SCE-API
Standard Co-Emulation API

SCE-MI

Standard Co-Emulation API - Modeling Interface

UT or UTC
Un-timed C model

VHDL

VHSIC Hardware Description Language

� For more information on references, see Chapter 2.








_1216107473.doc
[image: image1.wmf]ISS


B


F


M


BCASH


UTC


BCASH


RTC


HDL


C-algorithm





_1216107597.doc
[image: image1.wmf]SW model


(testbench)


SCE-MI


Hardware Emulator


DUT


CPU


IP


MEM


core


In


file


Out


file





_1216107333.doc
[image: image1.wmf]ISS


B


F


M


BCASH


RTC


SCE-MI


gate


netlist


Hardware


Emulator


Software


Models


Abstraction


Bridge


Models





