1. Use models
SCE-MI provides two primary mechanisms for connecting a model written in HDL to a model running on a workstation. The software side of the interface allows access from the workstation side, while the hardware side of the interface allows access from the HDL side. The two mechanisms are a message-passing environment which was standardized in the previous version of this standard and generally referred to as SCE-MI 1.1 and a new functional call based mechanism based on the SystemVerilog DPI. These extensions for the basis for this new SCE-MI 2.0 draft standard.

1.1 Message Passing Use Model
This section of the document will describe the message passing environment. The description of the function call mechanism will be given in section 4.2. This message passing interface is intended to be used in several different use models and by several different groups of users.

1.1.1 High-level description
Figure 4.1 shows a high-level view of how SCE-MI XE "interconnect" interconnects untimed software models to structural hardware transactor and DUT models.
[image: image1.wmf]DUT

C/C++ kernel

UTC Model

UTC Model

RTC Model

UTC Model

Software Side (host workstation)

Hardware Side (emulator)

SCE-MI Infrastructure

Message Port

Proxy 1

Message Port

Proxy 2

Message Port

Proxy 3

Transactor 2

Transactor 1

Message

Port 1

Message

Port 2

Message

Port 3

Clock/Reset

Generation

and Control

such as SystemC

Figure 4.1: High-level view of run-time components

The SCE-MI provides a transport infrastructure between the emulator and host workstation sides of each channel, which interconnects XE "transactor" transactor models in the emulator to C (untimed or RTL) models on the workstation. For purposes of this document, the term XE "emulator" emulator can be used interchangeably with any simulator capable of executing RTL or gate-level models, including software HDL simulators.

These interconnects are provided in the form of message channels that run between the XE "software side" software side and the XE "hardware side" hardware side of the SCE-MI infrastructure. Each XE "message channel" message channel has two ends. The end on the software side is called a XE "message port: proxy" message port proxy, which is a C++ object that gives API access to the channel. The end on the hardware side is a XE "message port: macro" message port macro, which is instantiated inside a transactor and connected to other components in the transactor. Each message channel is either an input or an output channel with respect to the hardware side.

NOTE—While all exposition in this standard is initially given using C++, C equivalents exist for all functionality. See Chapter XX for more details.

Message channels are not unidirectional or bidirectional busses in the sense of hardware signals, but are more like network sockets that use message passing protocols. It is the job of the transactors to serve as XE "abstraction gasket" abstraction gaskets and decompose messages arriving on input channels from the software side into sequences of cycle-accurate events which can be clocked into the DUT. For the other direction of flow, transactors recompose sequences of events coming from the DUT back into messages to be sent via output channels to the software side.

In addition, the SCE-MI infrastructure provides clock (and reset) generation and shared clock control using handshake signals with the transactor. This allows the transactor to “freeze” XE "controlled time" controlled time while performing message composition and decomposition operations.
1.1.2 Support for environments
The SCE-MI provides support for both single and multi-threaded environments.
1.1.2.1 Multi-threaded environments

The SCE-MI is designed to couple easily with multi-threaded environments, such as SystemC, yet it also functions just as easily in single-threaded environments, such as simple C programs. SCE-MI provides a special XE "service loop" service loop function (see XX), which can be called from an application to give the SCE-MI infrastructure an opportunity to service its communication channels. Calls to service loop result in the sending of queued input messages to hardware and the dispatch of arriving output messages to the software models.

While there is no thread-specific code inside the service loop function (or elsewhere in the SCE-MI), this function is designed to be called periodically from a dedicated thread within a XE "multi-threaded environment" multi-threaded environment, so the interface is automatically serviced while other threads are running.

1.1.2.2 Single-threaded environments

In a XE "single-threaded environment" single-threaded environment, calls to the service loop function can be “sprinkled” throughout the application code at strategically placed points to frequently yield control of the CPU to the SCE-MI infrastructure so it can service its messages channels.
1.1.3 Users of the interface

A major goal of this specification is to address the needs of three target audiences, each with a distinct interest in using the interface. The target audiences are:
· end-user
· transactor implementor
· SCE-MI infrastructure implementor
1.1.3.1 End-user

The XE "end-user" end-user is interested in quickly and easily establishing a bridge between a software testbench which can be composed of high-level, untimed, algorithmic software models, and a hardware DUT which can be modeled at the RTL, cycle-accurate level of abstraction.

While end-users might be aware of the need for a “gasket” that bridges these two levels of abstraction, they want the creation of these XE "abstraction bridge" abstraction bridges to be as painless and automated as possible. Ideally, the end-users are not required to be familiar with the details of SCE-MI API. Rather, on the hardware side, they might wish to rely on the XE "transactor implementor" transactor implementor (see XX) to provide predefined transactor models which can directly interface to their DUT. This removes any requirement for them to be familiar with any of the SCE-MI hardware-side interface macros (see XX,) except the XE "SceMiClockPort" SceMiClockPort macro, whose interface is easy to understand because all it really does is furnish a clock and a reset.Similarly, on the software side, the end-users can also rely on the transactor implementors to furnish them with plug-and-play software models, custom-tailored for a software modeling environment, such as SystemC. Such models can encapsulate the details of interfacing to the SCE-MI software side and present a fully untimed, easy- to-use interface to the rest of the software testbench.

1.1.3.2 Transactor implementor

The XE "transactor implementor" transactor implementor is familiar with the SCE-MI, but is not concerned with its implementation. The transactor implementor provides plug-and-play transactor models on the hardware side and proxy models on the software side which end-users can us to easily bridge their untimed software models with their RTL-represented DUT. Additionally, the transactor implementor can supply XE "proxy model" proxy models on the software side which provide untimed “sockets” to the transactors.

Using the models is like using any other vendor-supplied, stand-alone IP models and the details of bridging not only two different abstraction levels, but possibly two different verification platforms (such as SystemC and an emulator), is completely hidden within the implementations of the models which need to be distributed with the appropriate object code, netlists, RTL code, configuration files, and documentation.

1.1.3.3 SCE-MI infrastructure implementor

The SCE-MI XE "infrastructure: implementor" infrastructure implementor is interested in furnishing a working implementation of an SCE-MI that runs on some vendor-supplied verification platform, including both the software side and the hardware side com​ponents of the SCE-MI. For such a release to be complaint, it needs to conform to all the requirements set forth in this specification.
1.1.4 Bridging levels of modeling abstraction

The central goal of this specification is to provide an interface designed to bridge two modeling environments, each of which supports a different level of modeling abstraction.
1.1.4.1 Untimed software level modeling abstraction

Imagine a testbench consisting of several, possibly independent models that stimulate and respond to a XE "DUT" DUT at different interface points (as depicted in Figure XX). This configuration can be used to test a processor DUT which has some communications interfaces that can include an ethernet adapter, a PCI interface, and a USB interface. The XE "testbench" testbench can consist of several models that independently interact with these interfaces, playing their proto​cols and exchanging packets with them. These packets can be recoded as XE "message" messages with the intent of verifying the processor DUT’s ability to deal with them. Initially, the system shown in Figure XX might be implemented fully at the untimed level of abstraction by using the SystemC software modeling environment.

Suppose the ultimate desire here is to create a cycle-accurate RTL model of a design and eventually synthesize this model to gates that can be verified on a high speed emulation platform. Afterwards, however, they might also be tested with the unaltered, untimed testbench models. To do all of this requires a way of somehow bridging the untimed level of abstraction to the XE "bus-cycle accurate" bus-cycle accurate (BCA) level.
[image: image2.wmf]TB Model 0

Untimed

Testbench (TB) Models

Untimed

DUT Model

TB Model 1

TB Model N-1

DUT Model

Figure 4.2: Untimed software testbench and DUT models

1.1.4.2 Cycle-accurate hardware level modeling abstraction

Take the purely untimed system shown in Figure XX, “pry apart” the direct coupling between the testbench models and the untimed DUT model, and insert an XE "abstraction bridge" abstraction bridge from the still untimed system testbench model to what is now a emulator resident, RTL-represented DUT. This bridge consists of a set of DUT proxy models, SCE-MI XE "message input port: proxy" message input and XE "message output port: proxy" output port proxies, a set of XE "message channel" message channels which are transaction conduits between the software simulator and the emulator, XE "message input port" message input and XE "message output port" output ports, and a set of user implemented XE "transactor" transactors. Figure XX depicts this new configuration.

The SCE-MI infrastructure performs the task of serving as a transport layer that guarantees delivery of XE "message" messages between the message port proxy and message port ends of each channel. Messages arriving on input channels are presented to the transactors through message input ports. Similarly, messages arriving on output channels are dispatched to the DUT proxy software models via message output port proxies which present them to the rest of the testbench as if they had come directly from the original untimed DUT model (shown in Figure XX). In fact, the testbench models do not know the messages have actually come from and gone to a totally different abstraction level.

The DUT input proxies accept untimed messages from various C models and send them to the message input port proxies for transport to the hardware side. The DUT output proxies establish callbacks that monitor the message output port proxies for arrival of messages from the hardware side. In other words, the SCE-MI infrastructure dispatches these messages to the specific DUT proxy models to which they are addressed. Taking this discussion back to the context of users of the interface described in XX, the XE "end-user" end-user only has to know how to interface the DUT proxy models on the software side of Figure XX with the transactor models on the hardware side; whereas, the XE "transactor implementor" transactor implementor authors the proxy and transactor models using the SCE-MI message port and clock control components between them, and provides those models to the end-user.

[image: image3.wmf]User-Defined DUT

Proxy

Abstraction Bridge

Untimed

Testbench Models

SCE-MI Infrastructure

User-Defined

Transactors

DUT Model

(RTL, BCA)

Message Input

Port Proxy 0

TB Model 0

TB Model 1

TB Model N-1

Message Output

Port Proxy 0

Message Input

Port Proxy 1

Message Output

Port Proxy N-1

Xactor 0

Xactor 1

Message Output

Port 0

Message Input

Port 0

Message Input

Port 1

Message Output

Port N-1

Xactor N-1

Message Channels

DUT

DUT

Proxy

Hardware Side

Software Side

Figure 4.3: Multi-channel abstraction bridge architecture
1.1.4.3 Messages and transactions

In a purely untimed modeling environment, messages are not associated with specific clocks or events. Rather, they can be considered arbitrary data types ranging in abstraction from a simple bit, boolean, or integer, on up to something as complex as a C++ class or even some aggregate of objects. It is in this form that messages can be transported either XE "messages: by value" by value or XE "messages: by reference" by reference over abstract ports between fully untimed software models of the sort described in Figure XX (and, in substantially more detail, in XX).

However, before messages can be transported over an SCE-MI message channel, they need to be serialized into a large bit vector by the DUT proxy model. Conversely, after a message arrives on a message output channel and is dispatched to a DUT output proxy model, it can be de-serialized back into an abstract C++ data type. At this point, it is ready for presentation at the output ports of the DUT proxy to the connected software testbench models.

Meanwhile, on the hardware side, a message arriving on the message input channel can trigger dozens to hundreds of clocks of event activity. The transactor decomposes the message data content to sequences of clocked events that are presented to the DUT hardware model inputs. Conversely, for output messages, the transactor can accept hundreds to thousands of clocked events originating from the DUT hardware model and then assemble them into serialized bit streams which are sent back to the software side for de-serialization back into abstract data types.

For the most part, the term XE "message" message can be used interchangeably with XE "transaction"

 XE "messages: transaction" transaction. However, in some contexts, transaction can be thought of as including infrastructure overhead content, in addition to user payload data (and handled at a lower layer of the interface), whereas the term message denotes only user payload data.

1.1.4.4 Controlled and uncontrolled time

One of the implications of converting between message bit streams and clocked events is the transactor might need to “freeze” XE "controlled time" controlled time while performing these operations so the controlled clock that feeds the DUT is stopped long enough for the operations to occur.

Visualizing the transactor operations strictly in terms of controlled clock cycles, they appear between edges of the controlled clock, as shown in the controlled time view within Figure XX. But if they are shown for all cycles of the XE "uncontrolled clock" uncontrolled clock, the waveforms would appear more like the uncontrolled time view shown in Figure XX. In this view, the controlled clock is suspended or disabled and the DUT is “frozen in controlled time.”

Now, suppose a system has multiple controlled clocks (of possibly differing frequencies) and multiple transactors controlling them. Any one of these transactors has the option of stopping any clock. If this happens, all controlled clocks in the system stop in unison. Furthermore, all other transactors, which did not themselves stop the clock, shall still sense the clocks were globally stopped and continue to function correctly even though they themselves had no need to stop the clock. In this case, they might typically idle for the number of uclocks during which the cclocks are stopped, as illustrated in Figure XX
[image: image4.wmf]cclock

Controlled Time View

uclock

cclock

uclock

Transactor operation occurs

while controlled time is

suspended by using extra

uncontrolled clock cycles.

Transactor operation occurs

between edges of controlled clock.

Uncontrolled Time View

Figure 4.4: Controlled and uncontrolled time views

In the SCE-MI use model, the semantics of clock control can be described as follows.
Any transactor can instruct the SCE-MI infrastructure to stop the controlled clock and thus cause controlled time to freeze.

· All transactors are told by the SCE-MI infrastructure when the controlled clock is stopped.

· Any transactor shall function correctly if controlled time is stopped due to operations of another transactor, even if the transactor in question does not itself need to stop the clock.

· A transactor might need to stop the controlled clock when performing operations that involve decomposition or composition of transactions arriving from or going to a message channel.

· The DUT is always clocked by one or more controlled clocks which are controlled by one or more trans​actors.

· A transactor shall sample DUT outputs on valid controlled clock edges. The transactor can use a clock control macro to know when edges occur.

· All transactors are clocked by a free running uncontrolled clock provided by the SCE-MI hardware side infrastructure.
1.1.4.5 Work flow

There are four major aspects of work flow involved in constructing system verification with the SCE-MI environment:
· software model compilation

· infrastructure linkage

· hardware model elaboration

· software model construction and binding
1.1.4.6 XE "software model: compilation" Software model compilation

The models to be run on the workstation are compiled using a common C/C++ compiler or they can be obtained from other sources, such as third-party vendors in the form of IP, ISS simulators, etc. The compiled models are linked with the software side of the SCE-MI infrastructure to form an executable program.

1.1.4.7 Infrastructure linkage

 XE "infrastructure: linkage" Infrastructure linkage is the process that reads a user description of the hardware, namely the source or XE "bridge netlist" bridge netlist which describes the interconnect between the transactors, the DUT, and the SCE-MI interface components, and compiles that netlist into a form suitable for emulation. Part of this compile process can involve adding additional structure to the bridge netlist that properly interfaces the user-supplied netlist to the SCE-MI infrastructure implementation components. Put more simply, the infrastructure linker is responsible for providing the core of the SCE-MI interface macros on the hardware side.

As part of this process, the infrastructure linker also looks at the parameters specified on the instantiated interface macros in the user-supplied bridge netlist and uses them to properly establish the dimensions of the interface, including the:
· number of transactors

· number of input and output channels

· width of each channel

· number of clocks

· clock ratios

· clock duty cycles

Once the final netlist is created, the XE "infrastructure: linker" infrastructure linker can then compile it for the emulation platform and convert it to a form suitable to run on the emulator.
1.1.4.8 XE "hardware model elaboration" Hardware model elaboration

The compiled netlist is downloaded to the emulator, elaborated, and prepared for binding to the software.

1.1.4.9 XE "software model: construction and binding" Software model construction and binding

The software executable compiled and linked in the software compilation phase is now executed, which constructs all the software models in the workstation process image space. Once construction takes place, the software models bind themselves to the message port proxies using special calls provided in the API. Parameters passed to these calls establish a means by which specific message port proxies can XE "rendezvous" rendezvous with its associated message port macro in the hardware. Once this binding occurs, the co-modeling session can proceed.
1.1.5 SCE-MI interface components

The SCE-MI run-time environment consists of a set of XE "interface components" interface components on both the hardware side and the software side of the interface, each of which provides a distinct level of functionality. Each side is introduced in this section and detailed later in this document (see Chapter XX).
1.1.5.1 Hardware side interface components

The interface components presented by the SCE-MI XE "hardware side" hardware side consist of a small set of macros which provide connection points between the transactors and the SCE-MI infrastructure. These compactly defined and simple-to-use macros fully present all necessary aspects of the interface to the transactors and the DUT. These macros are simply represented as empty Verilog or VHDL models with clearly defined port and parameter interfaces. This is analogous to a software API specification that defines function prototypes of the API calls without showing their implementations.

Briefly stated, the four macros present the following interfaces to the transactors and DUT:
· message input port interface

· message output port interface

· controlled clock and controlled reset generator interface

· uncontrolled clock, uncontrolled reset, and clock control logic interface
1.1.5.2 XE "software side" Software side interface components

The interface presented by SCE-MI infrastructure to the software side consists of a set of C++ objects and methods which provide the following functionality:
· version discovery

· parameter access

· initialization and shutdown

· message input and output port proxy binding and callback registration

· rendezvous operations with the hardware side

· infrastructure service loop polling function

· message input send function

· message output receive callback dispatching

· message input-ready callback dispatching

· error handling

In addition to the C++ object oriented interface, a set of C API functions is also provided for the benefit of pure C applications.

1.2 User Defined Function Call Based Use Model
1.2.1 Overview

This section describes some of the attributes of the function call based use model in general and specifically in terms of the SystemVerilog DPI itself.

These attributes are listed follows:
· The DPI is API-less

· Define a function in one language, call it from the other - universal programming concept, easy to learn

· The function call is the transaction

· Function calls are the right level of abstraction - not too high, not too low

· SystemVerilog DPI is already a standard

These attributes are discussed in more detail in the following sections.
1.2.2 The DPI is API-less

The SystemVerilog DPI was designed to provide an easy to use inter-language communication mechanism based on simple function calls. The idea is, rather than providing an API, simply allow the user to create his or her own API by defining functions in one language and calling them from the other.

1.2.3 Define a function in one language, call it from the other

Functions are defined and called in their native languages. This requires very little training for a user to understand. The “golden principle” of DPI is, on each side, the calls look and behave the same as native function calls for that language.

The following figures depict this simple principle both for the C-to-HDL and HDL-to-C directions:

[image: image5.wmf]module MyTransactor

...

reg [7:0] currentState;

reg isParityEnabled;

export “DPI-C” function configQuery;

function bit [7:0] configQuery;

input enableParity;

begin

isParityEnabled =

enableParity;

configQuery = currentState;

end

endfunction

void MyModel::SetParity(int enableParity){

svBitVecVal transactorState;

svSetScope(dHdlContext);

transactorState = configQuery(

(svBit)enableParity);

if(transactorState == ERROR_STATE)

logError(“.

..

”);

}

C Side

HDL Side

Figure 4.5: Define a function in HDL, call it from C
[image: image6.wmf]svBitVecVal PortID(svBitVecVal32 *destAddr){

svBitVecVal ret;

ret = RouterTables.Lookup(destAddr);

return ret;

}

C Side

import “DPI-C” function [15:0] PortID(

input bit [47:0] destAddr);

always @(posedge cclock)

begin

...

if (state == S1) begin

portID <= PortID(destAddr);

else

...

end

HDL Side

Figure 4.6: Define a function in C, call it from HDL
1.2.4 The function call is the transaction
· The function call itself is the transaction and the function call arguments (input plus output) comprise the transaction’s named data members - this avoids having to use slices and bit fields of a single big vector

· Function calls can have individually named input args, or output args, or both, or neither

· In SystemVerilog a wide range of data types can be used for function arguments but for SCE-MI 2 we can restrict this to a useful subset consisting of bit vectors and integers
1.2.5 Function calls are the right level of abstraction - not to high, not to low
Function calls provide a good "lowest common denominator" transport base for transporting transactions across language domains.

Low enough abstraction for:
· synthesizeability

· use with legacy ANSI C

High enough abstraction for:
· building user defined transactor applications

· building portable, reusable verification IP

· providing a good base upon which building higher abstraction interfaces (such as TLM, SystemVerilog mailboxes) can be built

· optimal implementation for targeted verification engine (simulation or acceleration)

· providing a deterministic programming interface

· avoiding the need to be aware of uncontrolled time and clock control in HDL

Close enough abstraction to interfaces already in use by verification IP providers (PLI, FLI, Verilog Tasks, VHDL ..., etc.)
1.2.6 SystemVerilog DPI is already a standard

SCE-MI 2 is leveraging the fact that the SystemVerilog DPI:
· Has been a standard for 2 years as of 2006. It went through a thorough development process and has been proven in several arenas. It has also had significant industry exposure (see references [XX], [XX]).

· Clearly defined syntax of function declarations in SystemVerilog and this is easily adaptable to Verilog and VHDL as well using a special attribute syntax (see XX on page XX).

· Clearly defined argument data type mappings between SystemVerilog and C (see on page XX). Again, this is simple to do the same for Verilog, VHDL.

· Clearly and rigidly defined semantics of calling functions in terms of argument passing conventions, time consumption of the function (0-time vs. time consuming - see XX on pag XX), and other details.

· Is explicitly designed to be binary compatible across vendors for any given C host platform and compiler tool (such as GNU gcc-3.2).
1.3 Backward Compatibility and Coexistence of SCE-MI 2 Applications with SCE-MI 1 Applications

The SCE-MI 2 standard provides a new use model that allows a higher modeling abstraction and improved modeling ease-of-use over SCE-MI 1 This improvement is embodied mainly in the DPI specification and the capabilities built over it such as transaction pipes.

At the same time however, one requirement of the SCE-MI 2 standard is backward compatibility with and coexistence with SCE-MI 1 applications. The main idea is that pure DPI applications can run in either a simulator that natively supports the SystemVerilog DPI or in a simulator or emulator platform that supports SCE-MI 2 standard (which implies that it also supports SCE-MI 1).

The following sections provide more detail on how the two use models can co-exist.

1.3.1 What does not change ?

Aside from guaranteeing compatibility with legacy SCE-MI 1 models, the SCE-MI 2 use model specifically does not change the following:

· The SCE-MI Initialization/Shutdown API

· SceMiClockPort Support for Clock Definitions

1.3.2 [Re: IMs 204, 205, 214, 215] Error Handling, Initialization, and Shutdown API

· SCE-MI 2 applications can continue to use the initialization and shutdown API functions without changes:

· SceMi::RegisterErrorHandler()

· SceMi::RegisterInfoHandler()

· SceMi::Version()

· class SceMiParameters

· SceMi::Init()

· SceMi::Shutdown()

The following rules dictate the use of these calls:

1. They are required for applications that use SCE-MI 1 models.

2. They are optional for applications that use purely SCE-MI 2 models (see definitions of SCE-MI 1 vs. SCE-MI 2 models in XX on page YY).

Applications with only SCE-MI 2 models that choose not to use the error handling, initialization, and shutdown functions above will run on any simulator that supports DPI but does not necessarily support the SCE-MI standard.

This tells a nice story for compatibility of SCE-MI 2 models with native S/W simulation environments.

1.3.3 [Re: IM 206] Requirements and Limitations for Mixing of SCE-MI 1 Models with SCE-MI 2 Models

This section describes the formal requirement for preventing mixes of SCE-MI 1 constructs with SCE- MI 2 constructs in the same transactor and C models.

SCE-MI 1 models can co-exist in an application with SCE-MI 2 models but conceptually the following requirements must generally be followed:

· SCE-MI 1 models would be ported as a whole and would not be allowed to intermix SCE-MI 2 (DPI) constructs with SCE-MI 1 constructs within (see section on page).

· SCE-MI 2 models would not be allowed to use SCE-MI 1 constructs within. In other words, mixing of uncontrolled time interactions with controlled time interactions within the same model would not be allowed (see section XX on page).

· Legacy SCE-MI 1 models and SCE-MI 2 models would be allowed to co-exist in a single simulated environment.

· These models can share clocks (SceMiClockPorts), but only SCE-MI 1 models are allowed to use SceMiClockControls)

· On the C side imported DPI functions cannot be called from SCE-MI 1 callbacks.

· On the C side SCE-MI 1 message input port ::Send() functions cannot be called from DPI imported functions.

· In multi-threaded C environments, calls to ::ServiceLoop() would be restricted to one thread that could be embedded in an implementation’s infrastructure so as to hide this detail from users.

· SCE-MI 1 callbacks and SCE-MI 2 imported functions alike would be serviced by this same thread

· For single threaded HVL, use of ::ServiceLoop() would not change.

· More ?

The following two sections present a more formal specification of how the above constraints for model and construct mixing are enforced.

1.3.4 Definition of SCE-MI 1 vs. SCE-MI 2 Models

For purposes of describing requirements of model mixing, the following definitions are given.

The uses of the term model here are somewhat arbitrary but convenient. A model is some level of hierarchy and all its descendants.

A SCE-MI 1 HDL model is defined as a hierarchy with the following properties:

· At least one SCE-MI 1 message port or clock control macro (but not clock port macro) is instantiated at the highest level of the hierarchy within the model.

· More SCE-MI 1 message ports or clock controls may be instantiated at lower sub-hierarchies of the model.

A SCE-MI 2 HDL model is defined as a hierarchy with the following properties:

· At least one SCE-MI 2 DPI function call us declared at the highest level of the hierarchy within the model.

· More SCE-MI 2 DPI function calls may be declared at lower sub-hierarchies of the model.

1.3.5 Requirements for SCE-MI 2

· No SCE-MI 1 models as defined above can contain any SCE-MI 2 function call declarations or calls anywhere in their hierarchy.

· No SCE-MI 2 models as defined above can contain any SCE-MI 1 message port or clock control macros anywhere in their hierarchy.

· On the C side, no SCE-MI 1 callback functions can make direct calls to exported DPI calls.

· On the C side, no SCE-MI 2 imported function calls can make calls to the SCE-MI 1 service loop or to send on any of the input ports.

The above requirements force SCE-MI 1 macros to only exist in disjoint hierarchies from SCE-MI 2 DPI functions.

1.3.6 Suggested Subset of DPI for SCE-MI 2

It was also discussed in the ITC committee that initially SCE-MI 2 would be a subset of DPI that will be restricted in such a way as to provide a nice balance between usability, ease of adoption and implementation. The following guidelines are suggested as a strawman for such a subset that can be further refined by the ITC committee:

· Data types used with DPI functions would be limited as suggested in on page .

· Imported functions cannot call exported functions

· Exported functions cannot call imported functions

· Imported/exported task support ?

· More ?

