1. Detailed Description of DPI for SCE-MI 2

1.1 The DPI C-layer

1.1.1 Compliant subset of the SystemVerilog DPI C Layer

The SCE-MI 2 standard defines a subset of a DPI compliant SystemVerilog / C Layer and a subset of DPI data types supported by the SCE-MI 2 standard. That subset conforms to the DPI C Layer as described in Annex F of SystemVerilog LRM IEEE 1800-2005 (see reference []).
As such, the SCE-MI 2 specification development process can leverage the existing proven, and formally specified SystemVerilog DPI standard.

1.1.2 Binding is automatic - based on static names

SCE-MI 2 supports binding between where the DPI functions are defined and from where they are called based on static C symbol names. The user needs to define a function on one side and call it from the other side. It will be up to SCE-MI 2 implementation to make sure that wrappers with matching symbol names are provided where appropriate.

All C DPI symbol names conform to ANSI-C naming conventions and linkage. This provides a C symbol linkage mechanism that is adaptable to the HVL environment used on the software side.  

1.1.2.1  Supported types, static mapping [Re: IM 201]
The SystemVerilog LRM IEEE 1800-2005 section F.6.4 defines the mapping between the basic SystemVerilog data types and the corresponding C types. 

DPI supports a variety of flexible data types ranging from simple scalar types such as integers to bit vectors to complex structures and dynamic arrays. Table F-1— Mapping data types from section F.6.4 in SystemVerilog LRM IEEE 1800-2005 (see reference []) defines the mapping between C data types and SystemVerilog DPI types.

 The following table is taken directly from section 26.4.6 and Annex F sections F.6 and F.9) lists the supported data types and their mappings between C data types and SystemVerilog DPI types:

Figure 1. Mapping between C data types and SystemVerilog DPI types

	Supported SystemVerilog DPI formal argument types
	Corresponding types mapped to C respectively

	Scalar basic types:

    void

    byte, byte unsigned

    shortint, shortint unsigned

    int, int unsigned

    longint, longint unsigned

    real

    shortreal

    chandle

    string
	Scalar basic types:

    void

    char, unsigned char

    short int, unsigned short int

    int, unsigned int

    long long, unsigned long long

    double

    float

    void *

    const char *

	scalar values of type bit and logic
	unsigned char (with specifically defined values)

	packed one-dimensional arrays of type bit and logic
	canonical arrays (see E.9 of reference [],)

	types constructed from the supported types with the help of these constructs:

    struct

    union

    unpacked array

    typedef
	same as those for SystemVerilog

	open arrays
	special helper functions and data types to support this


The philosophy that was used in the development of the DPI was to make the type mappings between C and SystemVerilog as common sense and simple as possible and to minimize the requirements for special helper functions that are used to convert from one type to the other. In other words, define a type in SystemVerilog, define the same type in C the way your common sense would tell you to, and the two will match.

Basic C scalar types, structures, and unpacked arrays of such types, will map directly to equivalent SystemVerilog types almost literally. There are some caveats to this however:

•  SystemVerilog integer types are specified to be of fixed size regardless of the inherent data width of a given machine architecture. For example the SystemVerilog types byte, shortint, int, and longint specifically have widths of 8, 16, 32, and 64 bits respectively.

Unfortunately, by contrast in ANSI C, integer types do not have widths that are as cast in stone as the corresponding types in SystemVerilog (see Wikipedia reference for ANSI C data types at http:// en.wikipedia.org/wiki/C_variable_types_and_declarations and http://www.opengroup.org/public/ tech/aspen/lp64_wp.htm for a further explanation of this paradox). What this means is that even though there is a fixed correspondence between fixed sized SystemVerilog integer types and non- fixed sized ANSI C integer types as shown in the table above, it will be up to the user to understand which bits of data passed between SystemVerilog and C are significant and where padding/mask​ing is implied/required. But despite this caveat, the user of scalar types to pass small data values by value back and forth between the language domains is extremely useful and should be supported to the extent possible in the SCE-MI 2 standard (see proposed type support for SCE-MI 2 below).

•  While byte is always unsigned in SystemVerilog, shortint, int, and longint are always signed. The 4 of these types correspond to the C types char, short int, int, long long signed types respectively. The correspondence of byte to C char is a bit of an oddity that may have been overlooked by the SystemVerilog C language interfaces committee. It would really make more sense that this is unsigned char.

Additional complexities arise with bit vector (packed array) types and open arrays. But even for these, great care was taken to make their mappings as easy to use and intuitive as possible..

The following table 2 reference[] lists the subset of those mappings between SystemVerilog and C supported for SCE-MI 2. 

Note:  The SCE-MI 2 standard does not support using the SCE-MI 2 DPI subset for Verilog 2001 and VHDL 1993. Verilog and VHDL users who prefer not using SystemVerilog can use the SCE-MI 1.x use model in the SCE-MI 1 use model section reference[] of SCE-MI 2 DRFT. SCE-MI 2 also supports mixed usage of Verilog and VHDL SCE-MI 1.1 transactors with SCE-MI 2DPI based transactors following the use mode guidelines descried in the Mixed Usage  section reference[] of SCE-MI 2 DRAFT.

Figure 2. Subset of DPI mapping supported in SCE-MI 2
	SystemVerilog DPI formal argument types for SCE-MI 2
	Corresponding types mapped to C

	Scalar basic types:

    byte

    byte unsigned

    shortint

    shortint unsigned

    int

    int unsigned

    longint

    longint unsigned
	Scalar basic types:

    char

    unsigned char

    short int

    unsigned short int

    int

    unsigned int

    long long

    unsigned long long    

	scalar values of type bit
	unsigned char (with specifically defined values)

	packed one-dimensional arrays of type bit and logic
	canonical arrays of svBitVecVal 

and svLogicVecVal 


These recommendations come with the following considerations:

•  Integer types, although supported, come with the caveat described above that for C their widths are not cast in stone but for SystemVerilog they are. As a result, the user will have to be aware of this when using these types in terms of knowing when padding is implied and when masking is required. That said, scalar data types that can be passed by value are extremely useful and are supported in SCE-MI 2. It shall of course be assumed that the fixed sizes of these types on the HDL side will be maintained and will always synthesize to the same number of bits.
1.1.2.2 4-State logic types [IM212]
SCE-MI 2 supports conveying both 2 state and 4 state logic types from the HDL side to the C side and vice versa. SCE-MI 2 implementations can handle 4 state logic types as follows:

· No coercion – the HDL side natively supports 4 state types
· No coercion – from HDL to C as the HDL will convey either 2 state types or 4 state types depending on whether the HDL side supports 2 stated or 4 state types.
· Coercion – from C to HDL if the HDL side only supports 2 state types. In this case X will be coerced to 0 and Z will be coerced to 1. 
Implementations can provide additional coercion options including warnings when coercion takes place. 
The above allows models using 4 state logic types to run on SCE-MI 2 compliant implementation w/o code modification. Support of 4 states types using coercion, while allowing 4 state types to run on 2 state HDL engines (such as 2 sates emulators) does not imply that models using 4 states types will provide results consistent with 4 state HDL engines (such as 4 state simulators) or even correct results. It is up to the modeler/user to decide whether to keep the modes unchanged or remodel the types to 2 state types.

1.1.2.3 Context handling

Context handing in DPI is the term used to refer to the mapping of an imported function call to an instance of user C data (such as an object pointer) that was previously associated with the SystemVerilog caller module instance. 
This is useful for maintaining an association between, for example, a pointer to a SystemC proxy module and the instance of the SystemVerilog transactor associated with it. Because an imported function call is just a C function, by definition, it has no context as would say a method or member function of a C++ class. Context handling in SystemVerilog DPI is very similar to context handling for receive callbacks in the SCE-MI 1.X use model (see reference []). In the case of SCE-MI 1.X the Context data member of the SceMiMessageOutPortBinding struct is used to pass a user model context to the receive callback function that can be associated with an instance of an output message port, as shown in Figure 1 :

Figure 3. Context handling in SCE-MI 1.X
[image: image1.wmf]// Define the function and model class on the C++ side:

class MyCModel {

private:

int locallyMapped(int portID); // Does something interesting...

sc_event notifyPortIdRequest;

int portId;

public:

// Constructor

MyCModel(const char* instancePath) {

SceMiMessageOutPortBinding outBinding =

= { this, MyCFunc, NULL }

SceMiMessageOutPortProxy outPort = outPort->BindMessageOutPort(

instancePath, "sceMiMessageOutPort", outBinding );

    }   

friend int MyCFunc(int portID);

};

// Implementation of receive callback function SCE-MI 

1

void MyCFunc(void *context, const SceMiMessageData *data ) {

MyCModel* me = (MyCModel*)context;

me->portId = data->Get(0);

me->notifyPortIdRequest.notify();

}


In SystemVerilog DPI, context binding is similarly established at initialization time by storing a context pointer with a SystemVerilog module instance scope and later retrieving it via svGetScope() and svGetUserData(). 

Figure 2 shows an example of context handing in SystemVerilog DPI:

Figure 4. Context handling in SystemVerilog DPI

[image: image2.wmf]SV Side:

// Declare an imported context sensitive C function with cname "MyCFunc"

import "DPI-C" context MyCFunc = function integer MapID(int portID);

C Side:

// Define the function and model class on the C++ side:

class MyCModel {

private:

int locallyMapped(int portID); // Does something interesting...

public:

// Constructor

MyCModel(const char* instancePath) {

svScope 

sc

ope = svGetScopeByName(instancePath);

// Associate "this" with the corresponding SystemVerilog scope

// for fast retrieval during runtime.

svPutUserData(

sc

ope, (void*) MyCFunc, this);

}

friend int MyCFunc(int portID);

};

// Implementation of imported context function callable in SV

int MyCFunc(int portID) {

// Retrieve SV instance scope (i.e. this function’s context).

svScope = svGetScope();

// Retrieve and make use of user data stored in SV scope

MyCModel* me = (MyCModel*)svGetUserData(svScope, (void*) MyCFunc);

return me->locallyMapped(portID);

}


In this example notice that because functions can have both input and output arguments, the return argument can be sent directly out of the function return argument. In the SCE-MI 1.X use model, the receive callback must notify another thread to send the mapped portID.

1.2 The DPI SystemVerilog Layer

The DPI SystemVerilog layer is described in detail in chapter 26.1.1 of SystemVerilog LRM IEEE 1800-2005 see reference []).

The DPI SystemVerilog layer is designed to allow imported and exported function calls to be used with identical semantics to plain SystemVerilog functions. This means that argument passing and calling conventions remain identical.

In addition, all scoping considerations remain identical. For example the calling scope of a call to any SystemVerilog function call is the scope where the function is defined and not the caller site. In the case of an imported function, special function declaration syntax serves as a place holder for where the function would actually be defined if it were a plain SystemVerilog function. That placeholder represents a declaration of the actual function definition itself which is on the C side. As with plain SystemVerilog functions, the calling scope of this function is considered to be the scope of this import declaration rather than the caller site. This becomes important when understanding calling scope for purposes of context handling as described in section 2. 
Here is an example of an imported function declaration in SystemVerilog:


// Declare an imported context sensitive C function with cname "MyCFunc"


import "DPI-C" context MyCFunc = function integer MapID(int portID);

Notice that this declaration also shows a nice feature of the SystemVerilog DPI called C-name aliasing.

This declaration is telling the SystemVerilog side that, “there’s a C function called MyCFunc() that can be called directly from SystemVerilog as the aliased SystemVerilog name MapID()”.
So when the Verilog code makes a call to MapID(), this results in the C function MyCFunc() being called. This is very useful when resolving incompatibilities in legal names between the C language and the SystemVerilog language. For example a SystemVerilog name could be an escaped identifier that is illegal in C. This can be easily fixed by choosing a legal C name and using aliasing in the import declaration.

For exported functions, the entire function body is defined in some module scope in SystemVerilog. Special additional declaration syntax is used to declare that function is allowed to be called from the C side, for example,


export “DPI-C” SetParityGetConfig = function configQuery;


function bit [7:0] configQuery;



input bit enableParity;



begin




isParityEnabled = enableParity;




configQuery = currentState;



end


endfunction

In this example the variables isParityEnabled and currentState are defined in the same module scope as the function configQuery() and can thus be accessed freely by the function itself.

Like imported functions, C-name aliasing works for exported functions as well. In this case, when the C side calls the function SetParityGetConfig() the HDL function configQuery() will actually get called. It will be the responsibility of the SCE-MI 2 implementation to provide a C wrapper function that will be visible on the C side and to generate infrastructure code to that causes this function wrapper to call the actual SystemVerilog function configQuery().
1.3 Functions and tasks [IM232]
The SystemVerilog DPI supports both functions and tasks. An imported or exported DPI function always executes in 0-time. An exported or imported DPI task, by contrast, can execute in 0-time or can consume time.
SCE-MI 2 only supports exported or imported DPI functions and does not support tasks. Should SystemVerilog DPI imported or exported tasks get defined, their behavior is considered undefined.

A SystemVerilog DPI function is a superset of 0-time SystemVerilog task thus SCE-MI 2 does not support SystemVerilog DPI tasks 
1.4 Support for multiple messages in 0-time

DPI places no restrictions on the number of imported function calls made in the same block of code without intervening time advancement 
One important point to make about the DPI approach is that it does not preclude the ability to support transmission of multiple messages in 0-time either by calling the same function or by calling multiple functions in the same timestep.

This  interfacing feature is fundamentally missing from SCE-MI 1.X  use model where macros supporting controlled time interfacing are fed with user clocks. The only way of accomplishing this is to use some sort of over-clocking scheme in which the message clock (still a controlled clock) has a frequency that is some multiple of the main clock being used in the transactor.

For example, if I am using a message macro that is clocked by transactor_clock and I wish to send 3 messages between posedges of transactor_clock, I must define essentially a message_clock that is at least 3 times the frequency of transactor_clock. Short of this over-clocking there is no other way to fundamentally accomplish transmission of multiple messages between clocks. 
With the DPI approach, multiple messaging is possible. Take the following code example:

always @( posedge transactor_clock ) begin

    if( reset == 1 ) begin

        // Do the reset thing ...

    else switch ( fsm_state ) begin

         case ‘FSM_STATE_1: begin

             ...

             c_function1( data1, data2 );

             c_function1( data2, data3 );

             c_function2( data3, data4 );

         end

         ...

    end

    ...

end

In this case, there are two consecutive calls to c_function_1(). The first takes data1 as the input and returns data2 as the output. The second takes data2 as the input and returns data3 as the output. The third call is actually a call to a different function (which could be to different SCE-MI 1 message ports underneath).

1.5 Rules for DPI function call nesting [Re: IM 202]

SCE
-MI 2 compliant implementation must support one level of nesting meaning that imported function can call exported function. Once the exported function returns, it can yield control back to the imported function.

However SCEMI does not impose any restrictions on SCE-MI implementations in supporting additional levels of nesting. An example for second level nesting is when the exported function (called from an imported function) would call another imported function that may call another exported function establishing a call chain that is n level deep. 

Supporting more that one level of nesting is allowed by SystemVerilog DPI but considered undefined in SCE-MI 2 meaning it can results in correct behavior, undefined behavior or an error.

SCE-MI 2 does not support recursion. Recursion occurs for example when exported function called from imported function calls the same imported function initiating the call. This will result in creating an infinite loop. SCE-MI 2 compliant implementations should report an error upon encountering recursion.
1.6 DPI utility function supported by SCE-MI 2 [Per’s email; missing IM]

The following DPI utility functions are supported by SCEMI 2:
  svScope svGetScope(void)

  svScope svSetScope(const svScope scope)

  int svPutUserData(const svScope scope, void *userKey, void *userData)

  void *svGetUserData(const svScope scope, void *userKey)

  const char *svGetNameFromScope(const svScope scope)

  svScope svGetScopeFromName(const char *scopeName)

  int svGetCallerInfo(char **fileName, int *lineNumber)

  const char *svDpiVersion(void)

  svBit svGetBitselBit(const svBitVecVal *s, int i)

  void svPutBitselBit(svBitVecVal *d, int i, svBit s)

  void svGetPartselBit(svBitVecVal *d, const svBitVecVal *s, int i, int w)

  void svPutPartselBit(svBitVecVal *d, const svBitVecVal s, int i, int w)


1.7 Calling DPI exported functions outside an imported context function [Re: IM219]
The SystemVerilog IEEE 1800-2005 (see reference []) says that invocation of export functions from non context import DPI functions/tasks is undefined. SCEMI 2 extends the scope of the SystemVerilog DPI use model by allowing SystemC methods/tasks to call DPI exported functions. 
DPI exported functions can be called from SystemC only at the elaboration/construction phase or during run time. Calling these during the model creation phase may result in an error or undefined behavior. 
The intent is that the modeler could defer calling DPI Utility functions and DPI exported functions from the elaboration/construction phase to the start of simulation phase when the simulation model is sane.
In addition, calling DPI exported tasks from the context of other threaded application which is not SystemC is not supported and may result in an error or undefined behavior.

1.8 Calling DPI utility functions outside imported context functions [Re: IM219]

Section F.8.3 of IEEE 1800-2005 (see reference []) states that:
DPI defines a small set of functions to help programmers work with DPI context tasks and functions. The term scope is used in the task or function names for consistency with other SystemVerilog terminology. The terms scope and context are equivalent for DPI tasks and functions. 

There are functions that allow the user to retrieve and manipulate the current operational scope. There are also functions to associate an opaque user data pointer with an HDL scope. This pointer can then later be retrieved when an imported DPI function is called from that scope.
It is an error to use these functions with any C code that is not executing under a call to a DPI context imported task or function.

SCEMI 2 extends the scope of the SystemVerilog DPI use model by allowing SystemC methods/tasks to call the DPI utility functions supported by SCE-MI 2 per section 5.6. 

DPI utility functions can be called from SystemC only at the "start of simulation phase" or during run time. Calling these during the model creation phase before simulation model is sane may result in an error or undefined behavior.

The utility functions mentioned are:

svGetScope() 

svSetScope() 

svGetNameFromScope() 

svGetScopeFromName() 

svPutUserData() 

svGetUserData() 

svGetCallerInfo() 
The following utility functions can be called from non-context imported DPI functions:

svGetScope() 

svGetUserData() 

�Agree. This needs to be dropped. Also as recursion is not allowed by the SV DPI spec, we don’t need to define it for SCE-MI 2.


�Included all Per's recommended DPI Utility functions for now. But this topic needs it own IM and final resolution on the DPI utility functions supported by SCE-MI 2.





