NOTE: While this was section 4 of the old document, it will have a new number within the context of the new document
Revision 1.17
21

21.1
Revision History

22

23

24
Variable Length Messaging and Streaming Extensions: Transaction Pipes

24.1
Overview

34.1.1
Basic Transaction Pipes API

34.1.1.1
C-Side API

54.1.1.2
HDL-Side API

74.1.2
[Re: IM 208] Reference vs. vendor optimized implementations transaction pipes

74.2
Pipe handles

84.3
Basic Transaction Pipes API: Blocking, Thread-Aware Interface

8
Transaction input pipes – blocking operations

84.3.1

84.3.1.1
Blocking input pipe access functions

104.3.1.2
The input pipe flush function

104.3.1.3
Example of input pipe

11
Transaction output pipes – blocking operations

114.3.2

114.3.2.1
Blocking output pipe access functions

134.3.2.2
Example of output pipe

134.3.3
Flush Semantics

134.3.3.1
Explicit flushing of pipes

144.3.3.2
Implicit flushing of pipes

144.3.3.2.1
Enabling automatic flush-on-eom

144.3.3.2.2
Implications of implicit flushing for non-blocking pipe interface functions

144.3.3.3
Using flushing with data shaping

15
Implications of flushing for user specified buffer size vs. vendor default buffer size.

154.3.3.4

154.4
Basic Transaction Pipes API: Non-Blocking, Thread-Neutral Interface

154.4.1
C-side access

164.4.1.1
Non-blocking data transfer operations

184.4.1.2
Non-blocking query operations

184.4.1.3
Non-blocking notify operations

194.4.2
HDL Side Access

204.4.2.1
Non-blocking data transfer operations

214.4.3
Query and specification of buffer depth

214.4.3.1
[Re: IM 208, 209] Implementation defined buffer depth for pipes, user defined buffer depth for fifos

224.5
Transaction pipes are deterministic

234.6
Variable length messaging

234.6.1
Variable length messaging features of transaction pipes

234.6.1.1
Data shaping

244.6.1.2
End-of-message <eom> marking mechanism

244.6.1.3
[Re: IM 211] Support for multiple pipe transactions in 0-time

244.7
Streaming Pipes vs. TLM FIFOs

254.8
Implementation of pipes in multi-threaded C environments

26Appendix A
Sample Header File for Basic Transaction Pipes C-Side API

30Appendix B
Using transaction pipes compatibly with OSCI-TLM applications

30B.1
TLM Interfaces

31B.2
Example of OSCI-TLM compliant proxy model that uses transaction pipes

1.1 Revision History

	Revision
	Date
	Revised by
	Summary of revision

	1.17
	9-8-06
	John
Stickley
	· Replaced function based basic API on HDL side with SystemVerilog interface based API. Restructured document to accommodate this change.

	1.14, 1.15
	8-16-06
	John Stickley
	· Revised for object based pipes proposal, changed bytes_per_element to be static, further clarifications of flushing semantics, general improvement of text and phrasing throughout the entire document.

	1.13
	6-21-06
	John Stickley
	· Blocking vs. non-blocking flush clarification

	1.12
	6-6-06
	John Stickley
	· Clean up formatting from Brian's conversion from FrameMaker (there were a lot of polluted formats that needed to be removed).

· I have incorporated the changes to restrict the pipe_id space by allowing to be a user specifiable static value on the hardware side as described in this e-mail:

http://www.verilog.org/itc/hm/0920.html

This will allow tighter control of pipe ID values – a concern raised by Jason.

· Separated out section on flushing semantics, eom auto-flush. Added clarifications from Shabtay's object pipes proposal.

· Added a number of minor corrections

2 Variable Length Messaging and Streaming Extensions:
Transaction Pipes
2.1 Overview

For variable length messaging and streaming extensions, a special facility is built over the DPI standard. As currently defined, the DPI standard handles strictly reactive semantics for function calls. There are no extensions for variable length messaging and streaming.

The SCE-MI 2 supports constructs called transaction pipes which can be implemented as built- in library functions that can potentially be implemented with reference source code that uses basic DPI functions, or can be implemented in an optimized vendor specific manner.
A transaction pipe is a construct that is accessed via function calls that provides a means for streaming transactions to and from the HDL side.

Transaction pipes are as easy to use as simple function calls, yet have semantics that be thought of as a hybrid between UNIX sockets, UNIX file streams and UNIX named pipes.

· Like UNIX sockets, transaction pipes provide a facility for sending one-way message passing through simple function calls. Transaction pipes are composed of send and receive calls that look very much like write and read calls to UNIX sockets (but are much easier to create and bind endpoints).

· Like UNIX file streams, items written to the pipe can be buffered by the infrastructure which allows for more optimal streaming throughput. Pipes leverage the fact that in some cases round trip latency issues can be avoided by using pipelining, and therefore more effective throughput of streamed transactions can be realized.

· And, like UNIX file streams, transaction pipes can be flushed. Flushing a transaction pipe has the effect of guaranteeing to the writer of the transaction that the reader of the transaction at the other end has taken it. This is useful for providing synchronization points in streams.

· Like UNIX named pipes, each transaction pipe can be uniquely identified within a module scope using a numeric enumeration scheme. And standard DPI module scope binding (svGetScope(), svGetScopeFromName()) calls can be used to obtain scope handles for binding of HDL endpoints of transaction pipes to the C side.
Transaction pipes are unidirectional meaning that in any given pipe, the transactions only flow in one direction. The data sent by the sender is guaranteed to be received by the receiver in the same order when the receiver asks for the data (by calling a function). However, the data is not guaranteed to be available to the receiver immediately after it was sent (as would happen if the implementer decides to deploy buffering).

Transaction pipes that pass one-way transactions from the C side to the HDL side are called input pipes. Pipes that pass transactions from the HDL side to the C side are called output pipes.

Unlike normal DPI calls, in which one end calls and the other end is called, models on both ends of a transaction pipe call into the pipe, with one end calling the send function and the other calling the receive function.

2.1.1 Basic Transaction Pipes API
On the C-side, the basic transaction pipes API consists of ANSI C functions. On the HDL side the API consists of functions and tasks defined in a SystemVerilog interface.
C-Side API

The C-side API consists entirely of the following set of function declarations:
Configuration, query functions:
void *scemi_pipe_c_handle(// return: pipe handle

 const char *endpoint_path, // input: path to HDL endpoint instance

int bytes_per_element, // input: #bytes/element

 svBit input_or_output); // input: 1 for input pipe,

 // 0 for output pipe

void scemi_pipe_set_eom_auto_flush(

void *pipe_handle, // input: pipe handle

svBit enabled); // input: enable/disable
typedef void (*scemi_pipe_notify_callback)(

 void *context); // input: C model context

void scemi_pipe_set_notify_callback(

 void *pipe_handle, // input: pipe handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context); // input: notify context

void *scemi_pipe_get_notify_context(// return: notify context object pointer

 void *pipe_handle); // input: pipe handle
int scemi_pipe_get_bytes_per_element(// return: bytes per element
 void *pipe_handle); // input: pipe handle
int scemi_pipe_get_depth(// return: current depth (in elements) of the pipe

 void *pipe_handle); // input: pipe handle

void scemi_pipe_set_depth(

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: number of elements
Input pipe interface:
void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svbit eom); // input: end-of-message marker flag
void scemi_pipe_c_flush(

 void *pipe_handle) // input: pipe handle
int scemi_pipe_c_try_send(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_flush(// indication of whether flush was successful

 void *pipe_handle); // input: pipe handle

int scemi_pipe_c_can_send(// return: #elements that can be sent

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: #elements to be written
Output pipe interface:
void scemi_pipe_c_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svbit *eom); // output: end-of-message marker flag

int scemi_pipe_c_try_receive(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

int scemi_pipe_c_can_receive(// return: #elements that can be received

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: #elements to be written
2.1.1.1 HDL-Side API

The HDL-side API consists entirely of the following two SystemVerilog interface declarations.
Input pipe interface:
interface scemi_input_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PIPE_MAX_BITS = 512;

 task receive(

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PIPE_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

 endtask

 function int try_receive(

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PIPE_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

 endfunction

 modport receive_if(import receive, try_receive);

endinterface
Note the following properties:

· The modport directive stipulates exactly which functions or tasks in the interface must be provided for use by the application. Implementations can choose to add additional support functions to the interface but only the ones explicitly provided in the modport directive are expected to be provided to the user of the interface.

· The receive() operation is made a task because it has the potential to block the calling thread over multiple delta cycles.
· The try_receive() operation is made a function because it is, by definition, always done in 0-time within the current delta cycle.

· The number of bytes in each element of the transaction payload data argument is parametrizeable as BYTES_PER_ELEMENT.

· The width of the transaction payload data argument is parametrizeable as PIPE_MAX_BITS.
Output pipe interface:

interface scemi_output_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PIPE_MAX_BITS = 512;

 task send(

 input int num_elements, // input: #elements to be written

 input bit [PIPE_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endtask

 task flush;

 <implementation goes here>

 endtask

 function int try_send(

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be written

 input bit [PIPE_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endfunction
 modport send_if(import send, flush, try_send, try_flush);

endinterface
Note the following properties:

· The modport directive stipulates exactly which functions or tasks in the interface must be provided for use by the application. Implementations can choose to add additional support functions to the interface but only the ones explicitly provided in the modport directive are expected to be provided to the user of the interface.

· The send() operation is made a task because it has the potential to block the calling thread over multiple delta cycles.
· The try_send() operation is made a function because it is, by definition, always done in 0-time within the current delta cycle.

· The number of bytes in each element of the transaction payload data argument is parametrizeable as BYTES_PER_ELEMENT.

· The width of the transaction payload data argument is parametrizeable as PIPE_MAX_BITS.
On the C-side, the basic transaction pipes API might be used to build a higher level C++ object oriented interfaces to pipes called pipe interface objects. Pipe interface objects may provide a more user friendly object oriented interface to basic pipes.
The basic pipes API could also conceivably be used to build alternative object-oriented interfaces such as OSCI-TLM interfaces.

Figure 1.

1.
2.
3.
4.
5.

Figure 2.

The basic pipes API described above is described in more detail in sections 4.3 and 4.4. These sections classify the API into two groups of API functions for both the C-side and the HDL-side:

· Blocking, thread-aware interface functions

· Non-blocking, thread-neutral interface functions
Blocking operations on either side of a pipe imply that the function call performing the send/receive of the given number of elements of a transaction to/from that pipe (i.e. by calling send() or receive()), does not return until the pipe has accepted/provided all of those elements.

It is implied that blocking operations must be thread-aware. That is, if it is not possible to complete the operation because the pipe is either full (in the case of a send operation) or empty (in the case of a receive operation), the blocking function must have the internal ability to suspend the thread of execution that is calling it.

Non-blocking operations on either side of a pipe imply that the function call trying to perform the send/receive of the given number of elements of a transaction to/from that pipe (i.e. by calling try_send() or try_receive()), may return before the pipe has accepted/provided all of those elements.

It is implied that non-blocking operations are therefore thread-neutral. That is, if it is not possible to complete the operation because the pipe is either full (in the case of an attempted send operation) or empty (in the case of an attempted receive operation), the non-blocking function need not have the internal ability to suspend the thread of execution that is calling it.

2.1.2 [Re: IM 208] Reference vs. vendor optimized implementations transaction pipes

It is possible to implement pipes as a reference model of library functions of source code built over basic DPI function calls.
As such they can be made to run on any DPI compliant software simulator. Such a reference model would provide a reactive implementation of pipes which could be used as the basis for more optimized built-in implementations that might deploy some sort of pipelining optimizations (such as buffering, batching, streaming, concurrency).
It is an absolute requirement however that such optimizations do not change functional and deterministic behavior of a design that runs on the basic reactive reference model implementation of pipes as described above.

In other words, code using a pipe interface must behave identically whether running over the reactive "reference" implementation or running over an optimized custom implementation.
Within this constraint, vendors are free to perform any optimizations of pipes that are appropriate to their platform.

Per Bojsen wrote:

> Note that the text said that concurrency could be introduced by the

> implementation as long as it does not alter behavior. So we've

> established and all agreed upon that the new DPI/function based subset

> of SCE-MI 2.0 is a system that uses alternating execution. This

> follows directly from the DPI definition. However, this applies

> only to the behavior of the system, not necessarily to what is actually

> going on under the hood. There are plenty of opportunities to

> optimize the transport and execution that does not change the behavior.

> This includes introducing some degree of concurrent operation. Do

> you agree that it does not matter that there is some degree of

> concurrent operation as long as it behaves exactly like a purely

> alternating system would? SCE-MI 2.0 will describe the semantics

> of the DPI/function based interface in terms of alternating execution.

> The implementation is compliant as long as it preserves this semantics.

> It does not matter one bit how the implementation achieves this

> under the hood.

2.1.3 Pipe handles
On the HDL side, a pipe interface endpoint is defined using the SystemVerilog interface construct.

Once the HDL side has instantiated a pipe interface, all pipe operations in the HDL code are done by calling functions and tasks defined within that interface.

The path to this endpoint interface instance uniquely identifies a specific pipe endpoint in an HDL hierarchy to which the C-side can bind. Using this path, the C application can derive a handle that is used in all operations involving the C-side endpoint of the pipe by calling the following function:

void *scemi_pipe_c_handle(// return: pipe handle

 const char *endpoint_path, // input: path to HDL endpoint instance

int bytes_per_element, // input: #bytes/element

 svBit input_or_output); // input: 1 for input pipe,

 // 0 for output pipe

Originally the C-side and HDL-side used pipe ID arguments to all the calls. It was decided to replace this with a pipe handle argument instead. The pipe handle can be derived once at initialization time and reused many times without having to set scope each time and requiring the internal implementation to do a lookup based on the scope and the pipe ID to retrieve the internal data structure associated with a pipe on each and every pipe operation.

Doing this not only made the user application code a lot cleaner looking but made the implementation more efficient as well (fewer lookups and pointer indirections on each call).

Once a pipe handle is derived, it can be used as the handle argument for all the function calls described in the following sections to perform operations to the C-side endpoint of the designated pipe.
The arguments consist of:

endpoint_path – the hierarchical path to the interface instance representing the opposite HDL endpoint of the pipe
bytes_per_element - number of bytes in each individually readable element of a transaction. This comes into play for data shaping (see section 4.6.1) where multiple elements can be passed in a single call. The bytes_per_element is fixed once for any given pipe. It is specified on the HDL endpoint of the pipe with a static value that is known at compile time. It shall be an error if the bytes_per_element passed to the scemi_pipe_c_handle() function does not match the statically specified bytes_per_element on the HDL side. Passing it to this function guarantees that there is agreement between both sides as to its value. And if there is not, a clear error message will result.
input_or_output – Indication of whether this pipe is an input pipe or output pipe. Again, this argument makes sure there is agreement between the C-side and the HDL-side as to what type of pipe the handle is being derived for. It shall be an error if the input_or_output indication does not match the type of pipe denoted by the endpoint_path.
Basic Transaction Pipes API: Blocking, Thread-Aware Interface
2.1.4 Transaction input pipes – blocking operations

2.1.4.1 Blocking input pipe access functions

The bold text in the input pipe SystemVerilog interface declaration below shows the blocking receive function:
interface scemi_input_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PIPE_MAX_BITS = 512;

 task receive(

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PIPE_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

 endtask

 function int try_receive(

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PIPE_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

 endfunction

 modport receive_if(import receive, try_receive);

endinterface

The infrastructure will supply the implementation of this task - essentially it is a built-in function and its declaration can be placed in an implementation provided file that defines the interface which can be compiled as a separate unit along with all of the user's other modules, packages and interfaces.

·
·
The arguments consist of:

· num_elements - number of elements to be read on this receive operation - can vary from call to call which again, facilitates data shaping
· num_elements_valid - number of read elements that are valid - in the case of data shaping this can be less than the requested number of bytes read if the eom comes at some residual number of elements that does not fill out an entire request (see section 4.3.3.3).
· data - a target bit array to which the requested num_elements of requested size bytes_per_element will be deposited

· eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of transactions

· The data and eom arguments always have an output direction when receiving from a pipe.

On the C side endpoint of an input pipe, the blocking send function provided by the infrastructure is declared as follows:

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svbit eom); // input: end-of-message marker flag

Note the following properties:

· pipe_handle - the handle identifying the specific pipe as derived from the unique path to the the HDL endpoint of the pipe (see section 0).
· num_elements - number of elements to be written on this send operation - can vary from call to call which again, facilitates data shaping
·
· data - a target bit array to which the requested num_elements of requested size bytes_per_element will be deposited

· eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of transactions

The data and eom arguments always have an input direction when sending to a pipe.

·
· The eom flag is strictly a user defined flag. Whatever value is passed to the send endpoint of the pipe will be received at the receive endpoint. This is useful for creating end-of-message markers in variable length messages or indicating flush points to the other end. In certain cases it can also be used to force flushes on a pipe (see section 4.3.3.2).
2.1.4.2 The input pipe flush function

On the C-side endpoint of an input pipe, the flush function provided by the infrastructure is declared as follows:

void scemi_pipe_c_flush(

 void *pipe_handle) // input: pipe handle

Note the following properties:

· pipe_handle - the handle identifying the specific pipe as derived from the unique path to the the HDL endpoint of the pipe (see section 0).

2.1.4.3 Example of input pipe

Figure 1 shows an example of the use of an input pipe on both the C and HDL sides:

Figure 3. Example of Input Pipe

Figure 4.
[image: image3]

2.1.5 Transaction output pipes – blocking operations

2.1.5.1 Blocking output pipe access functions

The bold text in the output pipe SystemVerilog interface declaration below shows the send and flush functions which make up the API for the blocking operations of the HDL endpoint an output pipe:

interface scemi_output_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PIPE_MAX_BITS = 512;

 task send(

 input int num_elements, // input: #elements to be written

 input bit [PIPE_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endtask

 task flush;

 <implementation goes here>

 endtask

 function int try_send(

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be written

 input bit [PIPE_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endfunction
 modport send_if(import send, flush, try_send, try_flush);

endinterface
The infrastructure will supply the implementation of these tasks - essentially they are built-in functions and their declarations can be placed in an implementation provided file that defines the interface which can be compiled as a separate unit along with all of the user's other modules, packages and interfaces.

The arguments for the send() task consist of:

· num_elements - number of elements to be read on this receive operation - can vary from call to call which again, facilitates data shaping
· data - a target bit array to which the requested num_elements of requested size bytes_per_element will be deposited

· eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of transactions

· The data and eom arguments always have an input direction when sending to a pipe.

On the C side endpoint of an output pipe, the blocking receive function provided by the infrastructure is declared as follows:

void scemi_pipe_c_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svbit *eom);
Note the following properties:

· pipe_handle - the handle identifying the specific pipe as derived from the unique path to the the HDL endpoint of the pipe (see section 0).
· num_elements - number of elements to be written on this send operation - can vary from call to call which again, facilitates data shaping
· num_elements_valid - number of read elements that are valid - in the case of data shaping this can be less than the requested number of bytes read if the eom comes at some residual number of elements that does not fill out an entire request (see section 4.3.3.3).

· data - a target bit array to which the requested num_elements of size bytes_per_element will be deposited

· eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a sequence of transactions

The data and eom arguments always have an output direction when receiving from a pipe.

2.1.5.2 Example of output pipe

Figure 2 shows an example of the use of an output pipe on both the C and HDL sides:
Figure 5. Example of output pipe

[image: image6]
2.1.6 Flush Semantics

2.1.7 The SCE-MI transaction pipes API supports two types of flushing operations for pipes:

· explicit flushing

· implicit flushing
2.1.7.1 Explicit flushing of pipes

When an explicit flush occurs on a pipe, it allows the producer of transactions previously sent on that pipe to suspend execution until all in-flight messages have been consumed by the consumer. The scemi_pipe_c_flush() call (see section 4.3.1.2) is used to flush transaction input pipes. The flush() task (see section 4.3.2.1) is used to flush transaction output pipes.

2.1.7.2 Implicit flushing of pipes

Transaction pipes also support implicit flushing. If a pipe is enabled for implicit flushing, flushes will automatically occur on end-of-message (eom). This mode is called automatic flush-on-eom.

If a pipe has automatic flush-on-eom mode enabled, when a blocking send is performed on that pipe with the end-of-message (eom) flag set, the effect is as if an explicit blocking flush was combined with that send. The blocking send will not return until the consumer has fully received all messages in the pipe up to and including the eom tagged message being passed to it.
Producers of transactions to pipes can still call the explicit pipe flush functions at any time even on pipes that have automatic flush-on-eom mode enabled.

2.1.7.2.1 Enabling automatic flush-on-eom

The following call lets an application specify that automatic flush-on-eom mode is enabled/disabled for a pipe designated by a given handle. This configuration call is always initiated only from the C side for both input and output pipes.

For any given pipe on which this mode is enabled, a scemi_pipe_c/hdl_send() call with an eom value of 1 will have the same effect as if a scemi_pipe_c/hdl_flush() call was made following that data send call.

int scemi_pipe_set_eom_auto_flush(

void *pipe_handle, // input: pipe handle

svBit enabled); // input: enable/disable

Note the following properties:

· pipe_handle - the handle identifying the specific pipe as derived from the unique path to the the HDL endpoint of the pipe (see section 0).
·
· enabled - flag that indicates to enable (1) or disable (0) this mode.

· The call returns the previous mode setting
· The pipe will remain in its current mode until any subsequent call to this function that changes the mode.

· By default, pipes are not in automatic flush-on-eom mode.

2.1.7.2.2 Implications of implicit flushing for non-blocking pipe interface functions

The automatic flush-on-eom mode has no effect for non-blocking pipe operations. If a call is made to scemi_pipe_c_try_send() or the HDL try_send() function on pipes which were enabled for automatic flush-on-eom mode, no attempt is made to flush the pipe. Implicit flushing only pertains to blocking data send operations on pipes.

2.1.7.3 Using flushing with data shaping

When a flush (either implicit or explicit) occurs on a pipe used for data shaping, special considerations must be made if a producer endpoint of a pipe does data send operation with a smaller num_elements than that requested by the subsequent data receive operation at the consumer endpoint of that pipe. If the pipe is flushed on that send operation, in order to satisfy the flush the consumer will see a return of num_elements_valid that is smaller than its requested num_elements. This is because, in order to satisfy the producer's flush condition, the consumer's blocking receive call must have satisfactorily returned from its read operation even if that read operation was asking for a larger number of elements than had been sent as of the time of the flush.
A similar issue applies when specifying a pre-mature eom as explained in section 4.6.1.2. Using the nozzle example from that section, if a consumer requests 100 bytes, but the producer only sends 75 bytes before flushing (either implicitly using eom or explicitly), the request to read 100 bytes will return with a num_elements_valid of only 75 thus leaving the pipe empty as required by the flush and/or eom.
Implications of flushing for user specified buffer size vs. vendor default buffer size.

2.2 Basic Transaction Pipes API: Non-Blocking, Thread-Neutral Interface

Everything described so far has pertained to the blocking pipes interface that is ideally suited for streaming operations. Additionally it is desirable to support a non-blocking pipes interface that is thread-neutral and can be used to implement a reference model of the blocking API functions described above.
The non-blocking pipe interface calls have the following semantics.

· Thread-neutral - no thread-awareness required in the implementation

· Fully compatible with OSCI-TLM interface model and can be directly used to implement OSCI- TLM compliant interfaces

· Support user configuration and query of buffer depth

· Provide primitive non-blocking operations which can be used to build higher level interfaces that have blocking operations implemented in selected threading systems

2.2.1 C-side access

On the C side, the non-blocking pipe access interface consists of callin functions and callback functions classified as data transfer operations, query operations, and notify operations for each pipe direction,
· Data transfer operations:

scemi_pipe_c_try_send()

scemi_pipe_c_try_receive()

scemi_pipe_c_try_flush()

· Query operations:

scemi_pipe_c_can_send()

scemi_pipe_c_can_receive()

· Notify operations:

(*scemi_pipe_c_notify_ok_to_send)()

(*scemi_pipe_c_notify_ok_to_receive)()

The scemi_pipe_c_try_send() and scemi_pipe_c_try_receive() functions are non-blocking operations that attempt to send a transaction to an input pipe or receive a transaction from an output pipe, respectively. They return the number of elements actually transferred which can be used as an indication of whether the full transfer operation was successful or if subsequent attempts are required. Similarly the scemi_pipe_c_try_flush() function attempts a flush on a pipe and returns an indication of whether the flush occurred or not..

The scemi_pipe_c_can_send() and scemi_pipe_c_can_receive() functions are used to query the number of elements that can potentially be transferred in the pipe. For an input pipe, scemi_pipe_c_can_send() returns the amount of space (expressed as number of elements) that exists in that input pipe. For an output pipe, scemi_pipe_c_can_receive() returns the number of elements in that output pipe, that are available for receiving.

The (*scemi_pipe_c_notify_ok_to_send)() and (*scemi_pipe_c_notify_ok_to_receive)() functions are programmable callbacks that can be called from within the infrastructure to notify the application that there is potentially room to send a message or a message to receive, respectively. They are denoted here as function pointers rather than actual functions. They get registered by the application at initialization time. The infrastructure calls these functions whenever data has been read by the HDL side from an input pipe or data has been written by the HDL side to an output pipe respectively.

The notify_ok_to_send() and notify_ok_to_receive() functions are callbacks that can be called directly or indirectly from within the thread-neutral implementation code to notify thread-aware application code on the C side when it is OK to send or receive. By implementing the bodies of these functions a user can put in thread specific code that takes some action such as posting to a SystemC sc_event.
So the key here is that the data transfer and query functions have thread-neutral implementation. And the notify functions are callbacks called from within thread-neutral code that can be filled in by some application wishing to create a thread-aware adapter that implements blocking send() and receive() functions.
2.2.1.1 Non-blocking data transfer operations

These are the basic non-blocking send/receive functions to access a transaction pipe from the C side. The send function is called to attempt to send transactions to an input pipe. The receive function is called to attempt to receive transactions from an output pipe. The flush function is called to attempt to flush an input pipe.

int scemi_pipe_c_try_send(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_receive(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

int scemi_pipe_c_try_flush(// indication of whether flush was successful

 void *pipe_handle); // input: pipe handle

Note the following properties:
· The arguments, pipe_handle num_elements, data, and eom are identical to those described for the blocking function, scemi_pipe_c_send() described in section 4.3.1.1.

· The byte_offset argument is the byte offset within the data buffer designated by data.
· The try_send/try_receive functions return the number of elements actually transferred.

· The try_flush function returns 1 if flush successful, 0 if not

By using the byte_offset argument, it is possible to create blocking functions that operate on unlimited data buffers on the C side. Even if buffers in the internal implementation are of limited size, multiple calls to the non-blocking send/receive functions can be made until all the data is transferred. This makes it easy to build blocking data transfer functions that handle buffers of unlimited size on top of the non-blocking data transfer functions. Each call to the non-blocking function is made with the same base data buffer pointer but an increasing byte offset. Each call returns the actual number of elements transferred. This number can be translated to in increment amount for the byte offset to be passed to the next call in the loop - without changing the base svBitVecVal *data pointer. The following example shows how this can be used to implement the blocking send function on top of the non-blocking send function:

static void notify_ok_to_send_or_receive(

 void *context){ // input: notify context

 sc_event *me = (sc_event *)context;

 me->notify();

}

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom) // input: end-of-message marker flag

{

 int byte_offset = 0, elements_sent;

 while(num_elements){

 elements_sent =

 scemi_pipe_c_try_send(

 pipe_handle, byte_offset,
num_elements, data, eom);
 // if(pipe is full) wait until OK to send more

 if(elements_sent == 0){

 sc_event *ok_to_send = (sc_event *)

 scemi_pipe_get_notify_context(pipe_handle);

 // if(notify ok_to_send context has not yet been set up) ...

 if(ok_to_send == NULL){

 ok_to_send = new sc_event;

 scemi_pipe_set_notify_callback(

 pipe_handle, notify_ok_to_send_or_receive, ok_to_send);

 }

 wait(*ok_to_send);

 }

 else {

 byte_offset += elements_sent * scemi_pipe_get_bytes_per_element(pipe_handle);

 num_elements -= elements_sent;

 }

 }

}

The execution remains inside this send function repeatedly calling scemi_pipe_c_try_send() until all elements in an arbitrarily sized user buffer have been transferred. Each call to scemi_pipe_c_try_send() returns the number of elements transferred in that call.

That number is used to increment the byte_offset within the user’s data buffer.

Between the calls, the thread waits on the ok_to_send event and suspends execution until there is a possibility of more room in the pipe for data.

If this event has not yet been created, it is created and passed as the context when the notify callback is registered for the first time.

The callback function notify_ok_to_send_or_receive() is called by the infrastructure whenever it moves data and therefore leaves room for at least 1 element in the pipe. This function simply posts to the ok_to_send event shown above.

In a similar fashion, a blocking flush call can be implemented over the non-blocking flush call as follows:

void scemi_pipe_c_flush(

 void *pipe_handle) // input: pipe handle

{

 sc_event *ok_to_send = (sc_event *)scemi_pipe_get_notify_context(

 pipe_handle);

 if(ok_to_send == NULL)

 return;

 while(!scemi_pipe_c_try_flush(pipe_handle))

 wait(*ok_to_send);

}

It should be noted that the above examples are just a reference model of how a blocking access function could be implemented in a given threading system. Implementations are not required to do it this way as long as they accomplish the same semantics.

To understand better how scemi_pipe_c_try_flush() works it should be noted that this is not always implicitly successful. By contrast, blocking scemi_pipe_c_flush() is always implicitly successful.

The whole purpose of non-blocking calls in general is to test for success within a blocking function and not return if the success is not there.

The easiest way to look at flush is to look at send.

A blocking send is always implicitly successful. It can be implemented simple code over a loop of non-blocking sends that are not always implicitly successful. The example of an implementation of scemi_pipe_c_send() shown above illustrates this.

The blocking flush works in exactly the same way.

The non-blocking flush is probably something users should never use. It is mainly there to complete the thread-neutral API that provides full functionality for implementation of higher level thread-aware API calls that are blocking.
2.2.1.2 Non-blocking query operations

These are the status query functions for transaction pipes. They can be called by an application from the C side to see if a send or receive operation can be performed on a pipe.

int scemi_pipe_c_can_send(// return: #elements that can be sent

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: #elements to be written

int scemi_pipe_c_can_receive(// return: #elements that can be received

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: #elements to be written
Note the following properties:
· The arguments, pipe_handle, and num_elements are identical to those described for the blocking function, scemi_pipe_c_send() described in section 4.3.1.1.

· The functions return the number of elements that currently could be transferred in the pipe, i.e. the amount of room in an input pipe or number of elements available in an output pipe.

2.2.1.3 Non-blocking notify operations

The following is a function declaration for notification callback functions that are used to notify the C side that an operation is possible on an input or output transaction pipe.

typedef void (*scemi_pipe_notify_callback)(

 void *context); // input: C model context

All notification callbacks must be registered using the following call:

void scemi_pipe_set_notify_callback(

 void *pipe_handle, // input: pipe handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context); // input: notify context

The following call can be used to retrieve a notify context object for a given pipe:

void *scemi_pipe_get_notify_context(// return: notify context object pointer

 void *pipe_handle); // input: pipe handle
This call is useful to determine whether or not a notify context object is been established for the first time. It is guaranteed that this call will return a NULL if a notify context has not yet been established. This is useful for performing first time initializations inside pipe operations rather than requiring initialization to be performed outside of them. See the example of the blocking send function implementation in section Error! Reference source not found. for an example of how this might be done.

Note the following properties:
· pipe_handle - t handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section 0)

· notify_callback - the name of the user callback function being registered.

· notify_context - the user defined context object to be passed to the function whenever it is called

The following call can be used to retrieve the bytes_per_element for a given pipe:

int scemi_pipe_get_bytes_per_element(// return: bytes per element
 void *pipe_handle); // input: pipe handle

At one point, fixed named callbacks were considered rather than programmable function callbacks. But after reconsideration it was realized that they do not allow much flexibility in terms of implementing higher thread-aware interfaces on top of the thread-neutral calls. For example you might want one function if you're implementing TLM proxies but another if you're implementing blocking DPI ops directly over the non-blocking ones.

To accommodate this, it turns out to be a lot more flexible if the notify callback can be changed to different functions on a pipe by pipe basis. For this reason the notify callback has been changed to be programmable on the C side.
2.2.2 HDL Side Access
The bold text in the input and output pipe SystemVerilog interface declarations below shows the non-blocking send and receive functions which make up the API for the non-blocking operations of the HDL endpoint an input and output pipe:

interface scemi_input_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PIPE_MAX_BITS = 512;

 task receive(

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PIPE_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

 endtask

 function int try_receive(

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PIPE_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

 endfunction

 modport receive_if(import receive, try_receive);

endinterface

interface scemi_output_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PIPE_MAX_BITS = 512;

 task send(

 input int num_elements, // input: #elements to be written

 input bit [PIPE_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endtask

 task flush;

 <implementation goes here>

 endtask

 function int try_send(

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be written

 input bit [PIPE_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endfunction
 modport send_if(import send, flush, try_send, try_flush);

endinterface

2.2.2.1 Non-blocking data transfer operations

The highlighted try_receive() and try_send() functions in the scemi_input_pipe and scemi_output_pipe SystemVerilog interfaces shown above are the basic non-blocking receive/send functions to access a transaction pipe from the HDL-side endpoint. The try_receive() function is called to attempt to receive transactions from an input pipe. The try_send() function is called to attempt to send transactions to an output pipe. The try_flush() function is called to attempt to flush an output pipe.

Note the following properties:

· The arguments, num_elements, data, and eom are identical to those described for the blocking task, send() described in section.4.3.2.1.
· The byte_offset argument is the byte offset within the data buffer designated by data.
· The try_send/try_receive functions return the number of elements actually transferred.

By using the byte_offset argument, it is possible to create blocking functions that operate on large data buffers on the HDL-side. Even if buffers in the internal implementation are of limited size, multiple calls to the non-blocking send/receive functions can be made until all the data is transferred. This makes it easy to build blocking data transfer functions that handle buffers of large size on top of the non-blocking data transfer functions. Each call to the non-blocking function is made with the same base data buffer pointer but an increasing byte offset. Each call returns the actual number of elements transferred. This number can be translated to in increment amount for the byte offset to be passed to the next call in the loop - without changing the base data vector.
Note the absence of a try_flush() function to compliment the scemi_pipe_c_try_flush() function in the C-side. The main reason to have one on the C-side is to make the non-blocking, thread-neutral API complete enough to create the simple reference model of the blocking thread-aware API shown in section 4.4.1.1. Using this function for anything but a reference implementation of a blocking flush() is of little use to a user. But on the HDL side there is no need to provide a thread-neutral interface as the threading system in Verilog is a given. So, the main features needed on an HDL-side non-blocking interface are only those functions that are useful to a user, namely, try_send() and try_receive()..
2.2.2.2
2.2.3 Query and specification of buffer depth

By default, depth of a transaction pipe is assumed to be implementation defined. The user can query and override this default on any individual pipe with the following C-side calls:

int scemi_pipe_get_depth(// return: current depth (in elements) of the pipe

 void *pipe_handle); // input: pipe handle

void scemi_pipe_set_depth(

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: number of elements

 Note the following properties:
· The pipe_handle is the handle identifying the specific pipe as derived from the unique combination of the HDL scope and the pipe ID (see section 0).

·
· The num_elements is the number of elements that this pipe must be able to hold.

· The depth of any pipe is always expressed in elements whose size is designated by bytes_per_element
By not specifying depth, pipes used in streaming applications can benefit from pipe depths that are optimal for a given implementation. However in some use models such as TLM FIFO applications, it is desirable for the user to specify a FIFO depth so that consistent, deterministic interaction between the two endpoints of the pipe is realized.
2.2.3.1 [Re: IM 208, 209] Implementation defined buffer depth for pipes, user defined buffer depth for fifos

Buffer depth is implementation specified. This allows vendors to chose buffer depth that is optimal to their platform. The flush mechanism is what gives the user the chance to specify a "synchronization point" to the infrastructure indicating that an HVL thread is switching from a "streaming mode" where it is doing pipe operations to a "reactive mode" where it is doing conventional reactive DPI function call interactions.

It is at this point where queries of the H/W simulator time will make sense as well (see on page Error! Bookmark not defined. about time access).
Per Bojsen wrote:
> > IM209 - We had some discussion about setting buffer depth for pipes. It
> > was my understanding that Mentor proposes setting the buffer depth by
> > the infrastructure and not by the user. Is this correct?
>
> This is my understanding as well. If the system is deterministic and
> observes alternating semantics, then I do not see any need for a user
> setting of buffer depth. This is because the buffer depth setting
> would have no observable impact on the behavior of the system. There
> are other problems with a user specifiable buffer depth: it is unlikely
> that a given buffer depth setting would achieve optimum performance
> in all implementations. Note, I am saying that I do not think a user
> setting for buffer depth should be in the SCE-MI 2.0 standard. However,
> any implementation is free to provide its own performance optimization
> knobs outside of the standard which could include buffer depth setting.
> I do not see such features as leading to a non-compliant implementation
> (necessarily).

The main point here is that it does not matter who sets the delay [buffer depth] or what the delay is so long as there is a mechanism to re-synchronize the times of the pipe producer and pipe consumer if it becomes necessary to enter back into a mode of reactive (alternating) interactions. This is the purpose of the flush call - to provide this re-synchronization.
For example, a pipe producer thread can be sitting there jamming transactions into a pipe to its heart's content. The consumer meanwhile is only consuming transactions which the producer had written well into the past.

So in this scenario at any given point the consumer's time, the producer is well into the future - how far into it, we don't care. Or, put differently, at any given point in the producer's time, the consumer is well into the past. How far into it, we don't care.

But suppose producer and consumer now want to interact reactively, say with plain DPI function call interactions. They must synchronize. i.e. the producer's present must become one and the same as the consumer's present. To do this, producer issues a flush. This guarantees that the producer thread blocks until all the future transactions have dissipated to the consumer and now the two are synchronized in time. At this point in time, the two have a common present and are free to communicate reactively. And all this can be done deterministically where interactions take place on the same clocks on timed side regardless of how much buffering an implementation provided or how much concurrency it chose to use.

2.2.4
2.2.4.1

·
·
·
·
·
·
2.2.4.2

·
·
·
·
·
·
2.2.4.3
Figure 6.

2.2.5
2.2.5.1

·
·
·
·
·
·
2.2.5.2

·
·
·
·
·
·
2.2.5.3
Figure 7.

2.3 Transaction pipes are deterministic

Transaction pipes are designed to guarantee deterministic time advance on the HDL side.
Specifically to ensure this, if an attempt is made on the HDL side to do a blocking read on a starved pipe, all simulator time advance on the HDL side will naturally be stopped (just as it does during an imported function call) until the C side is yielded to and has a chance to replenish data in the pipe. From the HDL perspective, this will happen in 0-time, also just as for imported function calls. This ensures that all input pipe reads are done at the same times from simulation to simulation. If the C side does not replenish the pipe when yielded to, a deadlock will naturally result.
Similarly, to ensure determinism, if an attempt is made on the HDL side to do a blocking write to a full pipe, all simulator time advance on the HDL side is stopped (just as it does during an imported function call) until the C side is yielded to and has a chance to consume data from the pipe. From the HDL perspective, this will happen in 0-time, also just as for imported function calls. This ensures that all output pipe writes are done at the same times from simulation to simulation. If the C side does not consume from the pipe when yielded to, a deadlock will naturally result.
On the C side, writes to a full input pipe and reads from a starved output pipe will block the calling thread until the full or starved condition is rectified by the HDL side. This may happen over some non-0 amount of simulation time.
[Re: IM 210] Determinism is guaranteed because consumption of data from an input pipe on the HDL side or production of data to an output pipe will always occur on the same clock cycles from one simulation to another or even from one vendor implementation to another.
This property also holds true for all non-blocking pipe operations on the HDL side.

2.4 Variable length messaging

In addition to providing a means of highly optimizing streaming performance, transaction pipes can be a natural mechanism to implement variable length messaging.

Consider the case of the transmission of an ethernet frame transaction. As per TCP/IP protocol, a frame can be anywhere up to 1500 bytes. However, in some applications, typical frames may be far smaller. This is a classic example of where a variable length transaction would be useful as it saves the overhead of transmitting a fixed width 1500 byte transaction every time regardless of actual length.

Using pipes one could implement this example as follows. Let’s assume for the sake of simplicity that we are transmitting frames from the C side to the HDL side:

· The HDL side declares an input pipe in its transactor module scope and makes calls to it with a bytes_per_element = 1 and num_elements = 1.
· Using the data shaping capability, each time the C side calls the send function it sends an array of bytes with bytes_per_element=1 and num_elements set to whatever the desired number of bytes is which can vary from call to call (hence variably sized messages)

· On each send call, the C side sets eom to 1 since it is sending all the bytes at once

· Because the receive side is only reading a byte at a time, it will not see the eom indication until the last byte is received.

Because pipes can, at the option of the implementer, be optimized for streaming, one can imagine that if there are several such interfaces generating traffic simultaneously (say with a multi-port ethernet packet router) the benefit from concurrency of execution (between the multiple threads on the workstation and the emulator) within the transmission of each frame could be appreciable.

One can also envision another scenario where a sequence of several sequential frames could be sent before an actual flush is performed. This would support streaming of multiple sequential variable length frames before synchronization is required.

One can also consider a pure streaming data thread to be one long variable length message (or sequence of them) that lasts the entire simulation, essentially requiring no synchronizations in the interim, such as feeding the entire contents of a file as traffic for an interface with a flush only occurring at the very end.

2.4.1 Variable length messaging features of transaction pipes

Three areas have been identified that are desirable to support with transaction pipes:
· Data shaping

· End-of-message <eom> marking mechanism

· Support for multiple pipe transactions in 0-time

2.4.1.1 Data shaping

Data shaping is a concept that addresses the need for random access to variable length messages. Data shaping simply allows a transaction pipe to have a different width at one end than the other.

For example suppose a frame of 100 bytes of data is desired to be sent over an input pipe 1 byte at a time, but the reader of the frame wants random access to the entire variable length message, it could define the width of the read end of the pipe as 100 bytes (bytes_per_element=1, num_elements). The writing end would define the width as 1 byte (bytes_per_element=1, num_elements=1).

In this case transmission of the bytes would be buffered but time would be stopped on the reading end until all 100 bytes are received since, the read is blocking. Once received, any or all bytes could be accessed.

In this case the send end of the pipe is narrower than the receive end. One can refer to such a pipe as a nozzle.

Conversely suppose the writer wished send the frame of 100 bytes of data all at once but the reader only wanted to read 1 byte at a time. The writer would define bytes_per_element=1, num_elements=100. The reader end of the pipe would define bytes_per_element=1, num_elements=1.

In this case, transmission of the bytes would be buffered but time could advance on the reading end between each byte read since each is a separate call that can be separated by @(posedge clock) statements for example.

In this case the send end of the pipe is wider than the receive end. One can refer to such a pipe as a funnel.

2.4.1.2 End-of-message <eom> marking mechanism

Using the eom the user can mark the end of a message or “last data”.
This flag can be queried at the receive end to know if it is the end of the message. The infrastructure does nothing with this flag (unless automatic flush-on-eom is enabled – see section 4.3.3.2), it is simply passed as received. However, if data shaping is involved, the infrastructure does not pass the eom flag until the last element of size bytes_per_element is read by the receiver, regardless of the shape of the data.

So for example, in the case of a funnel, if the sender sends 100 bytes all at once and sets the eom flag to 1 and the receiver only reads one byte at a time, it will not see the eom set to 1 until the last byte.

Conversely, in the case of a nozzle, if the sender sends 1 byte at a time and only sets the eom flag to 1 on the last one, and the receiver reads 100 bytes at a time, the receiver will see the eom flag set to 1 on the first read of the message.
Special considerations must be made if a producer endpoint of a nozzle does a data send operation with a smaller num_elements than that requested by the subsequent data receive operation at the consumer endpoint of that nozzle. If an eom is specified on that send operation, in order to satisfy its request the consumer will see a return of num_elements_valid that is smaller than its requested num_elements. This is because, in order to satisfy the producer's eom condition, the consumer's blocking receive call must have satisfactorily returned from its read operation even if that read operation was asking for a larger number of elements than had been sent as of the time of the eom.
So, referring back to the nozzle example above where the consumer reads 100 bytes, if the producer only sends 75 bytes before setting eom, the request to read 100 bytes will return with the eom bit set but with a num_elements_valid of only 75.
2.4.1.3 [Re: IM 211] Support for multiple pipe transactions in 0-time

Operation of pipes is identical whether successive access operations (sends or receives) are done in 0- time or over user clock time, i.e. 1 access per clock. It is strictly a function of modeling subset as to whether 0-time operations are supported or not. But the pipe interface itself does nothing to preclude transmission of multiple transactions in 0-time without requiring the need for user awareness of uncontrolled time. This is true whether the transactions are variable or fixed length messages transmitted through a pipe or whether they are just simple DPI.

Whether this feature can be used will depend largely on the modeling subset that is used with the API but, as stated the API itself has no limitations that prevent this type of operation. One can conceive of a modeling subset that has some support for data dependent loops between clock edges. Each iteration of such a loop can make a DPI call to get or send a data transaction. All calls in the loop will occur in 0- time. And no notion of uncontrolled time is required.It is useful to compare and contrast the semantics.
2.5 Streaming Pipes vs. TLM FIFOs

So far all of the discussion on variable length messaging and streaming access in section has been centered around a blocking interface. This is well suited to true streaming applications and follows the easy use model of UNIX streams as discussed previously.
It is useful to compare and contrast the semantics of streaming pipes to those of fifos - particularly the fifos that follow the semantics of TLM fifos described in the OSCI-TLM standard. A possible reason we often stumble when discussing issues like user vs. implementation specified buffer depth, its effect on determinism, etc. is because people are thinking of a fifo model rather than a pipe model.
Both pipes and fifos are deterministic and have similar functions in term of providing buffered data throughput capability. But they have different basic semantics.
Here is a small listing that tries to compare and contrast the semantics of fifos vs. pipes:

Fifos
· Follow classical OSCI-TLM like FIFO model

· User specified fixed sized buffer depth

· Automatic synchronization

· Support blocking and non-blocking put/get operations

· "Under the hood" optimizations possible - batching

· No notion of a flush

Pipes

· Follows Unix stream model (future/past/present semantics)

· Implementation specified buffer depth

· User controlled synchronization

· Makes concurrency optimization more straightforward

· Support only blocking operations (for determinism)

· "Under the hood" optimizations possible - batching, concurrency

· More naturally supports data shaping, vlm, eom, flushing

One could argue that we may wish to entertain the notion of a "scemi_fifo" reference library to augment the "scemi_pipe" reference library currently proposed and thus provide two alternative DPI extension libraries that are part of the SCE-MI II proposal that address different sets of user needs.

But it is useful to make the clear distinction between fifos and pipes and, for now, at least converge on the semantics of proposed pipes and making sure they address the original requirements of variable length messaging.

Per Bojsen wrote:
> It is my understanding that pipes are intended for streaming, batching,
> variable length messages, and potentially can be used even for more
> exotic purposes if the modeling subset allows it. Given that pipes
> can be implemented at the application layer, the choice between using
> pipes and DPI is one of convenience in many cases. However, since an
> implementation can choose to provide an optimized version of the pipes,
> this would be a factor as well in the choice to use them.

In order to facilitate this fifo model, the following chapter proposes TLM compatible, thread-neutral transaction fifo interface.
2.6 Implementation of pipes in multi-threaded C environments

A concern that came up in the committee, and perhaps with some justification, is that the blocking access functions for pipes did not have a thread-neutral API that can be used to aid vendors in adapting the implementations of user friendly (but thread-aware) blocking pipe functions to arbitrary threading systems on the C side.

What is really needed to satisfy this requirement is both of the following:
· A user-friendly, but thread-aware pipe interface (which the blocking pipe functions already provide).
· A lower level implementation-friendly, but thread-neutral pipe interface - essentially implementation "hooks" to facilitate easy creation of adapters that allow implementation of the user-friendly API in selected C threading environments (which the committee expressed a desire for).
It turns out that the transaction pipes provide a solution to the second requirement. This solution is,
· Compatible with the existing easy-to-use blocking pipe access API at the user level

· Provides thread neutral "hooks" that implementations can choose to use to create adapter layers that implement pipes over a selected threading system

· Easy to demonstrate a reference implementation of the blocking pipe calls that uses the pipe functions in their implementation. In fact, the example below shows a working reference model of such an implementation for the HDL side.

The basic solution is to consider that the non-blocking callin and callback functions for fifos described in detail in on page Error! Bookmark not defined. provide thread-neutral functions that can be used by any implementation to implement the thread-aware blocking pipe access calls.
Appendix A Sample Header File for Basic Transaction Pipes C-Side API
As described in section 4.3 the infrastructure will provide the implementations of the actual built-in functions for the transaction pipes on both the C side and the HDL side. On the HDL side, the pipe functions and tasks in the SystemVerilog interface can be can be implementation supplied HDL definitions of built-in functions that perform the operations of the pipe inside. For example a pipe call can code that does PLI or DPI calls inside the tasks/functions in the SystemVerilog interface definitions. The way pipe functions are defined is up to the implementation but the must have the exact profiles shown in section 4.1.1.2.

The following a precise listing of the include file that can be included by the C application to declare the API functions. The name of this file is scemi_pipes.h.
A.1

#ifndef _scemi_pipes_h

#define _scemi_pipes_h

#include "svdpi.h"

#ifdef __cplusplus

extern "C" {

#endif

//---

// scemi_pipe_c_handle() -- johnS 1-26-06

//

// This function retreives an opaque handle representing a transaction

// input or output pipe given an HDL scope and a pipe ID.

//---

void *scemi_pipe_c_handle(// return: pipe handle

 const char *endpoint_path, // input: path to HDL endpoint instance

 int bytes_per_element, // input: #bytes/element

 svBit input_or_output); // input: 1 for input pipe,

//---

// scemi_pipe_get_depth() -- johnS 1-26-06

// scemi_pipe_set_depth()

//

// The scemi_pipe_get_depth() function returns the current depth of the pipe

// in terms of elements.

//

// The scemi_pipe_set_depth() establishes an internal buffer depth of

// the pipe in terms of elements.

//

// If either of these are the first call to a given pipe handle, the

// bytes_per_element establishes elmement size for the given pipe.

//---

int scemi_pipe_get_depth(

 void *pipe_handle); // input: pipe handle

void scemi_pipe_set_depth(

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: capacity to be established for pipe
//---

// scemi_pipe_c_send() -- johnS 1-26-06

//

// These is the basic blocking send function for a transaction input pipe.

// The passed in data is sent to the pipe. If necessary the calling thread

// is suspended until there is room in the pipe.

//

// The eom arg is a flag which is used for user specified end-of-message (eom)

// indication. It can be used for example to mark the end of a frame containing

// a sequence of transactions.

//

// scemi_pipe_c_receive()

//

// This is the basic blocking receive function for a transaction output pipe.

//

// The eom argument for this call is an output argument. It is set to the

// same settings of the flag passed on the send end of the pipe as described

// above. Thus is can be used by the caller to query whether the current

// read is one for which an eom was specified when the data was written on

// the send end.

//

// Both the send() and receive() calls are thread-aware. They can be

// easily implemented using a simple reference implementation that makes

// use of the non-blocking thread-neutral interface decribed below

// in conjunction with a selected threading system.

//---

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag (and flush)

void scemi_pipe_c_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag (and flush)

//---

// scemi_pipe_c_flush() -- johnS 1-26-06

//

// Flush pipelined data.

//---

void scemi_pipe_c_flush(

 void *pipe_handle); // input: pipe handle

//---

// scemi_pipe_c_try_send() -- johnS 1-26-06

//

// This is the basic non-blocking send function for a transaction input pipe.

// If there is room in the pipe for the indicated number of elements, the

// data is transferred to the pipe and a success status of 1 is returned.

// Otherwise, nothing is done with the data and a status of 0 is returned.

//

// This function is thread-neutral can can be used to create a reference

// implementation of the blocking send function (scemi_pipe_c_send)

// over a selected C-based threading environment.

//

// scemi_pipe_c_try_receive()

//

// This is the basic non-blocking receive function for a transaction output

// pipe. If the indicated number of elements exist in the pipe, the data is

// transferred out of the pipe and a success status of 1 is returned.

// Otherwise, the data in the pipe is left alone and a status of 0 is returned.

//

// This function is thread-neutral can can be used to create a reference

// implementation of the blocking receive function (scemi_pipe_c_receive)

// over a selected C-based threading environment.

//

//---

int scemi_pipe_c_try_send(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_receive(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

//---

// scemi_pipe_c_try_flush() johnS 1-26-06

//---

int scemi_pipe_c_try_flush(

 void *pipe_handle); // input: pipe handle

//---

// scemi_pipe_c_can_send() -- johnS 1-26-06

//

// This is function indicates if there is currently space in the pipe

// for the indicated number of elements meaning that the next call to

// scemi_pipe_c_send() will succeed without requiring a block.

//

// scemi_pipe_c_can_receive()

//

// This is function indicates if there is currently at least the indicated

// number of elements in the pipe meaning that the next call to

// scemi_pipe_c_receive() will succeed without requiring a block.

//

// For both of these calls, a return value 0 indicates that the operation

// cannot succeed, 1 indicates that it can succeed.

//---

int scemi_pipe_c_can_send(

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: #elements to be written

int scemi_pipe_c_can_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements); // input: #elements to be written

//---

// Notify callback support -- johnS 2-15-06

//

typedef void (*scemi_pipe_notify_callback)(

 void *context); // input: C model context

void *scemi_pipe_get_notify_context(

 void *pipe_handle); // input: pipe handle

void scemi_pipe_set_notify_callback(

 void *pipe_handle, // input: pipe handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context); // input: notify context

int scemi_pipe_get_bytes_per_element(// return: bytes per element

 void *pipe_handle); // input: pipe handle

//---

// EOM auto-flush support -- johnS 2-15-06

//

void scemi_pipe_set_eom_auto_flush(

 void *pipe_handle, // input: pipe handle

 svBit enabled); // input: enable/disable

#ifdef __cplusplus

} /* extern "C" */

#endif

#endif // _scemi_pipes_h
Appendix B

B.1
B.1.1

B.1.2

B.2
B.2.1

B.2.2

Appendix C Using transaction pipes compatibly with OSCI-TLM applications

C.1 TLM Interfaces
The transaction pipes described in this document are designed to dovetail cleanly with OSCI-TLM models. They support the following basic interface operations found in TLM put interfaces and TLM get interfaces which are summarized in the following table:

	Operations
	TLM Put Interfaces

(tlm_put_if<T>)
	TLM Get Interfaces

(tlm_get_if<T>)

	Blocking Ops
	
	

	Data transfer
	::put()
	::get()

	Non-Blocking Ops
	
	

	Data transfer

Query

Notify
	::nb_put()
::nb_can_put()

::ok_to_put()
	::nb_get()
::nb_can_get()

::ok_to_get()

A typical TLM put interface is derived from the following abstract class tlm_put_if<T>:
template < typename T >

class tlm_blocking_put_if : public virtual sc_interface {

 public:

 virtual void put(const T &t) = 0;

};

template < typename T >

class tlm_nonblocking_put_if : public virtual sc_interface {

 public:

 virtual bool nb_put(const T &t) = 0;

 virtual bool nb_can_put(tlm_tag<T> *t = 0) const = 0;

 virtual const sc_event &ok_to_put(tlm_tag<T> *t = 0) const = 0;

};

template < typename T >

class tlm_put_if :

 public virtual tlm_blocking_put_if< T > ,

 public virtual tlm_nonblocking_put_if< T > {};

A typical TLM get interface is derived from the following abstract class tlm_get_if<T>:
template < typename T >

class tlm_blocking_get_if : public virtual sc_interface {

 public:

 virtual T get(tlm_tag<T> *t = 0) = 0;

 virtual void get(T &t) { t = get(); }

};

template < typename T >

class tlm_nonblocking_get_if : public virtual sc_interface {

 public:

 virtual bool nb_get(T &t) = 0;

 virtual bool nb_can_get(tlm_tag<T> *t = 0) const = 0;

 virtual const sc_event &ok_to_get(tlm_tag<T> *t = 0) const = 0;

};

template < typename T >

class tlm_get_if :

 public virtual tlm_blocking_get_if< T > ,

 public virtual tlm_nonblocking_get_if< T > {};

C.2 Example of OSCI-TLM compliant proxy model that uses transaction pipes
This proxy class is a derivation of the basic TLM put interface class tlm_put_if<T> described in the previous section. Implementations of the required functions of that interface are shown. The example shows how the SCE-MI 2 transaction pipe access functions provide all the necessary functionality to interface this proxy model to the HDL side.
//____________________________ _______________

// class PipelineIngressProxy ______________________________/ johnS 2-5-2006

//

// The PipelineIngressProxy module consumes data received over a data channel

// from producer sends it to the Pipeline DUT on the Verilog side by passing

// transactions over a transaction input pipe to the

// PipelineIngressTransactor.

//---

template< typename T, const int NUM_WORDS >

class PipelineIngressProxy :

 public sc_module,

 public virtual tlm_put_if<T>

{

 public:

 sc_export< tlm_put_if< T > > put_export;

 private:

 void *m_pipe_handle;

 sc_event m_ok_to_put;

 static void notify_ok_to_put(

 void *context){ // input: notify context

 sc_event *me = (sc_event *)context;

 me->notify();

 }

 void pack(const T &t, svBitVecVal pipe_data[]);

 public:

 PipelineIngressProxy(sc_module_name name,

 const char *transactor_name, int channel)

 : sc_module(name)

 {

 // Bind to channel.

 put_export(*this);

 // Establish binding to transaction input pipe.

 m_pipe_handle = scemi_pipe_c_handle(transactor_name, 4*NUM_WORDS, 1);

 // Register notify "ok to put" callback

 scemi_pipe_set_notify_callback(

 m_pipe_handle, notify_ok_to_put, &m_ok_to_put);

 }

 void put(const T &t) {

 svBitVecVal pipe_data[SV_PACKED_DATA_NELEMS(NUM_WORDS*32)];

 pack(t, pipe_data);

 if(!nb_can_put())

 wait(m_ok_to_put);

 assert(

 scemi_pipe_c_try_send(m_pipe_handle, 0, 1, pipe_data, 0));

 }

 bool nb_put(const T &t) {

 if(!nb_can_put())

 return false;

 svBitVecVal pipe_data[SV_PACKED_DATA_NELEMS(NUM_WORDS*32)];

 pack(t, pipe_data);

 assert(

 scemi_pipe_c_try_send(m_pipe_handle, 0, 1, pipe_data, 0));

 return true;

 }
 bool nb_can_put(tlm_tag<T> *t = 0) const {

 return scemi_pipe_c_can_send(m_pipe_handle, 1); }

 const sc_event &ok_to_put(tlm_tag<T> *t = 0) const {

 return m_ok_to_put; }

};

void PipelineIngressProxy<MyType,MyType::NUM_WORDS>::pack(

 const MyType &t, svBitVecVal pipe_data[])

{

 pipe_data[0] = t.Count;

 // Coerce double to long long integer.

 long long ll_data = (long long)t.Data;

 pipe_data[1] = (svBitVecVal)ll_data;

 ll_data >>= 32;

 pipe_data[2] = (svBitVecVal)ll_data;

 pipe_data[3] = t.Status;

}

module Producer(Clock, Reset, DataOut

, CountOut

);

...

`include "

scemi_p

ipes.vh"

int num_read;

int last_data;

reg pipeData[63:0];

assign CountOut = dataOut[31:0];

assign DataOut = pipeData[63:32];

...

while(

last_data ==

0

) begin

...

// Read from

input pipe

scemi_p

ipe_hdl_receive(

1, 32, 2, num_read, pipeData, last_data)

;

..

.

@

(posedge Clock);

...

end

v

oid genRandomDataThread(void *context){

svScope hdlContext = (svScope)context

;

void *handle = scemi_pipe_c_handle(

hdlContext, 1, 1);

svBitVecVal pipeData[2];

for(fillCount = 0; fillCount < fillSize;

 fillCount++)

 {

..

.

pipeData[0] = count; pipeData[1] = data

;

scemi_p

ipe_c_send(

handle,

32, 2, pipeData, 0)

;

}

pipeData[0] = 0; pipeData[1] = 0xffffffff

;

scemi_p

ipe_c_send(

handle,

 32, 2, pipeData, 1)

;

scemi_p

ipe_c_flush(

handle)

;

}

•

On the

writing end (C

 side

)

, the pipe is written to by

calling

the

send

 function

•

On the

reading e

nd (

HDL s

ide)

, the pipe is read from by

calling the

receive

 function

•

When the last transaction is sent,

 t, the

end-of-message

(

eom

) argument is set to 1, this is followed by a

flush

•

B

oth the writing and reading end make calls to the

transaction

same

pipe

 identifier=1 in the given scope

instance

C Side

HDL Side

Transaction

Input P

ipe

System Verilog PipeIf�Object

C++ PipeIf

Object

Basic Pipes API

System�Verilog�App

C App

System Verilog PipeIf�Object

Basic Pipes API

System�Verilog�App

C++ App

C++ PipeIf�Object

Basic Pipes API

System�Verilog�App

C++ App

System Verilog PipeIf�Object

C++ PipeIf�Object

Basic Pipes API

HDLPipeIf

HDLPipeIf

HDLPipeIf

C++ PipeIf

HDLPipeIf

C++ PipeIf

Basic Input Pipe

HDL Side

module PipelineEgressTransactor(

 TokenOut, Clock, Reset);

 input [127:0] TokenOut;

 input Clock, Reset;

 wire [31:0] countOut, statusOut;

 wire [63:0] dataOut;

 // FSM States

 parameter GetNextOutput = 3'h0;

 parameter Done = 3'h1;

 reg [2:0] state;

 assign countOut = TokenOut[31:0];

 assign dataOut = TokenOut[95:32];

 assign statusOut = TokenOut[127:96];

 scemi_output_pipe #(4, 128) p0();

 always @(posedge Clock) begin

 if(Reset)

 state <= GetNextOutput;

 else begin

 case(state)

 GetNextOutput: begin

 if(TokenOut != 0) begin

 p0.send(4, 4,

 {statusOut, dataOut, countOut},

 (statusOut==0));

 if(statusOut == 0) begin

 state <= Done;

 p0.flush();

 end

 end

 end

 ...

 endcase

 end

 end

endmodule

C ++ Side

void serviceEgressThread(){

 void *scemi_output_pipe pipe_handle = scemi_pipe_c_handlenew(

 "top.egress.p0", 4, 0);

 svBitVecVal pipeData[4];

 svBit lastData;

 int numRead;

 for(;;){

 scemi_pipe_c_->receive(pipe_handle,

 4, &numRead, pipeData, &lastData);

 assert(numRead == 4);

 ...

 localEgress.Count = pipeData[0];

 ...

 if(lastData)

 printf(

 "PipelineEgressProxy: last data received.\n");

 }

}

On the writing end (HDL- side), the pipe is written to by calling the send() task.

On the reading end (C-++ side, the pipe is read from by calling the scemi_pipe_c_::receive() method function of the pipe interface object.

When the last transaction is sent, the end-of-message (eom) argument is set to 1. This is followed by flush().

On the HDL- side, the pipe is instantiated with statically specified parameters for bytes per element and payload width (in bits) of 4 and 128 respectively.

 On the C-C++ side, the pipe is constructed with a bytes per element of 4 that must match the HDL side.

Basic Input Pipe

HDL- Side

module PipelineIngressTransactor(

 Clock, Reset, TokenIn);

 output [127:0] TokenIn;

 input Clock, Reset;

 // FSM States

 parameter int GetNextInput = 3'h1;

 parameter int HoldInput = 3'h2;

 parameter int Done = 3'h3;

 reg [2:0] state;

 scemi_input_pipe #(4, 128) p0();

 reg [127:0] pipeData;

 reg lastData;

 integer numRead;

 always @(posedge Clock) begin

 if(Reset) begin

 ...

 end

 else begin

 case(state)

 GetNextInput: begin

 p0.receive(

 4, numRead, pipeData, lastData);

 ...

 end

 ...

 endcase

 end

 end

endmodule

C-++ Side

void serviceThread(){

 void *scemi_input_pipe pipe_handle = newscemi_pipe_c_handle(

 "top.ingress.p0",4, 1);

 for(;;){

 svBitVecVal pipeData[4];

 pipeData[0] = localIngress.Count;

 pipeData[1] = localIngress.Data;

 pipeData[2] = 0;

 pipeData[3] = localIngress.Status;

 scemi_pipe_c_->send(pipe_handle,

 4, pipeData, (localIngress.Status==0));

 if(localIngress.Status == 0)

 scemi_pipe_c_pipe->flush(pipe_handle);

 }

}

On the writing end (C-++ side), the pipe is written to by calling the scemi_pipe_c_::send() methodfunction.

On the reading end (HDL side, the pipe is read from by calling the receive() task of the pipe interface instance.

When the last transaction is sent, the end-of-message (eom) argument is set to 1. This is followed by scemi_pipe_c_flush().

On the HDL- side, the pipe is instantiated with statically specified parameters for bytes per element and payload width (in bits) of 4 and 128 respectively.

 On the C-++ side, the pipe is constructed with a bytes per element of 4 that must match the HDL side.

Basic Output Pipe

HDL Side

module PipelineEgressTransactor(

 TokenOut, Clock, Reset);

 input [127:0] TokenOut;

 input Clock, Reset;

 wire [31:0] countOut, statusOut;

 wire [63:0] dataOut;

 // FSM States

 parameter GetNextOutput = 3'h0;

 parameter Done = 3'h1;

 reg [2:0] state;

 assign countOut = TokenOut[31:0];

 assign dataOut = TokenOut[95:32];

 assign statusOut = TokenOut[127:96];

 scemi_output_pipe #(4, 128) p0();

 always @(posedge Clock) begin

 if(Reset)

 state <= GetNextOutput;

 else begin

 case(state)

 GetNextOutput: begin

 if(TokenOut != 0) begin

 p0.send(4, 4,

 {statusOut, dataOut, countOut},

 (statusOut==0));

 if(statusOut == 0) begin

 state <= Done;

 p0.flush();

 end

 end

 end

 ...

 endcase

 end

 end

endmodule

C++ Side

void serviceEgressThread(){

 scemi_output_pipe pipe = new("top.egress.p0", 4);

 svBitVecVal pipeData[4];

 svBit lastData;

 int numRead;

 for(;;){

 pipe->receive(

 4, &numRead, pipeData, &lastData);

 assert(numRead == 4);

 ...

 localEgress.Count = pipeData[0];

 ...

 if(lastData)

 printf(

 "PipelineEgressProxy: last data received.\n");

 }

}

On the writing end (HDL side), the pipe is written to by calling the send() task.

On the reading end (C++ side, the pipe is read from by calling the ::receive() method of the pipe interface object.

When the last transaction is sent, the end-of-message (eom) argument is set to 1. This is followed by flush().

On the HDL side, the pipe is instantiated with statically specified parameters for bytes per element and payload width (in bits) of 4 and 128 respectively.

 On the C++ side, the pipe is constructed with a bytes per element of 4 that must match the HDL side.

HDL Side

module PipelineIngressTransactor(

 Clock, Reset, TokenIn);

 output [127:0] TokenIn;

 input Clock, Reset;

 // FSM States

 parameter int GetNextInput = 3'h1;

 parameter int HoldInput = 3'h2;

 parameter int Done = 3'h3;

 reg [2:0] state;

 scemi_input_pipe #(4, 128) p0();

 reg [127:0] pipeData;

 reg lastData;

 integer numRead;

 always @(posedge Clock) begin

 if(Reset) begin

 ...

 end

 else begin

 case(state)

 GetNextInput: begin

 p0.receive(

 4, numRead, pipeData, lastData);

 ...

 end

 ...

 endcase

 end

 end

endmodule

C++ Side

void serviceThread(){

 scemi_input_pipe pipe = new("top.ingress.p0",4);

 for(;;){

 svBitVecVal pipeData[4];

 pipeData[0] = localIngress.Count;

 pipeData[1] = localIngress.Data;

 pipeData[2] = 0;

 pipeData[3] = localIngress.Status;

 pipe->send(

 4, pipeData, (localIngress.Status==0));

 if(localIngress.Status == 0)

 pipe->flush();

 }

}

On the writing end (C++ side), the pipe is written to by calling the ::send() method.

On the reading end (HDL side, the pipe is read from by calling the receive() task of the pipe interface instance.

When the last transaction is sent, the end-of-message (eom) argument is set to 1. This is followed by flush().

On the HDL side, the pipe is instantiated with statically specified parameters for bytes per element and payload width (in bits) of 4 and 128 respectively.

 On the C++ side, the pipe is constructed with a bytes per element of 4 that must match the HDL side.

Basic Output Pipe

Page 1 of 33

