5. Formal specification

This chapter defines the API calls and macros that make up the entire SCE-MI

5.1 General

This section contains items that relate to all aspects of the specification.

5.1.1 Reserved Namespaces

Prefixes beginning with the three letter sequence s, c, e, or the four letter sequence s, c, e, _ (underscore), in any case combination, are reserved for use by this standards group.

Prefixes beginning with the five-letter sequence s, c, e, m, i, or the six-letter sequence s, c, e, _ (underscore), m, i, in any case combination, are reserved for use by SCE-MI and SCE-MI related specifications.

5.1.2 Header Files

The ANSI-C and C++ API’s shall be declared in a header file with the name

scemi.h

NOTE: the name is all lowercase, and the same for both API’s. Examples of the header files are given in Appendix E. Where any discrepancy exists between this specification and the included header file, the specification should be the one that is used.

5.1.3 Const Argument Types 

All input arguments whose types are pointers with 'const' qualifier should be strictly honored as read-only arguments. Attempts to cast away 'constness' and alter any of the data denoted or pointed to by any of these arguments is prohibited and may lead to unpredictable results. 

5.1.4 Argument Lifetimes 

The lifetime of any input pointer argument passed from the SCE-MI infrastructure into a SCE-MI callback function (such as input ready callback or receive callback) shall be assumed by the application to be limited to the duration of the callback. Once the callback returns, the application cannot assume that such pointer arguments remain valid. So, for example it would lead to undefined behavior for an application receive callback to cache the SceMiMessageData * pointer and refer to it at some point in time after the callback returns. 

Conversely, the lifetime of any input pointer argument passed from an application into a SCE-MI API call shall be assumed by the SCE-MI infrastructure to be limited to the duration of the API call. Once the API call returns, the infrastructure cannot assume that such pointer arguments remain valid.
5.2 Hardware side interface macros

This section contains the macros that need to be implemented on the hardware side of the interface.
5.2.1 Dual-ready protocol

The message port macros on the hardware side use a general PCI-like dual-ready protocol, which is explained in this section. Briefly, the dual-ready handshake works as follows. 

The transmitter asserts TransmitReady on any clock cycle when it has data and de-asserts when it does not. 

The receiver asserts ReceiveReady on any cycle when it is ready for data and de-asserts when it is not. 

In any clock cycle in which TransmitReady and ReceiveReady are both asserted, data “moves”, meaning it is taken by the receiver.

NOTE: 1) After a ready request (TransmitReady or ReceiveReady) has been asserted, it cannot be removed until a data transfer has taken place.
2) After TransmitReady has been asserted, the data must be held constant otherwise the result is undefined.

The waveforms in Figure XX  depict several dual-ready handshake scenarios.
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Figure 5.1: Dual-ready handshake protocol

The dual-ready protocol has the following two advantages.

a) 
Signals are level-based; therefore, they are easily sampled by posedge clocked logic.

b) 
If both TransmitReady and ReceiveReady stay asserted, sequences of data can still move every clock cycle; therefore, the same performance can be realized as, for example, a toggle-based protocol.

5.2.2 SceMiMessageInPort macro

The SceMiMessageInPort macro presents messages arriving from the software side of a channel to the transactor. The macro consists of two handshake signals which play a dual-ready protocol and a data bus that presents the message itself. Figure XX shows the symbol for the SceMiMessageInPort macro, as well as Verilog and VHDL source code for the empty macro wrappers.
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Verilog Macro Wrapper:

module SceMiMessageInPort(

  //inputs                     outputs

    ReceiveReady,              TransmitReady,

                               Message );

  //------------------------   ------------------------------

    parameter PortWidth = 1;

    input ReceiveReady;        output TransmitReady;

                               output [PortWidth-1:0] Message;

endmodule

VHDL Macro Wrapper:

entity 

SceMiMessageInPort

 is

    generic( PortWidth: natural )

;

    port(

       ReceiveReady: in std_logic; TransmitReady: out std_logic;

       Message: out std_logic_vector( PortWidth-1 downto 0 ) );

end;

architecture EmptyMacro of SceMiMessageInPort is begin end;


Figure 5.2: SceMiMessageInPort macro

5.2.2.1 Parameters and signals
PortWidth

The message width in bits is derived from the setting of this parameter.

PortName

The port’s name is derived from its instance label.

TransmitReady

A value of one (1) on this signal sampled on any posedge of the uclock indicates the channel has message data ready for the transactor to take. If ReceiveReady is not asserted, the TransmitReady remains asserted until and during the first clock in which ReceiveReady finally becomes asserted. During this clock, data moves and if no more messages have arrived from the software side, the TransmitReady is de-asserted.

ReceiveReady

A value of one (1) on this signal indicates the transactor is ready to accept data from the software. By asserting this signal, the hardware indicates to the software that it has a location into which it can put any data that might arrive on the message input port. When a new message arrives, as indicated by the TransmitReady and ReceiveReady both being true, that location is consumed (see Figure XX ). When this happens, a notification is sent to the software side that a new empty location is available and this triggers an input-ready callback to occur on the software side. ( XX explains in detail when input-ready propagation notifications are done with respect to the timing of the TransmitReady and ReceiveReady handshakes.)

Transactors do not need to utilize ReceiveReady and the input-ready callback. If this is the case, the ReceiveReady input needs to be permanently asserted (i.e., “tied high”) and, on the software side, no input- ready callback is registered. In this case, TransmitReady merely acts as a strobe for each arriving message. The transactor needs to be designed to take any arriving data immediately, as it is not guaranteed to be held for subsequent uclock cycles.

Message

This vector signal constitutes the payload data of the message.

5.2.2.2 Input-ready propagation
The SCE-MI provides a functionality called input-ready propagation. This allows a transactor to communicate (to the software) it is ready to accept new input on a particular channel. When the transactor asserts the ReceiveReady input, the IsReady callback on that port is called during the next call to the ::ServiceLoop().

If the software client code registers an input-ready callback when it first binds to a message input port proxy (see XX), the hardware side of the infrastructure shall notify the software side each time it is ready for more input. Each time it is so notified, the port proxy on the software side makes a call to the user registered input-ready callback. This mechanism is called input-ready propagation. 

Input-ready propagation shall happen: 

1) 
On the first rising edge of uclock after reset at which ReceiveReady is asserted, and

2) 
On the first rising edge of uclock after a message transferred at which ReceiveReady is asserted,

when an IsReady() callback is registered. Case 1 covers the input-ready propagation for d1 in Figure 8.  Case  2 covers the others (d2, d3, and d4).

The prototype for the input-ready callback is:

void (*IsReady)(void *context);

When this function is called, a software model can assume that a message can be sent to the message input port proxy for transmission to the message input port on the hardware side. The context argument can be a pointer to any user-defined object, presumably the software model that bound the proxy.

The application needs to follow the protocol that if the transactor is not ready to receive input, the software model shall not do a send. The software model knows not to send if it has not received an input-ready callback. The SCE-MI infrastructure does not enforce this. 

NOTE—An application can service as many output callbacks as is desired while pending an input callback. In other words, the software model can have an outer loop which checks the status of an application-defined OKToSend flag on each iteration and skips the send if the flag is false.

So, suppose an application has an outer loop that repeatedly calls ::ServiceLoop() and checks for arriving output messages and input-ready notifications. Each callback function sets a flag in the context that the outer loop uses to know if an output message has arrived and needs processing, or an input port needs more input. It is possible that, before an input-ready callback gets called, the outer loop called ::ServiceLoop() 50 times and each call results in an output message callback and the subsequent processing of that output message. Finally, on the 51'st time ::ServiceLoop() is called, the input-ready callback is called, which sets the OKToSend flag in its context, and then the outer loop detects the new flag status and initiates a send on that input channel.

The handshake waveforms in Figure  XX are intended purely to illustrate the semantics of the dual-ready protocol. There can be a couple of reasons why these waveforms might not be realistic in an actual implementation of a SceMiMessageInPort macro. 

The waveforms shown in Figure XX show what typically occurs when input-ready callbacks are enabled. It shows four possible scenarios where an input-ready notification occurs.
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Figure 5.3: SceMiMessageInPort handshake waveforms with input-ready propagation

In the depicted scenarios, an input-ready notification is propagated to the software if:

the ReceiveReady from a transactor is asserted in the first clock following a reset or

the ReceiveReady from a transactor transitions from a 0 to a 1 or

the ReceiveReady from a transactor remains asserted in a clock following one where a transfer occurred due to assertions on both TransmitReady and ReceiveReady.
5.2.3 SceMiMessageOutPort macro

The SceMiMessageOutPort macro sends messages to the software side from a transactor. Like the SceMiMessageInPort macro, it also uses a dual-ready handshake, except in this case, the transmitter is the transactor and the receiver is the SCE-MI interface. A transactor can have any number of SceMiMessageOutPort macro instances. Figure   shows the symbol for the SceMiMessageOutPort macro, as well as Verilog and VHDL source code for the empty macro wrappers.
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Verilog Macro Wrapper:

module SceMiMessageOutPort(

  //inputs                      outputs

    TransmitReady,              ReceiveReady,

    Message );

  //------------------------    ------------------------------

    parameter PortWidth = 1

;

         

parameter PortPriority;  // Parameter no longer used

    i

nput TransmitReady;        output ReceiveReady;

    input [PortWidth-1:0] Message

;

e

ndmodule

VHDL Macro Wrapper:

entity SceMiMessageOutPort is

    generic( PortWidth: natural; PortPriority: natural := 10 );

    port(

       TransmitReady: in std_logic; ReceiveReady: out std_logic;

       Message: in std_logic_vector( PortWidth-1 downto 0 ) );

end;

architecture EmptyMacro of SceMiMessageOutPort is begin end;


Figure 5.4: SceMiMessageOutPort macro

5.2.3.1 Parameters

PortWidth

The message width in bits is derived from the setting of this parameter.

PortPriority

The parameter is no longer in use.

PortName

The port’s name is derived from its instance label.

5.2.3.2 Signals

TransmitReady

A value of one (1) on this signal indicates the transactor has message data ready for the output channel to take. If ReceiveReady is not asserted, the TransmitReady shall remain asserted until and during the first clock in which ReceiveReady finally becomes asserted. During this clock, data moves and if the transactor has no more messages for transmission, it de-asserts the TransmitReady.

ReceiveReady

A value of one (1) on this signal sampled on any uclock posedge indicates the output channel is ready to accept data from the transactor. By asserting this signal, the SCE-MI hardware side indicates to the transactor the output channel has a location where it can put any data that is destined for the software side of the channel. In any cycle during which both the TransmitReady and ReceiveReady are asserted, the transactor can assume the data moved. If, in the subsequent cycle, the ReceiveReady remains asserted, this means a new empty location is available which the transactor can load any time by asserting TransmitReady again. Meanwhile, the last message data, upon arrival to the software side, triggers a receive callback on its message output port proxy (see XX).

Message

This vector signal constitutes the payload data of the message originating from the transactor, to be sent to the software side of the channel.

5.2.3.3 Message Ordering

The idea of ordering message delivery to software arises from the fact that there is a global time order defined in the hardware domain by the order of cclock edges. The delivery of messages from hardware to software respects this ordering. In particular, the delivery of messages from hardware to software is ordered using the following rules:

a) 
Messages from a single message out port are delivered to software in the same time order in which they are delivered to the port.
b) 
Messages from different ports which complete the dual-ready protocol on different cclocks are delivered to software in the time order in which the receive ready signals are asserted.  In the case that two message ports accomplish the dual-ready protocol and have data move in the same cclock cycle, the order of delivery of the messages to the software is undefined.

5.2.4 SceMiClockPort macro

The SceMiClockPort macro supplies a controlled clock to the DUT. The SceMiClockPort macro is parametrized so each instance of a SceMiClockPort fully specifies a controlled clock of a given frequency, phase shift, and duty cycle. The SceMiClockPort macro also supplies a controlled reset whose duration is the specified number of cycles of the cclock.

Figure XX  shows the symbol for the SceMiClockPort macro, as well as Verilog and VHDL source code for the empty macro wrappers.
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Verilog Macro Wrapper:

module 

SceMiClockPort(

  //inputs                      outputs

                                Cclock, Creset );

  //------------------------    ------------------------------

    parameter ClockNum=1;

    parameter 

RatioNumerator=

1, 

RatioDenominator=

1;

    parameter DutyHi=

0,

   

 

DutyLo=

100

,     Phase=0;

    parameter ResetCycles=8;

endmodule

VHDL Macro Wrapper:

entity SceMiClockPort is

    generic( ClockNum:  natural := 1;

        RatioNumerator: natural := 1;

 R

atioDenominator: natural := 1;

        DutyHi:         natural := 

0;

 DutyLo:           natural := 

100

;

        Phase:          natural := 0;

 R

esetCycles:      natural := 8 );

    port( Cclock: out std_logic; Creset: out std_logic );

end;

architecture EmptyMacro of SceMiClockPort is begin end;


Figure 5.5: SceMiClockPort macro

All of the clock parameters have default values. In simpler systems where only one controlled clock is needed, exactly one instance of a SceMiClockPort can be instantiated at the top level with no parameters specified. This results in a single controlled clock with a ratio of 1/1, a don’t care duty cycle (see XX), and a phase shift of 0. Ideally, this clock’s frequency matches that of the uclock during cycles in which it is enabled.

The SCE-MI infrastructure always implicitly creates a controlled clock with a 1/1 ratio, which is the highest frequency controlled clock in the system. Whether or not it is visible to the user’s design depends on whether a SceMiClockPort with a 1/1 ratio and a don’t care duty cycle is explicitly declared (instantiated).

In more complex systems that require multiple clocks, a SceMiClockPort instance needs to be created for each required clock. The clock ratio in the instantiation parameters always specifies the frequency of the clock as a ratio relative to the fastest controlled clock in the system (whose ratio is always 1/1).

For example, if a cclock is defined with a ratio of 4/1 this is interpreted as, “for every 4 edges of the 1/1 cclock there is only 1 edge of this cclock”. This defines a “divide-by-four” clock.

5.2.4.1 Parameters and signals

ClockNum=1

This parameter assigns a unique number to a clock which is used to differentiate it from other SceMiClockPort instances. It shall be an error (by the infrastructure linker) if more than one SceMiClockPort instances share the same ClockNum. The default ClockNum is 1.

RatioNumerator=1, RatioDenominator=1

These parameters constitute the numerator and denominator, respectively, of this clock’s ratio. The numerator always designates the number of cycles of the fastest controlled clock that occur during the number of cycles of “this” clock specified in the denominator. For example, RatioNumerator=5 and RatioDenominator=2 specifies a 5/2 clock, which means for every five cycles of the 1/1 clock that occur, only two cycles of this clock occur. The default clock ratio is 1/1. For more information refer to section XX
DutyHi=0, DutyLo=100, Phase=0

The duty cycle is expressed with arbitrary integers which are normalized to their sum, such that the sum of DutyHi and DutyLo represent the number of units for a whole cycle of the clock. For example, when DutyHi=75 and DutyLo=25, the high time of the clock is 75 out of 100 units or 75% of the period. Similarly, the low time would be 25% of the period. The phase shift is expressed in the same units; if Phase=30, the clock is shifted by 30% of its period before the first low to high transition occurs. 

The default duty cycle shown in the macro wrappers within Figure XX  is a don’t care duty cycle of 0/100 (see XX).

ResetCycles=8

This parameter specifies how many cycles of this controlled clock shall occur before the controlled reset transitions from its initial value of 1 back to 0.

ClockName

The clock port’s name is derived from its instance label.

Cclock

This is the controlled clock signal the SCE-MI infrastructure supplies to the DUT. This clock’s characteristics are derived from the parameters specified on instantiation of this macro.

Creset

This is the controlled reset signal the SCE-MI infrastructure supplies to the DUT.
Deriving clock ratios from frequencies

Another way to specify clock ratios is enter them directly as frequencies, all normalized to the clock with the highest frequency. To specify ratios this way requires the following.

Make each ratio numerator equal to the highest frequency.

Use consistent units for all ratios.

Omit those units and simply state them as integers.

For example, suppose a system has 100Mhz, 25Mhz, and 10Mhz, 7.5 Mhz, and 32kHz clocks. To specify the ratios, the frequencies can be directly entered as integers, using kHz as the unit (but omitting it!):

100000 / 100000 - the fastest clock

100000 / 25000

100000 / 10000

100000 / 7500

100000 / 32

Users who like to think in frequencies rather than ratios can use this simple technique. 

NOTE—An implementor of the SCE-MI API may wish to provide a tool to assist in deriving clock ratios from frequencies. Such a tool could allow a user to enter clock specifications in terms of frequencies and then generate a set of equivalent ratios. In addition, this tool could be used to post process waveforms (such as .vcd files) generated by the simulation so the defined clocks appear in the waveform display to be the exact same frequencies given by the user.

5.2.4.2 Don’t care duty cycle

The default duty cycle shown within the macro wrappers in Figure XX is a don’t care duty cycle. Users can specify they only care about posedges of the cclock and do not care where the negedge falls. This is known as a posedge active don’t care duty cycle. In such a case, the DutyHi is given as a 0. The DutyLo can be given as an arbitrary number of units, such that the Phase offset can still be expressed as a percentage of the whole period (i.e., DutyHi+DutyLo).

For example, this combination:

DutyHi=0, DutyLo=100, Phase=30

means the following:

a) 
I don’t care about the duty cycle. Specifically, I don’t care where the negedge of the clock falls.

b) 
If the total period is expressed as 100 units (0+100), the phase should be shifted by 30 of those units. This represents a phase shift of 30%.

Another example:

DutyHi=3, DutyLo=1, Phase=2

means:

a) 
I care about both intervals of the duty cycle. The duty cycle is 75%/25%.

b) 
The phase shift is 50% of period (expressed as 3+1 units).

It is also possible to have a negedge active don’t care duty cycle. In this case, the DutyLo parameter is given as a 0 and the DutyHi is given as a positive number (> 0).

For example:

DutyHi=1, DutyLo=0, Phase=0

means:

a) 
I don’t care about the duty cycle. Specifically, I don’t care where the posedge of a clock falls.

b) 
The phase shift is 0.

In any clock specification, it shall be an error if Phase >= DutyHi + DutyLo.

NOTE---The intent of the don't care duty cycle is to relax the requirement that each edge of a controlled clock must coincide with a rising edge of uclock. A controlled clock with a posedge active don't care duty cycle, i.e., with DutyHi given as 0, is not required to have its falling edge coincide with a rising edge of uclock. Similarly, a controlled clock with a negedge active don't care duty cycle, i.e., with DutyLo given as 0, is not required to have its rising edge coincide with a rising edge of uclock. Hence, the don't care duty cycle enables controlled clocks to be the same frequency of the uclock. Conversely, the maximum possible frequency of a non-don't care duty cycle controlled clock is 1/2 the frequency of the uclock. Since the implicit 1/1 controlled clock is specified to have posedge active don't care duty cycle, it may be as fast as uclock.

5.2.4.3 Controlled reset semantics

The Creset output of the SceMiClockPort macro shall obey the following semantics:

Creset will start low (deasserted) and transition to high one or more uclock cycles later. It then remains high (asserted) for at least the minimum duration specified by the ResetCycles parameter adorning the SceMiClockPort macro. This duration is expressed as a number of edges of associated Cclock. Following the reset duration, the Creset then goes low (deasserted) and remains low for the remaining duration of the simulation. Some applications require 2-edged resets at the beginning of a sim¬ulation.

For multiple cclocks, the reset duration shall have a minimum length so it is guaranteed to span the ResetCycles parameter of any clock. In other words, the minimum controlled reset duration for all clocks shall be 

max( ResetCycles for cclock1, ResetCycles for cclock2, ...)

Some implementations can use a reset duration that is larger than the quantify shown above to achieve proper alignment of multiple cclocks on the edges of the controlled reset, as described in XX.

During the assertion of Creset, Cclock edges shall be forced, regardless of the state of the ReadyForCclock inputs to the SceMiClockControl macros. Once the reset duration completes, the Cclock will be controlled by the ReadyForCclock inputs.

NOTE—The operation of controlled reset just described provides the default controlled reset behavior generated by the SceMiClockPort macro. If more sophisticated reset handling is required, use a specially written reset transactor in lieu of the simpler controlled resets that come from the SceMiClockPort instances. For example, if a software controlled reset is required, an application needs to create a reset transactor which responds to a special software originated reset command that arrives on its message input port.

5.2.4.4 Multiple cclock alignment

In general, all cclocks need to align on the first rising uclock edge following the trailing edge of the creset. This uclock edge is referred to as the point of alignment. For cclocks with phases of 0, this means rising edges of these clocks shall coincide with the point of alignment. For cclocks with phases > 0, those edges occur some time after the point of alignment. Every cclock  edge must occur on a uclock edge.

Figure  XX shows an assortment of cclocks with the uclock and creset. It also shows how those cclocks behave at the point of alignment.

In Figure XX , cclock1, cclock2, and cclock3 have phases of 0 and, therefore, have rising edges at the point of alignment. cclock4 has the same duty cycle as cclock2, but a phase shift of 50%. Therefore, its rising edge occurs two uclocks (1/2 cycle) after the point of alignment. Its starting value at the point of alignment is still 0. 

cclock5 has the same duty cycle as cclock3, but a phase of 50%. Again, its rising edge occurs 1/2 cycle after the point of alignment. But notice its starting value at the point of alignment is 0. This can be alternatively thought of as an inverted phase. Anytime the phase is greater than the high duty cycle interval, the starting value at the point of alignment is a 0. In the case where the phase equals the high duty cycle, a falling edge occurs at the point of alignment.
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Figure 5.6: Multi-clock alignment

5.2.5 SceMiClockControl macro

For every SceMiClockPort macro instance there must be at least one counterpart SceMiClockControl macro instance presumably encapsulated in a transactor. The SceMiClockControl macro is the means by which a transactor can control a DUT’s clock and by which the SCE-MI infrastructure can indicate to a transactor on which uclock cycles that controlled clock have edges.

Figure XX  shows the symbol for the SceMiClockControl macro as well as Verilog and VHDL source code for the empty macro wrappers.

[image: image7.wmf]Uclock

Ureset

SceMiClockControl

#<ClockNum> c1

Verilog Macro Wrapper:

module 

SceMiClockControl(

  //inputs                       outputs

                                 Uclock, Ureset;

    ReadyForCclock,              CclockEnabled,

    ReadyForCclockNegEdge,       CclockNegEdgeEnabled );

  //------------------------     ------------------------------

    parameter ClockNum = 1;

                                 output Uclock, Ureset;

    input ReadyForCclock;        output CclockEnabled;

    input ReadyForCclockNegEdge, output CclockNegEdgeEnabled;

endmodule

VHDL Macro Wrapper:

entity SceMiClockControl is

    generic( ClockNum: natural := 1 );

    port(

                              Uclock, Ureset: out std_logic;

        ReadyForCclock: in std_logic;

                              CclockEnabled: out std_logic;

        ReadyForCclockNegEdge: in std_logic;

                               CclockNegEdgeEnabled: out std_logic;

        );

end;

architecture EmptyMacro of SceMiClockControl is begin end;

ReadyForCclock

CclockEnabled

CclockNegEdgeEnabled

ReadyForCclockNegEdge


Figure 5.7: SceMiClockControl macro

For each SceMiClockPort defined in the system, typically one corresponding SceMiClockControl macro is instantiated in one or more transactors. If no clock controls are associated with a given controlled clock, it is assumed there is an implicit clock control which is always enabling that clock so the controlled clock simply runs free. In addition to providing uncontrolled clocks and resets, this macro also provides handshakes that provide explicit control of both edges of the generated cclock.

5.2.5.1 Parameters

ClockNum=1

This is the only parameter given to the SceMiClockControl macro. This parameter is used to associate a SceMiClockControl instance with its counterpart SceMiClockPort instance defined at the top level. The default ClockNum is 1.

There shall be exactly one instance of SceMiClockPort associated with each instance of SceMiClockControl in the system. But there can be one or more instances of SceMiClockControl for each instance of SceMiClockPort. A SceMiClockControl instance identifies its associated SceMiClockPort by properly specifying a ClockNum parameter matching that of its associated SceMiClockPort.

5.2.5.2 Signals

Uclock

This is the uncontrolled clock signal generated by the SCE-MI infrastructure.

Ureset

This is the uncontrolled reset generated by the SCE-MI infrastructure. This signal is high at the beginning of simulated time and transitions to a low an arbitrary (implementation-dependent) number of uclocks later. It can be used to reset the transactor.

The uncontrolled reset shall have a duration spanning that of the longest controlled reset (Creset output from each SceMiClockPort; see XX) as measured in uclocks. This guarantees all DUTs and transactors properly wake up in an initialized state the first uclock following expiration of the last controlled reset.

ReadyForCclock

This input to the macro indicates to the SCE-MI infrastructure that a transactor is willing to allow its associated DUT clock to advance. One of the most useful applications of this feature is to perform complex algorithmic operations on the data content of a transaction before presenting it to the DUT.

If this input to one of the SceMiClockControl instances associated with a given controlled clock is deasserted, the next posedge of that cclock will be disabled. In reacting to a ReadyForCclock of a slower clock, the infrastructure must not prematurely disable active edges of other faster clocks that occur prior to the last possible uclock preceding the edge to be disabled. In other words, that edge is disabled just in time so as to allow faster clock activity to proceed until the last moment possible. Once the edge is finally disabled, all active edges of all controlled clocks are also disabled. This is referred to as just in time clock control semantics.

Note: It may sometimes be desired for a transactor to stop all clocks in the system immediately. This is referred to as emergency brake clock control semantics. This can simply be done by instantiating a SceMiClockControl associated with the fastest clock in the system and applying normal clock control to it. See Section 5.2.4 for more information.

CclockEnabled

This macro output signals the transactor, that on the next posedge of uclock, there is a posedge of the controlled clock. The transactor can thus sample this signal to know if a DUT clock posedge occurs. It can also use this signal as a qualifier that says it is okay to sample DUT output data. Transactors shall only sample DUT outputs on valid controlled clock edges. The SCE-MI infrastructure looks at the ReadyForCclock inputs from all the transactors and asserts CclockEnabled only if they are all asserted. This means any transactor can stop all the clocks in the system by simply de-asserting ReadyForCclock.

For a negedge active don’t care duty cycle (see 5.2.4.3), since the user does not care about the posedge, the CclockEnabled shall always be 0.

ReadyForCclockNegEdge

Similarly, for negedge control, if this input to one of the SceMiClockControl instances that are associated with a given controlled clock is deasserted, the next negedge of that clock will be disabled. In reacting to a ReadyForCclockNegEdge of a slower clock, the infrastructure must not prematurely disable active edges of other faster clocks that occur prior to the last possible uclock preceding the edge to be disabled. In other words, that edge is disabled just in time so as to allow faster clock activity to proceed until the last moment possible. Once the edge is finally disabled, all active edges of all controlled clocks are also disabled. This is referred to as just in time clock control semantics.

NOTE- Support for explicit negedge control is needed for transactors that use the negedge of a controlled clock as an active edge. Transactors that do not care about controlling negedges (such as the one shown in Figure A.1) need to tie this signal high.

CclockNegEdgeEnabled

This signal works like CclockEnabled, except it indicates if the negedge of a controlled clock occurs on the next posedge of the uclock. This can be useful for transactors that control double pumped DUTs. Transactors that do not care about negedge control can ignore this signal.

For a posedge active don’t care duty cycle (see 5.2.4.3), since the user does not care about the posedge, the CclockNegEdgeEnabled shall always be 0.
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Figure 5.8: Example of Clock Control Semantics

5.2.5.3 Example of Clock Control Semantics

Figure 15 shows an example of clock control for two fast clocks (clkfast, clkfast_negedge) that use don’t care duty cycle semantics and one slow clock (clkslow) that uses a 50/50 duty cycle. clkfast uses posedge active don’t care duty cycle and clkfast_negedge uses negedge active don’t care duty cycle.

The effect of the 4 respective clock control signals ready_for_clkfast, ready_for_clkfast_negedge, ready_for_clkslow, and ready_for_clkslow_negedge can be seen.

Deassertion of ready_for_clkfast prevents subsequent posedges of clkfast, negedges of clkfast_negedge, and all edges of clkslow from occurring on subsequent posedges of uclock. Once re-asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

Deassertion of ready_for_clkfast_negedge prevents subsequent negedges of clkfast_negedge, posedges of clkfast, and all edges of clkslow from occurring on subsequent posedges of uclock. Once re-asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

Deassertion of ready_for_clkslow prevents subsequent posedges of clkslow. But notice that this happens just in time for the next scheduled posedge clkslow. Prior to this, edges of faster clocks or the negedge of the same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks are disabled as well. Once re-asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

Deassertion of ready_for_clkslow_negedge prevents subsequent negedges of clkslow. But notice that this happens just in time for the next scheduled negedge clkslow. Prior to this, edges of faster clocks  or the posedge of the same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks are disabled as well. Once re-asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

Note, that all of the clock enabled signals, clkfast_enabled, clkfast_negedge_enabled, clkslow_enabled, and clkslow_negedge_enabled are shown to transition on uclock posedges. The implementation can also choose to transition them on negedges. The only hard requirement is that their values can be sampled on the uclock posedge at which the associated controlled clock edge will occur.

5.3 Infrastructure linkage

This section is strictly the concern of the infrastructure implementor class of user, as defined in XX. End-users and transactor implementors can assume the operations described herein are automatically handled by the infrastructure linker.

As described in XX, infrastructure linkage is the process which analyzes the user’s bridge netlist on the hardware side and compiles it into a form suitable to run on the emulator. This may involve expanding the interface macros into infrastructure components that are added to the existing structure, as well as to generate parameter information which is used to bind the hardware side to the software side. In order to determine this information, the infrastructure linker analyzes the netlist and searches for instances of the SCE-MI hardware side macros, reads the parameter values from those instances, and generates a parameter file that can be read during software side initialization to properly bind message port proxies to the hardware side.

Typically, the infrastructure linker provides options in the form of switches and/or an input configuration file which allows a user to pass along or override implementation-specific options. A well crafted infrastructure linker, however, needs to maximize ease-of-use by transparently providing the end-user with a suitable set of default values for implementation-specific parameters, so that most, if not all, of these parameters need not be overridden.

5.3.1 Parameters

The following set of parameters define the minimum set that is needed for all implementations of the SCE-MI standard. Specific implementations might require additional parameters.

Number of transactors

The number of transactors shall be derived by counting the number of modules in the user’s design that qualify as transactors. Any one of 3 conditions can qualify a module as a transactor: 

1. The module has a SceMiClockControl macro instantiated immediately inside it, or, 

2. The module has the following parameter defined within its scope:

Verilog: 

parameter SceMiIsTransactor = 1; 

VHDL: 

generic( SceMiIsTransactor: boolean := true ); 

or, 

3. The module has at least one SceMi message port instantiated immediately inside it and neither that module nor any of its enclosing parent modules has otherwise been defined as a transactor. 

Nested transactors are allowed. A message port's owning transactor is defined to be the lowest module in that port's enclosing hierarchical scope that qualifies as a transactor based on the definition above.

Transactor name

The transactor name shall be derived from the hierarchical path name to an instance of a module that qualifies as a transactor (as per the above definition). Naturally, if there are multiple instances of a given type of transactor, they shall be uniquely distinguished by their instance path names. The syntax used to express the path name shall be that of the bridge netlist’s HDL language.

Number of message input or output channels

The infrastructure linker derives the number of message input and output ports by counting instances of the SceMiMessageInPort and SceMiMessageOutPort macros.

Port name

The name of each port shall be derived from the relative instance path name to that port, relative to its containing transactor module. For example, if the full path name to a message input port macro instance is (using Verilog notation) Bridge.u1.tx1.ip1 and the transactor name is Bridge.u1.tx1, then the port name is ip1. If an output port is instantiated one level down from the input port and its full path is Bridge.u1.tx1.m1.op1, then its port name is m1.op1, since it is instantiated a level down relative to the transactor root level.

The full pathname to a port can be derived by concatenating the transactor name to the port name (with a hierarchical separator inserted between).

Message input or output port width

The width of a port in bits shall be derived from the PortWidth parameter defined in the message port macro. This width defaults to 1, but is almost always overridden to a significantly larger value at the point of instantiation.

Number of controlled clocks

This number shall be derived by counting all instances of the SceMiClockPort macro.

Controlled clock name

The name of a controlled clock is derived from the instance label (not path name) of its SceMiClockPort instance, necessarily instantiated at the top level of the user’s bridge netlist and unique among all instances of SceMiClockPort.

Controlled clock ratio

The clock ratio is determined from the RatioNumerator and RatioDenominator parameters of the SceMiClockPort macro. The RatioNumerator designates the number of cycles of the 1/1 controlled clock that occur during the number of cycles of “this” clock specified in RatioDenominator. See XX for more details about the clock ratio.

Controlled clock duty cycle and phase

The duty cycle is determined from the DutyHi, DutyLo, and Phase parameters of the SceMiClockPort macro. The duty cycle is expressed as a pair of arbitrary integers: DutyHi and DutyLo interpreted as follows: if the sum of DutyHi and DutyLo represents the number of units in a period of the clock, then DutyHi represents the number of units of high time and DutyLo represents the number of units of low time. Similarly, Phase represents the number of units the clock is phase shifted relative to the reference 1/1 cclock. A user can also specify a don’t care duty cycle. See XX for more details about the duty cycle and phase.

Controlled reset cycles

The duration of a controlled reset expressed in terms of cclock cycles is determined from the ResetCycles parameter of the ClockPort macro.

Parameter file

The infrastructure linker needs to automatically generate a parameter file after analyzing the user-supplied netlist and determining all the parameters identified in XX. The parameter file can be read by the software side of the SCE-MI infrastructure to facilitate binding operations that occur after software model construction. Because it is automatically generated, the content and syntax of the parameter file is left to specific implementors of the SCE- MI. The content itself is not intended to be portable. 

However, on the software side, the infrastructure implementor needs to provide a parameter access API that conforms to the specification in XX. This access block shall support access to a specifically named set of parameters required by the SCE-MI, as well as an optional, implementation specified set of named parameters.

All SCE-MI required parameters are read-only, because their values are automatically determined by the infrastructure linker by analyzing the user-supplied netlist. Implementation-specific parameters can be read-only or read-write as the implementation requires.
5.4 Software side interface - C++ API

To gain access to the hardware side of the SCE-MI, the software side shall first initialize the SCE-MI software side infrastructure and then bind to port proxies representing each message port defined on the hardware side. Part of initializing the SCE-MI involves instructing the SCE-MI to load the parameter file generated by the infrastructure linker. The SCE-MI software side can use this parameter file information to establish rendezvous with the hardware side in response to port binding calls from the user’s software models. Port binding rendezvous is achieved primarily name association involving transactor names and port names.

NOTE—Clock names and properties identified in the parameter file are of little significance during the binding process although this information is procedurally available to applications that might need it through the parameter file API (see XX).

Access to the software side of the interface is facilitated by a number of C++ classes:

class SceMiEC

class SceMi

class SceMiMessageInPortProxy

class SceMiMessageOutPortProxy

class SceMiParameters

class SceMiMessageData
5.4.1 Primitive data types

In addition to C data types, such as integer, unsigned, and const char *, many of the arguments to the methods in the API require unsigned data types of specific width. To support these, SCE-MI implementations need to provide two primitive unsigned integral types: one of exactly 32 bits and the other exactly 64 bits in width. The following example implementation works on most current 32-bit compilers.

Example

typedef unsigned int SceMiU32; //unsigned 32-bit integral type

typedef unsigned long long SceMiU64; //unsigned 64-bit integral type

5.4.2 Miscellaneous interface issues

In addition to the basic setup, teardown, and message-passing functionality, the SCE-MI provides error handling, warning handling, and memory allocation functionality.   These verbatim API declarations are described here.

Class SceMiEC - error handling

Most of the calls in the interface take an SceMiEC * ec as the last argument. Because the usage of this argument is consistent for all methods, error handling semantics are explained in this section rather than documenting error handling for each method in the API.

Error handling in SCE-MI is flexible enough to either use a traditional style of error handling where an error status is returned and checked with each call or a callback based scheme where a registered error handler is called when an error occurs.

enum SceMiErrorType {


SceMiOK,


SceMiError

};

struct SceMiEC {


const char *Culprit;


const char *Message;


SceMiErrorType Type;


int Id;

};

typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

static void

SceMi::RegisterErrorHandler(


SceMiErrorHandler errorHandler,


void *context );

This method registers an optional error handler with the SCE-MI that is called when an error occurs.

When any SCE-MI operation encounters an error, the following procedure is used:

If the SceMiEC * pointer passed into the function was non-NULL, the values of the SceMiEC structure are filled out by the errant call with appropriate information describing the error and control is returned to the caller. This can be thought of as a traditional approach to error handling, such as done in C applications. It is up to the application code to check the error status after each call to the API and take appropriate abortive action if an error is detected.

Else if the SceMiEC * pointer passed to the function is NULL (or nothing is passed since the default is NULL in each API function) and an error handler was registered, that error handler is called from within the errant API call. The error handler is passed an internally allocated SceMiEC structure filled out with the error information. In this error handler callback approach, the user-defined code within the handler can initiate abort operations. If it is a C++ application, a catch and throw mechanism can be deployed. A C application can simply call the abort() or exit() function after printing out or logging the error information.

Else if the SceMiEC * pointer passed to the function is NULL and no error handler is registered, an SceMiEC structure is constructed and passed to a default error handler. The default error handler attempts to print a message to the console and to a log file and then calls abort().
This error handling facility only supports irrecoverable errors. This means if an error is returned through the SceMiEC object, either via a handler or a return object, there is no point in continuing with the co-modeling session. Any calls that support returning a recoverable error status need to return that status using a separate, dedicated return argument.

Also, the Message text filled out in the error structure is meant to fully describe the nature of the error and can be logged or displayed to the console verbatim by the application error handling code. The Culprit text is the name of the errant API function and can optionally be added to the message that is displayed or logged.

Because every API call returns a success or fatal error status and the detailed nature of errors is fully described within the returned error message, the SceMiErrorType enum has only two values pertaining to success: (SceMiOK) or failure (SceMiError). The SceMiEC::Type returned from API functions to the caller can be either of these two values, depending on whether the call was a success or a failure. However the SceMiEC::Type passed into an error handler shall, by definition, always have the value SceMiError; otherwise the error handler would not have been called. In addition, the optional Id field can be used to further classify different major error types or tag each distinct error message with a unique integer identifier.

5.4.2.1 Class SceMiIC - informational status and warning handling (info handling)

The SCE-MI also provides a means of conveying warnings and informational status messages to the application. Like error handling, info handling is done with callback functions and a special structure that is used to convey the warning information.

enum SceMiInfoType {


SceMiInfo,


SceMiWarning,


SceMiNonFatalError

};

struct SceMiIC {


const char *Originator;


const char *Message;


SceMiInfoType Type;


int Id;

};

typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

static void

SceMi::RegisterInfoHandler(


SceMiInfoHandler infoHandler,


void *context );

This method registers an optional info handler with the SCE-MI that is called when a warning or informational status message occurs. This method must only be used for message reporting or logging purposes and must not abort the simulation (unless there is an application error). Only SceMiEC error handlers are reserved for that purpose.

When any SCE-MI operation encounters a warning or wishes to issue an informational message, the following procedure is used:

If an info handler was registered, it is called from within the API call that wants to issue the warning. The info handler is passed an internally allocated SceMiIC structure filled out with the warning information. In this info handler callback approach, the user-defined code within the handler can convey the warning to the user in a manner that is appropriate for that application. For example, it can be displayed to the console, logged to a file, or both.

Else if no info handler is registered, a SceMiIC structure is constructed and passed to a default, implementation-defined error handler. The default error handler can attempt to print a message to the console and/or to a log file in an implementation-specific format.

The Message text filled out in the error structure is meant to fully describe the nature of the info message and can be logged or displayed to the console verbatim by the application’s warning and info handling code. The Originator text is the name of the API function that detected the message and can optionally be added to the message that is displayed or logged. The SceMiInfoType is an extra piece of information which indicates if the message is a warning or just some informational status. 

An additional category, called SceMiNonFatalError, can be used to log all error conditions leading up to a fatal error. The final fatal error message shall always be logged using a SceMiEC structure and SceMiErrorHandler function so an abort sequence is properly handled (see XX). In addition, the info message can optionally be tagged with a unique identifying integer specified in the Id field.

5.4.2.2 Memory allocation semantics

The following rules apply to SCE-MI memory allocation semantics.

Anything constructed by the user is the user’s responsibility to delete.

Anything constructed by the API is the API’s responsibility to delete.

Thus any object, such as SceMiMessageData, that is created by the application using that object’s constructor, shall be deleted by the application when it is no longer in use. Some objects, such as SceMiMessage[In/ Out]PortProxy objects, are constructed by the API and then handed over to the application as pointers. Those objects shall not be deleted by the application. Rather, they are deleted when the entire interface is shut down during the call to SceMi::ShutDown().
Similarly, non-NULL SceMiEC structures that are passed to functions are assumed to be allocated and deleted by the application. If a NULL SceMiEC pointer is passed to a function and an error occurs, the API allocates the structure to pass to the error handler and, therefore, is responsible for freeing it.

5.4.3 Class SceMi - SCE-MI software side interface

This is the singleton object that represents the software side of the SCE-MI infrastructure itself. Global interface operations are performed using methods of this class.

5.4.3.1 Version discovery

static int

SceMi::Version(


    const char *versionString );

This method allows an application to make queries about the version prior to initializing the SCE-MI that gives it its best chance of specifying a version to which it is compatible. A series of calls can be made to this function until a compatible version is found. With each call, the application can pass version numbers corresponding to those it knows and the SCE-MI can respond with a version handle that is compatible with the queried version. This handle can then be passed onto the initialization call described in XX.

If the given version string is not compatible with the version of the SCE-MI used as the interface, a -1 is returned. At this point, the application has the option of aborting with a fatal error or attempting other versions it might also know how to use.

This process is sometimes referred to as mutual discovery.

versionString

This argument is of the form “<majorNum>.<minorNum>.<PatchNum>” and can be obtained by the application code from the header file of a particular SCE-MI installation.

The following macros are defined

#define SCEMI_MAJOR_VERSION 1

#define SCEMI_MINOR_VERSION 1

#define SCEMI_PATCH_VERSION 0

#define SCEMI_VERSION_STRING “1.1.0”

NOTE: the version mapping shown above is for example purposes only and should always be set to match the actual version of the document that the implementation adhers to.

5.4.3.2 Initialization

static SceMi *

SceMi::Init(


int version,


SceMiParameters *parameters,


SceMiEC *ec=NULL );

This call is the constructor of the SCE-MI interface. It gives access to all the other global methods of the interface.

The return argument is a pointer to an object of class SceMi on which all other methods can be called.

version

This input argument is the version number returned by the ::Version() method described in XX. An error results if the version number is not compatible with the SCE-MI infrastructure being accessed.

parameters

This input argument is a pointer to the parameter block object (class SceMiParameters) initialized from the parameter file generated by the infrastructure linker. See XX for a description of how this object is obtained.

5.4.3.3 SceMi Object Pointer Access 

static SceMi *

SceMi::Pointer( 


SceMiEC *ec=NULL ); 

This accessor returns a pointer to the SceMi object constructed in a previous call to SceMi::Init. The return argument is a pointer to an object of class SceMi on which all other methods can be called.  

If the SceMi::Init method has not yet been called, SceMi::Pointer will return NULL.  

5.4.3.4 Shutdown

static void

SceMi::Shutdown(


SceMi *sceMi,


SceMiEC *ec=NULL );

This is the destructor of the SCE-MI infrastructure object which shall be called when connection to the interface needs to be terminated. This call is the means by which graceful decoupling of the hardware side and the software side is achieved. Termination (Close()) callbacks registered by the application are also called during the shutdown process.

5.4.3.5 Message input port proxy binding

SceMiMessageInPortProxy *

SceMi::BindMessageInPort(


const char *transactorName,


const char *portName,


const SceMiMessageInPortBinding *binding = NULL,


SceMiEC *ec=NULL );

This call searches the list of input ports learned from the parameter file, which is generated during infrastructure linkage, for one whose names match the transactorName and portName arguments. If one is found, an object of class SceMiMessageInPortProxy is constructed to serve as the proxy interface to that port and the pointer to the constructed object is returned to the caller to serve all future accesses to that port. It shall be an error if no match is found.

The implementation shall copy the contents of the object pointed to by the binding argument, to an internal implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling message input port proxy binding. Since the binding object is copied, the binding itself will not change as a result of this.

transactorName, portName

These arguments uniquely identify a specific message input port in a specific transactor on the hardware side to which the caller wishes to bind. These names need to be the path names (described in XX) expressed in the hardware side bridge’s netlist HDL language syntax.

binding

The binding argument is a pointer to an object, defined as follows:

struct SceMiMessageInPortBinding {

    void *Context;

    void (*IsReady)(void *context);

    void (*Close)(void *context);

};

whose data members are used for the following:

Context

The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class SceMiMessageInPortProxy interpret this pointer, other than to store it and pass it when calling either the IsReady() or Close() callbacks.

IsReady()

This is the function pointer for the callback used whenever an input-ready notification has been received from the hardware side. This call signals that it is okay to send a new message to the input port. If this pointer is given as a NULL, the SCE-MI assumes this port does not need to deploy input-ready notification on this particular channel. See XX for a detailed description of the input-ready callback.

Close()

This is a termination callback function pointer. It is called during destruction of the SCE-MI. This pointer can also be optionally specified as NULL.

If the binding argument is given as a NULL, the SCE-MI assumes that each of the Context, IsReady(), and Close() data members all have NULL values.

NOTE---This call

inProxy = scemi->BindMessageInPort("Transactor","Port");

is equivalent to this code

SceMiMessageInPortBinding inBinding;

inBinding.Context = NULL;

inBinding.IsReady = NULL;

inBinding.Close = NULL;

inProxy = scemi->BindMessageInPort("Transactor", "Port",&inBinding);

5.4.3.6 Message output port proxy binding

SceMiMessageOutPortProxy *

SceMi::BindMessageOutPort(


const char *transactorName,


const char *portName,


const SceMiMessageOutPortBinding *binding,


SceMiEC *ec=NULL );

This call searches the list of output ports learned from the parameter file, which was generated during infrastructure linkage, for one whose names match the transactorName and portName argument. If one is found, an object of class SceMiMessageOutPortProxy is constructed to serve as the proxy interface to that port and the handle to the constructed object is returned to the caller to serve all future accesses to that port. It shall be an error if no match is found.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal, implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling message output port proxy binding. Since the binding object is copied, the binding itself will not change as a result of this.

transactorName, portName

These arguments uniquely identify a specific message output port in a specific transactor on the hardware side to which the caller wishes to bind. These names must be the path names (described in XX) expressed in the hardware side bridge’s netlist HDL language syntax.

binding

The binding argument is a pointer to an object, defined as follows:

struct SceMiMessageOutPortBinding {

    void *Context;

    void (*Receive)(

        void *context,

        const SceMiMessageData *data);

    void (*Close)(void *context);

    };
whose data members are used for the following:

Context

The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class SceMiMessageOutPortProxy interpret this pointer other than to store it and pass it when calling either the IsReady() or Close() callbacks.

Receive()

This is the function pointer for the receive callback used whenever an output message arrives on the port. If this function pointer is set to NULL, it indicates that any messages from the output port should be ignored. See XX for more information about how receive callbacks process output messages.

Close()

This is a termination callback function pointer. It is called during destruction of the SCE-MI. This pointer can also be optionally specified as NULL.

5.4.3.7 Service loop

typedef int (*SceMiServiceLoopHandler)( void *context, bool pending );

int

SceMi::ServiceLoop(


SceMiServiceLoopHandler g=NULL,


void *context=NULL,


SceMiEC *ec=NULL );

This is the main workhorse method that yields CPU processing time to the SCE-MI. In both single-threaded and multi-threaded environments, calls to this method allow the SCE-MI to service all its port proxies, check for arriving messages or messages which are pending to be sent, and dispatch any input-ready or receive callbacks that might be needed. The underlying transport mechanism that supports the port proxies needs to respond in a relatively timely manner to messages enqueued on the input or output port proxies. Since these messages cannot be handled until a call to ::ServiceLoop() is made, applications need to call this function frequently.

The return argument is the number of service requests that arrived from the HDL side and were processed since the last call to ::ServiceLoop().

The ::ServiceLoop() first checks for any pending input messages to be sent and sends them.

g()

If g is NULL, ::ServiceLoop() checks for pending service requests and dispatches them, returning immediately afterwards. If g() is non-NULL, ::ServiceLoop() enters a loop of checking for pending service requests, dispatching them, and calling g() for each service request. A service request is defined to be one of the following:

An arriving message in a SCE-MI message output port that will result in a receive callback being called.

An input ready notification that will result in an input ready callback being called.

When g() returns 0, control returns from the loop. When g() is called, it is passed a pending flag of 1 or 0 indicating whether or not there is at least one service request pending.

context

The context argument to ::ServiceLoop is passed as the context argument to g().

The following pseudo code illustrates implementation of the ::ServiceLoop() according to the semantics described above:

int SceMi::ServiceLoop(


SceMiServiceLoopHandler g, void* context, SceMiEC* ec)

{


bool exit_service_loop = false;


int service_request_count = 0;


while( input messages pending ) Send them to HDL side.


while( exit_service_loop == false ) {



if( input ready notifications pending ){




Dispatch input ready callback;




service_request_count++;




if( g != NULL && g(context, 1) == 0 )





exit_service_loop = true;



}



else if( output messages pending ){




Dispatch message to appropriate receive callback.




service_request_count++;




if (g != NULL && !g(context, 1))





exit_service_loop = true;



}



// if( g is not specified ) We kick out of the loop.



// else we stay in as long as g returns non-zero.



else if (g == NULL || g(context, 0) == 0)




exit_service_loop = true;


}


return service_request_count;

}
5.4.3.7.1. Example of using the g() function to return on each call to ::ServiceLoop()
There are several different ways to use the g() function.

Some applications do force a return from the ::ServiceLoop() call after processing each message. The ::ServiceLoop() call always guarantees a separate call is made to the g() function for each message processed. In fact, it is possible to force ::ServiceLoop() to return back to the application once per message by having the g() function return a 0.

So even if all g() does is return 0, as follows,

int g( void */*context*/, bool /*pending*/ ){ return 0; }

the application forces a return from ::ServiceLoop() for each processed message.

NOTE—In this case, the ::ServiceLoop() does not block because it also returns even if no message was found (i.e., pending == 0 ). Basically ::ServiceLoop() returns no matter what in this case with zero or one message.

Example of using the g() function to block ::ServiceLoop() until exactly one message occurs

An application can use the g() function to put ::ServiceLoop() into a blocking mode rather than its default polling mode. The g() function can be written to cause ::ServiceLoop() to block until it gets one message, then return on the message it received. This is done by making use of the pending argument to the g() function. This argument simply indicates if there is a message to be processed or not, for example:

int g( void */*context*/, bool pending ){


return pending == true ? 0 : 1 }

This blocks until a message occurs, then returns on processing the first message.

5.4.3.7.2. Example of using the g() function to block ::ServiceLoop() until at least one message occurs

Alternatively, suppose the application wants ::ServiceLoop() to block until at least one message occurs, then return only after all the currently pending messages have been processed.

To do this, the application can define a haveProcessedAtLeast1Message flag as follows:

int haveProcessedAtLeast1Message = 0;

Call ::ServiceLoop() giving the g() function and this flag's address as the context:

...

haveProcessedAtLeast1Message = 0;

sceMi->ServiceLoop( g, &haveProcessedAtLeast1Message );

...

Now define the g() function as follows:

int g( void *context, bool pending ){


int *haveProcessedAtLeast1Message = (int *)context;


if( pending == 0 )


    // If no more messages, kick out of loop if at least


    // one previous message has been processed, otherwise


    // block until the first message arrives.


    return *haveProcessedAtLeast1Message ? 0 : 1;


else {


    *haveProcessedAtLeast1Message = 1;


    return 1;


}

}

In conclusion, depending on precisely what type of operation of ::ServiceLoop() is desired, the g() function can be tailored accordingly.

5.4.4 Class SceMiParameters - parameter access

This class provides a generic API which can be used by application code to access the interface parameter set described in XX. It is basically initialized with the contents of the parameter file generated during infrastructure linkage. It provides accessors that facilitate the reading and possibly overriding of parameters and their values.  

All SCE-MI required parameters are read-only, because their values are automatically determined by the infrastructure linker analyzing the user-supplied netlist. Implementation-specific parameters can be read-only or read- write as required by the implementation. All parameters in a SceMiParameters object shall be overridden before that object is passed to the SceMi::Init() call to construct the interface (see XX). Overriding parameters afterwards has no effect.

5.4.4.1 Parameter set

While the format of the parameter file is implementation-specific, the set of parameters required by the SCE-API and the methods used to access them shall conform to the specifications described in this section. For purposes of access, the parameter set shall be organized as a database of attributed objects, where each object instance is decorated with a set of attributes expressed as name/value pairs. There can be zero or more instances of each object kind. The API shall provide a simple accessor to return the number of objects of a given kind, and read and write accessors (described in Table XX ) to allow reading or overriding attribute values of specific objects.

The objects in the database are composed of the set of necessary interfacing components that interface the SCE- MI infrastructure to the application. For example, there is a distinct object instance for each message port and a distinct object instance representing each defined clock in the system. Attributes of each of the objects then represent, collectively, the parameters that uniquely characterize the dimensions and constitution of the interface components needed for a particular application.

So, for example, a system that requires one input port, two output ports, and two distinct clocks is represented with five objects, parametrized such that each port object has name and width attributes, each clock object has ratio and duty cycle attributes, etc. These objects and their attributes precisely and fully describe the interfacing requirements between that application and the SCE-MI infrastructure.

Table XX gives the minimal, predefined set of objects and attributes required by the SCE-MI. Additional objects and attributes can be added by implementations. For example, there can be a single, implementation-specific object representing the entire SCE-MI infrastructure facility itself. The attributes of this singleton object can be the set of implementation-specific parameters an implementor of the SCE-MI needs to allow the user to specify. 

For more details on attribute meanings, see XX.

	Object kind
	Attribute name
	Attribute value type
	Meaning

	MessageInPort
	TransactorName
	String
	Name of the transactor enclosing the message input port.

	
	PortName
	String
	Name of the message input port.

	
	PortWidth
	Integer
	Width of the message input port in bits.

	MessageOutPort
	TransactorName
	String
	Name of the transactor enclosing the message output port.

	
	PortName
	String
	Name of the message output port.

	
	PortWidth
	Integer
	Width of the message output port in bits.

	Clock
	ClockName
	String
	Name of the clock.

	
	RatioNumerator
	Integer
	Numerator (“fast” clock cycles) of clock ratio.

	
	RatioDenominator
	Integer
	Denominator (“this” clock cycles) of clock ratio.

	
	DutyHi
	Integer
	High cycle percentage of duty cycle.

	
	DutyLo
	Integer
	Low cycle percentage of duty cycle.

	
	Phase
	Integer
	Phase shift as percentage of duty cycle.

	
	ResetCycles
	Integer
	Number of controlled clock cycles of reset.

	ClockBinding
	TransactorName
	String
	Name of the transactor that contributes to the control of this clock.

	
	ClockName
	String
	Name of the clock that this transactor helps control.


Table 5.1. Minimum set of predefined objects and attributes, continued

For simplicity, values can be signed integer or string values. More complex data types can be derived by the application code from string values. Each attribute definition of each object kind implies a specific value type.

Table 5.1— Parameter set semantics

Although the accessors provided by the SceMiParameters class directly provide the information given in Table XX , other implied parameters can be easily derived by the application. Following are some of the implied parameters and how they are determined:

ClockBinding objects indicate the total number of transactor - clock control macro combinations. The number of distinct contributors to the control of a given clock, as well as the number of distinct transac¬tors in the system, can be ascertained via the ClockBinding objects.

The number of transactors in the system is determined by counting the number of distinct TransactorName’s encountered in the ClockBinding objects.

The number of controlled clocks is determined by reading the number of Clock objects (using the ::NumberOfObjects() accessor described below).

The number of input and output ports is determined by reading the number of MessageInPort and MessageOutPort objects, respectively.

In addition, the following semantics characterize the parameter set.

a) 
Transactor names are absolute hierarchical path names and shall conform to the bridge’s netlist HDL language syntax.

b) 
Port names are relative hierarchical path names (relative to the enclosing transactor) and shall conform to the bridge’s netlist HDL language syntax.

c) 
Clock names are identifiers, not path names, and shall conform to the bridge’s netlist HDL language identifier naming syntax.

5.4.4.2 Constructor

SceMiParameters::SceMiParameters(


const char *paramsFile,


SceMiEC *ec=NULL );

The constructor constructs an object containing all the default values of parameters and then overrides them with any settings it finds in the specified parameter file. All parameters, whether specified by the user or not shall have default values. Once constructed, parameters can be further overridden procedurally.

paramsFile

This is the name of the file generated by the infrastructure linker which contains all the parameters derived from the user’s hardware side netlist. This name can be a full pathname to a file or a pathname relative to the local directory.

5.4.4.3 Destructor

SceMiParameters::~SceMiParameters()

This is the destructor for the parameters object.

5.4.4.4 Accessors

unsigned int

SceMiParameters::NumberOfObjects(


const char *objectKind,


SceMiEC *ec=NULL ) const;

This accessor returns the number of instances of objects of the specified objectKind name.

int

SceMiParameters::AttributeIntegerValue(


const char *objectKind,


unsigned int index,


const char *attributeName,


SceMiEC *ec=NULL ) const;

const char *

SceMiParameters::AttributeStringValue(


const char *objectKind,


unsigned int index,


const char *attributeName,


SceMiEC *ec=NULL ) const;

The implementation guarantees the pointer is valid until Shutdown() is called for read-only attributes. For non- read-only attributes, the implementation guarantees the pointer is valid until Shutdown() or OverrideAttributeStringValue() of the attribute whichever comes first.

NOTE -- If the application needs the string value for an extended period of time, it may copy the string value to a privately managed memory area.

These two accessors read and return an integer or string attribute value.

void

SceMiParameters::OverrideAttributeIntegerValue(


const char *objectKind,


unsigned int index,


const char *attributeName,


int value,


SceMiEC *ec=NULL );

void

SceMiParameters::OverrideAttributeStringValue(


const char *objectKind,


unsigned int index,


const char *attributeName,


const char *value,


SceMiEC *ec=NULL );

These two accessors override an integer or string attribute value. It shall be an error to attempt to override any of the object attributes shown in Table XX , any implementation-specific attributes designated as read-only or any attribute that is not already in the parameter database.

The following argument descriptions generally apply to all the accessors shown above.

objectKind

Name of the kind of object for which an attribute value is being accessed. It shall be an error to pass an unrecognized objectKind name to any of the accessors.

index

Index of the instance of the object for which an attribute value is being accessed. It shall be an error if the index >= the number returned by the ::NumberOfObjects() accessor.

attributeName

Name of the attribute whose value is being read or overwritten. It shall be an error if the attributeName does not identify one of the attributes allowed for the given objectKind.

value

Returned or passed in value of the attribute being read or overridden respectively. Two overloaded variants of each accessor are provided: one for string values and one for integer values.

5.4.5 Class SceMiMessageData - message data object

The class SceMiMessageData represents the vector of message data that can be transferred from a SceMiMessageInPortProxy on the software side to its associated SceMiMessageInPort on the hardware side or from a SceMiMessageOutPort on the hardware side to its associated SceMiMessageOutPortProxy on the software side. The message data payload is represented as a fixed-length array of SceMiU32 data words large enough to contain the bit vector being transferred to or from the hardware side message port. For example, if the message port had a width of 72 bits, Figure XX  shows how the those bits are organized in the data array contained inside the SceMiMessageData object.
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Figure 5.9: Organizing 72 bits in a data array

5.4.5.1 Constructor

SceMiMessageData::SceMiMessageData(


const SceMiMessageInPortProxy &messageInPortProxy,


SceMiEC *ec=NULL );

This constructs a message data object whose size matches the width of the specified input port. The constructed message data object can only be used for sends on that port (or another of identical size) or an error will result.

Destructor

SceMiMessageData::~SceMiMessageData()

This destructs the object and frees the data array.

5.4.5.2 Accessors

unsigned int

SceMiMessageData::WidthInBits() const;

This returns the width of the message in terms of number of bits.

unsigned int

SceMiMessageData::WidthInWords() const;

This returns the size of the data array in terms of number of SceMiU32 words.

void

SceMiMessageData::Set( unsigned int i, SceMiU32 word, SceMiEC *ec = NULL );

This sets word element i of the array to word.

void

SceMiMessageData::SetBit( unsigned int i, int bit, SceMiEC *ec = NULL );

This sets bit element i of the message vector to 0 if bit == 0, otherwise to 1. It is an error if i >= ::WidthInBits().

void

SceMiMessageData::SetBitRange(

    unsigned int i, unsigned int range, SceMiU32 bits, SceMiEC *ec = NULL );

This sets range bit elements whose LSB’s start at bit element i of the message vector to the value of bits. It is an error if i+range >= ::WidthInBits().

SceMiU32

SceMiMessageData::Get( unsigned int i, SceMiEC *ec = NULL ) const;

This returns the word at slot i in the array. It is an error if i >= ::WidthInWords().

int

SceMiMessageData::GetBit( unsigned int i, SceMiEC *ec = NULL ) const;

This returns the value of bit element i in the message vector. It is an error if i >= ::WidthInBits().
SceMiU32

SceMiMessageData::GetBitRange( unsigned int i, unsigned int range, Sce¬MiEC *ec = NULL ) const;

This returns the value of range bit elements whose LSB’s start at i of the message vector. It is an error if i+range >= ::WidthInBits().
SceMiU64

SceMiMessageData::CycleStamp() const;

The SCE-MI supports a feature called cycle stamping. Each output message sent to the software side is stamped with the number of cycles of the 1/1 controlled clock since the end of creset at the time the message is accepted by the infrastructure. The cycle stamp shall be 0 while creset is asserted and 1 at the point of alignment. This is shown diagramatically in Figure XX. The cycle stamp provides a convenient way for applications to keep track of elapsed cycles in their respective transactors as the simulation proceeds. The returned value is an absolute, 64-bit unsigned quantity. For more information on the point of alignment, refer to XX.
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Figure 5.10: Cycle Stamps

NOTE: It is suggested that messages should not be sent during the reset period. If they are sent they will all have a cycle stamp of zero irrespective of the actual clock cycle that they occur on.

5.4.6 Class SceMiMessageInPortProxy 

The class SceMiMessageInPortProxy presents to the application a proxy interface to a transactor message input port.

5.4.6.1 Sending input messages

void

SceMiMessageInPortProxy::Send(


const SceMiMessageData &data,


SceMiEC *ec=NULL );

This method sends a message to the message input channel. This message appears on the hardware side as a bit vector presented to the transactor via the SceMiMessageInPort macro (see XX), instance-bound to this proxy.

data

This is a message data object containing the message to be sent. This object may be arbitrarily modified after Send() and used for an arbitrary number of sends to the same and other message ports.

5.4.6.2 Replacing port binding

void ReplaceBinding( 


const SceMiMessageInPortBinding* binding = NULL,


SceMiEC* ec=NULL );

This method replaces the SceMiMessageInPortBinding object originally furnished to the SceMi::BindMessageInPortProxy() call that created this port proxy object (see XX). This can be useful for replacing contexts or input-ready callback functions some time after the input message port proxy has been established.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal, implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling replace port binding. Since the binding object is copied, the binding itself will not change as a result of this.

binding

This is new callback and context information associated with this message input port proxy.

If the binding argument is given as a NULL, the SCE-MI assumes that each of the Context, IsReady(), and Close() data members have NULL values.

NOTE---The ReplaceBinding() call below

    SceMiMessageInPortProxy *inProxy;

    // ...

    inProxy->ReplaceBinding();

 is equivalent to this code

    SceMiMessageInPortProxy *inProxy;

    // ...

    SceMiMessageInPortBinding inBinding;

    inBinding.Context = NULL;

    inBinding.IsReady = NULL;

    inBinding.Close = NULL;

    inProxy->ReplaceBinding(&inBinding);

5.4.6.3 
Accessors

const char *

SceMiMessageInPortProxy::TransactorName() const;

This method returns the name of the transactor connected to the port. This is the absolute hierarchical path name to the transactor instance expressed in the netlist’s HDL language syntax.

const char *

SceMiMessageInPortProxy::PortName() const;

This method returns the port name. This is the path name to the SceMiMessageInPort macro instance relative to the containing transactor netlist’s HDL language syntax.

unsigned

SceMiMessageInPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the associated SceMiMessageInPort instance on the hardware side.

5.4.6.4 
Destructor

There is no public destructor for this class. Destruction of all message input ports shall automatically occur when the SceMi::ShutDown() function is called.

5.4.7 Class SceMiMessageOutPortProxy 

The class MessageOutPortProxy presents to the application a proxy interface to the transactor message output port. 

5.4.7.1 Receiving output messages

There are no methods on this object specifically for reading messages that arrive on the output port proxy. Instead, that operation is handled by the receive callbacks. Receive callbacks are registered with an output port proxy when it is first bound to the channel (see XX). The prototype for the receive callback is:

void (*Receive)( void *context, const SceMiMessageData *data );

When called, the receive callback is passed a pointer to a class SceMiMessageData object (see XX), which contains the content of the received message, and the context pointer. The context pointer is typically a pointer to the object representing the software model interfacing to the port proxy. 

Use this callback to process the data quickly and return as soon as possible. The reference to the SceMiMessageData is of limited lifetime and ceases to exist once the callback returns and goes out of scope. Typically in a SystemC context, the callback does some minor manipulation to the context object, then immediately returns and lets a suspended thread resume and do the main processing of the received transaction.

No SceMiEC * error status object is passed to the call, because if an error occurs within the SceMi::ServiceLoop() function (from which the receive callback is normally called), the callback is never called and standard error handling procedures (see XX) are followed by the service loop function itself. If an error occurs inside the receive callback, by implication it is an application error, not an SCE-MI error, and thus is the application’s responsibility to handle (perhaps setting a flag in the context object before returning from the callback).

It shall be an error if the class SceMiMessageData object passed to the receive callback is passed as the class SceMiMessageData argument of the SceMiMessageInPortProxy::Send() method. Modifying the class SceMiMessageData object by casting away const leads to undefined behavior. This is in addition to any compiler/run-time problems that may be generated by doing this.

5.4.7.2 Replacing port binding

void ReplaceBinding( 


const SceMiMessageOutPortBinding* binding,


SceMiEC* ec=NULL );

This method replaces the SceMiMessageOutPortBinding object originally furnished to the SceMi::BindMessageOutPortProxy() call that created this port proxy object (see XX). This can be useful for replacing contexts or receive callback functions some time after the output message port proxy has been established. Setting the receive callback to a NULL value indicates that any message from the output can be ignored.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal, implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling replace port binding. Since the binding object is copied, the binding itself will not change as a result of this.

binding

This is new callback and context information associated with this message output port proxy.

5.4.7.3 Accessors

const char *

SceMiMessageOutPortProxy::TransactorName() const;

This method returns the name of the transactor connected to the port. This is the absolute hierarchical path name to the transactor instance expressed in the netlist’s HDL language syntax.

const char *

SceMiMessageOutPortProxy::PortName() const;

This method returns the port name. This is the path name to the SceMiMessageOutPort macro instance relative to the containing transactor expressed in the netlist’s HDL language syntax.

unsigned

SceMiMessageOutPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the associated SceMiMessageOutPort instance on the hardware side.

5.4.7.4 Destructor

There is no public destructor for this class. Destruction of all message output ports shall automatically occur when the SceMi::ShutDown() function is called.

5.5 Software side interface - C API

The SCI-MI software side also provides an ANSI standard C API. All of the following subsections parallel those described in the C++ API. The C API can be implemented as functions that wrap calls to methods described in the C++ API. The prototypes of those functions are shown in this section. For full documentation on a function, see its corresponding subsection in XX.

5.5.1 Primitive data types

The C API has its own header file with the following minimum content:

typedef unsigned SceMiU32;

typedef unsigned long long SceMiU64;

typedef void SceMi;

typedef void SceMiParameters;

typedef void SceMiMessageData;

typedef void SceMiMessageInPortProxy;

typedef void SceMiMessageOutPortProxy;

typedef int (*ServiceLoopHandler)( void *context, int pending );

typedef enum {


SceMiOK,


SceMiError,

} SceMiErrorType;

typedef struct {


const char *Culprit;


const char *Message;


SceMiErrorType Type;


int Id;

} SceMiEC;

typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

typedef enum {


SceMiInfo,


SceMiWarning

} SceMiInfoType;

typedef struct {


const char *Culprit;


const char *Message;


SceMiInfoType Type;


int Id;

} SceMiIC;

typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

typedef struct {


void *Context;


void (*IsReady)(void *context);


void (*Close)(void *context);

} SceMiMessageInPortBinding;

typedef struct {


void *Context;


void (*Receive)(


    void *context,


    const SceMiMessageData *data );


void (*Close)(void *context);

} SceMiMessageOutPortBinding;

An application shall include either the C API header or the C++ API header, but not both.

NOTE—Because ANSI C does not support default argument values, the last SceMiEC *ec argument to each function must be explicitly passed when called, even if only to pass a NULL.

5.5.2 Miscellaneous interface support issues

The C miscellaneous functions have semantics like the corresponding C++ methods (shown within ).

SceMiEC - error handling

void

SceMiRegisterErrorHandler(


SceMiErrorHandler errorHandler,


void *context );

5.5.2.1 SceMiIC - informational status and warning handling (info handling)

void

SceMiRegisterInfoHandler(


SceMiInfoHandler infoHandler,


void *context );

5.5.3 SceMi - SCE-MI software side interface

See also XX.

5.5.3.1 Version discovery

int

SceMiVersion( const char *versionString );

1.1.4.18 
Initialization

SceMi *

SceMiInit(


int version,


const SceMiParameters *parameterObjectHandle,


SceMiEC *ec );

5.5.3.2 SceMi Object Pointer Access 

SceMi *

SceMiPointer( 


SceMiEC *ec );

5.5.3.3 Shutdown

void

SceMiShutdown(


SceMi *sceMiHandle,


SceMiEC *ec );

5.5.3.4 Message input port proxy binding

SceMiMessageInPortProxy *

SceMiBindMessageInPort(


SceMi *sceMiHandle,


const char *transactorName,


const char *portName,


const SceMiMessageInPortBinding *binding,


SceMiEC *ec );

5.5.3.5 Message output port proxy binding

SceMiMessageOutPortProxy *

SceMiBindMessageOutPort(


SceMi *sceMiHandle,


const char *transactorName,


const char *portName,


const SceMiMessageOutPortBinding *binding,


SceMiEC *ec );

5.5.3.6 Service loop

int

SceMiServiceLoop(


SceMi *sceMiHandle,


SceMiServiceLoopHandler g,


void *context,


SceMiEC *ec );

5.5.4 SceMiParameters - parameter access

See also XX.

5.5.4.1 Constructor

SceMiParameters *

SceMiParametersNew(


const char *paramsFile,


SceMiEC *ec );

This function returns the handle to a parameters object.

5.5.4.2 Destructor

void

SceMiParametersDelete(


SceMiParameters *parametersHandle );

5.5.4.3 Accessors

unsigned int

SceMiParametersNumberOfObjects(


const SceMiParameters *parametersHandle,


const char *objectKind,


SceMiEC *ec );

int

SceMiParametersAttributeIntegerValue(


const SceMiParameters *parametersHandle,


const char *objectKind,


unsigned int index,


const char *attributeName,


SceMiEC *ec );

const char *

SceMiParametersAttributeStringValue(


const SceMiParameters *parametersHandle,


const char *objectKind,


unsigned int index,


const char *attributeName,


SceMiEC *ec );

void

SceMiParametersOverrideAttributeIntegerValue(


SceMiParameters *parametersHandle,


const char *objectKind,


unsigned int index,


const char *attributeName,


int value,


SceMiEC *ec );

void

SceMiParametersOverrideAttributeStringValue(


SceMiParameters *parametersHandle,


const char *objectKind,


unsigned int index,


const char *attributeName,


const char *value,


SceMiEC *ec );

5.5.5 SceMiMessageData - message data object

See also XX.

5.5.5.1 Constructor

SceMiMessageData *

SceMiMessageDataNew(


const SceMiMessageInPortProxy *messageInPortProxyHandle,


SceMiEC *ec );

This function returns the handle to a message data object suitable for sending messages on the specified input port proxy.

5.5.5.2 Destructor

void

SceMiMessageDataDelete(


SceMiMessageData *messageDataHandle );

5.5.5.3 Accessors

unsigned int

SceMiMessageDataWidthInBits(


const SceMiMessageData *messageDataHandle );

unsigned int

SceMiMessageDataWidthInWords(


const SceMiMessageData *messageDataHandle );

void

SceMiMessageDataSet(


SceMiMessageData *messageDataHandle,


unsigned int i,


SceMiU32 word,


SceMiEC *ec );

void

SceMiMessageDataSetBit(


SceMiMessageData *messageDataHandle,

    unsigned int i,

    int bit,

    SceMiEC *ec );

void

SceMiMessageDataSetBitRange(


SceMiMessageData *messageDataHandle,

    unsigned int i,

    unsigned int range,

    SceMiU32 bits,

    SceMiEC *ec );

SceMiU32

SceMiMessageDataGet(


const SceMiMessageData *messageDataHandle,


unsigned int i


SceMiEC *ec );

int

SceMiMessageDataGetBit(


const SceMiMessageData *messageDataHandle,

    unsigned int i,

    SceMiEC *ec );

SceMiU32

SceMiMessageDataGetBitRange(

    const SceMiMessageData *messageDataHandle,

    unsigned int i,

    unsigned int range,

    SceMiEC *ec );

SceMiU64

SceMiMessageDataCycleStamp(


const SceMiMessageData *messageDataHandle );

5.5.6 SceMiMessageInPortProxy - message input port proxy

See also XX.

5.5.6.1 Sending input messages

void

SceMiMessageInPortProxySend(


SceMiMessageInPortProxy *messageInPortProxyHandle,


const SceMiMessageData *messageDataHandle,


SceMiEC *ec );

5.5.6.2 Replacing port binding

void SceMiMessageInPortProxyReplaceBinding(


SceMiMessageInPortProxy *messageInPortProxyHandle,


const SceMiMessageInPortBinding* binding,


SceMiEC* ec );

5.5.6.3 Accessors

const char *

SceMiMessageInPortProxyTransactorName(


const SceMiMessageInPortProxy *messageInPortProxyHandle );

const char *

SceMiMessageInPortProxyPortName(


const SceMiMessageInPortProxy *messageInPortProxyHandle );

unsigned

SceMiMessageInPortProxyPortWidth(


const SceMiMessageInPortProxy *messageInPortProxyHandle );

5.5.7 SceMiMessageOutPortProxy - message output port proxy

See also XX.

5.5.7.1 Replacing port binding

void SceMiMessageOutPortProxyReplaceBinding(


SceMiMessageOutPortProxy *messageOutPortProxyHandle,


const SceMiMessageOutPortBinding* binding,


SceMiEC* ec );

5.5.7.2 Accessors

const char *

SceMiMessageOutPortProxyTransactorName(


const SceMiMessageOutPortProxy *messageOutPortProxyHandle );

const char *

SceMiMessageOutPortProxyPortName(


const SceMiMessageOutPortProxy *messageOutPortProxyHandle );

unsigned

SceMiMessageOutPortProxyPortWidth(


const SceMiMessageInPortProxy *messageOutPortProxyHandle );
