
Standard Co-Emulation
Modeling Interface (SCE-MI)

Reference Manual

Version 1.1.0

January 13th, 2005

Copyright © 2003-2005 by Accellera. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means —
graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems — without the prior approval of Accellera.

Additional copies of this manual may be purchased by contacting Accellera at the address shown below.

Notices

The information contained in this manual represents the definition of the SCE-MI as reviewed and released by
Accellera in January 2005.

Accellera reserves the right to make changes to the SCE-MI and this manual in subsequent revisions and makes
no warranties whatsoever with respect to the completeness, accuracy, or applicability of the information in this
manual, when used for production design and/or development.

Accellera does not endorse any particular simulator or other CAE tool that is based on the SCE-MI.

Suggestions for improvements to the SCE-MI and/or to this manual are welcome. They should be sent to the
SCE-MI email reflector

brian_bailey@acm.org

or to the address below.

The current Working Group’s website address is

www.eda.org/itc

Information about Accellera and membership enrollment can be obtained by inquiring at the address below.

Published as: SCE-MI Reference Manual
Version 1.1.0, January 13th, 2005.

Published by: Accellera
1370 Trancas Street, #163
Napa, CA 94558
Phone: (707) 251-9977
Fax: (707) 251-9877

Printed in the United States of America.
ii SCE-MI Reference Manual Version 1.1.0

The following individuals were major contributors to the creation of the original version of this standard: Duaine
Pryor, Jason Andrews, Brian Bailey, John Stickley, Linda Prowse-Fossler, Gerard Mas, John Colley, Jan
Johnson, and Andy Eliopoulos.

The following individuals contributed to the creation, editing, and review of SCE-MI Reference Manual Version
1.1.0 or to prior versions of this standard.

Jason Andrews Axis

Brian Bailey Independent Consultants ITC Workgroup Chair

Per Bojsen Zaiq Technologies

Dennis Brophy Mentor Graphics

Joseph Bulone ST Microelectronics

Andrea Castelnuovo ST Microelectronics

Fabrice Charpentier ST Microelectronics

Damien Deneault Zaiq Technologies

Andy Eliopoulos Cadence

Vassilios Gerousis Infineon

Richard Hersemeule ST Microelectronics

Jan Johnson Mentor Graphics

Matt Kopser Cadence

Todd Massey Verisity

Shabtay Matalon Cadence

Richard Newell Aptix

Nish Parikh Synopsys

Duiane Pryor Mentor Graphics SCE-MI Subcommittee Chair

Joe Sestrich Zaiq Technologies

John Stickley Mentor Graphics

Russell Vreeland Broadcom

Irit Zilberberg Cadence
Version 1.1.0 SCE-MI Reference Manual iii

Revision history:

Version 1.0 05/29/03

Version 1.1 1/13/05
iv SCE-MI Reference Manual Version 1.1.0

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera
Organization, Inc. Accellera develops its standards through a consensus development process, approved by its
members and board of directors, which brings together volunteers representing varied viewpoints and interests to
achieve the final product. Volunteers are not necessarily members of Accellera and serve without compensation.
While Accellera administers the process and establishes rules to promote fairness in the consensus development
process, Accellera does not independently evaluate, test, or verify the accuracy of any of the information
contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property
or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a
specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera Standard
is subjected to review periodically for revision and update. Users are cautioned to check to determine that they
have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should
rely upon the advice of a competent professional in determining the exercise of reasonable care in any given
circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will
initiate action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of
interests. For this reason, Accellera and the members of its Technical Committees are not able to provide an
instant response to interpretation requests except in those cases where the matter has previously received formal
consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments. Comments on standards and requests for interpretations
should be addressed to:

Accellera Organization
1370 Trancas Street #163
Napa, CA 94558
USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
Version 1.1.0 SCE-MI Reference Manual v

validity of any patent rights in connection therewith. Accellera shall not be responsible for identifying patents for
which a license may be required by an Accellera standard or for conducting inquiries into the legal validity or
scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks
to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by
Accellera Organization, Inc., provided that permission is obtained from and any required fee is paid to Accellera.
To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163, Napa, CA
94558, phone (707) 251-9977, e-mail lynn@accellera.org. Permission to photocopy portions of any individual
standard for educational classroom use can also be obtained from Accellera.
vi SCE-MI Reference Manual Version 1.1.0

Table of Contents

1. Overview..1

1.1 Scope..1
1.2 Purpose...1
1.3 Usage ...1
1.4 Performance goals..2
1.5 Document conventions ..2
1.6 Contents of this standard..2

2. References..5

3. Definitions ...7

3.1 Terminology...7
3.2 Acronyms and abbreviations ...11

4. Use model ..13

4.1 High-level description..13
4.2 Support for environments ..14

4.2.1 Multi-threaded environments ..14
4.2.2 Single-threaded environments...14

4.3 Users of the interface ...14
4.3.1 End-user...14
4.3.2 Transactor implementor ..15
4.3.3 SCE-MI infrastructure implementor ...15

4.4 Bridging levels of modeling abstraction..15
4.4.1 Untimed software level modeling abstraction...15
4.4.2 Cycle-accurate hardware level modeling abstraction..16
4.4.3 Messages and transactions...17
4.4.4 Controlled and uncontrolled time..18

4.5 Work flow ..20
4.5.1 Software model compilation ...20
4.5.2 Infrastructure linkage ..20
4.5.3 Hardware model elaboration ...20
4.5.4 Software model construction and binding...20

4.6 SCE-MI interface components...21
4.6.1 Hardware side interface components ..21
4.6.2 Software side interface components..21

5. Formal specification ..23

5.1 General...23
5.1.1 Reserved Namespaces ...23
5.1.2 Header Files...23
5.1.3 Const Argument Types..23
5.1.4 Argument Lifetimes ..23

5.2 Hardware side interface macros...23
Version 1.1.0 SCE-MI Reference Manual vii

5.2.1 Dual-ready protocol.. 23
5.2.2 SceMiMessageInPort macro .. 24
5.2.3 SceMiMessageOutPort macro.. 27
5.2.4 SceMiClockPort macro.. 29
5.2.5 SceMiClockControl macro .. 33

5.3 Infrastructure linkage .. 37
5.3.1 Parameters .. 37
5.3.2 Parameter file.. 39

5.4 Software side interface - C++ API.. 39
5.4.1 Primitive data types .. 39
5.4.2 Miscellaneous interface issues.. 39
5.4.3 Class SceMi - SCE-MI software side interface .. 42
5.4.4 Class SceMiParameters - parameter access .. 48
5.4.5 Class SceMiMessageData - message data object... 52
5.4.6 Class SceMiMessageInPortProxy54
5.4.7 Class SceMiMessageOutPortProxy56

5.5 Software side interface - C API .. 57
5.5.1 Primitive data types .. 57
5.5.2 Miscellaneous interface support issues... 58
5.5.3 SceMi - SCE-MI software side interface .. 59
5.5.4 SceMiParameters - parameter access.. 60
5.5.5 SceMiMessageData - message data object .. 61
5.5.6 SceMiMessageInPortProxy - message input port proxy ... 62
5.5.7 SceMiMessageOutPortProxy - message output port proxy....................................... 63

(informative)Tutorial .. 65

A.1 Hardware side interfacing ... 65
A.1.1 Required dimensions... 65
A.1.2 Hardware side interface connections .. 66
A.1.3 SceMiClockPort macro instantiation ... 66
A.1.4 Analyzing the netlist ... 67

A.2 The Routed tutorial .. 67
A.2.1 What the design does .. 67
A.2.2 System hierarchy... 69
A.2.3 Hardware side ... 70
A.2.4 The software side .. 77

(informative)Multi-clock hardware side interface example.. 93

(informative)VHDL SceMiMacros package... 97

(informative)Applying the SCE-MI to event-based systems.. 99

(informative)Sample Header files for the SCE-MI... 101

(informative)Bibliography .. 121
viii SCE-MI Reference Manual Version 1.1.0

1. Overview

1.1 Scope

The scope of this document shall be restricted to what is specifically referred to herein as the Standard Co-Emu-
lation API: Modeling Interface (SCE-MI).

1.2 Purpose

There is an urgent need for the EDA industry to meet the exploding verification requirements of SoC design
teams. While the industry has delivered verification performance in the form of a variety of emulation and rapid
prototyping platforms, there remains the problem of connecting them into SoC modeling environments while
realizing their full performance potential. Existing standard verification interfaces were designed to meet the
needs of design teams of over 10 years ago. A new type of interface is needed to meet the verification challenges
of the next 10 years. This standard defines a multichannel communication interface which addresses these chal-
lenges and caters to the needs of both emulation end-users and emulation suppliers.

The SCE-MI can be used to solve the following emulation customer problems.

— All emulators on the market today have proprietary APIs. The proliferation of APIs makes it very diffi-
cult for software-based verification products to port to the different emulators, thus restricting the solu-
tions available to customers. This also leads to low productivity and low return on investment (ROI) for
emulator customers who build their own solutions.

— The emulation “APIs” which exist today are oriented to gate-level and not system-level verification.
— The industry needs an API which takes full advantage of emulation performance.
— This enables the portability of transactor models between emulation vendors, making it possible for IP

providers to write a single model.

The SCE-MI can also be used to solve the following emulation supplier problems.

— Customers are reluctant to invest in building applications on proprietary APIs.
— Traditional simulator APIs like programmable language interface (PLI) and VHDL PLI slow down emu-

lators.
— Third parties are reluctant to invest in building applications on proprietary APIs.

1.3 Usage

This specification describes a modeling interface which provides multiple channels of communication that allow
software models describing system behavior to connect to structural models describing implementation of a
device under test (DUT). Each communication channel is designed to transport untimed messages of arbitrary
abstraction between its two end points or “ports” of a channel.

These message channels are not meant to connect software models to each other, but rather to connect software
proxy models to message port interfaces on the hardware side of the design. The means to interconnect software
models to each other shall be provided by a software modeling and simulation environment, such as SystemC,
which is beyond the scope of this document.

Although the software side of a system can be modeled at several different levels of abstraction, including
untimed, cycle-accurate, and even gate-level, the focus of SCE-MI Version 1.1.0 is to interface purely untimed
software models with a register transfer level- (RTL) or gate-level DUT.

This can be summarized with the following recommendations regarding the API.
Version 1.1.0 SCE-MI Reference Manual 1

Overview
— Do not use it to bridge event-based or subcycle-accurate simulation environments.
— It is possible, but not ideal, to use this to bridge cycle accurate simulation environments.
— It is best used for bridging an untimed simulation environment with a cycle-accurate simulation environ-

ment.

See Appendix D for some recommendations on connecting to event-based simulation environments.

NOTE—There are many references in the document to SystemC (see [B2]) as the modeling environment for untimed soft-
ware models. This is because, although SystemC is capable of modeling at the cycle accurate RTL abstraction level, it is also
considered ideally suited for untimed modeling. As such, it has been chosen for use in many of the examples in this docu-
ment.

1.4 Performance goals

While software side of the described interface is generic in its ability to be used in any C/C++ modeling environ-
ment, it is designed to integrate easily with non-preemptive multi-threaded C/C++ modeling environments, such
as SystemC (see [B2]). Similarly, its hardware side is optimized to prevent undue throttling of an emulator dur-
ing a co-modeling session run.

Throughout this document the term emulation or emulator is used to denote a structural or RTL model of a DUT
running in an emulator, rapid prototype, or other simulation environment, including software HDL simulators.

That said, however, the focus of the design of this interface is to avoid communication bottlenecks which might
become most apparent when interfacing software models to an emulator as compared to interfacing them to a
slower software HDL simulator or even an HDL accelerator. Such bottlenecks can severely compromise the per-
formance of an emulator, which is otherwise very fast. Although some implementations of the interface can be
more inefficient than others, there shall be nothing in the specification of the interface itself that renders it inher-
ently susceptible to such bottlenecks.

For this reason, the communication channels described herein are message- or transaction-oriented, rather than
event-oriented, with the idea that a single message over a channel originating from a software model can trigger
dozens to hundreds of clocked events in the hardware side of the channel. Similarly, it can take thousands of
clocked events on the hardware side to generate the content of a message on a channel originating from the hard-
ware which is ultimately destined for an untimed software model.

1.5 Document conventions

This standard uses the following documentation notations.

— Any references to actual literal names that can be found in source code, identifiers that are part of the
API, file names, and other literal names are represented in courier font.

— Key concept words or phrases are italicized. See Chapter 3 for further definitions of these terms.

1.6 Contents of this standard

The organization of the remainder of this standard is

— Chapter 2 (References) provides references to other applicable standards that are assumed or required for
this standard.

— Chapter 3 (Definitions) defines terms used throughout this standard.
— Chapter 4 (Use model) provides an overall description and use model for the SCE Modeling Interface

(SCE-MI).
— Chapter 5 (Formal specification) is a formal functional specification of the API itself.
2 SCE-MI Reference Manual Version 1.1.0

Overview
— Appendix A (Tutorial) is a tutorial showing the use model in a simple application.
— Appendix B (Multi-clock hardware side interface example) provides a simple multi-clock, multi-transac-

tor schematic example and its VHDL code listing.
— Appendix C (VHDL SceMiMacros package) provides a VHDL package which can be used to supply

SCE-MI macro component declarations to an application.
— Appendix D (Applying the SCE-MI to event-based systems) provides some recommendations on con-

necting to event-based simulation environments.
— Appendix E (Sample header files for the SCE-MI) provides headers for both C and C++ implementa-

tions.
— Appendix F (Bibliography) provides additional documents, to which reference is made only for informa-

tion or background purposes.
Version 1.1.0 SCE-MI Reference Manual 3

Overview
4 SCE-MI Reference Manual Version 1.1.0

2. References

This standard shall be used in conjunction with the following publications. When any of the following standards
is superseded by an approved revision, the revision shall apply.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference Manual.

IEEE Std 1364-2001, IEEE Standard for Verilog Hardware Description Language.
Version 1.1.0 SCE-MI Reference Manual 5

References
6 SCE-MI Reference Manual Version 1.1.0

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of
Electrical and Electronics Terms [B1] should be referenced for terms not defined in this standard.

3.1 Terminology

This section defines the terms used in this standard.

3.1.1 abstraction bridge: A collection of abstraction gasket components that disguise a bus-cycle accurate, reg-
ister transfer level, device under test (BCA RTL DUT) model as a purely untimed model. The idea is that to the
untimed testbench models, the DUT itself appears untimed (see Figure 5) when, in fact, it is a disguised BCA
model (see Figure 6).

3.1.2 abstraction gasket: A special model that can change the level of abstraction of data flowing from its input
to output and vice versa. For example, an abstraction gasket might convert an untimed transaction to a series of
cycle accurate events. Or, it might assemble a series of events into a single message. BCASH (bus-cycle accurate
shell) models and transactors are examples of abstraction gaskets.

3.1.3 behavioral model: See: untimed model.

3.1.4 bridge netlist: The bridge netlist is the top level of the user-supplied netlist of components making up the
hardware side of a co-modeling process. The components typically found instantiated immediately under the
bridge netlist are transactors, DUT, and SceMiClockPort macros. By convention, the top level netlist mod-
ule the user supplies to the infrastructure linker is called Bridge and, for Verilog (see IEEE Std 1364-2001)1, is
placed in a file called Bridge.v.

3.1.5 co-emulation: A shorthand notation for co-emulation modeling, also known as co-modeling. See also: co-
modeling.

3.1.6 co-modeling: Although it has broader meanings outside this document, here co-modeling specifically
refers to transaction-oriented co-modeling in contrast to a broader definition of co-modeling which might
include event-oriented co-modeling. Also known as co-emulation modeling, transaction-oriented co-modeling
describes the process of modeling and simulating a mixture of software models represented with an untimed
level of abstraction, simultaneously executing and inter-communicating through an abstraction bridge, with
hardware models represented with the RTL level of abstraction, and running on an emulator. Figure 1 depicts
such a configuration, where the Standard Co-Emulation API - Modeling Interface (SCE-MI) is being used as the
abstraction bridge. See 3.2 for definitions of the acronyms used here.

Figure 1—Using the SCE-MI as an abstraction bridge

1For more information on references, see Chapter 2.

ISS
B

F
M

BCASH

RTC

SCE-MI gate
netlist

Hardware

Emulator

Software
Models

Abstraction
Bridge Models
Version 1.1.0 SCE-MI Reference Manual 7

Definitions
Another illustration can be seen in Figure 4.

3.1.7 controlled clock (cclock): The clock that drives the DUT and can be disabled by any transactor during
operations which would result in erroneous operation of the DUT when it is clocked. When performing such
operations, any transactor can “freeze” controlled time long enough to complete the operation before allowing
clocking of the DUT to resume. The term cclock is often used throughout this document as a synonym for con-
trolled clock.

3.1.8 controlled time: Time which is advanced by the controlled clock and frozen when the controlled clock is
suspended by one or more transactors. Operations occurring in uncontrolled time, while controlled time is fro-
zen, appear between controlled clock cycles.

3.1.9 co-simulation: The execution of software models modeled with different levels of abstraction that interact
with each other through abstraction gaskets similar to BCASH (bus-cycle accurate shell) models. Figure 2 illus-
trates such a configuration. (See 3.2 for definitions of the acronyms used here.)

Figure 2—Modeling abstraction gaskets

The key difference between co-simulation and co-emulation is the former typically couples software models to a
traditional HDL simulator interface through a proprietary API, whereas the latter couples software models to an
emulator through an optimized transaction oriented message passing interface, such as SCE-MI.

3.1.10 cycle stamping: A process where messages are tagged with the number of elapsed counts of the fastest
controlled clock in the hardware side of a co-modeled design.

3.1.11 don’t care duty cycle: A posedge active don’t care duty cycle is a way of specifying a duty cycle where
the user only cares about the posedge of the clock and does not care about where in the period the negedge falls,
particularly in relation to other cclocks in a functional simulation. In such a case, the DutyHi parameter is
given as a 0. The DutyLo can be given as an arbitrary number of units which represent the whole period such
that the Phase offset can still be expressed as a percentage of the period (i.e., DutyHi+DutyLo). See 5.2.4.1
for more details.

A negedge active don’t care duty cycle is a way of specifying a duty cycle where the user only cares about the
negedge of the clock and does not care about where in the period the posedge falls, particularly in relation to
other cclocks in a functional simulation. In such a case, the DutyLo parameter is given as a 0. The DutyHi
can be given as an arbitrary number of units that represent the whole period such that the Phase offset can still
be expressed as a percentage of the period (i.e., DutyHi+DutyLo). See 5.2.4.1 for more details.

ISS

B

F
M

BCASH UTC BCASH RTC

HDL

C-algorithm
8 SCE-MI Reference Manual Version 1.1.0

Definitions
3.1.12 device or design under test (DUT): A device or design under test that can be modeled in hardware and
stimulated and responded to by a software testbench through an abstraction bridge such as the SCE-MI shown in
Figure 3.

Figure 3—Modeling a DUT via an abstraction bridge

3.1.13 DUT proxy: A model or collection of models that presents (to the rest of the system) an interface to the
design under test which is untimed. This is accomplished by a translation of untimed messages to cycle-accurate
pin activity. A DUT proxy contains one or more abstraction bridges which perform this function. If the abstrac-
tion bridge is SCE-MI, the untimed communication is handled by message port proxy interfaces to the message
channels. See Figure 6 for an illustration of DUT proxies.

3.1.14 Fastest Clock: If the user instantiates a 1/1 cclock without a don't care duty cycle, then that becomes the
fastest clock in the system, although it limits performance to be only half as fast as the uclock, since in this case,
both edges must be scheduled on posedges of uclock.

3.1.15 hardware model: A model of a block that has a structural representation (i.e., as a result of synthesis or a
gate netlist generated by an appropriate tool) which is mapped onto the hardware side of a co-modeling process
(i.e., an emulator or other hardware simulation platform). It can also be real silicon (i.e., a CPU core or memory
chip) plugged into an emulator or simulation accelerator.

3.1.16 hardware side: See: software side.

3.1.17 infrastructure linkage process: The process that reads a user description of the hardware, namely the
source or bridge netlist describing the interconnect between the transactors, the DUT, and the SCE-MI interface
components, and compiles that netlist into a form suitable for executing in a co-modeling session. Part of this
compile process can include adding more structure to the bridge netlist it properly interfaces the user-supplied
netlist to the SCE-MI infrastructure implementation components.

3.1.18 macros: These are implementation components provided by a hardware emulator vendor to implement
the hardware side of the SCE-MI infrastructure, examples include: SceMiMessageInPort, SceMiMessa-
geOutPort, SceMiClockControl, and SceMiClockPort.

3.1.19 message: A data unit of arbitrary size and abstraction to be transported over a channel. Messages are gen-
erally not associated with specific clocked events, but can trigger or result from many clocks of event activity.
For the most part, the term message can be used interchangeably with transaction. However, in some contexts,
transaction could be thought of as including infrastructure overhead content in addition to user payload data (and
handled at a lower layer of the interface), whereas the term message denotes only user payload data.

SW model
(testbench)

SCE-MI

Hardware Emulator
DUT

CPU IP

MEM
core

In
file

Out
file
Version 1.1.0 SCE-MI Reference Manual 9

Definitions
3.1.20 message channel: A two-ended conduit of messages between the software and hardware sides of an
abstraction bridge.

3.1.21 message port: The hardware side of a message channel. Transactors use these ports to gain access to
messages being sent across the channel to or from the software side.

3.1.22 message port proxy: The software side of a message channel. DUT proxies or other software models use
these proxies to gain access to messages being sent across the channel to or from the hardware side.

3.1.23 negedge: This refers to the falling edge of a clock.

3.1.24 posedge: This refers to the rising edge of a clock.

3.1.25 service loop: This function or method call allows a set of software models running on a host workstation
to yield access to the SCE-MI software side so any pending input or output messages on the channels can be ser-
viced. The software needs to frequently call this throughout the co-modeling session in order to avoid backup of
messages and minimize the possibility of system deadlock. In multi-threaded environments, place the service
loop call in its own continually running thread. See 5.4.3.7 for more details.

3.1.26 software model: A model of a block (hardware or software) that is simulated on the software side of a co-
modeling session (i.e., the host workstation). Such a model can be an algorithm (C or C++) running on an ISS, a
hardware model that is modeled using an appropriate language environment, such as SystemC, or an HDL simu-
lator.

3.1.27 software side: This term refers to the portion of a user’s design which, during a co-modeling session, runs
on the host workstation, as opposed to the portion running on the emulator (which is referred to as the hardware
side). The SCE-MI infrastructure itself is also considered to have software side and hardware side components.

3.1.28 structural model: A netlist of hardware models or other structural models. Because this definition is
recursive, by inference, structural models have hierarchy.

3.1.29 transaction: See: message.

3.1.30 transactor: A form of an abstraction gasket. A transactor decomposes an untimed transaction to a series
of cycle-accurate clocked events, or, conversely, composes a series of clocked events into a single message.
When receiving messages, transactors have the ability to “freeze” controlled time long enough to allow message
decomposition operations to complete before presenting clocked data to a DUT. And when sending messages,
they can freeze controlled time and allow message composition operations to complete before new clocked data
is flooded in from a DUT.

3.1.31 uncontrolled clock (uclock): A free-running system clock, generated internally by the SCE-MI infra-
structure, which is used only within transactor modules to advance states in uncontrolled time. The term uclock
is often used throughout this document as a synonym for uncontrolled clock.

3.1.32 uncontrolled reset: This is the system reset, generated internally by the SCE-MI infrastructure, which is
used only with transactor modules. This signal is high at the beginning of simulated time and transitions to low
an arbitrary (implementation-dependent) number of uclocks later. It can be used to reset a transactor. The con-
trolled reset is generated exactly once by the SCE-MI hardware side infrastructure at the very beginning of a co-
modeling session.

3.1.33 uncontrolled time: Time that is advanced by the uncontrolled clock, even when the controlled clock is
suspended (and controlled time is frozen).
10 SCE-MI Reference Manual Version 1.1.0

Definitions
3.1.34 untimed model: A block that is modeled algorithmically at the functional level and exchanges data with
other models in the form of messages. An untimed model has no notion of a clock. Rather, its operation is trig-
gered by arriving messages and it can, in turn, trigger operations in other untimed models by sending messages.

3.2 Acronyms and abbreviations

This section lists the acronyms and abbreviations used in this standard.

API Application Programming Interface
BCA Bus-Cycle Accurate model - sometimes used interchangeably with RTL model
BCASH Bus-Cycle Accurate SHell model
BFM Bus Functional Model
BNF extended Backus-Naur Form
DUT Device or Design Under Test
EDA Electronic Design Automation
HDL Hardware Description Language
ISS Instruction Set Simulator
RTC Register Transfer Level C model
RTL Register Transfer Level
SCE-API Standard Co-Emulation API
SCE-MI Standard Co-Emulation API - Modeling Interface
UT or UTC Untimed C model
VHDL VHSIC Hardware Description Language
Version 1.1.0 SCE-MI Reference Manual 11

Definitions
12 SCE-MI Reference Manual Version 1.1.0

4. Use model

The SCE-MI provides a message-passing environment which connects a model written in HDL to a model run-
ning on a workstation. The software side of the interface allows access from the workstation side, while the hard-
ware side of the interface allows access from the HDL side. This interface is intended to be used in several
different use models and by several different groups of users.

4.1 High-level description

Figure 4 shows a high-level view of how SCE-MI interconnects untimed software models to structural hardware
transactor and DUT models.

Figure 4—High-level view of run-time components

The SCE-MI provides a transport infrastructure between the emulator and host workstation sides of each chan-
nel, which interconnects transactor models in the emulator to C (untimed or RTL) models on the workstation.
For purposes of this document, the term emulator can be used interchangeably with any simulator capable of
executing RTL or gate-level models, including software HDL simulators.

These interconnects are provided in the form of message channels that run between the software side and the
hardware side of the SCE-MI infrastructure. Each message channel has two ends. The end on the software side is
called a message port proxy, which is a C++ object that gives API access to the channel. The end on the hardware
side is a message port macro, which is instantiated inside a transactor and connected to other components in the
transactor. Each message channel is either an input or an output channel with respect to the hardware side.

NOTE—While all exposition in this standard is initially given using C++, C equivalents exist for all functionality. See Chap-
ter 5 for more details.

Message channels are not unidirectional or bidirectional busses in the sense of hardware signals, but are more
like network sockets that use message passing protocols. It is the job of the transactors to serve as abstraction
gaskets and decompose messages arriving on input channels from the software side into sequences of cycle-

DUT

 C/C++ kernel

UTC Model

UTC Model

RTC Model

UTC Model

Software Side (host workstation) Hardware Side (emulator)

SCE-MI Infrastructure

Message Port
Proxy 1

Message Port
Proxy 2

Message Port
Proxy 3

Transactor 2

Transactor 1Message
Port 1

Message
Port 2

Message
Port 3

Clock/Reset
Generation
and Control

such as SystemC
Version 1.1.0 SCE-MI Reference Manual 13

Use model
accurate events which can be clocked into the DUT. For the other direction of flow, transactors recompose
sequences of events coming from the DUT back into messages to be sent via output channels to the software
side.

In addition, the SCE-MI infrastructure provides clock (and reset) generation and shared clock control using
handshake signals with the transactor. This allows the transactor to “freeze” controlled time while performing
message composition and decomposition operations.

4.2 Support for environments

The SCE-MI provides support for both single and multi-threaded environments.

4.2.1 Multi-threaded environments

The SCE-MI is designed to couple easily with multi-threaded environments, such as SystemC, yet it also func-
tions just as easily in single-threaded environments, such as simple C programs. SCE-MI provides a special ser-
vice loop function (see 5.4.3.7), which can be called from an application to give the SCE-MI infrastructure an
opportunity to service its communication channels. Calls to service loop result in the sending of queued input
messages to hardware and the dispatch of arriving output messages to the software models.

While there is no thread-specific code inside the service loop function (or elsewhere in the SCE-MI), this func-
tion is designed to be called periodically from a dedicated thread within a multi-threaded environment, so the
interface is automatically serviced while other threads are running.

4.2.2 Single-threaded environments

In a single-threaded environment, calls to the service loop function can be “sprinkled” throughout the application
code at strategically placed points to frequently yield control of the CPU to the SCE-MI infrastructure so it can
service its messages channels.

4.3 Users of the interface

A major goal of this specification is to address the needs of three target audiences, each with a distinct interest in
using the interface. The target audiences are:

— end-user
— transactor implementor
— SCE-MI infrastructure implementor

4.3.1 End-user

The end-user is interested in quickly and easily establishing a bridge between a software testbench which can be
composed of high-level, untimed, algorithmic software models, and a hardware DUT which can be modeled at
the RTL, cycle-accurate level of abstraction.

While end-users might be aware of the need for a “gasket” that bridges these two levels of abstraction, they want
the creation of these abstraction bridges to be as painless and automated as possible. Ideally, the end-users are
not required to be familiar with the details of SCE-MI API. Rather, on the hardware side, they might wish to rely
on the transactor implementor (see 4.3.2) to provide predefined transactor models which can directly interface
to their DUT. This removes any requirement for them to be familiar with any of the SCE-MI hardware-side inter-
face macros (see 5.2,) except the SceMiClockPort macro, whose interface is easy to understand because all it
really does is furnish a clock and a reset.
14 SCE-MI Reference Manual Version 1.1.0

Use model
Similarly, on the software side, the end-users can also rely on the transactor implementors to furnish them with
plug-and-play software models, custom-tailored for a software modeling environment, such as SystemC. Such
models can encapsulate the details of interfacing to the SCE-MI software side and present a fully untimed, easy-
to-use interface to the rest of the software testbench.

4.3.2 Transactor implementor

The transactor implementor is familiar with the SCE-MI, but is not concerned with its implementation. The
transactor implementor provides plug-and-play transactor models on the hardware side and proxy models on the
software side which end-users can use to easily bridge their untimed software models with their RTL-represented
DUT. Additionally, the transactor implementor can supply proxy models on the software side which provide
untimed “sockets” to the transactors.

Using the models is like using any other vendor-supplied, stand-alone IP models and the details of bridging not
only two different abstraction levels, but possibly two different verification platforms (such as SystemC and an
emulator), is completely hidden within the implementations of the models which need to be distributed with the
appropriate object code, netlists, RTL code, configuration files, and documentation.

4.3.3 SCE-MI infrastructure implementor

The SCE-MI infrastructure implementor is interested in furnishing a working implementation of an SCE-MI that
runs on some vendor-supplied verification platform, including both the software side and the hardware side com-
ponents of the SCE-MI. For such a release to be complaint, it needs to conform to all the requirements set forth in
this specification.

4.4 Bridging levels of modeling abstraction

The central goal of this specification is to provide an interface designed to bridge two modeling environments,
each of which supports a different level of modeling abstraction.

4.4.1 Untimed software level modeling abstraction

Imagine a testbench consisting of several, possibly independent models that stimulate and respond to a DUT at
different interface points (as depicted in Figure 5). This configuration can be used to test a processor DUT which
has some communications interfaces that can include an ethernet adapter, a PCI interface, and a USB interface.
The testbench can consist of several models that independently interact with these interfaces, playing their proto-
cols and exchanging packets with them. These packets can be recoded as messages with the intent of verifying
the processor DUT’s ability to deal with them. Initially, the system shown in Figure 5 might be implemented
fully at the untimed level of abstraction by using the SystemC software modeling environment.

Suppose the ultimate desire here is to create a cycle-accurate RTL model of a design and eventually synthesize
this model to gates that can be verified on a high speed emulation platform. Afterwards, however, they might
also be tested with the unaltered, untimed testbench models. To do all of this requires a way of somehow bridg-
ing the untimed level of abstraction to the bus-cycle accurate (BCA) level.
Version 1.1.0 SCE-MI Reference Manual 15

Use model
Figure 5—Untimed software testbench and DUT models

4.4.2 Cycle-accurate hardware level modeling abstraction

Take the purely untimed system shown in Figure 5, “pry apart” the direct coupling between the testbench models
and the untimed DUT model, and insert an abstraction bridge from the still untimed system testbench model to
what is now a emulator resident, RTL-represented DUT. This bridge consists of a set of DUT proxy models,
SCE-MI message input and output port proxies, a set of message channels which are transaction conduits
between the software simulator and the emulator, message input and output ports, and a set of user implemented
transactors. Figure 6 depicts this new configuration.

The SCE-MI infrastructure performs the task of serving as a transport layer that guarantees delivery of messages
between the message port proxy and message port ends of each channel. Messages arriving on input channels are
presented to the transactors through message input ports. Similarly, messages arriving on output channels are
dispatched to the DUT proxy software models via message output port proxies which present them to the rest of
the testbench as if they had come directly from the original untimed DUT model (shown in Figure 5). In fact, the
testbench models do not know the messages have actually come from and gone to a totally different abstraction
level.

The DUT input proxies accept untimed messages from various C models and send them to the message input
port proxies for transport to the hardware side. The DUT output proxies establish callbacks that monitor the mes-
sage output port proxies for arrival of messages from the hardware side. In other words, the SCE-MI infrastruc-
ture dispatches these messages to the specific DUT proxy models to which they are addressed.

T
B

 M
od

el
 0

Untimed
Testbench (TB) Models

Untimed
DUT Model

T
B

 M
od

el
 1

T
B

 M
od

el
 N

-1
DUT Model
16 SCE-MI Reference Manual Version 1.1.0

Use model

U
Testb

el
)

T
B

 M
od

el
 0

T
B

 M
od

el
 1

T
B

 M
od

el
 N

-1

T

Taking this discussion back to the context of users of the interface described in 4.3, the end-user only has to
know how to interface the DUT proxy models on the software side of Figure 6 with the transactor models on the
hardware side; whereas, the transactor implementor authors the proxy and transactor models using the SCE-MI
message port and clock control components between them, and provides those models to the end-user.

Figure 6— Multi-channel abstraction bridge architecture

4.4.3 Messages and transactions

In a purely untimed modeling environment, messages are not associated with specific clocks or events. Rather,
they can be considered arbitrary data types ranging in abstraction from a simple bit, boolean, or integer, on up to
something as complex as a C++ class or even some aggregate of objects. It is in this form that messages can be

User-Defined DUT
Proxy

Abstraction Bridge

ntimed
ench Models

SCE-MI Infrastructure User-Defined
Transactors

DUT Mod
(RTL, BCA

Message Input
Port Proxy 0

Message Output
Port Proxy 0

Message Input
Port Proxy 1

Message Output
Port Proxy N-1

X
ac

to
r

0
X

ac
to

r
1

Message Output
Port 0

Message Input
Port 0

Message Input
Port 1

Message Output
Port N-1

X
ac

to
r

N
-1

Message Channels

DUDUT
Proxy

Hardware SideSoftware Side
Version 1.1.0 SCE-MI Reference Manual 17

Use model
transported either by value or by reference over abstract ports between fully untimed software models of the sort
described in Figure 5 (and, in substantially more detail, in [B2]).

However, before messages can be transported over an SCE-MI message channel, they need to be serialized into a
large bit vector by the DUT proxy model. Conversely, after a message arrives on a message output channel and is
dispatched to a DUT output proxy model, it can be de-serialized back into an abstract C++ data type. At this
point, it is ready for presentation at the output ports of the DUT proxy to the connected software testbench mod-
els.

Meanwhile, on the hardware side, a message arriving on the message input channel can trigger dozens to hun-
dreds of clocks of event activity. The transactor decomposes the message data content to sequences of clocked
events that are presented to the DUT hardware model inputs. Conversely, for output messages, the transactor can
accept hundreds to thousands of clocked events originating from the DUT hardware model and then assemble
them into serialized bit streams which are sent back to the software side for de-serialization back into abstract
data types.

For the most part, the term message can be used interchangeably with transaction. However, in some contexts,
transaction can be thought of as including infrastructure overhead content, in addition to user payload data (and
handled at a lower layer of the interface), whereas the term message denotes only user payload data.

4.4.4 Controlled and uncontrolled time

One of the implications of converting between message bit streams and clocked events is the transactor might
need to “freeze” controlled time while performing these operations so the controlled clock that feeds the DUT is
stopped long enough for the operations to occur.

Visualizing the transactor operations strictly in terms of controlled clock cycles, they appear between edges of
the controlled clock, as shown in the controlled time view within Figure 7. But if they are shown for all cycles of
the uncontrolled clock, the waveforms would appear more like the uncontrolled time view shown in Figure 7. In
this view, the controlled clock is suspended or disabled and the DUT is “frozen in controlled time.”

Now, suppose a system has multiple controlled clocks (of possibly differing frequencies) and multiple transac-
tors controlling them. Any one of these transactors has the option of stopping any clock. If this happens, all con-
trolled clocks in the system stop in unison. Furthermore, all other transactors, which did not themselves stop the
clock, shall still sense the clocks were globally stopped and continue to function correctly even though they
themselves had no need to stop the clock. In this case, they might typically idle for the number of uclocks dur-
ing which the cclocks are stopped, as illustrated in Figure 7.
18 SCE-MI Reference Manual Version 1.1.0

Use model
Figure 7—Controlled and uncontrolled time views

In the SCE-MI use model, the semantics of clock control can be described as follows.

— Any transactor can instruct the SCE-MI infrastructure to stop the controlled clock and thus cause con-
trolled time to freeze.

— All transactors are told by the SCE-MI infrastructure when the controlled clock is stopped.
— Any transactor shall function correctly if controlled time is stopped due to operations of another transac-

tor, even if the transactor in question does not itself need to stop the clock.
— A transactor might need to stop the controlled clock when performing operations that involve decomposi-

tion or composition of transactions arriving from or going to a message channel.
— The DUT is always clocked by one or more controlled clocks which are controlled by one or more trans-

actors.
— A transactor shall sample DUT outputs on valid controlled clock edges. The transactor can use a clock

control macro to know when edges occur.
— All transactors are clocked by a free running uncontrolled clock provided by the SCE-MI hardware side

infrastructure.

cclock

Controlled Time View

uclock

cclock

uclock

Transactor operation occurs
while controlled time is
suspended by using extra
uncontrolled clock cycles.

Transactor operation occurs
between edges of controlled clock.

Uncontrolled Time View
Version 1.1.0 SCE-MI Reference Manual 19

Use model
4.5 Work flow

There are four major aspects of work flow involved in constructing a system verification with the SCE-MI envi-
ronment:

— software model compilation
— infrastructure linkage
— hardware model elaboration
— software model construction and binding

4.5.1 Software model compilation

The models to be run on the workstation are compiled using a common C/C++ compiler or they can be obtained
from other sources, such as third-party vendors in the form of IP, ISS simulators, etc. The compiled models are
linked with the software side of the SCE-MI infrastructure to form an executable program.

4.5.2 Infrastructure linkage

Infrastructure linkage is the process that reads a user description of the hardware, namely the source or bridge
netlist which describes the interconnect between the transactors, the DUT, and the SCE-MI interface compo-
nents, and compiles that netlist into a form suitable for emulation. Part of this compile process can involve add-
ing additional structure to the bridge netlist that properly interfaces the user-supplied netlist to the SCE-MI
infrastructure implementation components. Put more simply, the infrastructure linker is responsible for providing
the core of the SCE-MI interface macros on the hardware side.

As part of this process, the infrastructure linker also looks at the parameters specified on the instantiated interface
macros in the user-supplied bridge netlist and uses them to properly establish the dimensions of the interface,
including the:

— number of transactors
— number of input and output channels
— width of each channel
— number of clocks
— clock ratios
— clock duty cycles

Once the final netlist is created, the infrastructure linker can then compile it for the emulation platform and con-
vert it to a form suitable to run on the emulator.

4.5.3 Hardware model elaboration

The compiled netlist is downloaded to the emulator, elaborated, and prepared for binding to the software.

4.5.4 Software model construction and binding

The software executable compiled and linked in the software compilation phase is now executed, which con-
structs all the software models in the workstation process image space. Once construction takes place, the soft-
ware models bind themselves to the message port proxies using special calls provided in the API. Parameters
passed to these calls establish a means by which specific message port proxies can rendezvous with its associated
message port macro in the hardware. Once this binding occurs, the co-modeling session can proceed.
20 SCE-MI Reference Manual Version 1.1.0

Use model
4.6 SCE-MI interface components

The SCE-MI run-time environment consists of a set of interface components on both the hardware side and the
software side of the interface, each of which provides a distinct level of functionality. Each side is introduced in
this section and detailed later in this document (see Chapter 5).

4.6.1 Hardware side interface components

The interface components presented by the SCE-MI hardware side consist of a small set of macros which pro-
vide connection points between the transactors and the SCE-MI infrastructure. These compactly defined and
simple-to-use macros fully present all necessary aspects of the interface to the transactors and the DUT. These
macros are simply represented as empty Verilog or VHDL models with clearly defined port and parameter inter-
faces. This is analogous to a software API specification that defines function prototypes of the API calls without
showing their implementations.

Briefly stated, the four macros present the following interfaces to the transactors and DUT:

— message input port interface
— message output port interface
— controlled clock and controlled reset generator interface
— uncontrolled clock, uncontrolled reset, and clock control logic interfaces

4.6.2 Software side interface components

The interface presented by SCE-MI infrastructure to the software side consists of a set of C++ objects and meth-
ods which provide the following functionality:

— version discovery
— parameter access
— initialization and shutdown
— message input and output port proxy binding and callback registration
— rendezvous operations with the hardware side
— infrastructure service loop polling function
— message input send function
— message output receive callback dispatching
— message input-ready callback dispatching
— error handling

In addition to the C++ object oriented interface, a set of C API functions is also provided for the benefit of pure
C applications.
Version 1.1.0 SCE-MI Reference Manual 21

Use model
22 SCE-MI Reference Manual Version 1.1.0

5. Formal specification

This chapter defines the API calls and macros that make up the entire SCE-MI

5.1 General

This section contains items that relate to all aspects of the specification.

5.1.1 Reserved Namespaces

Prefixes beginning with the three letter sequence s, c, e, or the four letter sequence s, c, e, _ (underscore), in any
case combination, are reserved for use by this standards group.

Prefixes beginning with the five-letter sequence s, c, e, m, i, or the six-letter sequence s, c, e, _ (underscore), m, i,
in any case combination, are reserved for use by SCE-MI and SCE-MI related specifications.

5.1.2 Header Files

The ANSI-C and C++ API’s shall be declared in a header file with the name

scemi.h

NOTE: the name is all lowercase, and the same for both API’s. Examples of the header files are given in Appendix E. Where
any discrepancy exists between this specification and the included header file, the specification should be the one that is used.

5.1.3 Const Argument Types

All input arguments whose types are pointers with 'const' qualifier should be strictly honored as read-only argu-
ments. Attempts to cast away 'constness' and alter any of the data denoted or pointed to by any of these argu-
ments is prohibited and may lead to unpredictable results.

5.1.4 Argument Lifetimes

The lifetime of any input pointer argument passed from the SCE-MI infrastructure into a SCE-MI callback func-
tion (such as input ready callback or receive callback) shall be assumed by the application to be limited to the
duration of the callback. Once the callback returns, the application cannot assume that such pointer arguments
remain valid. So, for example it would lead to undefined behavior for an application receive callback to cache the
SceMiMessageData * pointer and refer to it at some point in time after the callback returns.

Conversely, the lifetime of any input pointer argument passed from an application into a SCE-MI API call shall
be assumed by the SCE-MI infrastructure to be limited to the duration of the API call. Once the API call returns,
the infrastructure cannot assume that such pointer arguments remain valid.

5.2 Hardware side interface macros

This section contains the macros that need to be implemented on the hardware side of the interface.

5.2.1 Dual-ready protocol

The message port macros on the hardware side use a general PCI-like dual-ready protocol, which is explained in
this section. Briefly, the dual-ready handshake works as follows.
Version 1.1.0 SCE-MI Reference Manual 23

Formal specification

T

rec

d7
— The transmitter asserts TransmitReady on any clock cycle when it has data and de-asserts when it
does not.

— The receiver asserts ReceiveReady on any cycle when it is ready for data and de-asserts when it is not.
— In any clock cycle in which TransmitReady and ReceiveReady are both asserted, data “moves”,

meaning it is taken by the receiver.

NOTE:
— After a ready request (TransmitReady or ReceiveReady) has been asserted, it cannot be removed

until a data transfer has taken place.
— After TransmitReady has been asserted, the data must be held constant otherwise the result is unde-

fined.

The waveforms in Figure 8 depict several dual-ready handshake scenarios.

Figure 8—Dual-ready handshake protocol

The dual-ready protocol has the following two advantages.

a) Signals are level-based; therefore, they are easily sampled by posedge clocked logic.
b) If both TransmitReady and ReceiveReady stay asserted, sequences of data can still move every

clock cycle; therefore, the same performance can be realized as, for example, a toggle-based protocol.

5.2.2 SceMiMessageInPort macro

The SceMiMessageInPort macro presents messages arriving from the software side of a channel to the
transactor. The macro consists of two handshake signals which play a dual-ready protocol and a data bus that pre-
sents the message itself. Figure 9 shows the symbol for the SceMiMessageInPort macro, as well as Verilog
and VHDL source code for the empty macro wrappers.

uclock

ransmitReady

ReceiveReady

ureset

d6 arrives and moves

receiver ready and d5 moves
d5 arrives

 receiver ready for d1 1st
clock after reset

d1 arrives and moves

receiver ready for d2

eiver ready and d3 arrives and moves
 d4 arrives

d2 arrives and moves

receiver ready for d6

receiver ready for

d1 d2 d3 d5 d6Message

receiver ready and d4 moves

d4
24 SCE-MI Reference Manual Version 1.1.0

Formal specification
Figure 9—SceMiMessageInPort macro

5.2.2.1 Parameters and signals

PortWidth
The message width in bits is derived from the setting of this parameter.

PortName
The port’s name is derived from its instance label.

TransmitReady
A value of one (1) on this signal sampled on any posedge of the uclock indicates the channel has message data
ready for the transactor to take. If ReceiveReady is not asserted, the TransmitReady remains asserted
until and during the first clock in which ReceiveReady finally becomes asserted. During this clock, data
moves and if no more messages have arrived from the software side, the TransmitReady is de-asserted.

ReceiveReady
A value of one (1) on this signal indicates the transactor is ready to accept data from the software. By asserting
this signal, the hardware indicates to the software that it has a location into which it can put any data that might
arrive on the message input port. When a new message arrives, as indicated by the TransmitReady and
ReceiveReady both being true, that location is consumed (see Figure 8). When this happens, a notification is
sent to the software side that a new empty location is available and this triggers an input-ready callback to occur
on the software side. (5.2.2.2 explains in detail when input-ready propagation notifications are done with respect
to the timing of the TransmitReady and ReceiveReady handshakes.)

Transactors do not need to utilize ReceiveReady and the input-ready callback. If this is the case, the
ReceiveReady input needs to be permanently asserted (i.e., “tied high”) and, on the software side, no input-
ready callback is registered. In this case, TransmitReady merely acts as a strobe for each arriving message.
The transactor needs to be designed to take any arriving data immediately, as it is not guaranteed to be held for
subsequent uclock cycles.

TransmitReady
ReceiveReady

Message []

SceMiMessageInPort
#<PortWidth> <PortName>

Verilog Macro Wrapper:

module SceMiMessageInPort(
 //inputs outputs
 ReceiveReady, TransmitReady,
 Message);
 //------------------------ ------------------------------
 parameter PortWidth = 1;
 input ReceiveReady; output TransmitReady;
 output [PortWidth-1:0] Message;
endmodule

VHDL Macro Wrapper:

entity SceMiMessageInPort is
 generic(PortWidth: natural);
 port(
 ReceiveReady: in std_logic; TransmitReady: out std_logic
 Message: out std_logic_vector(PortWidth-1 downto 0));
end;

architecture EmptyMacro of SceMiMessageInPort is begin end;
Version 1.1.0 SCE-MI Reference Manual 25

Formal specification
Message
This vector signal constitutes the payload data of the message.

5.2.2.2 Input-ready propagation

The SCE-MI provides a functionality called input-ready propagation. This allows a transactor to communicate
(to the software) it is ready to accept new input on a particular channel. When the transactor asserts the
ReceiveReady input, the IsReady callback on that port is called during the next call to the ::Service-
Loop().

If the software client code registers an input-ready callback when it first binds to a message input port proxy (see
5.4.3.5), the hardware side of the infrastructure shall notify the software side each time it is ready for more input.
Each time it is so notified, the port proxy on the software side makes a call to the user registered input-ready call-
back. This mechanism is called input-ready propagation.

Input-ready propagation shall happen:

1) On the first rising edge of uclock after reset at which ReceiveReady is asserted, and
2) On the first rising edge of uclock after a message transferred at which ReceiveReady is asserted,

when an IsReady() callback is registered. Case 1 covers the input-ready propagation for d1 in Figure 8. Case 2
covers the others (d2, d3, and d4).

The prototype for the input-ready callback is:

void (*IsReady)(void *context);

When this function is called, a software model can assume that a message can be sent to the message input port
proxy for transmission to the message input port on the hardware side. The context argument can be a pointer
to any user-defined object, presumably the software model that bound the proxy.

The application needs to follow the protocol that if the transactor is not ready to receive input, the software
model shall not do a send. The software model knows not to send if it has not received an input-ready callback.
The SCE-MI infrastructure does not enforce this.

NOTE—An application can service as many output callbacks as is desired while pending an input callback. In other words,
the software model can have an outer loop which checks the status of an application-defined OKToSend flag on each iteration
and skips the send if the flag is false.

So, suppose an application has an outer loop that repeatedly calls ::ServiceLoop() and checks for arriving output
messages and input-ready notifications. Each callback function sets a flag in the context that the outer loop uses to know if an
output message has arrived and needs processing, or an input port needs more input. It is possible that, before an input-ready
callback gets called, the outer loop called ::ServiceLoop() 50 times and each call results in an output message call-
back and the subsequent processing of that output message. Finally, on the 51'st time ::ServiceLoop() is called, the
input-ready callback is called, which sets the OKToSend flag in its context, and then the outer loop detects the new flag status
and initiates a send on that input channel.

The handshake waveforms in Figure 8 are intended purely to illustrate the semantics of the dual-ready protocol.
There can be a couple of reasons why these waveforms might not be realistic in an actual implementation of a
SceMiMessageInPort macro.

The waveforms shown in Figure 10 show what typically occurs when input-ready callbacks are enabled. It shows
four possible scenarios where an input-ready notification occurs.
26 SCE-MI Reference Manual Version 1.1.0

Formal specification
Figure 10—SceMiMessageInPort handshake waveforms with input-ready propagation

In the depicted scenarios, an input-ready notification is propagated to the software if:

— the ReceiveReady from a transactor is asserted in the first clock following a reset or
— the ReceiveReady from a transactor transitions from a 0 to a 1 or
— the ReceiveReady from a transactor remains asserted in a clock following one where a transfer

occurred due to assertions on both TransmitReady and ReceiveReady.

5.2.3 SceMiMessageOutPort macro

The SceMiMessageOutPort macro sends messages to the software side from a transactor. Like the Sce-
MiMessageInPort macro, it also uses a dual-ready handshake, except in this case, the transmitter is the trans-
actor and the receiver is the SCE-MI interface. A transactor can have any number of SceMiMessageOutPort
macro instances. Figure 11 shows the symbol for the SceMiMessageOutPort macro, as well as Verilog and
VHDL source code for the empty macro wrappers.

“input-ready” for
d3 propagates

uclock

TransmitReady

ReceiveReady

ureset

“input-ready” for d4 propagates

d3 arrives and moves

 1st “input-ready” for d1
propagates after reset

d1 arrives and moves

“input-ready” for d2 propagates
d2 arrives and moves

d1 d2 d3Message
Version 1.1.0 SCE-MI Reference Manual 27

Formal specification
Figure 11—SceMiMessageOutPort macro

5.2.3.1 Parameters

PortWidth
The message width in bits is derived from the setting of this parameter.

PortPriority
The parameter is no longer in use.

PortName
The port’s name is derived from its instance label.

5.2.3.2 Signals

TransmitReady
A value of one (1) on this signal indicates the transactor has message data ready for the output channel to take. If
ReceiveReady is not asserted, the TransmitReady shall remain asserted until and during the first clock in
which ReceiveReady finally becomes asserted. During this clock, data moves and if the transactor has no
more messages for transmission, it de-asserts the TransmitReady.

ReceiveReady
A value of one (1) on this signal sampled on any uclock posedge indicates the output channel is ready to
accept data from the transactor. By asserting this signal, the SCE-MI hardware side indicates to the transactor the
output channel has a location where it can put any data that is destined for the software side of the channel. In any
cycle during which both the TransmitReady and ReceiveReady are asserted, the transactor can assume
the data moved. If, in the subsequent cycle, the ReceiveReady remains asserted, this means a new empty
location is available which the transactor can load any time by asserting TransmitReady again. Meanwhile,
the last message data, upon arrival to the software side, triggers a receive callback on its message output port
proxy (see 5.4.7.1).

TransmitReady
ReceiveReady

Message []

SceMiMessageOutPort
#(<PortWidth>,<PortPriority>) <PortName>

Verilog Macro Wrapper:

module SceMiMessageOutPort(
 //inputs outputs
 TransmitReady, ReceiveReady,
 Message);
 //------------------------ ------------------------------
 parameter PortWidth = 1;
 parameter PortPriority; // Parameter no longer used
 input TransmitReady; output ReceiveReady;
 input [PortWidth-1:0] Message;
endmodule

VHDL Macro Wrapper:

entity SceMiMessageOutPort is
 generic(PortWidth: natural; PortPriority: natural := 10)
 port(
 TransmitReady: in std_logic; ReceiveReady: out std_logi
 Message: in std_logic_vector(PortWidth-1 downto 0));
end;

architecture EmptyMacro of SceMiMessageOutPort is begin end;
28 SCE-MI Reference Manual Version 1.1.0

Formal specification

#(

Message
This vector signal constitutes the payload data of the message originating from the transactor, to be sent to the
software side of the channel.

5.2.3.3 Message Ordering

The idea of ordering message delivery to software arises from the fact that there is a global time order defined in
the hardware domain by the order of cclock edges. The delivery of messages from hardware to software respects
this ordering. In particular, the delivery of messages from hardware to software is ordered using the following
rules:

a) Messages from a single message out port are delivered to software in the same time order in which they
are delivered to the port.

b) Messages from different ports which complete the dual-ready protocol on different cclocks are delivered
to software in the time order in which the receive ready signals are asserted. In the case that two message
ports accomplish the dual-ready protocol and have data move in the same cclock cycle, the order of
delivery of the messages to the software is undefined.

5.2.4 SceMiClockPort macro

The SceMiClockPort macro supplies a controlled clock to the DUT. The SceMiClockPort macro is
parametrized so each instance of a SceMiClockPort fully specifies a controlled clock of a given frequency,
phase shift, and duty cycle. The SceMiClockPort macro also supplies a controlled reset whose duration is the
specified number of cycles of the cclock.

Figure 12 shows the symbol for the SceMiClockPort macro, as well as Verilog and VHDL source code for
the empty macro wrappers.

Figure 12—SceMiClockPort macro

Cclock
Creset

SceMiClockPort

<ClockNum>,
<RatioNumerator>,
<RatioDenominator>,
<DutyHi>, <DutyLo>, <Phase>,
<ResetCycles>) <ClockName>

Verilog Macro Wrapper:

module SceMiClockPort(
 //inputs outputs
 Cclock, Creset);
 //------------------------ ------------------------------
 parameter ClockNum=1;
 parameter RatioNumerator=1, RatioDenominator=1;
 parameter DutyHi=0, DutyLo=100, Phase=0;
 parameter ResetCycles=8;
endmodule

VHDL Macro Wrapper:

entity SceMiClockPort is
 generic(ClockNum: natural := 1;
 RatioNumerator: natural := 1; RatioDenominator: natural := 1;
 DutyHi: natural := 0; DutyLo: natural := 100;
 Phase: natural := 0; ResetCycles: natural := 8);
 port(Cclock: out std_logic; Creset: out std_logic);
end;

architecture EmptyMacro of SceMiClockPort is begin end;
Version 1.1.0 SCE-MI Reference Manual 29

Formal specification
All of the clock parameters have default values. In simpler systems where only one controlled clock is needed,
exactly one instance of a SceMiClockPort can be instantiated at the top level with no parameters specified.
This results in a single controlled clock with a ratio of 1/1, a don’t care duty cycle (see 5.2.4.3), and a phase
shift of 0. Ideally, this clock’s frequency matches that of the uclock during cycles in which it is enabled.

The SCE-MI infrastructure always implicitly creates a controlled clock with a 1/1 ratio, which is the highest
frequency controlled clock in the system. Whether or not it is visible to the user’s design depends on whether a
SceMiClockPort with a 1/1 ratio and a don’t care duty cycle is explicitly declared (instantiated).

In more complex systems that require multiple clocks, a SceMiClockPort instance needs to be created for
each required clock. The clock ratio in the instantiation parameters always specifies the frequency of the clock as
a ratio relative to the fastest controlled clock in the system (whose ratio is always 1/1).

For example, if a cclock is defined with a ratio of 4/1 this is interpreted as, “for every 4 edges of the 1/1
cclock there is only 1 edge of this cclock”. This defines a “divide-by-four” clock.

5.2.4.1 Parameters and signals

ClockNum=1
This parameter assigns a unique number to a clock which is used to differentiate it from other SceMiClock-
Port instances. It shall be an error (by the infrastructure linker) if more than one SceMiClockPort instances
share the same ClockNum. The default ClockNum is 1.

RatioNumerator=1, RatioDenominator=1
These parameters constitute the numerator and denominator, respectively, of this clock’s ratio. The numerator
always designates the number of cycles of the fastest controlled clock that occur during the number of cycles of
“this” clock specified in the denominator. For example, RatioNumerator=5 and RatioDenominator=2
specifies a 5/2 clock, which means for every five cycles of the 1/1 clock that occur, only two cycles of this
clock occur. The default clock ratio is 1/1. For more information refer to section 5.2.4

DutyHi=0, DutyLo=100, Phase=0
The duty cycle is expressed with arbitrary integers which are normalized to their sum, such that the sum of
DutyHi and DutyLo represent the number of units for a whole cycle of the clock. For example, when
DutyHi=75 and DutyLo=25, the high time of the clock is 75 out of 100 units or 75% of the period. Similarly,
the low time would be 25% of the period. The phase shift is expressed in the same units; if Phase=30, the clock
is shifted by 30% of its period before the first low to high transition occurs.

The default duty cycle shown in the macro wrappers within Figure 12 is a don’t care duty cycle of 0/100 (see
5.2.4.3).

ResetCycles=8
This parameter specifies how many cycles of this controlled clock shall occur before the controlled reset transi-
tions from its initial value of 1 back to 0.

ClockName
The clock port’s name is derived from its instance label.

Cclock
This is the controlled clock signal the SCE-MI infrastructure supplies to the DUT. This clock’s characteristics are
derived from the parameters specified on instantiation of this macro.

Creset
This is the controlled reset signal the SCE-MI infrastructure supplies to the DUT.
30 SCE-MI Reference Manual Version 1.1.0

Formal specification
5.2.4.2 Deriving clock ratios from frequencies

Another way to specify clock ratios is enter them directly as frequencies, all normalized to the clock with the
highest frequency. To specify ratios this way requires the following.

— Make each ratio numerator equal to the highest frequency.
— Use consistent units for all ratios.
— Omit those units and simply state them as integers.

For example, suppose a system has 100Mhz, 25Mhz, and 10Mhz, 7.5 Mhz, and 32kHz clocks. To specify the
ratios, the frequencies can be directly entered as integers, using kHz as the unit (but omitting it!):

100000 / 100000 - the fastest clock
100000 / 25000
100000 / 10000

100000 / 7500
100000 / 32

Users who like to think in frequencies rather than ratios can use this simple technique.

NOTE—An implementor of the SCE-MI API may wish to provide a tool to assist in deriving clock ratios from frequencies.
Such a tool could allow a user to enter clock specifications in terms of frequencies and then generate a set of equivalent ratios.
In addition, this tool could be used to post process waveforms (such as .vcd files) generated by the simulation so the defined
clocks appear in the waveform display to be the exact same frequencies given by the user.

5.2.4.3 Don’t care duty cycle

The default duty cycle shown within the macro wrappers in Figure 12 is a don’t care duty cycle. Users can spec-
ify they only care about posedges of the cclock and do not care where the negedge falls. This is known as a
posedge active don’t care duty cycle. In such a case, the DutyHi is given as a 0. The DutyLo can be given as an
arbitrary number of units, such that the Phase offset can still be expressed as a percentage of the whole period
(i.e., DutyHi+DutyLo).

For example, this combination:

DutyHi=0, DutyLo=100, Phase=30

means the following:

a) I don’t care about the duty cycle. Specifically, I don’t care where the negedge of the clock falls.
b) If the total period is expressed as 100 units (0+100), the phase should be shifted by 30 of those units.

This represents a phase shift of 30%.

Another example:

DutyHi=3, DutyLo=1, Phase=2

means:

a) I care about both intervals of the duty cycle. The duty cycle is 75%/25%.
b) The phase shift is 50% of period (expressed as 3+1 units).
Version 1.1.0 SCE-MI Reference Manual 31

Formal specification
It is also possible to have a negedge active don’t care duty cycle. In this case, the DutyLo parameter is given as
a 0 and the DutyHi is given as a positive number (> 0).

For example:

DutyHi=1, DutyLo=0, Phase=0

means:

a) I don’t care about the duty cycle. Specifically, I don’t care where the posedge of a clock falls.
b) The phase shift is 0.

In any clock specification, it shall be an error if Phase >= DutyHi + DutyLo.

NOTE---The intent of the don't care duty cycle is to relax the requirement that each edge of a controlled clock must coincide
with a rising edge of uclock. A controlled clock with a posedge active don't care duty cycle, i.e., with DutyHi given as 0,
is not required to have its falling edge coincide with a rising edge of uclock. Similarly, a controlled clock with a negedge
active don't care duty cycle, i.e., with DutyLo given as 0, is not required to have its rising edge coincide with a rising edge
of uclock. Hence, the don't care duty cycle enables controlled clocks to be the same frequency of the uclock. Conversely,
the maximum possible frequency of a non-don't care duty cycle controlled clock is 1/2 the frequency of the uclock. Since
the implicit 1/1 controlled clock is specified to have posedge active don't care duty cycle, it may be as fast as uclock.

5.2.4.4 Controlled reset semantics

The Creset output of the SceMiClockPort macro shall obey the following semantics:

— Creset will start low (deasserted) and transition to high one or more uclock cycles later. It then
remains high (asserted) for at least the minimum duration specified by the ResetCycles parameter
adorning the SceMiClockPort macro. This duration is expressed as a number of edges of associated
Cclock. Following the reset duration, the Creset then goes low (deasserted) and remains low for the
remaining duration of the simulation. Some applications require 2-edged resets at the beginning of a sim-
ulation.

— For multiple cclocks, the reset duration shall have a minimum length so it is guaranteed to span the
ResetCycles parameter of any clock. In other words, the minimum controlled reset duration for all
clocks shall be

max(ResetCycles for cclock1, ResetCycles for cclock2, ...)
— Some implementations can use a reset duration that is larger than the quantify shown above to achieve

proper alignment of multiple cclocks on the edges of the controlled reset, as described in 5.2.4.5.
— During the assertion of Creset, Cclock edges shall be forced, regardless of the state of the Ready-

ForCclock inputs to the SceMiClockControl macros. Once the reset duration completes, the
Cclock will be controlled by the ReadyForCclock inputs.

NOTE—The operation of controlled reset just described provides the default controlled reset behavior generated by the Sce-
MiClockPort macro. If more sophisticated reset handling is required, use a specially written reset transactor in lieu of the
simpler controlled resets that come from the SceMiClockPort instances. For example, if a software controlled reset is
required, an application needs to create a reset transactor which responds to a special software originated reset command that
arrives on its message input port.

5.2.4.5 Multiple cclock alignment

In general, all cclocks need to align on the first rising uclock edge following the trailing edge of the cre-
set. This uclock edge is referred to as the point of alignment. For cclocks with phases of 0, this means ris-
ing edges of these clocks shall coincide with the point of alignment. For cclocks with phases > 0, those edges
occur some time after the point of alignment. Every cclock edge must occur on a uclock edge.
32 SCE-MI Reference Manual Version 1.1.0

Formal specification
Figure 13 shows an assortment of cclocks with the uclock and creset. It also shows how those cclocks
behave at the point of alignment.

In Figure 13, cclock1, cclock2, and cclock3 have phases of 0 and, therefore, have rising edges at the
point of alignment. cclock4 has the same duty cycle as cclock2, but a phase shift of 50%. Therefore, its ris-
ing edge occurs two uclocks (1/2 cycle) after the point of alignment. Its starting value at the point of align-
ment is still 0.

cclock5 has the same duty cycle as cclock3, but a phase of 50%. Again, its rising edge occurs 1/2 cycle
after the point of alignment. But notice its starting value at the point of alignment is 0. This can be alternatively
thought of as an inverted phase. Anytime the phase is greater than the high duty cycle interval, the starting value
at the point of alignment is a 0. In the case where the phase equals the high duty cycle, a falling edge occurs at
the point of alignment.

Figure 13—Multi-clock alignment

5.2.5 SceMiClockControl macro

For every SceMiClockPort macro instance there must be at least one counterpart SceMiClockControl
macro instance presumably encapsulated in a transactor. The SceMiClockControl macro is the means by
which a transactor can control a DUT’s clock and by which the SCE-MI infrastructure can indicate to a transac-
tor on which uclock cycles that controlled clock have edges.

Figure 14 shows the symbol for the SceMiClockControl macro as well as Verilog and VHDL source code
for the empty macro wrappers.

uclock

cclock1

creset

point of alignment

cclock2

cclock3

cclock4

cclock5

ratio: 4/1 duty cycle: 50/50 phase: 0

ratio: 4/1 duty cycle: 25/75 phase: 0

ratio: 4/1 duty cycle: 75/25 phase: 0

ratio: 4/1 duty cycle: 25/75 phase: 50

ratio: 4/1 duty cycle: 75/25 phase: 50
Version 1.1.0 SCE-MI Reference Manual 33

Formal specification
Figure 14—SceMiClockControl macro

For each SceMiClockPort defined in the system, typically one corresponding SceMiClockControl
macro is instantiated in one or more transactors. If no clock controls are associated with a given controlled clock,
it is assumed there is an implicit clock control which is always enabling that clock so the controlled clock simply
runs free. In addition to providing uncontrolled clocks and resets, this macro also provides handshakes that pro-
vide explicit control of both edges of the generated cclock.

5.2.5.1 Parameters

ClockNum=1
This is the only parameter given to the SceMiClockControl macro. This parameter is used to associate a
SceMiClockControl instance with its counterpart SceMiClockPort instance defined at the top level.
The default ClockNum is 1.

There shall be exactly one instance of SceMiClockPort associated with each instance of SceMiClock-
Control in the system. But there can be one or more instances of SceMiClockControl for each instance of
SceMiClockPort. A SceMiClockControl instance identifies its associated SceMiClockPort by
properly specifying a ClockNum parameter matching that of its associated SceMiClockPort.

5.2.5.2 Signals

Uclock
This is the uncontrolled clock signal generated by the SCE-MI infrastructure.

Uclock
Ureset

SceMiClockControl
#<ClockNum> c1

Verilog Macro Wrapper:

module SceMiClockControl(
 //inputs outputs
 Uclock, Ureset;
 ReadyForCclock, CclockEnabled,
 ReadyForCclockNegEdge, CclockNegEdgeEnabled);
 //------------------------ ------------------------------
 parameter ClockNum = 1;
 output Uclock, Ureset;
 input ReadyForCclock; output CclockEnabled;
 input ReadyForCclockNegEdge, output CclockNegEdgeEnabled;
endmodule

VHDL Macro Wrapper:

entity SceMiClockControl is
 generic(ClockNum: natural := 1);
 port(
 Uclock, Ureset: out std_logic;
 ReadyForCclock: in std_logic;
 CclockEnabled: out std_logic;
 ReadyForCclockNegEdge: in std_logic;
 CclockNegEdgeEnabled: out std_log
);
end;

architecture EmptyMacro of SceMiClockControl is begin end;

ReadyForCclock
CclockEnabled

CclockNegEdgeEnabled
ReadyForCclockNegEdge
34 SCE-MI Reference Manual Version 1.1.0

Formal specification
Ureset
This is the uncontrolled reset generated by the SCE-MI infrastructure. This signal is high at the beginning of sim-
ulated time and transitions to a low an arbitrary (implementation-dependent) number of uclocks later. It can be
used to reset the transactor.

The uncontrolled reset shall have a duration spanning that of the longest controlled reset (Creset output from
each SceMiClockPort; see 5.2.4.4) as measured in uclocks. This guarantees all DUTs and transactors
properly wake up in an initialized state the first uclock following expiration of the last controlled reset.

ReadyForCclock
This input to the macro indicates to the SCE-MI infrastructure that a transactor is willing to allow its associated
DUT clock to advance. One of the most useful applications of this feature is to perform complex algorithmic
operations on the data content of a transaction before presenting it to the DUT.

If this input to one of the SceMiClockControl instances associated with a given controlled clock is deas-
serted, the next posedge of that cclock will be disabled. In reacting to a ReadyForCclock of a slower
clock, the infrastructure must not prematurely disable active edges of other faster clocks that occur prior to the
last possible uclock preceding the edge to be disabled. In other words, that edge is disabled just in time so as to
allow faster clock activity to proceed until the last moment possible. Once the edge is finally disabled, all active
edges of all controlled clocks are also disabled. This is referred to as just in time clock control semantics.

Note: It may sometimes be desired for a transactor to stop all clocks in the system immediately. This is referred to as emer-
gency brake clock control semantics. This can simply be done by instantiating a SceMiClockControl associated with the
fastest clock in the system and applying normal clock control to it. See Section 5.2.4 for more information.

CclockEnabled
This macro output signals the transactor, that on the next posedge of uclock, there is a posedge of the controlled
clock. The transactor can thus sample this signal to know if a DUT clock posedge occurs. It can also use this sig-
nal as a qualifier that says it is okay to sample DUT output data. Transactors shall only sample DUT outputs on
valid controlled clock edges. The SCE-MI infrastructure looks at the ReadyForCclock inputs from all the
transactors and asserts CclockEnabled only if they are all asserted. This means any transactor can stop all the
clocks in the system by simply de-asserting ReadyForCclock.

For a negedge active don’t care duty cycle (see 5.2.4.3), since the user does not care about the posedge, the
CclockEnabled shall always be 0.

ReadyForCclockNegEdge
Similarly, for negedge control, if this input to one of the SceMiClockControl instances that are associated
with a given controlled clock is deasserted, the next negedge of that clock will be disabled. In reacting to a
ReadyForCclockNegEdge of a slower clock, the infrastructure must not prematurely disable active edges
of other faster clocks that occur prior to the last possible uclock preceding the edge to be disabled. In other
words, that edge is disabled just in time so as to allow faster clock activity to proceed until the last moment pos-
sible. Once the edge is finally disabled, all active edges of all controlled clocks are also disabled. This is referred
to as just in time clock control semantics.

NOTE- Support for explicit negedge control is needed for transactors that use the negedge of a controlled clock as an active
edge. Transactors that do not care about controlling negedges (such as the one shown in Figure A.1) need to tie this signal
high.

CclockNegEdgeEnabled
This signal works like CclockEnabled, except it indicates if the negedge of a controlled clock occurs on the
next posedge of the uclock. This can be useful for transactors that control double pumped DUTs. Transactors that
do not care about negedge control can ignore this signal.
Version 1.1.0 SCE-MI Reference Manual 35

Formal specification
For a posedge active don’t care duty cycle (see 5.2.4.3), since the user does not care about the posedge, the
CclockNegEdgeEnabled shall always be 0.

Figure 15— Example of Clock Control Semantics

5.2.5.3 Example of Clock Control Semantics

Figure 15 shows an example of clock control for two fast clocks (clkfast, clkfast_negedge) that use don’t
care duty cycle semantics and one slow clock (clkslow) that uses a 50/50 duty cycle. clkfast uses posedge
active don’t care duty cycle and clkfast_negedge uses negedge active don’t care duty cycle.

The effect of the 4 respective clock control signals ready_for_clkfast, ready_for_clkfast_negedge,
ready_for_clkslow, and ready_for_clkslow_negedge can be seen.

Deassertion of ready_for_clkfast prevents subsequent posedges of clkfast, negedges of
clkfast_negedge, and all edges of clkslow from occurring on subsequent posedges of uclock. Once re-
asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

Deassertion of ready_for_clkfast_negedge prevents subsequent negedges of clkfast_negedge,
posedges of clkfast, and all edges of clkslow from occurring on subsequent posedges of uclock. Once re-
asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

Deassertion of ready_for_clkslow prevents subsequent posedges of clkslow. But notice that this happens
just in time for the next scheduled posedge clkslow. Prior to this, edges of faster clocks or the negedge of the
same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks are disabled as well.
Once re-asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

clkfast

clkfast_enabled

uclock

ready_for_clkfast

clkfast_negedge

clkfast_negedge_enabled

clkslow

ready_for_clkfast_negedge

clkslow_enabled

clkslow_negedge_enabled

ready_for_clkslow

ready_for_clkslow_negedge
36 SCE-MI Reference Manual Version 1.1.0

Formal specification
Deassertion of ready_for_clkslow_negedge prevents subsequent negedges of clkslow. But notice that this
happens just in time for the next scheduled negedge clkslow. Prior to this, edges of faster clocks or the
posedge of the same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks are
disabled as well. Once re-asserted, all these edges are allowed to occur on the subsequent uclock posedges
where relevant.

Note, that all of the clock enabled signals, clkfast_enabled, clkfast_negedge_enabled, clkslow_enabled,
and clkslow_negedge_enabled are shown to transition on uclock posedges. The implementation can also choose to
transition them on negedges. The only hard requirement is that their values can be sampled on the uclock posedge at which
the associated controlled clock edge will occur.

5.3 Infrastructure linkage

This section is strictly the concern of the infrastructure implementor class of user, as defined in 4.3.3. End-users
and transactor implementors can assume the operations described herein are automatically handled by the infra-
structure linker.

As described in 4.5.2, infrastructure linkage is the process which analyzes the user’s bridge netlist on the hard-
ware side and compiles it into a form suitable to run on the emulator. This may involve expanding the interface
macros into infrastructure components that are added to the existing structure, as well as to generate parameter
information which is used to bind the hardware side to the software side. In order to determine this information,
the infrastructure linker analyzes the netlist and searches for instances of the SCE-MI hardware side macros,
reads the parameter values from those instances, and generates a parameter file that can be read during software
side initialization to properly bind message port proxies to the hardware side.

Typically, the infrastructure linker provides options in the form of switches and/or an input configuration file
which allows a user to pass along or override implementation-specific options. A well crafted infrastructure
linker, however, needs to maximize ease-of-use by transparently providing the end-user with a suitable set of
default values for implementation-specific parameters, so that most, if not all, of these parameters need not be
overridden.

5.3.1 Parameters

The following set of parameters define the minimum set that is needed for all implementations of the SCE-MI
standard. Specific implementations might require additional parameters.

Number of transactors
The number of transactors shall be derived by counting the number of modules in the user’s design that qualify
as transactors. Any one of 3 conditions can qualify a module as a transactor:

1. The module has a SceMiClockControl macro instantiated immediately inside it, or,

2. The module has the following parameter defined within its scope:

Verilog:
parameter SceMiIsTransactor = 1;

VHDL:
generic(SceMiIsTransactor: boolean := true);

or,

3. The module has at least one SceMi message port instantiated immediately inside it and neither that module nor
any of its enclosing parent modules has otherwise been defined as a transactor.
Version 1.1.0 SCE-MI Reference Manual 37

Formal specification
Nested transactors are allowed. A message port's owning transactor is defined to be the lowest module in that
port's enclosing hierarchical scope that qualifies as a transactor based on the definition above.

Transactor name
The transactor name shall be derived from the hierarchical path name to an instance of a module that qualifies as
a transactor (as per the above definition). Naturally, if there are multiple instances of a given type of transactor,
they shall be uniquely distinguished by their instance path names. The syntax used to express the path name shall
be that of the bridge netlist’s HDL language.

Number of message input or output channels
The infrastructure linker derives the number of message input and output ports by counting instances of the
SceMiMessageInPort and SceMiMessageOutPort macros.

Port name
The name of each port shall be derived from the relative instance path name to that port, relative to its containing
transactor module. For example, if the full path name to a message input port macro instance is (using Verilog
notation) Bridge.u1.tx1.ip1 and the transactor name is Bridge.u1.tx1, then the port name is ip1. If
an output port is instantiated one level down from the input port and its full path is
Bridge.u1.tx1.m1.op1, then its port name is m1.op1, since it is instantiated a level down relative to the
transactor root level.

The full pathname to a port can be derived by concatenating the transactor name to the port name (with a hierar-
chical separator inserted between).

Message input or output port width
The width of a port in bits shall be derived from the PortWidth parameter defined in the message port macro.
This width defaults to 1, but is almost always overridden to a significantly larger value at the point of instantia-
tion.

Number of controlled clocks
This number shall be derived by counting all instances of the SceMiClockPort macro.

Controlled clock name
The name of a controlled clock is derived from the instance label (not path name) of its SceMiClockPort
instance, necessarily instantiated at the top level of the user’s bridge netlist and unique among all instances of
SceMiClockPort.

Controlled clock ratio
The clock ratio is determined from the RatioNumerator and RatioDenominator parameters of the
SceMiClockPort macro. The RatioNumerator designates the number of cycles of the 1/1 controlled
clock that occur during the number of cycles of “this” clock specified in RatioDenominator. See 5.2.4 for
more details about the clock ratio.

Controlled clock duty cycle and phase
The duty cycle is determined from the DutyHi, DutyLo, and Phase parameters of the SceMiClockPort
macro. The duty cycle is expressed as a pair of arbitrary integers: DutyHi and DutyLo interpreted as follows:
if the sum of DutyHi and DutyLo represents the number of units in a period of the clock, then DutyHi repre-
sents the number of units of high time and DutyLo represents the number of units of low time. Similarly,
Phase represents the number of units the clock is phase shifted relative to the reference 1/1 cclock. A user
can also specify a don’t care duty cycle. See 5.2.4 for more details about the duty cycle and phase.

Controlled reset cycles
The duration of a controlled reset expressed in terms of cclock cycles is determined from the ResetCycles
parameter of the ClockPort macro.
38 SCE-MI Reference Manual Version 1.1.0

Formal specification
5.3.2 Parameter file

The infrastructure linker needs to automatically generate a parameter file after analyzing the user-supplied netlist
and determining all the parameters identified in 5.3.1. The parameter file can be read by the software side of the
SCE-MI infrastructure to facilitate binding operations that occur after software model construction. Because it is
automatically generated, the content and syntax of the parameter file is left to specific implementors of the SCE-
MI. The content itself is not intended to be portable.

However, on the software side, the infrastructure implementor needs to provide a parameter access API that con-
forms to the specification in 5.4.4. This access block shall support access to a specifically named set of parame-
ters required by the SCE-MI, as well as an optional, implementation specified set of named parameters.

All SCE-MI required parameters are read-only, because their values are automatically determined by the infra-
structure linker by analyzing the user-supplied netlist. Implementation-specific parameters can be read-only or
read-write as the implementation requires.

5.4 Software side interface - C++ API

To gain access to the hardware side of the SCE-MI, the software side shall first initialize the SCE-MI software
side infrastructure and then bind to port proxies representing each message port defined on the hardware side.
Part of initializing the SCE-MI involves instructing the SCE-MI to load the parameter file generated by the infra-
structure linker. The SCE-MI software side can use this parameter file information to establish rendezvous with
the hardware side in response to port binding calls from the user’s software models. Port binding rendezvous is
achieved primarily name association involving transactor names and port names.

NOTE—Clock names and properties identified in the parameter file are of little significance during the binding process
although this information is procedurally available to applications that might need it through the parameter file API (see
5.4.4).

Access to the software side of the interface is facilitated by a number of C++ classes:

class SceMiEC
class SceMi
class SceMiMessageInPortProxy
class SceMiMessageOutPortProxy
class SceMiParameters
class SceMiMessageData

5.4.1 Primitive data types

In addition to C data types, such as integer, unsigned, and const char *, many of the arguments to the
methods in the API require unsigned data types of specific width. To support these, SCE-MI implementations
need to provide two primitive unsigned integral types: one of exactly 32 bits and the other exactly 64 bits in
width. The following example implementation works on most current 32-bit compilers.

Example

typedef unsigned int SceMiU32; //unsigned 32-bit integral type
typedef unsigned long long SceMiU64; //unsigned 64-bit integral type

5.4.2 Miscellaneous interface issues

In addition to the basic setup, teardown, and message-passing functionality, the SCE-MI provides error handling,
warning handling, and memory allocation functionality. These verbatim API declarations are described here.
Version 1.1.0 SCE-MI Reference Manual 39

Formal specification
5.4.2.1 Class SceMiEC - error handling

Most of the calls in the interface take an SceMiEC * ec as the last argument. Because the usage of this argu-
ment is consistent for all methods, error handling semantics are explained in this section rather than documenting
error handling for each method in the API.

Error handling in SCE-MI is flexible enough to either use a traditional style of error handling where an error sta-
tus is returned and checked with each call or a callback based scheme where a registered error handler is called
when an error occurs.

enum SceMiErrorType {
SceMiOK,
SceMiError

};

struct SceMiEC {
const char *Culprit;
const char *Message;
SceMiErrorType Type;
int Id;

};

typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

static void
SceMi::RegisterErrorHandler(

SceMiErrorHandler errorHandler,
void *context);

This method registers an optional error handler with the SCE-MI that is called when an error occurs.

When any SCE-MI operation encounters an error, the following procedure is used:

— If the SceMiEC * pointer passed into the function was non-NULL, the values of the SceMiEC structure
are filled out by the errant call with appropriate information describing the error and control is returned to
the caller. This can be thought of as a traditional approach to error handling, such as done in C applica-
tions. It is up to the application code to check the error status after each call to the API and take appropri-
ate abortive action if an error is detected.

— Else if the SceMiEC * pointer passed to the function is NULL (or nothing is passed since the default is
NULL in each API function) and an error handler was registered, that error handler is called from within
the errant API call. The error handler is passed an internally allocated SceMiEC structure filled out with
the error information. In this error handler callback approach, the user-defined code within the handler
can initiate abort operations. If it is a C++ application, a catch and throw mechanism can be deployed.
A C application can simply call the abort() or exit() function after printing out or logging the error
information.

— Else if the SceMiEC * pointer passed to the function is NULL and no error handler is registered, an
SceMiEC structure is constructed and passed to a default error handler. The default error handler
attempts to print a message to the console and to a log file and then calls abort().

This error handling facility only supports irrecoverable errors. This means if an error is returned through the
SceMiEC object, either via a handler or a return object, there is no point in continuing with the co-modeling ses-
sion. Any calls that support returning a recoverable error status need to return that status using a separate, dedi-
cated return argument.
40 SCE-MI Reference Manual Version 1.1.0

Formal specification
Also, the Message text filled out in the error structure is meant to fully describe the nature of the error and can
be logged or displayed to the console verbatim by the application error handling code. The Culprit text is the
name of the errant API function and can optionally be added to the message that is displayed or logged.

Because every API call returns a success or fatal error status and the detailed nature of errors is fully described
within the returned error message, the SceMiErrorType enum has only two values pertaining to success:
(SceMiOK) or failure (SceMiError). The SceMiEC::Type returned from API functions to the caller can be
either of these two values, depending on whether the call was a success or a failure. However the Sce-
MiEC::Type passed into an error handler shall, by definition, always have the value SceMiError; otherwise
the error handler would not have been called. In addition, the optional Id field can be used to further classify dif-
ferent major error types or tag each distinct error message with a unique integer identifier.

5.4.2.2 Class SceMiIC - informational status and warning handling (info handling)

The SCE-MI also provides a means of conveying warnings and informational status messages to the application.
Like error handling, info handling is done with callback functions and a special structure that is used to convey
the warning information.

enum SceMiInfoType {
SceMiInfo,
SceMiWarning,
SceMiNonFatalError

};

struct SceMiIC {
const char *Originator;
const char *Message;
SceMiInfoType Type;
int Id;

};

typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

static void
SceMi::RegisterInfoHandler(

SceMiInfoHandler infoHandler,
void *context);

This method registers an optional info handler with the SCE-MI that is called when a warning or informational
status message occurs. This method must only be used for message reporting or logging purposes and must not
abort the simulation (unless there is an application error). Only SceMiEC error handlers are reserved for that
purpose.

When any SCE-MI operation encounters a warning or wishes to issue an informational message, the following
procedure is used:

— If an info handler was registered, it is called from within the API call that wants to issue the warning. The
info handler is passed an internally allocated SceMiIC structure filled out with the warning information.
In this info handler callback approach, the user-defined code within the handler can convey the warning
to the user in a manner that is appropriate for that application. For example, it can be displayed to the con-
sole, logged to a file, or both.

— Else if no info handler is registered, a SceMiIC structure is constructed and passed to a default, imple-
mentation-defined error handler. The default error handler can attempt to print a message to the console
and/or to a log file in an implementation-specific format.
Version 1.1.0 SCE-MI Reference Manual 41

Formal specification
The Message text filled out in the error structure is meant to fully describe the nature of the info message and
can be logged or displayed to the console verbatim by the application’s warning and info handling code. The
Originator text is the name of the API function that detected the message and can optionally be added to the
message that is displayed or logged. The SceMiInfoType is an extra piece of information which indicates if
the message is a warning or just some informational status.

An additional category, called SceMiNonFatalError, can be used to log all error conditions leading up to a
fatal error. The final fatal error message shall always be logged using a SceMiEC structure and SceMiEr-
rorHandler function so an abort sequence is properly handled (see 5.4.2.1). In addition, the info message can
optionally be tagged with a unique identifying integer specified in the Id field.

5.4.2.3 Memory allocation semantics

The following rules apply to SCE-MI memory allocation semantics.

— Anything constructed by the user is the user’s responsibility to delete.
— Anything constructed by the API is the API’s responsibility to delete.

Thus any object, such as SceMiMessageData, that is created by the application using that object’s construc-
tor, shall be deleted by the application when it is no longer in use. Some objects, such as SceMiMessage[In/
Out]PortProxy objects, are constructed by the API and then handed over to the application as pointers.
Those objects shall not be deleted by the application. Rather, they are deleted when the entire interface is shut
down during the call to SceMi::ShutDown().

Similarly, non-NULL SceMiEC structures that are passed to functions are assumed to be allocated and deleted
by the application. If a NULL SceMiEC pointer is passed to a function and an error occurs, the API allocates the
structure to pass to the error handler and, therefore, is responsible for freeing it.

5.4.3 Class SceMi - SCE-MI software side interface

This is the singleton object that represents the software side of the SCE-MI infrastructure itself. Global interface
operations are performed using methods of this class.

5.4.3.1 Version discovery

static int
SceMi::Version(

 const char *versionString);

This method allows an application to make queries about the version prior to initializing the SCE-MI that gives it
its best chance of specifying a version to which it is compatible. A series of calls can be made to this function
until a compatible version is found. With each call, the application can pass version numbers corresponding to
those it knows and the SCE-MI can respond with a version handle that is compatible with the queried version.
This handle can then be passed onto the initialization call described in 5.4.3.2.

If the given version string is not compatible with the version of the SCE-MI used as the interface, a -1 is
returned. At this point, the application has the option of aborting with a fatal error or attempting other versions it
might also know how to use.

This process is sometimes referred to as mutual discovery.

versionString
This argument is of the form “<majorNum>.<minorNum>.<PatchNum>” and can be obtained by the
application code from the header file of a particular SCE-MI installation.
42 SCE-MI Reference Manual Version 1.1.0

Formal specification
The following macros are defined

#define SCEMI_MAJOR_VERSION 1
#define SCEMI_MINOR_VERSION 1
#define SCEMI_PATCH_VERSION 0

#define SCEMI_VERSION_STRING “1.1.0”

NOTE: the version mapping shown above is for example purposes only and should always be set to match the actual version
of the document that the implementation adhers to.

5.4.3.2 Initialization

static SceMi *
SceMi::Init(

int version,
SceMiParameters *parameters,
SceMiEC *ec=NULL);

This call is the constructor of the SCE-MI interface. It gives access to all the other global methods of the inter-
face.

The return argument is a pointer to an object of class SceMi on which all other methods can be called.

version
This input argument is the version number returned by the ::Version() method described in 5.4.3.1. An
error results if the version number is not compatible with the SCE-MI infrastructure being accessed.

parameters
This input argument is a pointer to the parameter block object (class SceMiParameters) initialized from
the parameter file generated by the infrastructure linker. See 5.4.4 for a description of how this object is obtained.

5.4.3.3 SceMi Object Pointer Access

static SceMi *
SceMi::Pointer(

SceMiEC *ec=NULL);

This accessor returns a pointer to the SceMi object constructed in a previous call to SceMi::Init. The return
argument is a pointer to an object of class SceMi on which all other methods can be called.

If the SceMi::Init method has not yet been called, SceMi::Pointer will return NULL.

5.4.3.4 Shutdown

static void
SceMi::Shutdown(

SceMi *sceMi,
SceMiEC *ec=NULL);

This is the destructor of the SCE-MI infrastructure object which shall be called when connection to the interface
needs to be terminated. This call is the means by which graceful decoupling of the hardware side and the soft-
Version 1.1.0 SCE-MI Reference Manual 43

Formal specification
ware side is achieved. Termination (Close()) callbacks registered by the application are also called during the
shutdown process.

5.4.3.5 Message input port proxy binding

SceMiMessageInPortProxy *
SceMi::BindMessageInPort(

const char *transactorName,
const char *portName,
const SceMiMessageInPortBinding *binding = NULL,
SceMiEC *ec=NULL);

This call searches the list of input ports learned from the parameter file, which is generated during infrastructure
linkage, for one whose names match the transactorName and portName arguments. If one is found, an
object of class SceMiMessageInPortProxy is constructed to serve as the proxy interface to that port
and the pointer to the constructed object is returned to the caller to serve all future accesses to that port. It shall be
an error if no match is found.

The implementation shall copy the contents of the object pointed to by the binding argument, to an internal
implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling message input port
proxy binding. Since the binding object is copied, the binding itself will not change as a result of this.

transactorName, portName
These arguments uniquely identify a specific message input port in a specific transactor on the hardware side to
which the caller wishes to bind. These names need to be the path names (described in 5.3.1) expressed in the
hardware side bridge’s netlist HDL language syntax.

binding
The binding argument is a pointer to an object, defined as follows:

struct SceMiMessageInPortBinding {
 void *Context;
 void (*IsReady)(void *context);
 void (*Close)(void *context);
};

whose data members are used for the following:

Context
The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class Sce-
MiMessageInPortProxy interpret this pointer, other than to store it and pass it when calling either the
IsReady() or Close() callbacks.

IsReady()
This is the function pointer for the callback used whenever an input-ready notification has been received from
the hardware side. This call signals that it is okay to send a new message to the input port. If this pointer is given
as a NULL, the SCE-MI assumes this port does not need to deploy input-ready notification on this particular
channel. See 5.2.2.2 for a detailed description of the input-ready callback.

Close()
This is a termination callback function pointer. It is called during destruction of the SCE-MI. This pointer can
also be optionally specified as NULL.
44 SCE-MI Reference Manual Version 1.1.0

Formal specification
If the binding argument is given as a NULL, the SCE-MI assumes that each of the Context, IsReady(), and
Close() data members all have NULL values.

NOTE---This call

inProxy = scemi->BindMessageInPort("Transactor","Port");

is equivalent to this code

SceMiMessageInPortBinding inBinding;

inBinding.Context = NULL;
inBinding.IsReady = NULL;
inBinding.Close = NULL;

inProxy = scemi->BindMessageInPort("Transactor", "Port",&inBinding);

5.4.3.6 Message output port proxy binding

SceMiMessageOutPortProxy *
SceMi::BindMessageOutPort(

const char *transactorName,
const char *portName,
const SceMiMessageOutPortBinding *binding,
SceMiEC *ec=NULL);

This call searches the list of output ports learned from the parameter file, which was generated during infrastruc-
ture linkage, for one whose names match the transactorName and portName argument. If one is found, an
object of class SceMiMessageOutPortProxy is constructed to serve as the proxy interface to that port
and the handle to the constructed object is returned to the caller to serve all future accesses to that port. It shall be
an error if no match is found.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal,
implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling message output port
proxy binding. Since the binding object is copied, the binding itself will not change as a result of this.

transactorName, portName
These arguments uniquely identify a specific message output port in a specific transactor on the hardware side to
which the caller wishes to bind. These names must be the path names (described in 5.3.1) expressed in the hard-
ware side bridge’s netlist HDL language syntax.

binding
The binding argument is a pointer to an object, defined as follows:

struct SceMiMessageOutPortBinding {
 void *Context;
 void (*Receive)(
 void *context,
 const SceMiMessageData *data);
 void (*Close)(void *context);
 };
Version 1.1.0 SCE-MI Reference Manual 45

Formal specification
whose data members are used for the following:

Context
The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class Sce-
MiMessageOutPortProxy interpret this pointer other than to store it and pass it when calling either the
IsReady() or Close() callbacks.

Receive()
This is the function pointer for the receive callback used whenever an output message arrives on the port. If this
function pointer is set to NULL, it indicates that any messages from the output port should be ignored. See
5.4.7.1 for more information about how receive callbacks process output messages.

Close()
This is a termination callback function pointer. It is called during destruction of the SCE-MI. This pointer can
also be optionally specified as NULL.

5.4.3.7 Service loop

typedef int (*SceMiServiceLoopHandler)(void *context, bool pending);

int
SceMi::ServiceLoop(

SceMiServiceLoopHandler g=NULL,
void *context=NULL,
SceMiEC *ec=NULL);

This is the main workhorse method that yields CPU processing time to the SCE-MI. In both single-threaded and
multi-threaded environments, calls to this method allow the SCE-MI to service all its port proxies, check for
arriving messages or messages which are pending to be sent, and dispatch any input-ready or receive callbacks
that might be needed. The underlying transport mechanism that supports the port proxies needs to respond in a
relatively timely manner to messages enqueued on the input or output port proxies. Since these messages cannot
be handled until a call to ::ServiceLoop() is made, applications need to call this function frequently.

The return argument is the number of service requests that arrived from the HDL side and were processed since
the last call to ::ServiceLoop().

The ::ServiceLoop() first checks for any pending input messages to be sent and sends them.

g()
If g is NULL, ::ServiceLoop() checks for pending service requests and dispatches them, returning imme-
diately afterwards. If g() is non-NULL, ::ServiceLoop() enters a loop of checking for pending service
requests, dispatching them, and calling g() for each service request. A service request is defined to be one of the
following:

— An arriving message in a SCE-MI message output port that will result in a receive callback being called.
— An input ready notification that will result in an input ready callback being called.

When g() returns 0, control returns from the loop. When g() is called, it is passed a pending flag of 1 or 0 indicat-
ing whether or not there is at least one service request pending.

context
The context argument to ::ServiceLoop is passed as the context argument to g().
46 SCE-MI Reference Manual Version 1.1.0

Formal specification
The following pseudo code illustrates implementation of the ::ServiceLoop() according to the semantics
described above:

int SceMi::ServiceLoop(
SceMiServiceLoopHandler g, void* context, SceMiEC* ec)

{
bool exit_service_loop = false;
int service_request_count = 0;

while(input messages pending) Send them to HDL side.
while(exit_service_loop == false) {

if(input ready notifications pending){
Dispatch input ready callback;
service_request_count++;
if(g != NULL && g(context, 1) == 0)

exit_service_loop = true;
}
else if(output messages pending){

Dispatch message to appropriate receive callback.
service_request_count++;
if (g != NULL && !g(context, 1))

exit_service_loop = true;
}
// if(g is not specified) We kick out of the loop.
// else we stay in as long as g returns non-zero.
else if (g == NULL || g(context, 0) == 0)

exit_service_loop = true;
}
return service_request_count;

}

5.4.3.7.1 Example of using the g() function to return on each call to ::ServiceLoop()

There are several different ways to use the g() function.

Some applications do force a return from the ::ServiceLoop() call after processing each message. The
::ServiceLoop() call always guarantees a separate call is made to the g() function for each message pro-
cessed. In fact, it is possible to force ::ServiceLoop() to return back to the application once per message by
having the g() function return a 0.

So even if all g() does is return 0, as follows,

int g(void */*context*/, bool /*pending*/){ return 0; }

the application forces a return from ::ServiceLoop() for each processed message.

NOTE—In this case, the ::ServiceLoop() does not block because it also returns even if no message was found (i.e.,
pending == 0). Basically ::ServiceLoop() returns no matter what in this case with zero or one message.
Version 1.1.0 SCE-MI Reference Manual 47

Formal specification
5.4.3.7.2 Example of using the g() function to block ::ServiceLoop() until exactly one mes-
sage occurs

An application can use the g() function to put ::ServiceLoop() into a blocking mode rather than its
default polling mode. The g() function can be written to cause ::ServiceLoop() to block until it gets one
message, then return on the message it received. This is done by making use of the pending argument to the
g() function. This argument simply indicates if there is a message to be processed or not, for example:

int g(void */*context*/, bool pending){
return pending == true ? 0 : 1 }

This blocks until a message occurs, then returns on processing the first message.

5.4.3.7.3 Example of using the g() function to block ::ServiceLoop() until at least one mes-
sage occurs

Alternatively, suppose the application wants ::ServiceLoop() to block until at least one message occurs,
then return only after all the currently pending messages have been processed.

To do this, the application can define a haveProcessedAtLeast1Message flag as follows:

int haveProcessedAtLeast1Message = 0;

Call ::ServiceLoop() giving the g() function and this flag's address as the context:

...
haveProcessedAtLeast1Message = 0;
sceMi->ServiceLoop(g, &haveProcessedAtLeast1Message);
...

Now define the g() function as follows:

int g(void *context, bool pending){
int *haveProcessedAtLeast1Message = (int *)context;
if(pending == 0)

 // If no more messages, kick out of loop if at least
 // one previous message has been processed, otherwise
 // block until the first message arrives.
 return *haveProcessedAtLeast1Message ? 0 : 1;
else {
 *haveProcessedAtLeast1Message = 1;
 return 1;
}

}

In conclusion, depending on precisely what type of operation of ::ServiceLoop() is desired, the g() func-
tion can be tailored accordingly.

5.4.4 Class SceMiParameters - parameter access

This class provides a generic API which can be used by application code to access the interface parameter set
described in 5.3.1. It is basically initialized with the contents of the parameter file generated during infrastructure
linkage. It provides accessors that facilitate the reading and possibly overriding of parameters and their values.
48 SCE-MI Reference Manual Version 1.1.0

Formal specification
All SCE-MI required parameters are read-only, because their values are automatically determined by the infra-
structure linker analyzing the user-supplied netlist. Implementation-specific parameters can be read-only or read-
write as required by the implementation. All parameters in a SceMiParameters object shall be overridden
before that object is passed to the SceMi::Init() call to construct the interface (see 5.4.3.2). Overriding
parameters afterwards has no effect.

5.4.4.1 Parameter set

While the format of the parameter file is implementation-specific, the set of parameters required by the SCE-API
and the methods used to access them shall conform to the specifications described in this section. For purposes of
access, the parameter set shall be organized as a database of attributed objects, where each object instance is dec-
orated with a set of attributes expressed as name/value pairs. There can be zero or more instances of each object
kind. The API shall provide a simple accessor to return the number of objects of a given kind, and read and write
accessors (described in Table 1) to allow reading or overriding attribute values of specific objects.

The objects in the database are composed of the set of necessary interfacing components that interface the SCE-
MI infrastructure to the application. For example, there is a distinct object instance for each message port and a
distinct object instance representing each defined clock in the system. Attributes of each of the objects then rep-
resent, collectively, the parameters that uniquely characterize the dimensions and constitution of the interface
components needed for a particular application.

So, for example, a system that requires one input port, two output ports, and two distinct clocks is represented
with five objects, parametrized such that each port object has name and width attributes, each clock object has
ratio and duty cycle attributes, etc. These objects and their attributes precisely and fully describe the interfacing
requirements between that application and the SCE-MI infrastructure.

Table 1 gives the minimal, predefined set of objects and attributes required by the SCE-MI. Additional objects
and attributes can be added by implementations. For example, there can be a single, implementation-specific
object representing the entire SCE-MI infrastructure facility itself. The attributes of this singleton object can be
the set of implementation-specific parameters an implementor of the SCE-MI needs to allow the user to specify.

For more details on attribute meanings, see 5.3.1.

Table 1—Minimum set of predefined objects and attributes

Object kind Attribute name Attribute
value type Meaning

MessageInPort TransactorName String Name of the transactor enclosing the message input
port.

PortName String Name of the message input port.

PortWidth Integer Width of the message input port in bits.

MessageOutPort TransactorName String Name of the transactor enclosing the message output
port.

PortName String Name of the message output port.

PortWidth Integer Width of the message output port in bits.

Clock ClockName String Name of the clock.

RatioNumerator Integer Numerator (“fast” clock cycles) of clock ratio.

RatioDenominator Integer Denominator (“this” clock cycles) of clock ratio.
Version 1.1.0 SCE-MI Reference Manual 49

Formal specification
For simplicity, values can be signed integer or string values. More complex data types can be derived by the
application code from string values. Each attribute definition of each object kind implies a specific value type.

5.4.4.2 Parameter set semantics

Although the accessors provided by the SceMiParameters class directly provide the information given in
Table 1, other implied parameters can be easily derived by the application. Following are some of the implied
parameters and how they are determined:

— ClockBinding objects indicate the total number of transactor - clock control macro combinations. The
number of distinct contributors to the control of a given clock, as well as the number of distinct transac-
tors in the system, can be ascertained via the ClockBinding objects.

— The number of transactors in the system is determined by counting the number of distinct Transac-
torName’s encountered in the ClockBinding objects.

— The number of controlled clocks is determined by reading the number of Clock objects (using the
::NumberOfObjects() accessor described below).

— The number of input and output ports is determined by reading the number of MessageInPort and
MessageOutPort objects, respectively.

In addition, the following semantics characterize the parameter set.

a) Transactor names are absolute hierarchical path names and shall conform to the bridge’s netlist HDL lan-
guage syntax.

b) Port names are relative hierarchical path names (relative to the enclosing transactor) and shall conform to
the bridge’s netlist HDL language syntax.

c) Clock names are identifiers, not path names, and shall conform to the bridge’s netlist HDL language
identifier naming syntax.

5.4.4.3 Constructor

SceMiParameters::SceMiParameters(
const char *paramsFile,
SceMiEC *ec=NULL);

The constructor constructs an object containing all the default values of parameters and then overrides them with
any settings it finds in the specified parameter file. All parameters, whether specified by the user or not shall
have default values. Once constructed, parameters can be further overridden procedurally.

DutyHi Integer High cycle percentage of duty cycle.

DutyLo Integer Low cycle percentage of duty cycle.

Phase Integer Phase shift as percentage of duty cycle.

ResetCycles Integer Number of controlled clock cycles of reset.

ClockBinding TransactorName String Name of the transactor that contributes to the control
of this clock.

ClockName String Name of the clock that this transactor helps control.

Table 1—Minimum set of predefined objects and attributes, continued

Object kind Attribute name Attribute
value type Meaning
50 SCE-MI Reference Manual Version 1.1.0

Formal specification
paramsFile
This is the name of the file generated by the infrastructure linker which contains all the parameters derived from
the user’s hardware side netlist. This name can be a full pathname to a file or a pathname relative to the local
directory.

5.4.4.4 Destructor

SceMiParameters::~SceMiParameters()

This is the destructor for the parameters object.

5.4.4.5 Accessors

unsigned int
SceMiParameters::NumberOfObjects(

const char *objectKind,
SceMiEC *ec=NULL) const;

This accessor returns the number of instances of objects of the specified objectKind name.

int
SceMiParameters::AttributeIntegerValue(

const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec=NULL) const;

const char *
SceMiParameters::AttributeStringValue(

const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec=NULL) const;

The implementation guarantees the pointer is valid until Shutdown() is called for read-only attributes. For non-
read-only attributes, the implementation guarantees the pointer is valid until Shutdown() or OverrideAttribut-
eStringValue() of the attribute whichever comes first.

NOTE -- If the application needs the string value for an extended period of time, it may copy the string value to a privately
managed memory area.

These two accessors read and return an integer or string attribute value.

void
SceMiParameters::OverrideAttributeIntegerValue(

const char *objectKind,
unsigned int index,
const char *attributeName,
int value,
SceMiEC *ec=NULL);

void
SceMiParameters::OverrideAttributeStringValue(

const char *objectKind,
unsigned int index,
Version 1.1.0 SCE-MI Reference Manual 51

Formal specification
const char *attributeName,
const char *value,
SceMiEC *ec=NULL);

These two accessors override an integer or string attribute value. It shall be an error to attempt to override any of
the object attributes shown in Table 1, any implementation-specific attributes designated as read-only or any
attribute that is not already in the parameter database.

The following argument descriptions generally apply to all the accessors shown above.

objectKind
Name of the kind of object for which an attribute value is being accessed. It shall be an error to pass an unrecog-
nized objectKind name to any of the accessors.

index
Index of the instance of the object for which an attribute value is being accessed. It shall be an error if the index
>= the number returned by the ::NumberOfObjects() accessor.

attributeName
Name of the attribute whose value is being read or overwritten. It shall be an error if the attributeName does
not identify one of the attributes allowed for the given objectKind.

value
Returned or passed in value of the attribute being read or overridden respectively. Two overloaded variants of
each accessor are provided: one for string values and one for integer values.

5.4.5 Class SceMiMessageData - message data object

The class SceMiMessageData represents the vector of message data that can be transferred from a Sce-
MiMessageInPortProxy on the software side to its associated SceMiMessageInPort on the hardware
side or from a SceMiMessageOutPort on the hardware side to its associated SceMiMessageOutPort-
Proxy on the software side. The message data payload is represented as a fixed-length array of SceMiU32 data
words large enough to contain the bit vector being transferred to or from the hardware side message port. For
example, if the message port had a width of 72 bits, Figure 16 shows how the those bits are organized in the data
array contained inside the SceMiMessageData object.

Figure 16—Organizing 72 bits in a data array

5.4.5.1 Constructor

SceMiMessageData::SceMiMessageData(
const SceMiMessageInPortProxy &messageInPortProxy,
SceMiEC *ec=NULL);

This constructs a message data object whose size matches the width of the specified input port. The constructed
message data object can only be used for sends on that port (or another of identical size) or an error will result.

31 ... 1, 0

63 ... 33,32

71...65,64

SceMiMessageData word 0

SceMiMessageData word 1

SceMiMessageData word 2

SceMiMessage[In/Out]Port.Message[] bits:
52 SCE-MI Reference Manual Version 1.1.0

Formal specification
5.4.5.2 Destructor

SceMiMessageData::~SceMiMessageData()

This destructs the object and frees the data array.

5.4.5.3 Accessors

unsigned int
SceMiMessageData::WidthInBits() const;

This returns the width of the message in terms of number of bits.

unsigned int
SceMiMessageData::WidthInWords() const;

This returns the size of the data array in terms of number of SceMiU32 words.

void
SceMiMessageData::Set(unsigned int i, SceMiU32 word, SceMiEC *ec = NULL
);

This sets word element i of the array to word.

void
SceMiMessageData::SetBit(unsigned int i, int bit, SceMiEC *ec = NULL);

This sets bit element i of the message vector to 0 if bit == 0, otherwise to 1. It is an error if i >=
::WidthInBits().

void
SceMiMessageData::SetBitRange(
 unsigned int i, unsigned int range, SceMiU32 bits, SceMiEC *ec = NULL
);

This sets range bit elements whose LSB’s start at bit element i of the message vector to the value of bits. It
is an error if i+range >= ::WidthInBits().

SceMiU32
SceMiMessageData::Get(unsigned int i, SceMiEC *ec = NULL) const;

This returns the word at slot i in the array. It is an error if i >= ::WidthInWords().

int
SceMiMessageData::GetBit(unsigned int i, SceMiEC *ec = NULL) const;

This returns the value of bit element i in the message vector. It is an error if i >= ::WidthInBits().

SceMiU32
SceMiMessageData::GetBitRange(unsigned int i, unsigned int range, Sce-
MiEC *ec = NULL) const;

This returns the value of range bit elements whose LSB’s start at i of the message vector. It is an error if
i+range >= ::WidthInBits().
Version 1.1.0 SCE-MI Reference Manual 53

Formal specification
SceMiU64
SceMiMessageData::CycleStamp() const;

The SCE-MI supports a feature called cycle stamping. Each output message sent to the software side is stamped
with the number of cycles of the 1/1 controlled clock since the end of creset at the time the message is
accepted by the infrastructure. The cycle stamp shall be 0 while creset is asserted and 1 at the point of alignment.
This is shown diagramatically in Figure 17. The cycle stamp provides a convenient way for applications to keep
track of elapsed cycles in their respective transactors as the simulation proceeds. The returned value is an abso-
lute, 64-bit unsigned quantity. For more information on the point of alignment, refer to 5.2.4.5 Multiple cclock
alignment.

Figure 17—Cycle Stamps

NOTE: It is suggested that messages should not be sent during the reset period. If they are sent they will all have a cycle
stamp of zero irrespective of the actual clock cycle that they occur on.

5.4.6 Class SceMiMessageInPortProxy

The class SceMiMessageInPortProxy presents to the application a proxy interface to a transactor mes-
sage input port.

5.4.6.1 Sending input messages

void
SceMiMessageInPortProxy::Send(

const SceMiMessageData &data,
SceMiEC *ec=NULL);

This method sends a message to the message input channel. This message appears on the hardware side as a bit
vector presented to the transactor via the SceMiMessageInPort macro (see 5.2.2), instance-bound to this
proxy.

data
This is a message data object containing the message to be sent. This object may be arbitrarily modified after
Send() and used for an arbitrary number of sends to the same and other message ports.

7

1/1 cclock

cycle stamp

creset

point of alignment

0 1 2 3 4 5 6 8 9 10 11 12 13 14
54 SCE-MI Reference Manual Version 1.1.0

Formal specification
5.4.6.2 Replacing port binding

void ReplaceBinding(
const SceMiMessageInPortBinding* binding = NULL,
SceMiEC* ec=NULL);

This method replaces the SceMiMessageInPortBinding object originally furnished to the
SceMi::BindMessageInPortProxy() call that created this port proxy object (see 5.4.3.5). This can be
useful for replacing contexts or input-ready callback functions some time after the input message port proxy has
been established.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal,
implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling replace port binding.
Since the binding object is copied, the binding itself will not change as a result of this.

binding
This is new callback and context information associated with this message input port proxy.

If the binding argument is given as a NULL, the SCE-MI assumes that each of the Context, IsReady(), and
Close() data members have NULL values.

NOTE---The ReplaceBinding() call below

 SceMiMessageInPortProxy *inProxy;

 // ...
 inProxy->ReplaceBinding();

 is equivalent to this code

 SceMiMessageInPortProxy *inProxy;

 // ...

 SceMiMessageInPortBinding inBinding;

 inBinding.Context = NULL;
 inBinding.IsReady = NULL;
 inBinding.Close = NULL;

 inProxy->ReplaceBinding(&inBinding);

5.4.6.3 Accessors

const char *
SceMiMessageInPortProxy::TransactorName() const;

This method returns the name of the transactor connected to the port. This is the absolute hierarchical path name
to the transactor instance expressed in the netlist’s HDL language syntax.

const char *
SceMiMessageInPortProxy::PortName() const;
Version 1.1.0 SCE-MI Reference Manual 55

Formal specification
This method returns the port name. This is the path name to the SceMiMessageInPort macro instance rela-
tive to the containing transactor netlist’s HDL language syntax.

unsigned
SceMiMessageInPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the asso-
ciated SceMiMessageInPort instance on the hardware side.

5.4.6.4 Destructor

There is no public destructor for this class. Destruction of all message input ports shall automatically occur when
the SceMi::ShutDown() function is called.

5.4.7 Class SceMiMessageOutPortProxy

The class MessageOutPortProxy presents to the application a proxy interface to the transactor message
output port.

5.4.7.1 Receiving output messages

There are no methods on this object specifically for reading messages that arrive on the output port proxy.
Instead, that operation is handled by the receive callbacks. Receive callbacks are registered with an output port
proxy when it is first bound to the channel (see 5.4.3.6). The prototype for the receive callback is:

void (*Receive)(void *context, const SceMiMessageData *data);

When called, the receive callback is passed a pointer to a class SceMiMessageData object (see 5.3.2),
which contains the content of the received message, and the context pointer. The context pointer is typically a
pointer to the object representing the software model interfacing to the port proxy.

Use this callback to process the data quickly and return as soon as possible. The reference to the SceMiMes-
sageData is of limited lifetime and ceases to exist once the callback returns and goes out of scope. Typically in
a SystemC context, the callback does some minor manipulation to the context object, then immediately returns
and lets a suspended thread resume and do the main processing of the received transaction.

No SceMiEC * error status object is passed to the call, because if an error occurs within the SceMi::Ser-
viceLoop() function (from which the receive callback is normally called), the callback is never called and
standard error handling procedures (see 5.4.2.1) are followed by the service loop function itself. If an error
occurs inside the receive callback, by implication it is an application error, not an SCE-MI error, and thus is the
application’s responsibility to handle (perhaps setting a flag in the context object before returning from the call-
back).

It shall be an error if the class SceMiMessageData object passed to the receive callback is passed as the class
SceMiMessageData argument of the SceMiMessageInPortProxy::Send() method. Modifying the
class SceMiMessageData object by casting away const leads to undefined behavior. This is in addition to any
compiler/run-time problems that may be generated by doing this.

5.4.7.2 Replacing port binding

void ReplaceBinding(
const SceMiMessageOutPortBinding* binding,
SceMiEC* ec=NULL);
56 SCE-MI Reference Manual Version 1.1.0

Formal specification
This method replaces the SceMiMessageOutPortBinding object originally furnished to the
SceMi::BindMessageOutPortProxy() call that created this port proxy object (see 5.4.3.6). This can be
useful for replacing contexts or receive callback functions some time after the output message port proxy has
been established. Setting the receive callback to a NULL value indicates that any message from the output can be
ignored.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal,
implementation specific location.

NOTE--The application is free to deallocate and/or modify the binding object at any time after calling replace port binding.
Since the binding object is copied, the binding itself will not change as a result of this.

binding
This is new callback and context information associated with this message output port proxy.

5.4.7.3 Accessors

const char *
SceMiMessageOutPortProxy::TransactorName() const;

This method returns the name of the transactor connected to the port. This is the absolute hierarchical path name
to the transactor instance expressed in the netlist’s HDL language syntax.

const char *
SceMiMessageOutPortProxy::PortName() const;

This method returns the port name. This is the path name to the SceMiMessageOutPort macro instance rel-
ative to the containing transactor expressed in the netlist’s HDL language syntax.

unsigned
SceMiMessageOutPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the asso-
ciated SceMiMessageOutPort instance on the hardware side.

5.4.7.4 Destructor

There is no public destructor for this class. Destruction of all message output ports shall automatically occur
when the SceMi::ShutDown() function is called.

5.5 Software side interface - C API

The SCI-MI software side also provides an ANSI standard C API. All of the following subsections parallel those
described in the C++ API. The C API can be implemented as functions that wrap calls to methods described in
the C++ API. The prototypes of those functions are shown in this section. For full documentation on a function,
see its corresponding subsection in 5.4.

5.5.1 Primitive data types

The C API has its own header file with the following minimum content:

typedef unsigned SceMiU32;
typedef unsigned long long SceMiU64;
Version 1.1.0 SCE-MI Reference Manual 57

Formal specification
typedef void SceMi;
typedef void SceMiParameters;
typedef void SceMiMessageData;
typedef void SceMiMessageInPortProxy;
typedef void SceMiMessageOutPortProxy;

typedef int (*ServiceLoopHandler)(void *context, int pending);

typedef enum {
SceMiOK,
SceMiError,

} SceMiErrorType;
typedef struct {

const char *Culprit;
const char *Message;
SceMiErrorType Type;
int Id;

} SceMiEC;
typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

typedef enum {
SceMiInfo,
SceMiWarning

} SceMiInfoType;
typedef struct {

const char *Culprit;
const char *Message;
SceMiInfoType Type;
int Id;

} SceMiIC;
typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

typedef struct {
void *Context;
void (*IsReady)(void *context);
void (*Close)(void *context);

} SceMiMessageInPortBinding;
typedef struct {

void *Context;
void (*Receive)(
 void *context,
 const SceMiMessageData *data);
void (*Close)(void *context);

} SceMiMessageOutPortBinding;

An application shall include either the C API header or the C++ API header, but not both.

NOTE—Because ANSI C does not support default argument values, the last SceMiEC *ec argument to each function must
be explicitly passed when called, even if only to pass a NULL.

5.5.2 Miscellaneous interface support issues

The C miscellaneous functions have semantics like the corresponding C++ methods (shown within 5.4).
58 SCE-MI Reference Manual Version 1.1.0

Formal specification
5.5.2.1 SceMiEC - error handling

void
SceMiRegisterErrorHandler(

SceMiErrorHandler errorHandler,
void *context);

5.5.2.2 SceMiIC - informational status and warning handling (info handling)

void
SceMiRegisterInfoHandler(

SceMiInfoHandler infoHandler,
void *context);

5.5.3 SceMi - SCE-MI software side interface

See also 5.4.3.

5.5.3.1 Version discovery

int
SceMiVersion(const char *versionString);

5.5.3.2 Initialization

SceMi *
SceMiInit(

int version,
const SceMiParameters *parameterObjectHandle,
SceMiEC *ec);

5.5.3.3 SceMi Object Pointer Access

SceMi *
SceMiPointer(

SceMiEC *ec);

5.5.3.4 Shutdown

void
SceMiShutdown(

SceMi *sceMiHandle,
SceMiEC *ec);

5.5.3.5 Message input port proxy binding

SceMiMessageInPortProxy *
SceMiBindMessageInPort(

SceMi *sceMiHandle,
const char *transactorName,
const char *portName,
const SceMiMessageInPortBinding *binding,
SceMiEC *ec);
Version 1.1.0 SCE-MI Reference Manual 59

Formal specification
5.5.3.6 Message output port proxy binding

SceMiMessageOutPortProxy *
SceMiBindMessageOutPort(

SceMi *sceMiHandle,
const char *transactorName,
const char *portName,
const SceMiMessageOutPortBinding *binding,
SceMiEC *ec);

5.5.3.7 Service loop

int
SceMiServiceLoop(

SceMi *sceMiHandle,
SceMiServiceLoopHandler g,
void *context,
SceMiEC *ec);

5.5.4 SceMiParameters - parameter access

See also 5.4.4.

5.5.4.1 Constructor

SceMiParameters *
SceMiParametersNew(

const char *paramsFile,
SceMiEC *ec);

This function returns the handle to a parameters object.

5.5.4.2 Destructor

void
SceMiParametersDelete(

SceMiParameters *parametersHandle);

5.5.4.3 Accessors

unsigned int
SceMiParametersNumberOfObjects(

const SceMiParameters *parametersHandle,
const char *objectKind,
SceMiEC *ec);

int
SceMiParametersAttributeIntegerValue(

const SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec);
60 SCE-MI Reference Manual Version 1.1.0

Formal specification
const char *
SceMiParametersAttributeStringValue(

const SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec);

void
SceMiParametersOverrideAttributeIntegerValue(

SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
int value,
SceMiEC *ec);

void
SceMiParametersOverrideAttributeStringValue(

SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
const char *value,
SceMiEC *ec);

5.5.5 SceMiMessageData - message data object

See also 5.4.5.

5.5.5.1 Constructor

SceMiMessageData *
SceMiMessageDataNew(

const SceMiMessageInPortProxy *messageInPortProxyHandle,
SceMiEC *ec);

This function returns the handle to a message data object suitable for sending messages on the specified input
port proxy.

5.5.5.2 Destructor

void
SceMiMessageDataDelete(

SceMiMessageData *messageDataHandle);

5.5.5.3 Accessors

unsigned int
SceMiMessageDataWidthInBits(

const SceMiMessageData *messageDataHandle);
Version 1.1.0 SCE-MI Reference Manual 61

Formal specification
unsigned int
SceMiMessageDataWidthInWords(

const SceMiMessageData *messageDataHandle);

void
SceMiMessageDataSet(

SceMiMessageData *messageDataHandle,
unsigned int i,
SceMiU32 word,
SceMiEC *ec);

void
SceMiMessageDataSetBit(

SceMiMessageData *messageDataHandle,
 unsigned int i,
 int bit,
 SceMiEC *ec);

void
SceMiMessageDataSetBitRange(

SceMiMessageData *messageDataHandle,
 unsigned int i,
 unsigned int range,
 SceMiU32 bits,
 SceMiEC *ec);

SceMiU32
SceMiMessageDataGet(

const SceMiMessageData *messageDataHandle,
unsigned int i
SceMiEC *ec);

int
SceMiMessageDataGetBit(

const SceMiMessageData *messageDataHandle,
 unsigned int i,
 SceMiEC *ec);
SceMiU32
SceMiMessageDataGetBitRange(
 const SceMiMessageData *messageDataHandle,
 unsigned int i,
 unsigned int range,
 SceMiEC *ec);

SceMiU64
SceMiMessageDataCycleStamp(

const SceMiMessageData *messageDataHandle);

5.5.6 SceMiMessageInPortProxy - message input port proxy

See also 5.4.6.
62 SCE-MI Reference Manual Version 1.1.0

Formal specification
5.5.6.1 Sending input messages

void
SceMiMessageInPortProxySend(

SceMiMessageInPortProxy *messageInPortProxyHandle,
const SceMiMessageData *messageDataHandle,
SceMiEC *ec);

5.5.6.2 Replacing port binding

void SceMiMessageInPortProxyReplaceBinding(
SceMiMessageInPortProxy *messageInPortProxyHandle,
const SceMiMessageInPortBinding* binding,
SceMiEC* ec);

5.5.6.3 Accessors

const char *
SceMiMessageInPortProxyTransactorName(

const SceMiMessageInPortProxy *messageInPortProxyHandle);

const char *
SceMiMessageInPortProxyPortName(

const SceMiMessageInPortProxy *messageInPortProxyHandle);

unsigned
SceMiMessageInPortProxyPortWidth(

const SceMiMessageInPortProxy *messageInPortProxyHandle);

5.5.7 SceMiMessageOutPortProxy - message output port proxy

See also 5.4.7.

5.5.7.1 Replacing port binding

void SceMiMessageOutPortProxyReplaceBinding(
SceMiMessageOutPortProxy *messageOutPortProxyHandle,
const SceMiMessageOutPortBinding* binding,
SceMiEC* ec);

5.5.7.2 Accessors

const char *
SceMiMessageOutPortProxyTransactorName(

const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

const char *
SceMiMessageOutPortProxyPortName(

const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

unsigned
SceMiMessageOutPortProxyPortWidth(

const SceMiMessageInPortProxy *messageOutPortProxyHandle);
Version 1.1.0 SCE-MI Reference Manual 63

Formal specification
64 SCE-MI Reference Manual Version 1.1.0

Appendix A

(informative)

Tutorial

A.1 Hardware side interfacing

The hardware side interface of the SCE-MI consists of a set of parametrized macros which can be instantiated
inside transactors that are to interact with the SCE-MI infrastructure. The macros are parametrized so, at the
point of instantiation, the user can easily specify crucial parameters that determine the dimensions of the SCE-MI
bridge to software. It is the job of the infrastructure linker to learn the values of these parameters, customize
implementation components, and insert them underneath the macros accordingly.

The following four macros fully characterize how the hardware side interface of the SCE-MI is presented to the
transactors and the DUT:

— SceMiMessageInPort macro
— SceMiMessageOutPort macro
— SceMiClockControl macro
— SceMiClockPort macro

Any number of these macros can be instantiated as needed. One SceMiMessageInPort macro shall be
instantiated for each required message input channel and one SceMiMessageOutPort macro for each output
channel. Message port macro bit-widths are parametrized at the point of instantiation.

Exactly one SceMiClockPort macro is instantiated for each defined clock in the system. This SceMi-
ClockPort macro instance shall (via a set of parameters) fully characterize a particular clock. The SceMi-
ClockPort macro is instantiated at the top level and provides a controlled clock and reset directly to the DUT.
The SceMiClockPort macro instance is named and assigned a reference ClockNum parameter that is used
to associate it with one or more counterpart SceMiClockControl macros inside one or more transactors. The
SceMiClockControl macro is used by its transactor for all clock controlling operations for its associated
clock. These two macros are mutually associated by the ClockNum parameter and every SceMiClockPort
macro shall have a minimum of one SceMiClockControl macro associated with it.

The infrastructure linker (not the user) is responsible for properly hooking up these, essentially empty, macro
instances to the internally generated SCE-MI infrastructure and clock generation circuitry.

A.1.1 Required dimensions

The following parameters, specified at the points of instantiation of the macros, fully specify the required dimen-
sions of the SCE-MI infrastructure components (see 5.3.1 for more details):

— number of transactors
— number of input and output channels
— name and width of each channel
— number of controlled clocks
— name, clock ratio, and duty cycle of each controlled clock
Version 1.1.0 SCE-MI Reference Manual 65

Tutorial
A.1.2 Hardware side interface connections

Figure A.1 shows a simple example of how a transactor and DUT might connect to the hardware side interface of
the SCE-MI.

Figure A.1—Connection of SCE-MI macros on hardware side to transactor and DUT

This example features a single transactor interacting with a DUT and interfacing to the software side through a
SceMiMessageInPort and a SceMiMessageOutPort. In addition, it defines a single clock that is con-
trolled by the transactor internally using the SceMiClockControl macro. This clock drives the DUT from
the top level through a SceMiClockPort macro.

A key point of this example is only the transactor implementor (see 4.3) needs to be aware of all the SCE-MI
interface macros (except for the SceMiClockPort). Because the transactor encapsulates the message port
macros and the SceMiClockControl macro, the end-user only has to be aware of how to hook-up to the
transactor itself and to the SceMiClockPort macro.

A.1.3 SceMiClockPort macro instantiation

The SceMiClockPort macro instantiation is where all the clock parameters are specified. The numbers
shown in the component instantiation label (see Figure A.1) as:

#(1, 1, 1, 50, 50, 0, 8) cclock

map to the parameters defined for the SceMiClockPort macro (see 5.2.4). They are summarized here:

TransmitReady
ReceiveReady

Message []

SceMiMessageInPort
#64 p1

TransmitReady
ReceiveReady

Message []

SceMiMessageOutPort
#128 p2

TxRdyIn

Uclock
Ureset

ReadyForCclock

SceMiClockControl
#1 c1

CclockEnabled

CclockNegEdgeEnabled

RxRdyIn

Uclk
Rst

ReadyForCclock
CclockEnabled

MessageIn [63:0]

TxRdyOut
RxRdyOut

MessageOut [127:0]

TransactorCore

DutInCtrl
DutInData []

DutOutCtrl
DutOutData []

User-DefinedTransactor
t1

u1

DutInCtrl
DutInData []

DutOutCtrl
DutOutData []

Clk
Rst

d1
DUT

Cclock
Creset

SceMiClockPort
#(1, 1, 1, 50, 50, 0, 8) cclock

ReadyForCclockNegEdge ‘1’
66 SCE-MI Reference Manual Version 1.1.0

Tutorial
ClockNum = 1
RatioNumerator = 1
RatioDenominator = 1
DutyHi = 50
DutyLo = 50
Phase = 0
ResetCycles = 8

Of these parameters, the ClockNum parameter is used to uniquely identify this particular clock and also to asso-
ciate it with its one or more counterpart SceMiClockControl macros, which shall be parametrized to the
same ClockNum value, in this case 1. In addition to learning the clock specification parameters, the infrastruc-
ture linker also learns the name of each clock by looking at the instance label of each SceMiClockPort
instance, in this case cclock.

Similarly, message ports have a parametrized PortWidth parameter.

A.1.4 Analyzing the netlist

To summarize, the infrastructure linker learns the following specific information from analyzing this netlist.

— It has a single transactor called Bridge.u1 (assuming top level module is called Bridge).
— It has a single “divide-by-1” controlled clock called cclock.
— The controlled clock has a 1/1 ratio which, when enabled, is ideally (depending on implementation) the

same frequency as the uncontrolled clock.
— The controlled clock is parametrized to 50/50 duty cycle with 0 phase shift (a user can also specify a

don’t care duty cycle - see 5.2.4.1 for details).
— The controlled reset is parametrized to eight controlled clock cycles of reset.
— It has a single SceMiMessageInPort called p1, parametrized to bit-with of 64.
— It has a single SceMiMessageOutPort called p2, parametrized to bit-width of 128.

A more complicated example which involves two transactors and three clocks is shown in Appendix B.

A.2 The Routed tutorial

The Routed tutorial documents a real-life example which uses the SCE-MI to interface between untimed soft-
ware models modeled in SystemC, and hardware models of transactors and a DUT modeled in RTL Verilog. This
tutorial illustrates how the use model of the SCE-MI can be applied in a multi-threaded SystemC environment. It
assumes some familiarity with the concepts of SystemC including abstract ports, autonomous threads, slave
threads, module and port definition, and module instantiation and interconnect. See [B2] for a description of
these concepts.

A.2.1 What the design does

The Routed design is a small design that simulates air passengers traveling from Origins to Destinations
by traversing various interconnected Pipes and Hubs in a RouteMap. In this design, the Origins and Des-
tinations are the transactors and the RouteMap model is the DUT. Each Origin transactor interfaces to a
SceMiMessageInPort to gain access to messages arriving from the software side. Each Destination
transactor interfaces to a SceMiMessageOutPort to send messages to the software side. There is also an
OrigDest module that has both an Origin and Destination transactor contained within it.

The “world” consists of these Origins:
Version 1.1.0 SCE-MI Reference Manual 67

Tutorial
Anchorage, Cupertino, Noida, SealBeach, UK, or Waltham,

and these Destinations:

Anchorage, Cupertino, Maui, SealBeach, or UK.

Travel from any Origin to any Destination is possible by traversing the RouteMap (DUT) containing the
following Pipe-interconnected Hubs:

Chicago, Dallas, Newark, SanFran, or Seattle.

Each controlled-clock cycle represents one hour of travel or layover time.

Figure A.2 shows how the Routed world is interconnected. The numbers shown by the directed arcs are the
travel time (in hours) to travel the indicated Pipe. Layover time in each Hub is two hours.

The RouteMap is initialized by injecting TeachRoute messages for the entire system through the Waltham
Origin transactor. Each TeachRoute message contains a piece of routing information addressed to a particu-
lar Hub to load the route into its RouteTable module (see Figure A.5). Using this simple mechanism, the soft-
ware-side RouteConfig model progressively teaches each Hub its routes (via Waltham) so that it can, in
turn, pass additional TeachRoute tokens to Hubs more distant from Waltham. In other words, by first teach-
ing closer hubs, the RouteMap learns to pass routes bound for more distant hubs. This process continues until the
entire mesh is initialized, at which point it is ready to serve as a backbone for all air travel activity.

After initiating the route configuration, the testbench then executes the itineraries of four passengers over a
period of 22 days. Each itinerary consists of several legs, each with a scheduled departure from a specified Ori-
gin and a specified Destination. The scheduled leg is sent as a message token to its designated Origin
transactor. The transactor needs to count the number of clocks until the specified departure time before sending
the token into the RouteMap mesh.
68 SCE-MI Reference Manual Version 1.1.0

Tutorial
Figure A.2—The Routed world

A.2.2 System hierarchy

The hierarchy of the whole system is textually shown in the following subsections.

A.2.2.1 Software side hierarchy

The software side hierarchy of models is as follows.

3

Legend

Hub

Pipe (with
 travel time)

Origin

Destination

OrigDest

Noida

14

Anchorage

5

Seattle

4

Maui
2

1
Cupertino

SanFran

SealBeach

1

3
Dallas

2

Chicago
3

5
Newark

3

1

Waltham

7 UK

Anchorage
Cupertino
Noida
SealBeach
UK
Waltham

Anchorage
Cupertino
Maui
SealBeach
UK

Chicago
Dallas
Newark
SanFran
Seattle

“Polar Route”

Origins Destinations Hubs
Version 1.1.0 SCE-MI Reference Manual 69

Tutorial
System
Testbench
Calendar <--> ClockAdvancer
Scheduler <--> OrigDest, Origin, Destination
RouteConfig
SceMiDispatcher

Notice the interactions shown between the Calendar and Scheduler software side models and the OrigD-
est, Origin, and Destination hardware side models occur over SCE-MI message channels.

A.2.2.2 Hardware side hierarchy

The hierarchy of the hardware side components instantiated under the Bridge netlist is shown here.

Bridge
SceMiClockPort

OrigDest anchorage, cupertino, sealBeach, UK
 Origin
 SceMiMessageInPort
 SceMiClockControl
 Destination
 SceMiMessageOutPort
 SceMiClockControl

Origin noida, waltham

Destination maui

RouteMap
 Hub chicagoHub, dallasHub, newarkHub, sanFranHub, seattleHub
 Funnel
 Nozzle
 RouteTable

 Pipe

ClockAdvancer
 SceMiMessageInPort
 SceMiMessageOutPort
 SceMiClockControl

Notice at the Bridge level, only the SceMiClockPort macro, transactor components, and the DUT appear.
The SceMiMessageInPort, SceMiMessageOutPort, and SceMiClockControl macros are encap-
sulated within the Origin and Destination transactors. The ClockAdvancer transactor has both mes-
sage input and output ports, in addition to the required SceMiClockControl macro.

A.2.3 Hardware side

The hardware side of this example consists of a bridge netlist which instantiates the DUT, transactors, and the
clock ports. The transactors in turn communicate with the DUT and instantiate the message port macros, as
shown in Figure A.3.
70 SCE-MI Reference Manual Version 1.1.0

Tutorial
A.2.3.1 Bridge

The bridge between the hardware and software side of the design is depicted in Figure A.3. Notice this diagram
more or less follows the structure of the generalized abstraction bridge shown in Figure 6. The design uses 13
message channels in all: two message (input and output) channels for the Calendar <-> ClockAdvancer
connection, six message input channels for the Scheduler <-> Origin connections, and five output chan-
nels for the Scheduler <-> Destination connections.

Figure A.3—The bridge

The two software models that interact with the hardware side are the Calendar model and the Scheduler
model. These models encapsulate message port proxies which give them direct access to the message channels
leading to the Origin and Destination transactors on the hardware side. These two software models are the
only ones that are aware of the SCE-MI link. They converse with the other models through SystemC abstract
ports.

UK
Message

In/Out Port
Proxy

Calendar
AdvanceCalendar

NewDay

AdvanceClock

TodaysDate

Message
In/Out
Port

Clock
Advancer

Message
Channels

Transactors

Software Models

Anchorage
Message

In/Out Port
Proxy

Noida

In Port
Proxy

ClockAdv
Message

In/Out Port
Proxy

RouteMap
Proxy

TodaysDate

Announce
Arrival

ScheduleLeg

LoadRoute

Scheduler

Message
In/Out
Port

Message
In/Out
Port

Message
In Port

Noida

Destination

Anchorage
OrigDest

UK
OrigDest

RouteMap

DUT

Message
Version 1.1.0 SCE-MI Reference Manual 71

Tutorial
On the hardware side, there is a set of Origin and Destination transactors which service the message chan-
nels that interface with the Scheduler and route tokens to or from the DUT. Some locations, such as
Anchorage and the UK, are both Origin and Destination (called OrigDest).

In addition, there is a ClockAdvancer transactor which interfaces directly with the Calendar model. The
ClockAdvancer is a stand-alone transactor which does not converse with the DUT. Its only job is to allow
time to advance a day at a time (see A.2.3.5 for more details).

A.2.3.2 DUT and transactor interconnect

Figure A.4 shows a representative portion of the RouteMap to illustrate how it interconnects DUT components
to form the RouteMap mesh.

Figure A.4—DUT and transactor interconnect

Origin
TokenOut

Destination
TokenIn

Destination
TokenIn

P
i
p
e

Pipe 5

P
i
p
e

Pipe 5

P
i
p
e

Pipe 4

Funnel

In0
In1
In2
In3

Out

Nozzle

In
Out0
Out1
Out2
Out3

Hub

Seattle
OrigDest

Anchorage

5Anchorage

Seattle

Maui

4

72 SCE-MI Reference Manual Version 1.1.0

Tutorial

‘

Pipes are inserted between two Hubs or between an Origin or Destination transactor and a Hub. Longer
Pipes can be created by cascading primitive one-hour Pipes to form the proper length. Each Pipe primitive
represents one hour of travel (one clock). In this diagram, a Pipe4 model is inserted between the Seattle
Hub and Maui Destination for a four-hour flight leg. Since travel can occur in either direction between
Anchorage and Seattle, a Pipe5 is inserted between them for each direction.

A.2.3.3 DUT and transactor components

Figure A.5 shows the structure of the DUT and transactor components.

Figure A.5—DUT and transactor components

MessageIn Port

ClockControl

MessageOut Port

ClockControl

MessageIn Port

MessageOut Port

Origin

TokenOut

TokenIn

Destination

Clock
Control

ClockAdvancer

RouteMap
 (DUT)
Interface

32

32

Transactor Components DUT Components

Funnel
TokenIn0
TokenIn1
TokenIn2
TokenIn3

TokenOut0
TokenOut1
TokenOut2
TokenOut3

Nozzle

TokenOut TokenIn

RouteTable

Hub

32
32
32
32 32

32
32
32
32

Pipe

TokenIn TokenOut
32 32

TeachRoute’ Token

0
3071113

Destination ID of Hub

Learn Route ID

Associated Port ID

‘Passenger Arrival’ Token ‘Passenger Departure’ Token

> 0
30711152331

Passenger ID
Destination ID

Layover Count

Layover 0 ID (Origin)

Layover 1 ID

Layover 4 ID

Passenger ID

> 0

Destination ID

Time of Departure

1531

Token Formats
Version 1.1.0 SCE-MI Reference Manual 73

Tutorial
Each Origin transactor contains a clock-control macro and a message-input port macro to receive departure
tokens from the Scheduler on the software side. Each received token is passed to the TokenOut port when
the scheduled departure time has matured. Although the Origin transactor has a clock-control macro, it does
not actively control the clock. Its only use of the clock-control macro is to monitor the ReadyForCclock sig-
nal to know on which uclocks the cclock is active, so it can properly count cclocks until the scheduled
departure time of a pending departure token.

Each Destination transactor contains a clock-control macro and a message-output port macro to send arrival
tokens back to the Scheduler on the software side. The arrival tokens represent a passenger emerging from the
RouteMap mesh and arriving at a Destination through its TokenIn port. See A.2.3.4 for a detailed
description of the Destination transactor. This transactor was chosen because it provides a simple example
of clock control and message port interfacing.

Each token is a 32-bit vector signal. There are no handshakes in the system. Rather, the tokens are “self announc-
ing.” Normally, 0’s (zeroes) are clocked through the mesh so if, on any given cycle, a Hub or Destination
senses a non-zero value on its input port, it knows it has received a token that needs to be processed.

Token formats are also shown in Figure A.5. A departure token contains the passenger ID, destination ID, and
scheduled time of departure. As the departure token travels through the mesh, it collects layover information
consisting of the IDs of all the Hubs encountered before reaching its Destination, which is transformed into
an arrival token. The arrival token then has a complete record of layover information which is passed back to the
software side and displayed to the console.

A Hub consists of a Funnel which accepts tokens from a maximum of four different sources and a Nozzle
which routes a token to a maximum of four different destinations. The Nozzle contains a small RouteTable
which is initialized at the beginning of the simulation with routing information by receiving TeachRoute
tokens.

A.2.3.4 The Destination transactor: interfacing with the DUT and controlling the clock

The Destination transactor accepts tokens arriving from a point-of-exit on the RouteMap and passes them
to the message output port.

The Destination transactor uses clock control to avoid losing potentially successive tokens arriving from the
RouteMap (through the TokenIn input) to this destination portal. It de-asserts the readyForCclock if a
token comes in, but the message output port is not able to take it because of tokens simultaneously arriving at
other destination portals. This way, it guarantees that the entire RouteMap is disabled until all tokens are off-
loaded from the requesting Destination transactors.

The Verilog source code for the Destination transactor is shown in the following listing.

module Destination (
 //inputs outputs
 //-------------------------- ----------------------------
 // DUT port interface
 TokenIn);
 input [31:0] TokenIn;
// {
 wire [3:0] destID;
 reg readyForCclock;
 reg outTransmitReady;
 reg [31:0] outMessage;

 assign destID = TokenIn[7:4];

74 SCE-MI Reference Manual Version 1.1.0

Tutorial
 SceMiClockControl sceMiClockControl(
 //Inputs Outputs
 //---------------------------- ----------------------------
 .Uclock(uclock),
 .Ureset(ureset),
 .ReadyForCclock(readyForCclock), .CclockEnabled(cclockEnabled),
 .ReadyForCclockNegEdge(1'b1), .CclockNegEdgeEnabled());

 SceMiMessageOutPort #32 sceMiMessageOutPort(
 //Inputs Outputs
 //---------------------------- ----------------------------
 .TransmitReady(outTransmitReady), .ReceiveReady(outReceiveReady),
 .Message(outMessage));

 always@(posedge uclock) begin // {
 if(ureset == 1) begin
 readyForCclock <= 1;
 outMessage <= 0;
 outTransmitReady <= 0;
 end
 else begin // {
 // if(DUT clock has been disabled)
 // It means that this destination transactor is waiting to
 // unload its pending token and does not want to re-enable the
 // DUT until that token has been offloaded or else it may
 // loose arriving tokens in subsequent DUT clocks.
 if(readyForCclock == 0) begin

 // When the SceMiMessageOutPort finally signals acceptance
 // of the token, we can re-enable the DUT clock.
 if(outReceiveReady) begin
 readyForCclock <= 1;
 outTransmitReady <= 0;
 end
 end
 else if(cclockEnabled && destID != 0) begin
 outMessage <= TokenIn;
 outTransmitReady <= 1;

 // if(token arrives but portal is not ready)
 // Stop the assembly line ! (a.k.a. disable the DUT)
 if(outReceiveReady == 0)
 readyForCclock <= 0;
 end
 else if(outTransmitReady == 1 && outReceiveReady == 1)
 outTransmitReady <= 0;
 end // }
 end // }
endmodule // }

A.2.3.5 The ClockAdvancer transactor: controlling time advance

The ClockAdvancer transactor simply counts controlled clocks until the requested number of cycles has tran-
spired, then sends back a reply transaction.

The Verilog source code for the ClockAdvancer is listed here.
Version 1.1.0 SCE-MI Reference Manual 75

Tutorial
 module ClockAdvancer(
 //inputs outputs
 //-------------------------- ----------------------------
 Uclock);

 parameter ClockNum = 1;
 parameter SampleWidth = 32;
// {
 // Internal signals
 wire [31:0] advanceDelta;
 reg [31:0] cycleCount;

 wire inReceiveReady;
 reg outTransmitReady;
 reg readyForCclock;
 wire [SampleWidth-1:0] inMessage, outMessage;

 assign inReceiveReady = 1;
 assign advanceDelta = inMessage[31:0];
 assign outMessage = 0;

 SceMiClockControl #(ClockNum) sceMiClockControl(
 //Inputs Outputs
 //---------------------------- ----------------------------
 .Uclock(uclock), .Ureset(ureset),
 .ReadyForCclock(readyForCclock), .CclockEnabled(cclockEnabled),
 .ReadyForCclockNegEdge(1'b1), .CclockNegEdgeEnabled());

 SceMiMessageInPort #(SampleWidth)32 sceMiMessageInPort(
 //Inputs Outputs
 //---------------------------- ----------------------------
 .ReceiveReady(inReceiveReady), .TransmitReady(inTransmitReady),
 .Message(inMessage));

 SceMiMessageOutPort #32 sceMiMessageOutPort(
 //Inputs Outputs
 //---------------------------- ----------------------------
 .TransmitReady(outTransmitReady), .ReceiveReady(outReceiveReady),
 .Message(outMessage));

 always @(posedge uclock) begin // {
 if (ureset) begin
 outTransmitReady <= 0;
 cycleCount <= 0;
 readyForCclock <= 0;
 end

 else begin // {
 // Start operation command
 if(inTransmitReady &&
 !outTransmitReady) begin
 cycleCount <= advanceDelta;
 readyForCclock <= 1;
 end

 if(readyForCclock && cclockEnabled) begin
 if (cycleCount == 1) begin
 outTransmitReady <= 1;
 readyForCclock <= 0;
76 SCE-MI Reference Manual Version 1.1.0

Tutorial
 end
 cycleCount <= cycleCount - 1;
 end

 if (outReceiveReady == 1 && outTransmitReady == 1)
 outTransmitReady <= 0;
 end // }
 end // }
endmodule // }

Notice the SceMiClockControl macro references the same cclock as that in the Destination transactor
(i.e., it uses the default ClockNum=1). This means the ClockAdvancer and the Destination transactor
share in the control of the same cclock. In fact there is only one cclock in the entire system that is specified
at the default 1/1 ratio.

Also, although the ClockAdvancer handshakes with the message output port, the data that it sends is always
0. This is because the only thing that the software side needs from the ClockAdvancer is the cycle stamp,
which is automatically included in each message output response (see 5.4.5.3).

A.2.4 The software side

The software side of the Routed design is written completely in SystemC and C++. It is compiled as an execut-
able program that links with the SCE-MI software side.

A.2.4.1 The System model: interconnect of SystemC modules

The System model is the top level “software netlist” of SystemC modules (SC_MODULE()). It specifies the
construction and interconnect of the component models as well. A block diagram of the System model is shown
in Figure A.6.
Version 1.1.0 SCE-MI Reference Manual 77

Tutorial
Figure A.6—Interconnect of SystemC models

The source code for the System model is shown here.

class System: public sc_module {
 public:
 sc_link_mp<unsigned> newDay;
 sc_link_mp<const Routed::ArrivalRecord *> announceArrival;
 sc_link_mp<unsigned> advanceCalendar;
 sc_link_mp<const Routed::Itinerary *> scheduleLeg;
 sc_link_mp<> loadRouteMap;
 sc_link_mp<> done;

 sc_link_mp<> advanceClock;
 sc_link_mp<Routed::Date> todaysDate;

 sc_link_mp<const Routed::Route *> loadRoute;

 //---
 // Module declarations
 Testbench *testbench;
 Calendar *calendar;
 Scheduler *scheduler;
 RouteConfig *routeConfig;

TestBench

NewDay

AnnounceArrival

AdvanceCalendar
ScheduleLeg

LoadRouteMap

Done

Calendar

AdvanceCalendar

AdvanceClock

NewDay

TodaysDate

SceMi Dispatcher

Done

Scheduler

TodaysDate

ScheduleLeg

LoadRoute

AnnounceArrival

RouteConfig

LoadRouteMap LoadRoute

AdvanceClock
SceMi

::ServiceLoop()

Message Channels

Testbench Architecture
78 SCE-MI Reference Manual Version 1.1.0

Tutorial
 SceMiDispatcher *dispatcher;

 System(sc_module_name name, SceMi *sceMi) : sc_module(name) {
 testbench = new Testbench("testbench");
 testbench->NewDay(newDay);
 testbench->AnnounceArrival(announceArrival);
 testbench->AdvanceCalendar(advanceCalendar);
 testbench->ScheduleLeg(scheduleLeg);
 testbench->LoadRouteMap(loadRouteMap);
 testbench->Done(done);

 calendar = new Calendar("calendar", sceMi);
 calendar->AdvanceCalendar(advanceCalendar);
 calendar->AdvanceClock(advanceClock);
 calendar->NewDay(newDay);
 calendar->TodaysDate(todaysDate);

 scheduler = new Scheduler("scheduler", sceMi);
 scheduler->TodaysDate(todaysDate);
 scheduler->ScheduleLeg(scheduleLeg);
 scheduler->LoadRoute(loadRoute);
 scheduler->AnnounceArrival(announceArrival);

 routeConfig = new RouteConfig("routeConfig");
 routeConfig->LoadRouteMap(loadRouteMap);
 routeConfig->LoadRoute(loadRoute);
 routeConfig->AdvanceClock(advanceClock);

 dispatcher = new SceMiDispatcher("dispatcher", sceMi);
 dispatcher->Done(done);
 }
};

SystemC interconnect channels are declared as sc_link_mp<> data types. These can be thought of as abstract
signals that interconnect abstract ports. The parametrized data type associated with each sc_link_mp<>
denotes the data type of the message the channel is capable of transferring from an output abstract port to an
input abstract port.

Notice the todaysDate channel is declared with a “by value” data type (i.e., Routed::Date), whereas
some of the other channels, such as the announceArrival, are declared as “by reference” data types (i.e.,
const Routed::ArrivalRecord *). The former is less efficient, but safer, because the message is
passed by value and, therefore, there is no danger of the receiver corrupting the sender’s data, or worse, having
the sender’s data go out-of-scope, leaving the receiver with a possibly dangling reference. However, passing
messages by reference is more efficient, but potentially problematic. Declaring them as const pointers helps
alleviate some, but not all, of the safety problems.

Module pointers are declared inside the SC_MODULE(System) object and constructed in its SystemC con-
structor (SC_CTOR(System)). After each child module is constructed, its abstract ports are mapped to one of
the declared interconnect channels.

NOTE—SystemC channels, while conceptually the same, are distinctly different from SCE-MI message channels. Both types
of channels pass messages, but SystemC channels are designed strictly to pass messages of arbitrary C++ data types between
SystemC modules. An entire simulation can be built of just software models communicating with each other. See [B2] for
more details about SystemC interconnect channels.
Version 1.1.0 SCE-MI Reference Manual 79

Tutorial
SCE-MI message channels have a completely different interface and are optimized for implementing abstraction
bridges between a software subsystem and a hardware subsystem. In the use model presented in this example
(see Figure A.6), their interfaces are encapsulated by SystemC models.

The thick round arrows in Figure A.6 represent the SystemC autonomous threads contained in the Testbench
and SceMiDispatcher modules. These two threads are the only autonomous threads in the system. All the
other code is executed inside slave threads.

A.2.4.2 The sc_main() routine and error handler

The following listing shows the sc_main() routine which is the top-level entrypoint to the program. The
sc_main() is required when linking to a SystemC kernel facility, but it is very much like a conventional
main() C or C++ entrypoint and has the same program argument passing semantics.

int sc_main(int argc, char *argv[]){
 //---
 // Instantiate SceMi

 SceMi::RegisterErrorHandler(errorHandler, NULL);
 SceMi *sceMi = NULL;

 try {
 int sceMiVersion = SceMi::Version(SCEMI_VERSION_STRING);
 SceMiParameters parameters("mct");
 sceMi = SceMi::Init(sceMiVersion, ¶meters);

 //---
 // Instantiate the system here. Autonomous threads nested
 // inside the DispatcherDriver and the Testbench will advance
 // untimed activity. Such threads are senstitive to UTick defined
 // at the top of this file.
 // -- johnS 8-29-00

 System system("system", sceMi);

 //---
 // Kick off SystemC kernel ...
 cerr << "Let 'er rip !" << endl;
 sc_start(-1);
 }

 catch(string message) {
 cerr << message << endl;
 cerr << "Fatal Error: Program aborting." << endl;
 if(sceMi) SceMi::Shutdown(sceMi);
 return -1;
 }
 catch(...) {
 cerr << "Error: Unclassified exception." << endl;
 cerr << "Fatal Error: Program aborting." << endl;
 if(sceMi) SceMi::Shutdown(sceMi);
 return -1;
 }
 return 0;
}

static void errorHandler(void */*context*/, SceMiEC *ec) {
80 SCE-MI Reference Manual Version 1.1.0

Tutorial
 char buf[32];

 sprintf(buf, "%d", (int)ec->Type);
 string messageText("SCE-MI Error[");
 messageText += buf;
 messageText += "]: Function: ";
 messageText += ec->Culprit;
 messageText += "\n";
 messageText += ec->Message;
 throw messageText;
}

The first routine defined is the errorHandler(). This is the master error-handling function that is registered
with the SCE-MI. Whenever an error occurs, this function is called to format the message before throwing a C++
exception. The exceptions are caught in the catch { ... } blocks at the end of the sc_main() routine,
where they are displayed before exiting the program.

Once the error handler is registered, the SCE-MI is initialized by calling SceMi::Init(). This method
returns a pointer to an SceMi object that manages the whole SCE-MI software side infrastructure.

Next, the System model described in A.2.4.1 is constructed. The constructor (SC_CTOR(System)) causes
all of its child software models to get constructed by calling, in turn, their SC_CTOR() constructors.

Once the whole system is statically constructed, models that interface with SCE-MI are given the master SceMi
object pointer so they can access its methods, by calling special ::Bind() accessor methods on those models.

Finally, the SystemC main kernel loop is initialized by calling the sc_start() function. The -1 parameter
tells it to go indefinitely until the program decides to end (as explained in A.2.4.3).

A.2.4.3 The SceMiDispatcher module: interfacing with the SCE-MI service loop

The SceMiDispatcher module contains an autonomous thread that yields to the SCE-MI infrastructure so it
can service its message port proxies by making repeated calls to the SceMi::ServiceLoop() method (see
5.4.3.7). By placing this logic on its own dedicated thread, other models in the system do not have to worry about
yielding to the SCE-MI.

The source code for the SceMiDispatcher is shown here.

class SceMiDispatcher: public sc_module {

 public:
 sc_slave<> Done;

 private:
 SC_HAS_PROCESS(SceMiDispatcher);

 //---
 // Thread declarations

 void dispatchThread(); // Autonomous SCEMI dispatcher thread
 void doneThread();

 //---
 // Context declarations
Version 1.1.0 SCE-MI Reference Manual 81

Tutorial

 SceMi *dSceMi;
 static int dInterruptReceived;

 //---
 // Context declarations
 static void signalHandler(int){
 cout << "Interrupt received ! Terminating SCEMI" << endl;
 dInterruptReceived = 1;
 }

 public:
 SceMiDispatcher(sc_module_name name, SceMi *sceMi)
 : sc_module(name), dSceMi(sceMi)
 {
 //--------------------------------------
 // Thread bindings
 SC_THREAD(dispatchThread);
 sensitive << UTick;
 // Sensitize to global "Untimed Tick" clock to provide for
 // atomic advance of this along with other autonomous threads
 // in the system. UTick is declared at the top of System.cpp.
 // -- johnS 8-3-00

 // Clients of this dispatcher will be responsible for binding
 // to their respective message port proxies in their respective
 // constructors.

 SC_SLAVE(doneThread, Done);

 signal(SIGINT, signalHandler);
 }
};

int SceMiDispatcher::dInterruptReceived = 0;

void SceMiDispatcher::dispatchThread() {
 // This is all the dispatcher does !! Deceptively simple, eh ?
 // It just calls the SCEMI dispatcher poll function and returns.
 for(;;){
 wait();
 dSceMi->ServiceLoop();
 if(dInterruptReceived){
 SceMi::Shutdown(dSceMi);
 exit(1);
 }
 }
}

void SceMiDispatcher::doneThread() {
 SceMi::Shutdown(dSceMi);
 exit(0);
}

Between each call to the service loop, the autonomous thread yields to other threads in the system by calling the
wait() function. Actually, the only other autonomous thread in the Routed system is the one in the Test-
bench model. Both of these threads are represented by the thick round arrows in Figure A.6.
82 SCE-MI Reference Manual Version 1.1.0

Tutorial
The other job of the SceMiDispatcher is to shut down the system when it detects a notification on its Done
port that the simulation is complete. The Done inslave port is bound to the slave thread, ::doneThread(),
on construction. The Done port is driven from its associated outmaster port on the Testbench module, so it is
the Testbench that ultimately decides when the simulation is complete (see A.2.4.5).

A.2.4.4 Application-specific data types for the Routed system

The following data types are defined in the Routed.hxx header file. They are referenced throughout the subse-
quent discussion. They are data types which are specific to this application.

class Routed {
 public:
 typedef enum Parameters {
 NumPassengers = 4,
 NumLocations = 12,
 MessageSize = 15
 };
 typedef enum PassengerIDs {
 Nobody,
 BugsBunny,
 DaffyDuck,
 ElmerFudd,
 SylvesterTheCat
 };
 typedef enum LocationIDs {
 // Location Origin Destination Hub
 // -------- ------ ----------- ---
 Unspecified,
 Anchorage, // 1: X X
 Chicago, // 2: X
 Cupertino, // 3: X X
 Dallas, // 4: X
 Maui, // 5: X
 Newark, // 6: X
 Noida, // 7: X
 SanFran, // 8: X
 SealBeach, // 9: X X
 Seattle, // 10: X
 UK, // 11: X X
 Waltham // 12: X
 };
 typedef struct Itinerary {
 unsigned DateOfTravel;
 unsigned TimeOfDeparture;
 PassengerIDs PassengerID;
 LocationIDs OriginID;
 LocationIDs DestinationID;
 };
 typedef struct ArrivalRecord {
 PassengerIDs PassengerID;
 unsigned DateOfArrival;
 unsigned TimeOfArrival;
 unsigned LayoverCount;
 LocationIDs OriginID;
Version 1.1.0 SCE-MI Reference Manual 83

Tutorial
 LocationIDs LayoverIDs[4];
 LocationIDs DestinationID;
 };
 typedef struct Route {
 LocationIDs RouterID;
 LocationIDs DestinationID;
 unsigned PortID;
 };
 typedef struct Date {
 SceMiU64 CycleStamp;
 unsigned Day;
 };
};

A.2.4.5 The Testbench model: main control loop

The Testbench model contains a SystemC autonomous thread which serves as the main driver for the
Routed design. It looks at the four passenger itineraries and schedule the legs in those itineraries on the appro-
priate dates and at the appropriate departure times by interacting with the Scheduler model.

The condensed source code for the passenger itinerary declarations for the Testbench model is shown here.

const Routed::Itinerary Routed::BugsesTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 2, 8, BugsBunny, Anchorage, Cupertino },
{ 3, 5, BugsBunny, Cupertino, UK },
{ 8, 4, BugsBunny, UK, SealBeach },
{ 20, 10, BugsBunny, SealBeach, Maui },
{ 0, 0, BugsBunny, Unspecified, Unspecified } };

const Routed::Itinerary Routed::DaffysTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 1, 8, DaffyDuck, Waltham, Cupertino },
{ 4, 2, DaffyDuck, Cupertino, SealBeach },
{ 5, 11, DaffyDuck, SealBeach, Anchorage },
{ 10, 3, DaffyDuck, Anchorage, UK },
{ 15, 4, DaffyDuck, UK, Cupertino },
{ 22, 7, DaffyDuck, Cupertino, Maui },
{ 0, 0, DaffyDuck, Unspecified, Unspecified } };

const Routed::Itinerary Routed::ElmersTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 3, 5, ElmerFudd, SealBeach, Anchorage },
{ 4, 2, ElmerFudd, Anchorage, SealBeach },
{ 8, 15, ElmerFudd, SealBeach, Cupertino },
{ 23, 3, ElmerFudd, Cupertino, Maui },
{ 0, 0, ElmerFudd, Unspecified, Unspecified } };

const Routed::Itinerary Routed::SylvestersTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 1, 1, SylvesterTheCat, Noida, SealBeach },
{ 4, 2, SylvesterTheCat, SealBeach, Cupertino },
84 SCE-MI Reference Manual Version 1.1.0

Tutorial
{ 5, 11, SylvesterTheCat, Cupertino, UK },
{ 10, 4, SylvesterTheCat, UK, SealBeach },
{ 15, 9, SylvesterTheCat, SealBeach, Anchorage },
{ 20, 7, SylvesterTheCat, Anchorage, Maui },
{ 0, 0, SylvesterTheCat, Unspecified, Unspecified } };

static const char *passengerNames[] = {
 "Nobody ",
 "BugsBunny ",
 "DaffyDuck ",
 "ElmerFudd ",
 "SylvesterTheCat" };

static const char *locationNames[] = {
 "Unspecified",
 "Anchorage",
 "Chicago ",
 "Cupertino",
 "Dallas ",
 "Maui ",
 "Newark ",
 "Noida ",
 "SanFran ",
 "SealBeach",
 "Seattle ",
 "UK ",
 "Waltham " };

There are four passengers whose itineraries are given as lists of Routed::Itinerary records. Each record
represents a leg of that passenger’s journey consisting of a date of departure, time of departure, passenger, origin,
and destination. The passengerNames and locationNames are strings use for printing messages.

The SystemC module definition (class sc_module) for the Testbench model with its standard construc-
tor is shown here.

class Testbench: public sc_module {

 public:
 //---
 // Abstract port declarations
 sc_master<> LoadRouteMap;
 sc_master<> Done;
 sc_outmaster<unsigned> AdvanceCalendar;
 sc_inslave<unsigned> NewDay;

 sc_outmaster<const Routed::Itinerary *> ScheduleLeg;
 sc_inslave<const Routed::ArrivalRecord *> AnnounceArrival;

 private:
 SC_HAS_PROCESS(Testbench);

 //---
 // Context declarations
 unsigned dNumMauiArrivals;
 unsigned dDayNum;
 const Routed::Itinerary *dItineraries[Routed::NumPassengers];
Version 1.1.0 SCE-MI Reference Manual 85

Tutorial
 //---
 // Thread declarations
 void driverThread(); // Autonomous "master" thread.
 void newDayThread() { dDayNum = NewDay; }
 void announceArrivalThread();

 //---
 // Helper declarations

 public:
 Testbench(sc_module_name name)
 : sc_module(name), dNumMauiArrivals(0), dDayNum(0)
 {
 //--------------------------------------
 // Thread bindings

 // This autonomous thread forms the main body of the TIP driver.
 SC_THREAD(driverThread);
 sensitive << UTick;

 SC_SLAVE(newDayThread, NewDay);
 SC_SLAVE(announceArrivalThread, AnnounceArrival);

 // Initialize itinerary pointers.
 dItineraries[0] = Routed::BugsesTrip;
 dItineraries[1] = Routed::DaffysTrip;
 dItineraries[2] = Routed::ElmersTrip;
 dItineraries[3] = Routed::SylvestersTrip;
 }
};

A.2.4.5.1 Main driver loop

The autonomous thread for the main driver loop is shown here.

void Testbench::driverThread(){
 LoadRouteMap(); // Signal RouteConfig model to begin
 // configuration RouteMap.
 unsigned dayNum = dDayNum;
 AdvanceCalendar = 1; // Advance to day 1.

 for(;;){
 wait(); // Wait for day to advance (i.e., ‘NewDay’ arrives.)

 if(dayNum != dDayNum){
 unsigned date, minDate = 1000;

 // Check itineraries to see if any passengers are
 // traveling today. If so, advance calendar to tomorrow
 // in case next leg of itinerary is tomorrow.
 for(int i=0; i<Routed::NumPassengers; i++){
 if((date=dItineraries[i]->DateOfTravel)){
 if(date == dDayNum){
 cout << “On day “ << setw(2) << dDayNum << “ at “
 << setw(2) << dItineraries[i]->TimeOfDeparture
 << “:00 hrs, “
 << passengerNames[dItineraries[i]->PassengerID]
 << “ departs “
86 SCE-MI Reference Manual Version 1.1.0

Tutorial
 << locationNames[dItineraries[i]->OriginID]
 << “ enroute to “
 << locationNames[dItineraries[i]->DestinationID]
 << endl;

 ScheduleLeg = dItineraries[i]++;
 minDate = dDayNum+1;
 }
 else if(date < minDate)
 minDate = date;
 }
 }
 dayNum = dDayNum;
 AdvanceCalendar = minDate - dDayNum;
 }
 }
}

Before entering its main loop, the autonomous ::driverThread() does two things. First, it triggers the
RouteConfig model (by signaling the LoadRouteMap outmaster port) to teach all the routes to the
RouteTables of all the Hubs in the RouteMap. Each taught route that is injected to the hardware is staggered
by one clock, which are done when the RouteConfig model signals the AdvanceClock port on the Cal-
endar model. Passenger travel in the RouteMap is not possible until all the Hubs have been properly pro-
grammed with their routes.

Once all the routes have been taught to the RouteMap, the Calendar is advanced to day one. This causes the
Calendar model to announce the arrival of day one via the NewDay inslave port. Once the day change has
been detected, the ::driverThread() then enters into a loop where it schedules any travel on the itineraries
scheduled for the current day. If no travel is scheduled, it advances the Calendar to the first day on which
travel is scheduled to occur. Legs of each itinerary are scheduled by sending the Itinerary record over the
ScheduleLeg outmaster port to the Scheduler model, which encodes it into a token and sends it to the
hardware.

This operation continues for each leg of each itinerary until all passengers have traveled all legs of their trip and
have finally arrived at the Maui Destination. This serves as the termination condition, which is conveyed
to the SceMiDispatcher model by signaling the Done outmaster port (see A.2.4.5.2). Upon receiving this
notification, the SceMiDispatcher model gracefully shuts down the SCE-MI and exits the program with a
normal exit status.

A.2.4.5.2 Announcing arrivals

The Testbench model also announces arrivals of passengers at their destinations as they occur. The
::announceArrivalThread() slave thread detects an arrival by receiving an ArrivalRecord on its
AnnounceArrival inslave port (which was sent from the message output port proxy-receive callback in the
Scheduler). It prints out the arrival information to the console. The source code is shown here.

void Testbench::announceArrivalThread(){
 const Routed::ArrivalRecord *arrivalRecord = AnnounceArrival;

 cout << “On day “ << setw(2) << arrivalRecord->DateOfArrival
 << “ at “ << setw(2) << arrivalRecord->TimeOfArrival << “:00 hrs,\n”
 << “ “ << passengerNames[arrivalRecord->PassengerID]
 << “ arrives in “ << locationNames[arrivalRecord->DestinationID]
 << “ from “ << locationNames[arrivalRecord->OriginID]
 << “ after layovers in,”;
Version 1.1.0 SCE-MI Reference Manual 87

Tutorial
 for(unsigned i=0; i<arrivalRecord->LayoverCount; i++)
 cout << “\n “
 << locationNames[arrivalRecord->LayoverIDs[i]];
 cout << endl;
 // Check for termination condition.
 if(arrivalRecord->DestinationID == Routed::Maui &&
 ++dNumMauiArrivals == Routed::NumPassengers){
 cout << “Everyone has arrived in Maui. We’re done. Let’s party !”
 << endl;
 Done(); // Signal the dispatcher that the simulation has ended.
 }
}

A.2.4.6 The Scheduler module: interfacing with message port proxies

The SystemC module definition and constructor for the Scheduler model is shown here.

class Scheduler: public sc_module {

 public:
 //---
 // Abstract port declarations
 sc_inmaster<Routed::Date> TodaysDate;
 sc_inslave<const Routed::Itinerary *> ScheduleLeg;
 sc_inslave<const Routed::Route *> LoadRoute;
 sc_outmaster<const Routed::ArrivalRecord *> AnnounceArrival;

 private:
 SC_HAS_PROCESS(Scheduler);

 //---
 // Context declarations
 SceMiMessageData dSendData;
 SceMiMessageInPortProxy *dOriginAnchorage;
 SceMiMessageInPortProxy *dOriginCupertino;
 SceMiMessageInPortProxy *dOriginNoida;
 SceMiMessageInPortProxy *dOriginSealBeach;
 SceMiMessageInPortProxy *dOriginUK;
 SceMiMessageInPortProxy *dOriginWaltham;

 SceMiMessageOutPortProxy *dDestinationAnchorage;
 SceMiMessageOutPortProxy *dDestinationCupertino;
 SceMiMessageOutPortProxy *dDestinationMaui;
 SceMiMessageOutPortProxy *dDestinationSealBeach;
 SceMiMessageOutPortProxy *dDestinationUK;

 Routed::ArrivalRecord dArrivalRecord;

 //---
 // Thread declarations
 void scheduleLegThread();
 void loadRouteThread();

 //---
 // Helper declarations
 static void replyCallback(void *context, const SceMiMessageData *data);
 void announceArrival(SceMiU64 cycleStamp, SceMiU32 arrivalToken);
88 SCE-MI Reference Manual Version 1.1.0

Tutorial

 public:
 Scheduler(sc_module_name name, SceMi *sceMi)
 : sc_module(name),
 dSendData(Routed::MessageSize),
 dOriginAnchorage(NULL),
 dOriginCupertino(NULL),
 dOriginNoida(NULL),
 dOriginSealBeach(NULL),
 dOriginUK(NULL),
 dOriginWaltham(NULL),
 dDestinationAnchorage(NULL),
 dDestinationCupertino(NULL),
 dDestinationMaui(NULL),
 dDestinationSealBeach(NULL),
 dDestinationUK(NULL)
 {
 SC_SLAVE(scheduleLegThread, ScheduleLeg);
 SC_SLAVE(loadRouteThread, LoadRoute);

 // Establish message input portals.
// SceMiMessageInPortBinding inBinding = { NULL, NULL, NULL };
 dOriginAnchorage = sceMi->BindMessageInPort(
 "Bridge.anchorage.origin", "sceMiMessageInPort", NULL);
 dOriginCupertino = sceMi->BindMessageInPort(
 "Bridge.cupertino.origin", "sceMiMessageInPort", NULL);
 dOriginNoida = sceMi->BindMessageInPort(
 "Bridge.noida", "sceMiMessageInPort", NULL);
 dOriginSealBeach = sceMi->BindMessageInPort(
 "Bridge.sealBeach.origin", "sceMiMessageInPort", NULL);
 dOriginUK = sceMi->BindMessageInPort(
 "Bridge.UK.origin", "sceMiMessageInPort", NULL);
 dOriginWaltham = sceMi->BindMessageInPort(
 "Bridge.waltham", "sceMiMessageInPort", NULL);

 // Establish message output portals.
 SceMiMessageOutPortBinding outBinding = { this, replyCallback, NULL };
 dDestinationAnchorage = sceMi->BindMessageOutPort(
 "Bridge.anchorage.destination", "sceMiMessageOutPort",
 &outBinding);
 dDestinationCupertino = sceMi->BindMessageOutPort(
 "Bridge.cupertino.destination", "sceMiMessageOutPort",
 &outBinding);
 dDestinationMaui = sceMi->BindMessageOutPort(
 "Bridge.maui", "sceMiMessageOutPort",
 &outBinding);
 dDestinationSealBeach = sceMi->BindMessageOutPort(
 "Bridge.sealBeach.destination", "sceMiMessageOutPort",
 &outBinding);
 dDestinationUK = sceMi->BindMessageOutPort(
 "Bridge.UK.destination", "sceMiMessageOutPort",
 &outBinding);
 }
};

There are two slave threads defined in this model: the ::scheduleLegThread() and the
::loadRouteThread(). The ::loadRouteThread() is responsible for sending TeachRoute tokens
Version 1.1.0 SCE-MI Reference Manual 89

Tutorial
into the RouteMap mesh via the Waltham Origin transactor when the RouteMap is first being configured
at the beginning of the simulation. This thread is activated each time the RouteConfig module wants to teach
a new route during its LoadRouteMap operation.

The Scheduler::Bind() method is called prior to simulation from the sc_main() routine (see A.2.4.2).
Here is where the SCE-MI message input and output port proxies leading to each of the Origin and Desti-
nation transactors are bound. Notice for each of the output port proxies, the output receive callback, reply-
Callback(), is specified in the binding structure. See 5.4.3.6 for more information about message output port
binding.

A.2.4.6.1 ::scheduleLegThread()

The ::scheduleLegThread() is activated when the Scheduler receives Routed::Itinerary mes-
sages on its ScheduleLeg inslave port from the Testbench model. It sends those legs encoded as departure
tokens across the message input channels to their designated Origin transactors. The Scheduler has pointers
to each of the message input port proxies that are connected to Origin transactors. Each departure token is
encoded with the passenger ID and destination ID from the Routed::Itinerary record. The source code for
the ::scheduleLegThread() is shown here.

void Scheduler::scheduleLegThread(){
 const Routed::Itinerary *leg = ScheduleLeg;

 // Form a ‘Passenger Departure’ token based on the contents of
 // the given ‘Itinerary’ record.
 SceMiU32 passengerDepartureToken =
 leg->PassengerID |
 (leg->DestinationID << 4) |
 (leg->OriginID << 12) |
 (leg->TimeOfDeparture << 16);

 dSendData.Set(0, passengerDepartureToken);

 switch(leg->OriginID){
 case Routed::Anchorage: dOriginAnchorage->Send(dSendData);
break;
 case Routed::Cupertino: dOriginCupertino->Send(dSendData);
break;
 case Routed::Noida: dOriginNoida ->Send(dSendData);
break;
 case Routed::SealBeach: dOriginSealBeach->Send(dSendData);
break;
 case Routed::UK: dOriginUK ->Send(dSendData);
break;
 case Routed::Waltham: dOriginWaltham ->Send(dSendData);
break;
 default:
 assert(0);
 }
}

A.2.4.6.2 Processing arrivals

The Scheduler is also responsible for processing of arrivals. Once the Calendar is advanced, arrivals can
occur at any time over the course of 24 hours (i.e., 24 clocks). Each arrival token is sent by a Destination
transactor over a message output port to the Scheduler. The SCE-MI infrastructure dispatches the arriving
messages to the replyCallback() function registered in the ::Bind() method. The replyCall-
90 SCE-MI Reference Manual Version 1.1.0

Tutorial
back() function, in turn, passes the message to the private ::announceArrival() method (see A.2.4.6.3).
The code for the replyCallback() function is shown here.

void Scheduler::replyCallback(void *context, const SceMiMessageData
*data){
 ((Scheduler *)context)->announceArrival(data->CycleStamp(),
 data->Get(0)); }

A.2.4.6.3 ::announceArrival()

The ::announceArrival() method processes the arrival token. It converts the encoded arrival token to the
Routed::ArrivalRecord data type, stamps it with TodaysDate (an output from the Calendar), and
sends it out through the AnnounceArrival outmaster port to the Testbench model, which displays the
arrival information to the console as shown here.

void Scheduler::announceArrival(SceMiU64 cycleStamp,
 SceMiU32 arrivalToken){
 Routed::Date todaysDate = TodaysDate;
 // Read today’s date from Calendar

 dArrivalRecord.DateOfArrival = todaysDate.Day;
 dArrivalRecord.TimeOfArrival = cycleStamp - todaysDate.CycleStamp;
 dArrivalRecord.PassengerID = (Routed::PassengerIDs)
 (arrivalToken & 0xf);
 dArrivalRecord.DestinationID = (Routed::LocationIDs)
 ((arrivalToken >> 4) & 0xf);
 dArrivalRecord.OriginID = (Routed::LocationIDs)
 ((arrivalToken >> 12) & 0xf);
 dArrivalRecord.LayoverCount = (arrivalToken >> 8) & 0xf ;
 assert(dArrivalRecord.LayoverCount < 5);
 arrivalToken >>= 16;
 for(unsigned i=0; i<dArrivalRecord.LayoverCount; i++){
 dArrivalRecord.LayoverIDs[i] = (Routed::LocationIDs)
 (arrivalToken & 0xf);
 arrivalToken >>= 4;
 }
 AnnounceArrival = &dArrivalRecord;
 // Arrival record is passed by reference.
}

A.2.4.7 The Calendar module: interfacing with the clock advancer

The Calendar model is responsible for advancing time on the RouteMap one or more days at a time. Once a
set of scheduled departures has been programmed in each Origin transactor which has departures scheduled
for a particular day, the Calendar allows the DUT to advance by 24 clocks (i.e., 24 hours) or some multiple of
24 clocks if the next scheduled departure occurs more than one day from now. The Calendar advances time by
sending a message to the ClockAdvancer transactor in the hardware which has direct control of the DUT
clock via the ClockControl macro. The source code for the Calendar module is very similar in structure to
that for the Scheduler; therefore, most of it is not shown here.

The Calendar model has two slave threads that respond to requests to advance time. The ::advanceCal-
endarThread() responds to requests on the AdvanceCalendar port to advance a given number of days.
Version 1.1.0 SCE-MI Reference Manual 91

Tutorial
A.2.4.7.1 ::advanceClockThread()

The ::advanceClockThread() responds to requests to advance one clock at a time which occurs during
RouteMap configuration to stagger the injection of each TeachRoute token by one clock. This method is
shown here.

void Calendar::advanceClockThread(){
 dSendData.Set(0, 1);
 // Tell ClockAdvancer to advance by 1 clock.
 dInputPort->Send(dSendData);
 // Send message out on port proxy.

 // Pend until the cycle stamp gets updated by the
 // output port proxy reply callback.
 SceMiU64 currentCycleStamp = dCycleStamp;
 while(dCycleStamp == currentCycleStamp)
 wait();
}

Notice this method enters a loop that calls wait() to yield to the SystemC kernel. This guarantees the clock has
completed its advance before returning. By yielding to the SystemC kernel while it is waiting for this condition,
the autonomous SceMiDispatcher thread (see A.2.4.3) is naturally given a chance to service the message
output ports. This is necessary to reach the condition the ::advanceClockThread() is waiting for, namely,
for the Calendar::dCycleStamp data member to change value.

A.2.4.7.2 replyCallback()

The ::dCycleStamp changes value when the ClockAdvancer (on the hardware side) indicates on its out-
put port it has completed its one clock time advance which, in turn, causes the Calendar::replyCall-
back() function to get called from the SceMi::ServiceLoop(). The replyCallback() function is
shown here.

void Calendar::replyCallback(void *context,
 const SceMiMessageData *data){
 ((Calendar *)context)->dCycleStamp = data->CycleStamp(); }

The cycle stamp is updated directly from the ::CycleStamp() method on the SceMiMessageData object.
This reflects a count of elapsed controlled clock counts that had occurred from the beginning of the simulation to
the time this message was sent from the hardware side. This is a convenient way for software to keep track of
elapsed clock time in the hardware. Once the ::dCycleStamp is updated, the wait() loop in the
::advanceClockThread() (see A.2.4.7.1), is released and the function can return.

Keep in mind the ::advanceClockThread() and replyCallback() functions are being called under
two different autonomous threads which each frequently yield to each other. The former is called from the auton-
omous Testbench::driverThread(); the latter is called from the SceMi::ServiceLoop() function
which is called from underneath the autonomous SceMiDispatcher::dispatchThread().

This illustrates the clean interaction between a general multi-threaded application software environment and the
SCE-MI service loop.
92 SCE-MI Reference Manual Version 1.1.0

Appendix B

(informative)

Multi-clock hardware side interface example

Figure B.1 shows the top level structure of a simple multi-clock, multi-transactor example.

Figure B.1—Multi-clock, multi-transactor example

This design demonstrates the following points.

#128 p1

SceMiMessageInPort
TransmitReady
ReceiveReady

Message []

#64 p1

TxRdyIn
RxRdyIn
MessageIn [63:0]

TxTransactorCore
t1

TxRdyOut
RxRdyOut
MessageOut [127:0]

Rst

ClkDiv2

TxDUT
d1

Uclk
Rst

CclockEnabled
ReadyForCclock

SceMiMessageOutPort
TransmitReady
ReceiveReady

Message []

RxTransactorCore

clkDivideBy4

Uclk
Rst
ReadyForCclockDiv4

t1

Rst
Clk

RxDUT
d2

CclockEnabledDiv4

Clk

ReadyForCclockDiv2
CclockEnabledDiv2

clkDivideBy2

SceMiClockControl
Uclock
Ureset

ReadyForCclock
CclockEnabled

#1 c1

ReadyForCclockNegEdge
CclockNegEdgeEnabled

SceMiClockControl
Uclock
Ureset

ReadyForCclock
CclockEnabled

#2 c2

ReadyForCclockNegEdge
CclockNegEdgeEnabled

‘1’

‘1’

SceMiClockControl
Uclock
Ureset

ReadyForCclock
CclockEnabled

#3 c1

ReadyForCclockNegEdge
CclockNegEdgeEnabled

‘1’

DutInData []DutInData []
DutInCtrl DutInCtrl

DutOutCtrl
DutOutData [] DutOutData []

DutOutCtrl

DutInData []DutInData []
DutInCtrl DutInCtrl

DutOutCtrl
DutOutData [] DutOutData []

DutOutCtrl

SceMiClockPort
Cclock
Creset

cclock

SceMiClockPort
Cclock
Creset

#(2, 2, 1) cclock2_1

TxTransactor
u1

SceMiClockPort
Cclock
Creset

#(3, 4, 1, 75, 25, 30, 8) cclock4_1

RxTransactor
u2
Version 1.1.0 SCE-MI Reference Manual 93

Multi-clock hardware side interface example
— Three ClockPort instances define clocks named cclock, cclock2_1, and cclock4_1.
— Because no parameters are given with the SceMiClockPort instance cclock, all default parameters

are used. This means cclock has a ClockNum=1, a clock ratio of 1/1, a don’t care duty cycle, a phase
shift of 0, and the controlled reset it supplies has an active duration of eight controlled clock cycles.

— The cclock2_1 instance of SceMiClockPort overrides the first three parameters and leaves the rest
at their default values. This means cclock2_1 has a ClockNum=2, a clock ratio of 2/1 (i.e., a
“divide-by-2” clock), a duty cycle of 50%, a phase shift of 0, and an eight clock-cycle reset duration.

— The cclock4_1 instance of SceMiClockPort has a ClockNum=3, a clock ratio of 4/1 (i.e., a
“divide-by-4” clock), a duty cycle of 75%, a phase shift of 30% of the clock period, and an eight clock-
cycle reset duration.

— The TxTransactor transactor model, named Bridge.u1, controls clocks cclock and
cclock2_1 since its SceMiClockControl macro instances have ClockNum=1 and
ClockNum=2, respectively.

— This TxTransactor model interfaces to a message input port called p1 which is parametrized to a bit-
width of 64.

— The RxTransactor transactor model, named Bridge.u2, controls clock cclock4_1 since its
SceMiClockControl macro instance has ClockNum=3.

— This RxTransactor model interfaces to a message input port called p1 which is parametrized to a bit-
width of 128.

The following listing shows some of the VHDL source code for the above schematic.

library ieee;
use ieee.std_logic_1164.all;
library SceMi;
use SceMi.SceMiMacros.all;

entity Bridge is end;
architecture Structural of Bridge is
 component TxTransactor is
 port(
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 end component TxTransactor;
 component TxDUT is
 port(
 DutInCtrl: in std_logic;
 DutInData: in std_logic_vector(31 downto 0);
 DutOutCtrl: out std_logic;
 DutOutData: out std_logic_vector(31 downto 0);
 Clk, Rst, ClkDiv2: in std_logic);
 end component TxDUT;
 component RxTransactor is
 port(
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 end component RxTransactor;
94 SCE-MI Reference Manual Version 1.1.0

Multi-clock hardware side interface example
 component RxDUT is
 port(
 DutInCtrl: in std_logic;
 DutInData: in std_logic_vector(31 downto 0);
 DutOutCtrl: out std_logic;
 DutOutData: out std_logic_vector(31 downto 0);
 Clk, Rst: in std_logic);
 end component RxDUT;
 signal txDutInCtrl, txDutOutCtrl: std_logic;
 signal txDutInData, txDutOutData: std_logic_vector(31 downto 0);
 signal rxDutInCtrl, rxDutOutCtrl: std_logic;
 signal rxDutInData, rxDutOutData: std_logic_vector(31 downto 0);
 signal cclock, creset, clkDivideBy2, clkDivideBy4
 cresetDivideBy4: std_logic;
begin
 u1: TxTransactor port map(txDutInCtrl, txDutInData, txDutOutCtrl,
 txDutOutData);
 d1: TxDUT port map(txDutInCtrl, txDutInData, txDutOutCtrl,
 txDutOutData, cclock, creset, clkDivideBy2);
 cclock: SceMiClockPort port map(cclock, creset);
 cclock2_1: SceMiClockPort
 generic map(2, 2, 1, 50, 50, 0, 8)
 port map(clkDivideBy2, open);
 u2: RxTransactor port map(txDutInCtrl, txDutInData, txDutOutCtrl,
 txDutOutData);
 d2: RxDUT port map(txDutInCtrl, txDutInData, txDutOutCtrl,
 txDutOutData, clkDivideBy4, cresetDivideBy4);
 cclock4_1: SceMiClockPort
 generic map(3, 4, 1, 75, 25, 30, 8)
 port map(clkDivideBy2, open);
end;

library ieee;
use ieee.std_logic_1164.all;
library SceMi;
use SceMi.SceMiMacros.all;

entity TxTransactor is
 port(
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 end;
architecture Structural of TxTransactor is
 component TxTransactorCore is
 port(
 TxRdyIn: in std_logic; RxRdyIn: out std_logic;
 Message: in std_logic(63 downto 0);
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 Uclk, Rst: in std_logic;
Version 1.1.0 SCE-MI Reference Manual 95

Multi-clock hardware side interface example
 ReadyForCclock: in std_logic;
 CclockEnabled: out std_logic;
 ReadyForCclockDiv2: in std_logic;
 CclockEnabledDiv2: out std_logic;
 end component TxTransactor;
 signal transmitReady, receiveReady: std_logic;
 signal message: std_logic_vector(63 downto 0);
 signal uclock, ureset: std_logic;
 signal readyForCclock, cclockEnabled: std_logic;
 signal readyForCclockDiv2, cclockEnabledDiv2;
begin
 t1: TxTransactorCore port map(
 transmitReady, receiveReady, message,
 DutInCtrl, DutInData, DutOutCtrl, DutOutData,
 uclock, ureset,
 readyForCclock, cclockEnabled, readyForCclockDiv2,
 cclockEnabledDiv2);
 p1: SceMiMessageInputPort
 generic map(64)
 port map(transmitReady, receiveReady, message);
 c1: SceMiClockControl
 port map(uclock, ureset, readyForCclock, cclockEnabled,
 ‘1’, open);
 c2: SceMiClockControl
 generic map(2)
 port map(open, open, readyForCclockDiv2, cclockEnabledDiv2,
 ‘1’, open);
end;
96 SCE-MI Reference Manual Version 1.1.0

Appendix C

(informative)

VHDL SceMiMacros package

The following package can be used to supply SCE-MI macro component declarations to an application. Compile
this package into the library SceMi and include it in the application code as:

library SceMi;
use SceMi.SceMiMacros.all;

Here is the source code for the package.

library ieee;
use ieee.std_logic_1164.all;

package SceMiMacros is

 component SceMiMessageInPort
 generic(PortWidth: natural);
 port(
 ReceiveReady : in std_logic;
 TransmitReady : out std_logic;
 Message : out std_logic_vector(PortWidth-1 downto 0));
 end component;

 component SceMiMessageOutPort
 generic(PortWidth: natural; PortPriority: natural:=10);
 port(
 TransmitReady : in std_logic;
 ReceiveReady : out std_logic;
 Message : in std_logic_vector(PortWidth-1 downto 0));
 end component;

 component SceMiClockPort
 generic(
 ClockNum : natural := 1;
 RatioNumerator : natural := 1;
 RatioDenominator : natural := 1;
 DutyHi : natural := 0;
 DutyLo : natural := 100;
 Phase : natural := 0;
 ResetCycles : natural := 8);
 port(
 Cclock : out std_logic;
 Creset : out std_logic);
 end component;

 component SceMiClockControl
 generic(ClockNum: natural := 1);
 port(
Version 1.1.0 SCE-MI Reference Manual 97

VHDL SceMiMacros package
 Uclock,
 Ureset : out std_logic;
 ReadyForCclock : in std_logic;
 CclockEnabled : out std_logic;
 ReadyForCclockNegEdge : in std_logic;
 CclockNegEdgeEnabled : out std_logic);
 end component;
end SceMiMacros;
98 SCE-MI Reference Manual Version 1.1.0

Appendix D

(informative)

Applying the SCE-MI to event-based systems

The SCE-MI is composed of three primary pieces, all of which are necessary to create a complete communica-
tions system between a DUT and a software testbench. In addition, the three pieces affect different ‘users’ of the
standards. These three pieces are

a) The infrastructure - This contains the basic communications protocol. It is implemented by an execution
engine provider.

b) The software side API - This enables to connection the testbench on the software side and is the ultimate
end-user of the specification.

c) Support macros for transactors - This enables the software communications to be received on the hard-
ware side and makes the information available to the transactors. It also contains macros for controlling
the execution engine. These affect the transactor author.

In SCE-MI Version 1.1.0, the only type of execution engines that are directly supported are traditional emulators
and rapid prototyping systems which have similar clocking and control requirements. Other execution types will
be supported in future releases of this document.

To support this standard using other execution engine types, consider making the following modifications.

module SceMiMessageInPort(clk, reset, ReceiveReady, TransmitReady,
 Message);
parameter PortWidth = 1;
input clk;
input reset; /* can be any user signal to reset the module */
input ReceiveReady;
output TransmitReady;
output [PortWidth-1:0] Message;

module SceMiMessageOutPort(clk, reset, TransmitReady, ReceiveReady,
 Message);
parameter PortWidth = 1;
input clk;
input reset;
input TransmitReady;
output ReceiveReady;
input [PortWidth-1:0] Messsage;

In these two routines, an additional clock signal is passed into the routine. This replaces the current clocking
mechanism, which includes the controlled and uncontrolled clock. Making this change means certain other mac-
ros become unnecessary, such as SceMiClockPort() and SceMiClockControl(). In addition, the
parameter file, which currently contains the linking information between the transactor models and the clocks,
and aids in system reset, serves no useful purpose and can thus be ignored.

If these modifications are incorporated, the essence of the interface is intact and any software testbenches should
be portable between different execution engine types. However, the transactor models are not intact; these are
specific to the actual implementation.
Version 1.1.0 SCE-MI Reference Manual 99

Applying the SCE-MI to event-based systems
100 SCE-MI Reference Manual Version 1.1.0

Appendix E

(informative)

Sample Header files for the SCE-MI

The ANSI-C file should be used without modification. For the C++ header, extensions are allowable but no mod-
ifications can be made to any of the contents that are provided.

C++
//
// Copyright © 2003-2005 by Accellera
// scemi.h - SCE-MI C++ Interface
//
#ifndef INCLUDED_SCEMI
#define INCLUDED_SCEMI

class SceMiParameters;
class SceMiMessageData;
class SceMiMessageInPortProxy;
class SceMiMessageOutPortProxy;

#define SCEMI_MAJOR_VERSION 1
#define SCEMI_MINOR_VERSION 1
#define SCEMI_PATCH_VERSION 0
#define SCEMI_VERSION_STRING "1.1.0"

/* 32 bit unsigned word type for building and reading messages */
typedef unsigned int SceMiU32;

/* 64 bit unsigned word used for CycleStamps */
typedef unsigned long long SceMiU64;

extern "C" {
typedef int (*SceMiServiceLoopHandler)(void* context, int pending);
};

/*
 * struct SceMiEC - SceMi Error Context
 */

typedef enum {
 SceMiOK,
 SceMiError
} SceMiErrorType;

typedef struct {
 const char* Culprit; /* The offending function */
 const char* Message; /* Descriptive message describing problem */
 SceMiErrorType Type; /* Error code describing the nature of the error
*/
 int Id; /* A code to uniquely identify each error */
Version 1.1.0 SCE-MI Reference Manual 101

} SceMiEC;

extern "C" {
typedef void (*SceMiErrorHandler)(void* context, SceMiEC* ec);
};

/*
 * struct SceMiIC - SceMi Informational Message Context
 */

typedef enum {
 SceMiInfo,
 SceMiWarning,
 SceMiNonFatalError
} SceMiInfoType;

typedef struct {
 const char* Originator;
 const char* Message;
 SceMiInfoType Type;
 int Id;
} SceMiIC;

extern "C" {
typedef void (*SceMiInfoHandler)(void* context, SceMiIC* ic);
};

/*
 * struct SceMiMessageInPortBinding
 *
 * Description
 * -----------
 * This structure defines a tray of callback functions that support
 * propagation of message input readiness back to the software.
 *
 * If an input ready callback is registered (optionally) on a given
 * input port, the port will dispatch the callback whenever becomes
 * ready for more input.
 *
 * Note: All callbacks must take their data and return promptly as they
 * are called possibly deep down in a non-preemptive thread. Typically,
 * the callback might to some minor manipulation to the context object
 * then return and let a suspended thread resume and do the main process-
ing
 * of the received transaction.
 */

extern "C" {
typedef struct {
 /*
 * This is the user's context object pointer.
 * The application is free to use this pointer for any purposes it
 * wishes. Neither the class SceMi nor class MessageInputPortProxy do
 * anything with this pointer other than store it and pass it when
102 SCE-MI Reference Manual Version 1.1.0

 * calling functions.
 */
 void* Context;

 /*
 * Receive a response transaction. This function is called when data
 * from the message output port arrives. This callback acts as a proxy
 * for the message output port of the transactor.
 */
 void (*IsReady)(
 void* context);

 /*
 * This function is called from the MessageInputPortProxy destructor
 * to notify the user code that the reference to the 'context' pointer
 * has been deleted.
 */
 int (*Close)(
 void* context);

} SceMiMessageInPortBinding;
};

/*
 * struct SceMiMessageOutPortBinding
 *
 * Description
 * -----------
 * This structure defines a tray of callback functions are passed to the
class
 * SceMi when the application model binds to a message output port proxy
and
 * which are called on message receipt and close notification. It is the
means
 * by which the MessageOutputPort forwards received transactions to the C
model.
 *
 * Note: All callbacks must take their data and return promptly as they
 * are called possibly deep down in a non-preemptive thread. Typically,
 * the callback might to some minor manipulation to the context object
 * then return and let a suspended thread resume and do the main process-
ing
 * of the received transaction.
 *
 * Additionally, the message data passed into the receive callback is
 * not guaranteed to remain the same once the callback returns. All
 * data therein then must be processed while inside the callback.
 */

extern "C" {
typedef struct {
 /*
 * This is the user's context object pointer.
 * The application is free to use this pointer for any purposes it
Version 1.1.0 SCE-MI Reference Manual 103

 * wishes. Neither the class SceMi nor class SceMiMessageOutPortProxy
do
 * anything with this pointer other than store it and pass it when
 * calling callback functions Receive and Close.
 */
 void* Context;

 /*
 * Receive a response transaction. This function is called when data
 * from the message output port arrives. This callback acts as a proxy
 * for the message output port of the transactor.
 */
 void (*Receive)(
 void* context,
 const SceMiMessageData* data);

 /*
 * This function is called from the MessageOutputPortProxy destructor
 * to notify the user code that the reference to the 'context' pointer
 * has been deleted.
 */
 int (*Close)(
 void* context);

} SceMiMessageOutPortBinding;
};

class SceMiParameters {

 public:
 // CREATORS

 //
 // This constructor initializes some parameters from the
 // parameters file in the config directory, and some other
 // parameters directly from the config file.
 //
 SceMiParameters(
 const char* paramsfile,
 SceMiEC* ec = 0);

 ~SceMiParameters();

 // ACCESSORS

 //
 // This accessor returns the number of instances of objects of
 // the specified objectKind name.
 //
 unsigned int NumberOfObjects(
 const char* objectKind, // Input: Object kind name.
 SceMiEC* ec = 0) const; // Input/Output: Error status.

 //
104 SCE-MI Reference Manual Version 1.1.0

 // These accessors return an integer or string attribute values of the
 // given object kind. It is considered an error if the index > number
 // returned by ::NumberOfObjects() or the objectKind and attributeName
 // arguments are unrecognized.
 //
 int AttributeIntegerValue(
 const char* objectKind, // Input: Object kind name.
 unsigned int index, // Input: Index of object instance.
 const char* attributeName, // Input: Name of attribute being read.
 SceMiEC* ec = 0) const; // Input/Output: Error status.

 const char* AttributeStringValue(
 const char* objectKind, // Input: Object kind name.
 unsigned int index, // Input: Index of object instance.
 const char* attributeName, // Input: Name of attribute being read.
 SceMiEC* ec = 0) const; // Input/Output: Error status.

 // MANIPULATORS

 //
 // These manipulators override an integer or string attribute values
of the
 // given object kind. It is considered an error if the index > number
 // returned by ::NumberOfObjects(). or the objectKind and attribute-
Name
 // arguments are unrecognized.
 //
 void OverrideAttributeIntegerValue(
 const char* objectKind, // Input: Object kind name.
 unsigned int index, // Input: Index of object instance.
 const char* attributeName, // Input: Name of attribute being read.
 int value, // Input: New integer value of attribute.
 SceMiEC* ec = 0); // Input/Output: Error status.

 void OverrideAttributeStringValue(
 const char* objectKind, // Input: Object kind name.
 unsigned int index, // Input: Index of object instance.
 const char* attributeName, // Input: Name of attribute being read.
 const char* value, // Input: New string value of attribute.
 SceMiEC* ec = 0); // Input/Output: Error status.
};

//
// class SceMiMessageInPortProxy
//
// Description
// -----------
// The class SceMiMessageInPortProxy presents a C++ proxy for a transactor
// message input port. The input channel to that transactor is repre-
sented
// by the Send() method.
//

class SceMiMessageInPortProxy {
Version 1.1.0 SCE-MI Reference Manual 105

 public:
 // ACCESSORS
 const char* TransactorName() const;
 const char* PortName() const;
 unsigned int PortWidth() const;

 //
 // This method sends message to the transactor input port.
 //
 void Send(
 const SceMiMessageData &data, // Message payload to be sent.
 SceMiEC* ec = 0);

 //
 // Replace port binding.
 // The binding argument represents a callback function and context
 // pointer tray (see comments in scemicommontypes.h for struct
 // SceMiMessageInPortBinding).
 //
 void ReplaceBinding(
 const SceMiMessageInPortBinding* binding = 0,
 SceMiEC* ec = 0);
};

//
// class SceMiMessageOutPortProxy
//
// Description
// -----------
// The class SceMiMessageOutPortProxy presents a C++ proxy for a transac-
tor
// message output port.
//
class SceMiMessageOutPortProxy {
 public:
 // ACCESSORS
 const char* TransactorName() const;
 const char* PortName() const;
 unsigned int PortWidth() const;

 //
 // Replace port binding.
 // The binding argument represents a callback function and context
 // pointer tray (see comments in scemicommontypes.h for struct
 // SceMiMessageOutPortBinding).
 //
 void ReplaceBinding(
 const SceMiMessageOutPortBinding* binding = 0,
 SceMiEC* ec = 0);
};

//
// class SceMiMessageData
//
106 SCE-MI Reference Manual Version 1.1.0

// Description
// -----------
// The class SceMiMessageData represents a fixed length array of data
which
// is transferred between models.
//
class SceMiMessageData {
 public:
 // CREATORS

 //
 // Constructor: The message in port proxy for which
 // this message data object must be suitably sized.
 //
 SceMiMessageData(
 const SceMiMessageInPortProxy& messageInPortProxy,
 SceMiEC* ec = 0);

 ~SceMiMessageData();

 // Return size of vector in bits
 unsigned int WidthInBits() const;

 // Return size of array in 32 bit words.
 unsigned int WidthInWords() const;

 void Set(unsigned i, SceMiU32 word, SceMiEC* ec = 0);

 void SetBit(unsigned i, int bit, SceMiEC* ec = 0);

 void SetBitRange(
 unsigned int i, unsigned int range, SceMiU32 bits, SceMiEC* ec =
0);

 SceMiU32 Get(unsigned i, SceMiEC* ec = 0) const;

 int GetBit(unsigned i, SceMiEC* ec = 0) const;

 SceMiU32 GetBitRange(
 unsigned int i, unsigned int range, SceMiEC* ec = 0) const;

 SceMiU64 CycleStamp() const;
};

//
// class SceMi
//
// Description
// -----------
// This file defines the public interface to class SceMi.
//

class SceMi {
 public:
Version 1.1.0 SCE-MI Reference Manual 107

 //
 // Check version string against supported versions.
 // Returns -1 if passed string not supported.
 // Returns interface version # if it is supported.
 // This interface version # can be passed to SceMi::Init().
 //
 static int Version(
 const char* versionString);

 //
 // This function wraps constructor of class SceMi. If an instance
 // of class SceMi has been established on a prior call to the
 // SceMi::Init() function, that pointer is returned since a single
 // instance of class SceMi is reusable among all C models.
 // Returns NULL if error occurred, check ec for status or register
 // an error callback.
 //
 // The caller is required to pass in the version of SceMi it is
 // expecting to work with. Call SceMi::Version to convert a version
 // string to an integer suitable for this version's "version" argu-
ment.
 //
 // The caller is also expected to have instantiated a SceMiParameters
 // object, and pass a pointer to that object into this function.
 //
 static SceMi*
 Init(
 int version,
 const SceMiParameters* parameters,
 SceMiEC* ec = 0);

 //
 // Shut down the SCEMI interface.
 //
 static void
 Shutdown(
 SceMi* mct,
 SceMiEC* ec = 0);

 //
 // Create proxy for message input port.
 //
 // Pass in the instance name in the bridge netlist of
 // the transactor and port to which binding is requested.
 //
 // The binding argument is a callback function and context
 // pointer tray. For more details, see the comments in
 // scemicommontypes.h by struct SceMiMessageInPortBinding.
 //
 SceMiMessageInPortProxy*
 BindMessageInPort(
 const char* transactorName,
 const char* portName,
 const SceMiMessageInPortBinding* binding = 0,
108 SCE-MI Reference Manual Version 1.1.0

 SceMiEC* ec = 0);

 //
 // Create proxy for message output port.
 //
 // Pass in the instance name in the bridge netlist of
 // the transactor and port to which binding is requested.
 //
 // The binding argument is a callback function and context
 // pointer tray. For more details, see the comments in
 // scemicommontypes.h by struct SceMiMessageOutPortBinding.
 //
 SceMiMessageOutPortProxy*
 BindMessageOutPort(
 const char* transactorName,
 const char* portName,
 const SceMiMessageOutPortBinding* binding = 0,
 SceMiEC* ec = 0);

 //
 // Service arriving transactions from the portal.
 // Messages enqueued by SceMiMessageOutPortProxy methods, or which are
 // are from output transactions that pending dispatch to the
 // SceMiMessageOutPortProxy callbacks, may not be handled until
 // ServiceLoop() is called. This function returns the # of output
 // messages that were dispatched.
 //
 // Regarding the service loop handler (aka "g function"):
 // If g is NULL, check for transfers to be performed and
 // dispatch them returning immediately afterwards. If g is
 // non-NULL, enter into a loop of performing transfers and
 // calling 'g'. When 'g' returns 0 return from the loop.
 // When 'g' is called, an indication of whether there is at
 // least 1 message pending will be made with the 'pending' flag.
 //
 // The user context object pointer is uninterpreted by
 // ServiceLoop() and is passed straight to the 'g' function.
 //
 int
 ServiceLoop(
 SceMiServiceLoopHandler g = 0,
 void* context = 0,
 SceMiEC* ec = 0);

 //
 // Register an error handler which is called in the event
 // that an error occurs. If no handler is registered, the
 // default error handler is called.
 //
 static void
 RegisterErrorHandler(
 SceMiErrorHandler errorHandler,
 void* context);
Version 1.1.0 SCE-MI Reference Manual 109

 //
 // Register an info handler which is called in the event
 // that a text message needs to be issued. If no handler
 // is registered, the message is printed to stdout in
 // Ikos message format.
 //
 static void
 RegisterInfoHandler(
 SceMiInfoHandler infoHandler,
 void* context);
};

#endif
110 SCE-MI Reference Manual Version 1.1.0

ANSI-C

/*
 * scemi.h
 *
 * Copyright © 2003-2005 by Accellera
 * This file is the header file for the SCEMI C API.
 */

#ifndef INCLUDED_SCEMI
#define INCLUDED_SCEMI

typedef void SceMi;
typedef void SceMiParameters;
typedef void SceMiMessageData;
typedef void SceMiMessageInPortProxy;
typedef void SceMiMessageOutPortProxy;

#define SCEMI_MAJOR_VERSION 1
#define SCEMI_MINOR_VERSION 1
#define SCEMI_PATCH_VERSION 0
#define SCEMI_VERSION_STRING "1.1.0"

/* 32 bit unsigned word type for building and reading messages */
typedef unsigned int SceMiU32;

/* 64 bit unsigned word used for CycleStamps */
typedef unsigned long long SceMiU64;

typedef int (*SceMiServiceLoopHandler)(void* context, int pending);

/*
 * struct SceMiEC - SceMi Error Context
 */

typedef enum {
 SceMiOK,
 SceMiError
} SceMiErrorType;

typedef struct {
 const char* Culprit; /* The offending function */
 const char* Message; /* Descriptive message describing problem */
 SceMiErrorType Type; /* Error code describing the nature of the error
*/
 int Id; /* A code to uniquely identify each error */
} SceMiEC;

typedef void (*SceMiErrorHandler)(void* context, SceMiEC* ec);

/*
 * struct SceMiIC - SceMi Informational Message Context
Version 1.1.0 SCE-MI Reference Manual 111

 */

typedef enum {
 SceMiInfo,
 SceMiWarning,
 SceMiNonFatalError
} SceMiInfoType;

typedef struct {
 const char* Originator;
 const char* Message;
 SceMiInfoType Type;
 int Id;
} SceMiIC;

typedef void (*SceMiInfoHandler)(void* context, SceMiIC* ic);

/*
 * struct SceMiMessageInPortBinding
 *
 * Description
 * -----------
 * This structure defines a tray of callback functions that support
 * propagation of message input readiness back to the software.
 *
 * If an input ready callback is registered (optionally) on a given
 * input port, the port will dispatch the callback whenever becomes
 * ready for more input.
 *
 * Note: All callbacks must take their data and return promptly as they
 * are called possibly deep down in a non-preemptive thread. Typically,
 * the callback might to some minor manipulation to the context object
 * then return and let a suspended thread resume and do the main process-
ing
 * of the received transaction.
 */

typedef struct {
 /*
 * This is the user's context object pointer.
 * The application is free to use this pointer for any purposes it
 * wishes. Neither the class SceMi nor class MessageInputPortProxy do
 * anything with this pointer other than store it and pass it when
 * calling functions.
 */
 void* Context;

 /*
 * Receive a response transaction. This function is called when data
 * from the message output port arrives. This callback acts as a proxy
 * for the message output port of the transactor.
 */
 void (*IsReady)(
 void* context);
112 SCE-MI Reference Manual Version 1.1.0

 /*
 * This function is called from the MessageInputPortProxy destructor
 * to notify the user code that the reference to the 'context' pointer
 * has been deleted.
 */
 int (*Close)(
 void* context);

} SceMiMessageInPortBinding;

/*
 * struct SceMiMessageOutPortBinding
 *
 * Description
 * -----------
 * This structure defines a tray of callback functions are passed to the
class
 * SceMi when the application model binds to a message output port proxy
and
 * which are called on message receipt and close notification. It is the
means
 * by which the MessageOutputPort forwards received transactions to the C
model.
 *
 * Note: All callbacks must take their data and return promptly as they
 * are called possibly deep down in a non-preemptive thread. Typically,
 * the callback might to some minor manipulation to the context object
 * then return and let a suspended thread resume and do the main process-
ing
 * of the received transaction.
 *
 * Additionally, the message data passed into the receive callback is
 * not guaranteed to remain the same once the callback returns. All
 * data therein then must be processed while inside the callback.
 */

typedef struct {
 /*
 * This is the user's context object pointer.
 * The application is free to use this pointer for any purposes it
 * wishes. Neither the class SceMi nor class SceMiMessageOutPortProxy
do
 * anything with this pointer other than store it and pass it when
 * calling callback functions Receive and Close.
 */
 void* Context;

 /*
 * Receive a response transaction. This function is called when data
 * from the message output port arrives. This callback acts as a proxy
 * for the message output port of the transactor.
 */
 void (*Receive)(
Version 1.1.0 SCE-MI Reference Manual 113

 void* context,
 const SceMiMessageData* data);

 /*
 * This function is called from the MessageOutputPortProxy destructor
 * to notify the user code that the reference to the 'context' pointer
 * has been deleted.
 */
 int (*Close)(
 void* context);

} SceMiMessageOutPortBinding;

/*
 * Register an error handler which is called in the event
 * that an error occurs. If no handler is registered, the
 * default error handler is called. The errorHandler will
 * pass back the 'context' object registered by the user
 * when making this function call. The system makes no
 * assumptions about the 'context' pointer and will not
 * modify it.
 */
void
SceMiRegisterErrorHandler(
 SceMiErrorHandler errorHandler,
 void* context);

/*
 * Register an info handler which is called in the event
 * that an informational text message needs to be printed.
 * If no handler is registered, the message is printed to stdout.
 */
void SceMiRegisterInfoHandler(
 SceMiInfoHandler infoHandler,
 void* context);

/*
 * Check version string against supported versions.
 * Return -1 if passed string not supported.
 * Return interface version # if it is supported. This interface
 * version # can be passed to the SceMiInit() function.
 */
int
SceMiVersion(
 const char* versionString);

/*
 * This function wraps constructor of class SceMi. If an instance
 * of class SceMi has been established on a prior call to the
 * the SceMiInit() function, that pointer is returned since a single
 * instance of class SceMi is reusable among all C models.
 *
 * The caller must provide the interface version # it is expecting
 * to work with. If the caller requests an unsupported version,
114 SCE-MI Reference Manual Version 1.1.0

 * an error is returned.
 *
 * The caller must also provide a pointer to a filled-in SceMiParameters
 * struct that contains global interface specification parameters.
 *
 * Returns NULL if error occurred, check ec for status or register
 * an error callback.
 */
SceMi*
SceMiInit(
 int version,
 const SceMiParameters* parameters,
 SceMiEC* ec);

/*
 * Shut down the specified SCEMI interface.
 */
void
SceMiShutdown(
 SceMi* mctHandle,
 SceMiEC* ec);

/*
 * Create proxy for message input port.
 *
 * The caller must provide the handle to the initialized SceMi system,
 * as well as the name of the transactor and port to which binding
 * is requested.
 *
 * The 'binding' input is a callback function and context pointer tray.
 * See the comments in scemitypes.h for struct SceMiMessageInPortBinding.
 */
SceMiMessageInPortProxy*
SceMiBindMessageInPort(
 SceMi* mctHandle,
 const char* transactorName,
 const char* portName,
 const SceMiMessageInPortBinding* binding,
 SceMiEC* ec);

/*
 * Create proxy for message output port.
 *
 * The caller must provide the handle to the initialized SceMi system,
 * as well as the name of the transactor and port to which binding
 * is requested.
 *
 * The 'binding' input is a callback function and context pointer tray.
 * See the comments in scemitypes.h for struct SceMiMessageOutPortBind-
ing.
 */
SceMiMessageOutPortProxy*
SceMiBindMessageOutPort(
 SceMi* mctHandle,
Version 1.1.0 SCE-MI Reference Manual 115

 const char* transactorName,
 const char* portName,
 const SceMiMessageOutPortBinding* binding,
 SceMiEC* ec);

/*
 * Service arriving transactions from the portal.
 * Messages enqueued by SceMiMessageOutPortProxy methods, or which are
 * are from output transactions that pending dispatch to the
 * SceMiMessageOutPortProxy callbacks, may not be handled until
 * ServiceLoop() is called. This function returns the # of output
 * messages that were dispatched.
 *
 * The 'g' input is a pointer to a user-defined service function.
 * If g is NULL, check for transfers to be performed and
 * dispatch them returning immediately afterwards. If g is
 * non-NULL, enter into a loop of performing transfers and
 * calling 'g'. When 'g' returns 0 return from the loop.
 * When 'g' is called, an indication of whether there is at
 * least 1 message pending will be made with the 'pending' flag.
 *
 * The 'context' input is a user context object pointer.
 * This pointer is uninterpreted by the SceMiServiceLoop()
 * method and is passed on to the 'g' callback function.
 */
int
SceMiServiceLoop(
 SceMi* mctHandle,
 SceMiServiceLoopHandler g,
 void* context,
 SceMiEC* ec);

SceMiParameters*
SceMiParametersNew(
 const char* paramsFile,
 SceMiEC* ec);

unsigned int
SceMiParametersNumberOfObjects(
 const SceMiParameters* parametersHandle,
 const char* objectKind,
 SceMiEC* ec);

int
SceMiParametersAttributeIntegerValue(
 const SceMiParameters* parametersHandle,
 const char* objectKind,
 unsigned int index,
 const char* attributeName,
 SceMiEC* ec);

const char*
SceMiParametersAttributeStringValue(
116 SCE-MI Reference Manual Version 1.1.0

 const SceMiParameters* parametersHandle,
 const char* objectKind,
 unsigned int index,
 const char* attributeName,
 SceMiEC* ec);

void
SceMiParametersOverrideAttributeIntegerValue(
 SceMiParameters* parametersHandle,
 const char* objectKind,
 unsigned int index,
 const char* attributeName,
 int value,
 SceMiEC* ec);

void
SceMiParametersOverrideAttributeStringValue(
 SceMiParameters* parametersHandle,
 const char* objectKind,
 unsigned int index,
 const char* attributeName,
 const char* value,
 SceMiEC* ec);

/*
 * SceMiMessageData initialization function.
 * This is called to construct a new SceMiMessageData object.
 */
SceMiMessageData*
SceMiMessageDataNew(
 const SceMiMessageInPortProxy* messageInPortProxyHandle,
 SceMiEC* ec);

/*
 * Destroy a SceMiMessageData object previously returned from
 * SceMiMessageDataNew.
 */
void
SceMiMessageDataDelete(
 SceMiMessageData* messageDataHandle);

/*
 * Return size of message data array in 32 bit words.
 */
unsigned int
SceMiMessageDataWidthInBits(
 const SceMiMessageData* messageDataHandle);

/*
 * Return size of array in 32 bit words.
 */
unsigned int
SceMiMessageDataWidthInWords(
 const SceMiMessageData* messageDataHandle);
Version 1.1.0 SCE-MI Reference Manual 117

/*
 * Set value of message data word at given index.
 */
void
SceMiMessageDataSet(
 SceMiMessageData* messageDataHandle,
 unsigned int i,
 SceMiU32 word,
 SceMiEC* ec);

/*
 * Set bit in message data word at given index.
 */
void
SceMiMessageDataSetBit(
 SceMiMessageData* messageDataHandle,
 unsigned int i,
 int bit,
 SceMiEC* ec);

/*
 * Set bit range in message data word at given index.
 */
void SceMiMessageDataSetBitRange(
 SceMiMessageData* messageDataHandle,
 unsigned int i,
 unsigned int range,
 SceMiU32 bits,
 SceMiEC *ec);

/*
 * Return value of message data word at given index.
 */
SceMiU32
SceMiMessageDataGet(
 const SceMiMessageData* messageDataHandle,
 unsigned int i,
 SceMiEC* ec);

/*
 * Return value of bit in message data word at given index.
 */
int
SceMiMessageDataGetBit(
 const SceMiMessageData* messageDataHandle,
 unsigned int i,
 SceMiEC* ec);

/*
 * Return value of bit range in message data word at given index.
 */
SceMiU32
SceMiMessageDataGetBitRange(
118 SCE-MI Reference Manual Version 1.1.0

 const SceMiMessageData *messageDataHandle,
 unsigned int i,
 unsigned int range,
 SceMiEC *ec);

/*
 * Get cyclestamp.
 */
SceMiU64
SceMiMessageDataCycleStamp(
 const SceMiMessageData* messageDataHandle);

/*
 * This method sends a message with the specified payload to the
 * transactor input port. The data will transparently be delivered
 * to the transactor as 1 or more chunks.
 */
void
SceMiMessageInPortProxySend(
 SceMiMessageInPortProxy* messageInPortProxyHandle,
 const SceMiMessageData* messageDataHandle,
 SceMiEC* ec);

const char*
SceMiMessageInPortProxyTransactorName(
 const SceMiMessageInPortProxy* messageInPortProxyHandle);

const char*
SceMiMessageInPortProxyPortName(
 const SceMiMessageInPortProxy* messageInPortProxyHandle);

unsigned int
SceMiMessageInPortProxyPortWidth(
 const SceMiMessageInPortProxy* messageInPortProxyHandle);

const char*
SceMiMessageOutPortProxyTransactorName(
 const SceMiMessageOutPortProxy* messageOutPortProxyHandle);

const char*
SceMiMessageOutPortProxyPortName(
 const SceMiMessageOutPortProxy* messageOutPortProxyHandle);

unsigned int
SceMiMessageOutPortProxyPortWidth(
 const SceMiMessageOutPortProxy* messageOutPortProxyHandle);

#endif
Version 1.1.0 SCE-MI Reference Manual 119

120 SCE-MI Reference Manual Version 1.1.0

Appendix F

(informative)

Bibliography

[B1] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

[B2] SystemC, Version 2.0 User’s Guide, www.systemc.org.
Version 1.1.0 SCE-MI Reference Manual 121

Bibliography
122 SCE-MI Reference Manual Version 1.1.0

A
abstraction bridge 7, 9, 14, 16
abstraction gasket 7, 8, 10, 13
attributed objects 49

B
bridge netlist 7, 20, 37
bus-cycle accurate 15

C
cclock 8, 30
clock ratio 31, 38
co-emulation 7
co-emulation modeling 7
communication channel 1, 2
co-modeling 7
controlled clock 8
controlled reset semantics 32
controlled time 8, 14, 18
co-simulation 8
creset 32
cycle stamping 8

D
don’t care duty cycle 8, 30, 31
dual-ready handshake protocol 23, 26
DUT 9, 15
DUT proxy 9

E
emulation 2
emulator 13
end-user 14, 17
error handling 40

F
Fastest Clock 9

H
hardware model 9, 10
hardware model elaboration 20
hardware side 2, 10, 13, 21

I
implementation

minimum set of parameters 37
parameter file 39

info handling 41
infrastructure

implementor 15, 37
linkage 20, 37
linkage process 9
linker 20, 37

initialization 43
input-ready callback 25
input-ready propagation 26
interconnect 13
interface components 21
interface macros 23
inverted phase 33

M
macros 9
memory allocation semantics 42
message 9, 15, 16, 18
message channel 1, 10, 13, 16
message input port 16

proxy 16
proxy binding 44

message output port 16
proxy 16
proxy binding 45

message port 10
interfaces 1
macro 13, 23
proxy 10, 13

MessageOutPortProxy 56
messages

by reference 18
by value 18
transaction 18

modeling interface 1
multiple cclock alignment 32
multi-threaded environment 14
mutual discovery 42
2 SCE-MI Reference Manual Version 1.1.0

N
negedge 10
negedge active don’t care duty cycle 32

O
object instance 49

P
parameter set 49
parameter set semantics 50
performance 2
point of alignment 32
posedge 10
posedge active don’t care duty cycle 31
predefined set of objects and attributes 49
proxy model 15

R
receive callback 28
receiving output messages 56
rendezvous 20, 39
replacing port binding 55, 56

S
SCE-MI 1, 7
SceMi 42, 59
SceMiClockControl 33
SceMiClockPort 14, 29
SceMiEC 40, 59
SceMiIC 41, 59
SceMiMessageData 52, 61
SceMiMessageInPort 24, 26, 52
SceMiMessageInPortProxy 44, 52, 54, 62
SceMiMessageOutPort 27, 52
SceMiMessageOutPortProxy 45, 52, 63
SceMiParameters 49, 60
service loop 10, 14, 46
shutdown 44
single-threaded environment 14
software model 10

compilation 20
construction and binding 20

software proxy models 1
software side 1, 2, 10, 13, 21
structural model 10

T
testbench 15
transaction 9, 18
transactor 10, 13, 16
transactor implementor 14, 15, 17
Version 1.1.0 SCE-MI Reference Manual 3

U
uclock 10, 30, 32
uncontrolled clock 10, 18
uncontrolled reset 10
uncontrolled time 8, 10
untimed model 11

V
version 42
4 SCE-MI Reference Manual Version 1.1.0

