
OVL Usage Guidelines

Table of Contents

1. Introduction..1
1.1. Reference Documentation..1
1.2. Online Resources ...2

2. Writing OVL Assertions ..2
2.1. Locate at end of Module ..2
2.2. OVL Ports and Parameters...2
2.3. Explicit X Checking...3
2.4. Auxiliary Logic..3
2.5. Input Assumptions ...3
2.6. Interface Checking Modules ..3

3. Verification of OVL Assertions...5
3.1. Compilation..5
3.2. Messages ..5
3.3. Checking for X/Z ...6
3.4. Functional Coverage Points ...6

4. FAQs ..6
5. OVL Assertion Subtleties ..7

1. Introduction

The OVL library is a collection of standard assertions, which can be instantiated in a
design to increase observability of errors during verification, and provide targets
during formal verification. They also provide good documentation of design intent.

This file contains guidelines for writing and verifying OVL assertions, to promote
consistency between users and EDA tools. It has been written primarily for the
Verilog version of OVL, but is applicable to other language implementations.

1.1. Reference Documentation
There are 3 forms of useful reference documentation for OVL:

• Language Reference Manual
• OVL Quick Reference
• OVL Timing Diagrams

1.2. Online Resources
There are separate websites for the OVL technical committee and the OVL users
group.

• www.accellera.org/activities/ovl
• www.verilog.org/ovl

2. Writing OVL Assertions

This section describes some guidelines for writing OVL assertions.

2.1. Locate at end of Module
OVL assertions, and any auxiliary logic (see section 2.4), should be located at the
bottom of the Verilog module that instances them. They should all be enclosed by a
single `ifdef control so that they have to be explicitly enabled (avoids being
synthesised, regardless of how the OVL modules are defined). This structure is
illustrated in Figure 1.

Figure 1: Location of OVL assertions

Assertions should also be located in the most local module that’s possible, in order to
avoid out-of-module references. However, out-of-module references will be needed
for OVL assertions that check logic across several modules (these must be located in a
module high enough in the hierarchy to be able to refer down to all these).

See section 2.6 for the location of interface assertions.

2.2. OVL Ports and Parameters
This section contains some coding guidelines for instantiating an OVL assertion.

2.2.1. Named Ports
A good coding guideline for instantiating any Verilog module is to use named ports
rather than positional ports. This is equally applicable to OVL assertions, so you
should use e.g. ".start_event (req), .test_expr(ack)" rather than
just “req, ack”. Positional ports are more concise, but are error prone.

module <name>
// Verilog for design
<...>

`ifdef OVL_ASSERT_ON
`include “std_ovl_defines.h”
<all OVL instances & auxiliary logic>

`endif

2.2.2. Clock and Reset
Avoid using functional signals on the .clk and .reset_n ports, which should only
be driven by clock and reset signals. The only exception is for assertions that contain
internal state requiring a functional reset e.g. assert_fifo_index may need to
be reset by a fifo_flush design signal.

2.2.3. Parameters
There are several coding guidelines for OVL parameters, including:
• Instantiate all parameters, at least up to (and including) the msg parameter
• Set severity_level to indicate the severity of the failure, with

`OVL_FATAL used to stop simulations
• Set property_type to `OVL_ASSUME for constraints on inputs e.g. no back-

to-back requests
• Set the msg parameter to a meaningful message, not just “FAILED”
• Group related assertions by using a common prefix in the msg parameter

2.3. Explicit X Checking
In addition to all OVL assertions checking for X (unless disabled by
OVL_XCHECK_OFF), there are two explicit X checking assertions:

• assert_never_unknown
• assert_never_unknown_async

2.4. Auxiliary Logic
Auxiliary Verilog can sometimes be required to simplify the OVL assertions. This
could be Verilog tasks/functions, or additional storage e.g. a sampled request input
with a one-cycle delay could be called req_d1.

Auxiliary logic should be located with the OVL instances, disabled by the same
`ifdef to avoid it being compiled during synthesis (see section 2.1).

Any storage in auxiliary logic should be reset to avoid an additional source of X. All
DFFs should be reset, as this logic is not synthesised into the design (so does not need
to be minimized with non-reset DFFs).

2.5. Input Assumptions
It's important to distinguish OVL assertions that are checking input constraints, e.g.
possible Cache size encodings, for formal verification (to ensure that only legal input
sequences are applied). To do this you can set the property_type parameter to
`OVL_ASSUME.

2.6. Interface Checking Modules
For interfaces between blocks, a structured approach is necessary (to avoid missing
assumptions, or having conflicting assumptions and assertions). As bugs are often

found on the interfaces of blocks, it’s well worth putting effort into interface
assertions. A good approach is to create separate interface modules that only contain
interface related OVL assertions, with one or more of their own property_type
parameter to indicate direction of assertions e.g. set to 1 to assume, or to 0 to prove.
Having a common definition of an interface protocol is a good way to avoid
misunderstandings between designers of two blocks.

An interface module can be instanced either:
• Once: In the top level module
• Twice: In both the driver module and the receiver module

The advantage of instancing one module twice is that the receiver block contains a
description of how it’s inputs can be driven – which is good for IP reuse (of that block
in another system). If you make property_type a parameter of the interface module,
you can control the direction of the checks when you instance it. To avoid duplicated
checks in simulation, you can use `ifdef OVL_ASSUME_ON to avoid rechecking in
the receiving block. This is illustrated in Figure 2 below, where the common “a2b”
interface module is configured for checking (in block_a) and assumptions (in
block_b).

Figure 2: Interface Checking Modules

block_a

Implementation assertion e.g. one-hot FSM

Interface assertion e.g. no back-to-back requests

`ifdef OVL_ASSERT_ON

a2b #(`OVL_ASSERT)

u1 (…

`endif

a2b

block_b

a2b

`ifdef OVL_ASSERT_ON

`ifdef OVL_ASSUME_ON

a2b #(`OVL_ASSUME)

u1 (…

`endif

`endif

block_a

Implementation assertion e.g. one-hot FSM

Interface assertion e.g. no back-to-back requests

`ifdef OVL_ASSERT_ON

a2b #(`OVL_ASSERT)

u1 (…

`endif

a2b

block_b

a2b

`ifdef OVL_ASSERT_ON

`ifdef OVL_ASSUME_ON

a2b #(`OVL_ASSUME)

u1 (…

`endif

`endif

3. Verification of OVL Assertions

3.1. Compilation
Figure 3 illustrates a verilog command file in order to compile the OVL assertions for
running in simulations. The commented-out defines for advanced initialisation
messages are discussed in later sections.

Figure 3: Verilog Command File

3.2. Messages

3.2.1. Initialisation Messages
With just OVL_INIT_MSG defined (as per Figure 3), you will get initialisation
messages at the start of simulation – an example of which is illustrated by Figure 4.

Figure 4: Initialisation Message

+libext+.v+.vlib

// Switch on OVL
// =============
+define+OVL_ASSERT_ON

// Limit Messages (for each OVL instance)
// ==============
+define+OVL_MAX_REPORT_ERROR=2

// Initialisation Messages (uncomment 2nd line for count-only)
// =======================
+define+OVL_INIT_MSG
//+define+OVL_INIT_COUNT=tbench.ovl_count

// X-Checking (uncomment out to disable)
// ==========
//+define+OVL_XCHECK_OFF

// OVL Library
// ===========
-y /<...>/accellera/ovl/verilog

// Include OVL Task (can be customized)
// ================
+incdir+/<...>/accellera/ovl/verilog

// Compile Design
// ==============
<...>

OVL_NOTE : ASSERT_NEXT initialized @
tbench.DUT.arb_rule1.ovl_init_msg Severity: 1, Message:
ARB_Rule1 - Should only have one grant.

A design can contain hundreds or thousands of assertions, each of which will give an
initialisation message. Extra controls exist to display the total number of OVL
assertions initialized and enable/disable the individual messages. For instance, you
can get the total number of OVL reported (as illustrated in Figure 5).

Figure 5: Initialization Metrics

To get the OVL_METRICS line illustrated in Figure 5 you need to `include the
std_ovl_count.h file in your simulation test-bench module. You also need to
define both OVL_INIT_MSG and OVL_INIT_COUNT (see commented out lines in
Figure 3).

3.2.2. Activation Messages

An assertion will fire with the appropriate message, e.g. an error will report:

Figure 6: OVL Error Message

3.3. Checking for X/Z
Prior to version 1.7, only four OVL assertions had X/Z checking in addition to their
specific functional checks. Since version 1.7, all OVL assertions can now also fail due
to X/Z in an intelligent way (e.g. assert_implication will only not fail when
consequent_expr is 1’bX but antecedent_expr is 1’b0).

You can disable all X checking by defining the macro: OVL_XCHECK_OFF. This can
be useful if you wish to debug functional failures before any X issues.

3.4. Functional Coverage Points
The OVL library contains built-in functional coverage points, which are off by default
but can be turned on by defining OVL_COVER_ON. It is also possible to control the
amount of coverage reported by each OVL instance, by setting the
coverage_level parameter.

4. FAQs
This section attempts to answer some frequently asked questions

1. How many assertions should I write?

===========
OVL_METRICS : 487 OVL assertions initialized
===========

#OVL_ERROR : ASSERT_NEXT : ARB_Rule1 - Should only have
one grant : severity 1 : time 400 ns :
tbench.DUT.arb_rule1.ovl_error

• Unknown!
• Depends on application and requirements spec.

2. When should I add an assertion?
• If there’s additional information, e.g. about the environment or design intent.
• DON’T simply repeat the RTL verbatim!

3. Which assertions should I use?
• Virtually any!
• Keep it simple (assert_always & assert_never are the most common)
• Take care with non-default parameter values
• Avoid assert_proposition (better to use clocked assert_always)

4. Where can I use assertions?
• One hot state machines
• Counters
• Bus protocols
• FIFOs (always a good source of errors)

5. Is OVL a language?
• No – it’s a library of predefined assertions.
• OVL is currently implemented in Verilog, SVA, and PSL.

6. Which EDA tools support OVL?
• Almost all tools should at least support an HDL version of OVL

5. OVL Assertion Subtleties

This section highlights some of the OVL subtleties to watch for when using OVL assertions.

• General: Be careful about clock and reset inputs to assertions. All assertion
(other than assert_proposition) require a valid clock; a common user error is to not
connect a clock available at the same hierarchy level as the assert. Also, many OVLs
do not behave properly if they do not have a real reset signal that goes to 0 at some
point while the clock is running. So an assertion with reset tied to 1 or to a bogus
signal may never get triggered.

• General: Be careful about level-sensitive vs edge-sensitive. Most assertions are
checked on positive edges of the clock, but are level sensitive with regard to all other
signals involved. If you want an assertion to trigger only on the rising edge of a
condition, you will often need to keep a flopped version of your signal, and check
conditions on (sig & !sig_ff).

• assert_proposition: Avoid using this assertion. Since it’s not clocked, its internal
X-check has to be triggered by an always @(test_expr). Which means that if there is
a glitch, an intermediate value may be checked in the middle of a cycle, and a bogus
error reported.

o So, if you’re in a design with a clock available, it’s probably best to try to use
assert_always (same concept as assert_proposition, but with a clock input)
instead.

• assert_always_on_edge, and other assertions with edge-triggered aspects: This
assertion checks that the condition is met immediately after the given edge, rather
than before. In other words, the condition that triggers the error is:
(!sampling_event_prev) && (sampling_event) && (!test_expr).

• assert_frame: The documentation of this one is confusing on one point: an
assert_frame is violated unless test_expr has a rising edge during the prescribed
number of clocks. So, if test_expr might already be 1 at the start of the time frame,
the assertion will actually be incorrect. Also, if the rising edge happens before the
min_cks value by coincidence, the assertion fails-- a second rising edge within the
specified time frame does not rescue it.

• assert_next, assert_time, and other assertions with an option that might check
overlaps: Sometimes these assertions internally turn into two assertions in FPV
tools: one that checks the main condition, and an _overlap version that checks for
overlaps if not allowed.

• assert_next and overlaps: assert_next is a bit non-standard in that if the
overlap_flag is 0, and the overlapping condition occurs, the assertion will fire. Since it
is level-sensitive, this also means the assertion will automatically fire if the starting
condition is held more than a cycle.

• assert_handshake is rather complex, and generates a group of sub-assertions that
are proven. So in your FPV runs you may see separate answers for
_multiple_req_handshake, _min_ack_cycle_handshake, etc.

• assert_no_{over,under}flow: The assertion waits until the max/min is hit, then starts
checking that the value does not increase/decrease. So, if your test expression is
potentially changing by a value >1 so it may not hit the max/min exactly, this
assertion will not work. (You might be better off with a simple 'assert_never ... (...val
> max)').

• assert_width: The default value for min_cks and max_cks is 1, not 0 (unchecked) as
one might expect. So be careful if not specifying all parameters.

