
Page 1Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 1

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Basic VHDL
RASSP Education & Facilitation

Module 10

Version 3.00

Copyright1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and may
only be used for non-commercial educational purposes. Any other use of this information without the express written permission
of the ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All
information contained, may be duplicated for non-commercial educational use only provided this copyright notice and the
copyright acknowledgements herein are included. No warranty of any kind is provided or implied, nor is any liability accepted
regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457. Such
data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as follows:
Certain parts of this work to other copyright holders and are used with their permission; This information contained herein may
be duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is incorporated into, shall
carry this notice .

Page 2Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram emphasizes the role of VHDL in the RASSP program.
VHDL can be used for system definition, functional design, hardware-
software partitioning, hardware design and hardware-software
integration and test. In RASSP, virtual prototyping uses VHDL as the
binding language of choice for all design paradigms.

The most common usage of VHDL prior to RASSP was in the area of
hardware design. The RASSP program has extended VHDL's use to
include executable requirements, performance modeling, system level
design as well as system integration and test.

Copyright 1995-1999 SCRA 2

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Roadmap

 VHDL VHDL

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

Page 3Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The goals of this module are to provide an introduction to the basic
concepts and constructs of VHDL. VHDL is a versatile hardware
description language which is useful for modeling electronic systems at
various levels of design abstraction. Although most of the language will
be touched on in this module, subsequent modules will cover specific
areas of VHDL more thoroughly.

Specifically, areas to be covered in this module include:

 -- the VHDL timing model

 -- VHDL entities, architectures, and packages

 -- Concurrent and sequential modes of execution

The goal of this module is to provide a basic understanding of VHDL
fundamentals in preparation for the material to be covered in the
subsequent VHDL modules.

Copyright 1995-1999 SCRA 3

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

● Introduce basic VHDL constructs

● Introduce the VHDL simulation cycle and timing
model

● Illustrate VHDL’s utility as a digital hardware
description language

Page 4Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● VHDL Design Example

● VHDL Model Components

❍ Entity Declarations

❍ Architecture Descriptions

❍ Timing Model

Page 5Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 5

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline (Cont.)

● Basic VHDL Constructs
❍ Data types
❍ Objects
❍ Sequential and concurrent statements
❍ Packages and libraries
❍ Attributes
❍ Predefined operators

● Examples
● Summary

Page 6Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 6

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● VHDL Design Example

● VHDL Model Components

● Basic VHDL Constructs

● Examples

● Summary

Page 7Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL is an IEEE and U.S. Department of Defense standard for
electronic system descriptions. It is also becoming increasingly popular
in private industry as experience with the language grows and
supporting tools become more widely available. Therefore, to facilitate
the transfer of system description information, an understanding of
VHDL will become increasingly important. This module provides a first
step towards developing a basic comprehension of VHDL.

[VI93, USE/DA94]

Copyright the User Society for Electronic Design Automation. Reprinted with permission.

Copyright 1995-1999 SCRA 7

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Education Coverage

● In a survey of 71 US universities (representing
about half of the EE graduating seniors in 1993),
they reported

❍ 44% have no training on or use of VHDL in any
undergraduate EE course

❍ 45% have no faculty members who can teach VHDL
❍ 14% of the graduating seniors have a working

knowledge of VHDL and only 8% know Verilog

● However, in the 1994 USE/DA Standards Survey,
85% of the engineers surveyed were designers
and reported

❍ 55% were familiar with EDIF
❍ 55% were familiar with VHDL
❍ 33% were familiar with Verilog

Page 8Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 8

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Reasons for Using VHDL

● VHDL is an international IEEE standard
specification language (IEEE 1076-1993) for
describing digital hardware used by industry
worldwide

● VHDL is an acronym for VHSIC (Very High Speed
Integrated Circuit) Hardware Description
Language

● VHDL enables hardware modeling from the gate
to system level

● VHDL provides a mechanism for digital design
and reusable design documentation

Page 9Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language (VHDL) is the product of a US Government request for a new
means of describing digital hardware. The Very High Speed Integrated
Circuit (VHSIC) Program was an initiative of the Defense Department to
push the state of the art in VLSI technology, and VHDL was proposed
as a versatile hardware description language.

Copyright 1995-1999 SCRA 9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL’s History

● Very High Speed Integrated Circuit (VHSIC)
Program

❍ Launched in 1980
❍ Aggressive effort to advance state of the art
❍ Object was to achieve significant gains in VLSI

technology
❍ Need for common descriptive language
❍ $17 Million for direct VHDL development
❍ $16 Million for VHDL design tools

● Woods Hole Workshop
❍ Held in June 1981 in Massachusetts
❍ Discussion of VHSIC goals
❍ Comprised of members of industry, government, and

academia

Page 10Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The contract for the first VHDL implementation was awarded to the
team of Intermetrics, IBM, and Texas Instruments in July 1983.
However, development of the language was not a closed process and
was subjected to public review throughout the process (accounting for
Versions 1 through 7.1). The final version of the language, developed
under government contract, was released as VHDL Version 7.2.

In March 1986, IEEE proposed a new standard VHDL to extend and
modify the language to fix identified problems. In December 1987,
VHDL became IEEE Standard 1076-1987. VHDL was again modified in
September 1993 to further refine the language. These refinements
both clarified and enhanced the language. The major changes included
much improved file handling and a more consistent syntax and resulted
in VHDL Standard 1076-1993.

Copyright 1995-1999 SCRA 10

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL’s History (Cont.)

● In July 1983, a team of Intermetrics, IBM and
Texas Instruments were awarded a contract to
develop VHDL

● In August 1985, the final version of the language
under government contract was released: VHDL
Version 7.2

● In December 1987, VHDL became IEEE Standard
1076-1987 and in 1988 an ANSI standard

● In September 1993, VHDL was restandardized to
clarify and enhance the language

● VHDL has been accepted as a Draft International
Standard by the IEC

Page 11Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL allows the designer to work at various levels of abstraction. Many
of the levels are shown pictorially in the Gajski/Kuhn chart. Although
VHDL does not support system description at the physical/geometry
level of abstraction, many design tools can take behavioral or structural
VHDL and generate chip layouts.

As an illustrative example, the next few slides will show a sample VHDL
design process to demonstrate how a designer can move from an
algorithmic behavioral description, to a register transfer (or dataflow)
description, to a gate level description. See [Gajski83], [Walker85] and
[Smith88].

Copyright 1995-1999 SCRA 11

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Gajski and Kuhn’s Y Chart

Physical/Geometry

StructuralBehavioral

Processor

Hardware Modules

ALUs, Registers

Gates, FFs

Transistors

Systems

Algorithms

Register Transfer
Logic

Transfer Functions

Architectural

Algorithmic

Functional Block

Logic

Circuit

Rectangles

Cell, Module Plans

Floor Plans

Clusters

Physical Partitions

 [Gajski83]© IEEE 1983

Page 12Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Alternatively, the various forms of system representation could may be
described using the taxonomy developed under the RASSP project.
This taxonomy uses five axes which represent:

● Time

● Data value

● Function

● Structure

● Programmability

Note that both internal and external behavior is represented.

For example, time can be represented from low to high resolution. At
the high level, we represent gates and at the low level purely functions
(i.e. no timing).

Copyright 1995-1999 SCRA 12

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Representation of a
RASSP System

 Copyright © 1998 RASSP Taxonomy Working Group used with permission [Hein98]

Page 13Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Using the above key code to utilize the RASSP taxonomy, a number of
example modeling levels are presented in this and subsequent few
slides.

A virtual prototype, for example, can be developed at any temporal,
data value, functional, or structural level.

Copyright 1995-1999 SCRA 13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Graphical Representation of
the Model Levels using the

RASSP Taxonomy

Virtual Prototype

A Virtual Prototype can be constructed at
any level of abstraction and may include a
mixture of levels. It can be configured
quickly and cost-effectively, and, being a
computer simulation, provides non-
invasive observability of internal states.

 Copyright © 1998 RASSP Taxonomy Working Group used with permission [Hein98]

Page 14Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Behavior can be described as above. Note that structure is not
maintained internally and that timing, function, and data values can be
modeled at any level and is case dependent.

RTL and gate level models specify more of the details of a design and
hence tend to be at the higher end of the resolution scales in all
categories.

Copyright 1995-1999 SCRA 14

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Graphical Representation of
the Model Levels using the
RASSP Taxonomy (Cont.)

Behavioral Level

A behavioral model describes the function
and timing of a component without
describing a specific implementation

RTL Level

An RTL model describes a system in terms
of registers, combinational circuitry, low-
level buses, and control circuits, usually
implemented as finite state machines

 Copyright © 1998 RASSP Taxonomy Working Group used with permission [Hein98]

Page 15Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

At the algorithm level, a model does not contain timing information,
either internally or externally. At this level, data is represented at the
functional level where function is captured internally, but no external
interface is modeled. The structure is not defined, and SW
programmability is at the DSP primitive level (i.e. FFT, FIR, etc..) e.g.
using Matlab.

Performance models mainly measure the time effects of the system
such as throughput, latency, and utilization

Copyright 1995-1999 SCRA 15

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Graphical Representation of
the Model Levels using the
RASSP Taxonomy (Cont.)

Performance Level

Performance models may be written at any
level of abstraction and measure system
performance associated with response
time, throughput, and utilization

Algorithm Level

The algorithm level of abstraction
describes a procedure for implementing a
function as a specific sequence of
arithmetic operations, conditions, and
loops

 Copyright © 1998 RASSP Taxonomy Working Group used with permission [Hein98]

Page 16Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The gate level model includes structure at the higher resolution.

Copyright 1995-1999 SCRA 16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Graphical Representation of
the Model Levels using the
RASSP Taxonomy (Cont.)

Gate Level

A gate-level model describes the function,
timing, and structure of a component in
terms of the structural interconnection of
boolean logic blocks

Structural Level

A structural model represents a
component or system in terms of the
interconnections of its constituent
components.

 Copyright © 1998 RASSP Taxonomy Working Group used with permission [Hein98]

Page 17Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL is a powerful and versatile language and offers numerous
advantages:

1) Design Methodology: VHDL supports many different design
methodologies (top-down, bottom-up, delay of detail) and is very flexible
in its approach to describing hardware.

2) Technology Independence: VHDL is independent of any specific
technology or process. However, VHDL code can be written and then
targeted for many different technologies.

3) Wide Range of Descriptions: VHDL can model hardware at various
levels of design abstraction. VHDL can describe hardware from the
standpoint of a "black box" to the gate level. VHDL also allows for
different abstraction-level descriptions of the same component and
allows the designer to mix behavioral descriptions with gate level
descriptions.

4) Standard Language: The use of a standard language allows for
easier documentation and the ability to run the same code in a variety of
environments. Additionally, communication among designers and
among design tools is enhanced by a standard language.

5) Design Management: Use of VHDL constructs, such as packages
and libraries, allows common elements to be shared among members of
a design group.

6) Flexible Design: VHDL can be used to model digital hardware as well
as many other types of systems, including analog devices.

Copyright 1995-1999 SCRA 17

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Benefits of VHDL

● Allows for various design methodologies

● Provides technology independence

● Describes a wide variety of digital hardware

● Eases communication through standard
language

● Allows for better design management

● Provides a flexible design language

● Has given rise to derivative standards :
❍ WAVES, VITAL, Analog VHDL

Page 18Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

 This figure captures the main features of a complete VHDL model. A single component model is
composed of one entity and one or many architectures. The entity represents the interface specification
(I/O) of the component. It defines the component’s external view, sometimes referred to as its "pins".

 The architecture(s) describe(s) the function or composition of an entity. There are three general types
of architectures. One type of architecture describes the structure of the design (right hand side) in terms
of its sub-components and their interconnections. A key item of a structural VHDL architecture is the
"configuration statement" which binds the entity of a sub-component to one of several alternative
architectures for that component.

 A second type of architecture, containing only concurrent statements, is commonly referred to as a
dataflow description (left hand side). Concurrent statements execute when data is available on their
inputs. These statements can occur in any order within the architecture.

 The third type of architecture is the behavioral description in which the functional and possibly timing
characteristics are described using VHDL concurrent statements and processes. The process is a
concurrent statement of an architecture. All statements contained within a process execute in a
sequential order until it gets suspended by a wait statement.

 Packages are used to provide a collection of common declarations, constants, and/or subprograms to
entities and architectures.

 Generics provide a method for communicating static information to an architecture from the external
environment. They are passed through the entity construct.

 Ports provide the mechanism for a device to communicate with its environment. A port declaration
defines the names, types, directions, and possible default values for the signals in a component's
interface.

 Implicit in this figure is the testbench which is the top level of a self-contained simulatable model.
The testbench is a special VHDL object for which the entity has no signals in its port declaration. Its
architecture often contains constructs from all three of the types described above. Structural VHDL
concepts are used to connect the model's various components together. Dataflow and behavioral
concepts are often used to provide the simulation's start/stop conditions, or other desired modeling
directives.

 This slide will be used again at the end of this module as a review.

Copyright 1995-1999 SCRA 18

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Putting It All Together

Generics PortsEntity

Architecture

(Dataflow)

Architecture

(Behavioral)

Architecture

(Structural)

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package

[MG93]

Page 19Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 19

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● VHDL Design Example

● VHDL Models of Hardware

● Basic VHDL Constructs

● Examples

● Summary

Page 20Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As a first example, we will consider the design a single bit adder with
carry and enable functions. When the enable line is low, the adder is to
place zeroes on its outputs.

This sample design sequence is based on an example in [Navabi93].

Copyright 1995-1999 SCRA 20

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Design Example

● Problem: Design a single bit half adder with carry
and enable

● Specifications
❍ Inputs and outputs are each one bit
❍ When enable is high, result gets x plus y

❍ When enable is high, carry gets any carry of x plus y
❍ Outputs are zero when enable input is low

x
y

enable

carry

result
Half Adder

Page 21Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In this slide the term entity refers to the VHDL construct in which a
component's interface (which is visible to other components) is
described. The first line in an entity declaration provides the name of
the entity.

Next, the PORT statement indicates the actual interface of the entity.
The port statement lists the signals in the component's interface, the
direction of data flow for each signal listed, and type of each signal. In
the above example, signals x, y, and enable are of direction IN (i.e.
inputs to this component) and type bit, and carry and result are outputs
also of type bit. Notice that if signals are of the same mode and type,
they may be listed on the same line.

Particular attention should be paid to the syntax in that no semicolon is
required before the closing parenthesis in the PORT declaration (or
GENERIC declaration, for that matter, which is not shown here). The
entity declaration statement is closed with the END keyword, and the
name of the entity is optionally repeated.

Copyright 1995-1999 SCRA 21

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Design Example
Entity Declaration

● As a first step, the entity declaration describes
the interface of the component

❍ input and output ports are declared

x

y

enable

carry

result
Half

Adder

ENTITY half_adder IS

PORT(x, y, enable: IN BIT;
 carry, result: OUT BIT);

END half_adder;

Page 22Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In the first stage of the design process, a high level behavior of the
adder is considered. This level uses abstract constructs (such as the
IF-THEN-ELSE statement) to make the model more readable and
understandable.

Simulation of the adder at this level shows correct understanding of the
problem specifications of the adder. VHDL code for this adder will be
shown later.

Copyright 1995-1999 SCRA 22

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Design Example
Behavioral Specification

● A high level description can be used to describe
the function of the adder

● The model can then be simulated to verify correct
functionality of the component

ARCHITECTURE half_adder_a OF half_adder IS

BEGIN

PROCESS (x, y, enable)

BEGIN

IF enable = ‘1’ THEN

result <= x XOR y;

carry <= x AND y;

ELSE

carry <= ‘0’;

result <= ‘0’;

END IF;

END PROCESS;

END half_adder_a;

Page 23Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

An alternative method for describing the functionality of the component
is to use data flow specifications with concurrent signal assignment
statements. An example of this is shown in the representation here
which uses logic equations to describe functionality of the carry and
result outputs. Notice that the sequential IF-THEN-ELSE statement
cannot be used here (i.e. outside a process).

Copyright 1995-1999 SCRA 23

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Design Example
Data Flow Specification

● A second method is to use logic equations to
develop a data flow description

● Again, the model can be simulated at this level to
confirm the logic equations

ARCHITECTURE half_adder_b OF half_adder IS

BEGIN

carry <= enable AND (x AND y);

result <= enable AND (x XOR y);

END half_adder_b;

Page 24Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The previous data flow description maps easily to logic gates. The
models for these gates can come from many different libraries, which
may represent specific implementation technologies, for example.

VHDL structural descriptions may similarly be used to describe the
interconnections of high level components (e.g. multiplexors, full
adders, microprocessors).

Copyright 1995-1999 SCRA 24

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Design Example
Structural Specification

● As a third method, a structural description can be
created from predescribed components

● These gates can be pulled from a library of parts

x
y

enable
carry

result

Page 25Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The VHDL structural description for this example is shown in this and
the next slide. A number of locally defined idealized components are
declared in this slide. These components are then bound to VHDL
entities found in a library called gate_lib.

Copyright 1995-1999 SCRA 25

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Design Example
Structural Specification (Cont.)

ARCHITECTURE half_adder_c OF half_adder IS

COMPONENT and2
PORT (in0, in1 : IN BIT;

 out0 : OUT BIT);
END COMPONENT;

COMPONENT and3
PORT (in0, in1, in2 : IN BIT;

 out0 : OUT BIT);
END COMPONENT;

COMPONENT xor2
PORT (in0, in1 : IN BIT;

 out0 : OUT BIT);
END COMPONENT;

FOR ALL : and2 USE ENTITY gate_lib.and2_Nty(and2_a);
FOR ALL : and3 USE ENTITY gate_lib.and3_Nty(and3_a);
FOR ALL : xor2 USE ENTITY gate_lib.xor2_Nty(xor2_a);

-- description is continued on next slide

Page 26Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This second slide of the structural description shows the declaration of
a local signal to be used in connecting the components together.

Finally, the body of the architecture shows the component instantiations
and how they are interconnected to each other and the outside world
via the attaching of signals in their PORT MAPs.

Copyright 1995-1999 SCRA 26

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Design Example
Structural Specification (cont.)

-- continuing half_adder_c description

SIGNAL xor_res : BIT; -- internal signal

-- Note that other signals are already declared in entity

BEGIN

A0 : and2 PORT MAP (enable, xor_res, result);

A1 : and3 PORT MAP (x, y, enable, carry);

X0 : xor2 PORT MAP (x, y, xor_res);

END half_adder_c;

Page 27Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 27

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● VHDL Design Example

● VHDL Model Components
❍ Entity Declarations
❍ Architecture Descriptions
❍ Timing Model

● Basic VHDL Constructs

● Examples

● Summary

Page 28Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A complete VHDL description consists of an entity in which the interface
signals are declared and an architecture in which the functionality of the
component is described.

VHDL provides constructs and mechanisms for describing the structure
of components that may be constructed from simpler sub-systems.
VHDL also provides some high-level description language constructs
(e.g. variables, loops, conditionals) to model complex behavior easily.
Finally, the underlying timing model in VHDL supports both the
concurrency and delay observed in digital electronic systems.

Copyright 1995-1999 SCRA 28

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Model Components

● A complete VHDL component description
requires a VHDL entity and a VHDL architecture

❍ The entity defines a component’s interface
❍ The architecture defines a component’s function

● Several alternative architectures may be
developed for use with the same entity

● Three areas of description for a VHDL
component:

❍ Structural descriptions
❍ Behavioral descriptions
❍ Timing and delay descriptions

Page 29Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The purpose of this slide is to provide a basic working definition for
process and signal. These definitions are not intended to be
comprehensive, and detail will be added throughout the presentation of
this and subsequent modules.

All behavioral descriptions in VHDL are constructed using processes.
Processes may be defined explicitly where complex behavior can be
described in a sequential programming style, or they may be implicitly
defined in concurrent signal assignment statements. Both of these
mechanisms will be covered in more detail in this and subsequent
modules.

The primary purpose of the process is to determine new values for
signals. Signals are accessible to other processes, and, therefore,
provide a mechanism for the results of one process execution to be
communicated to other processes. Signals may be made accessible to
processes within other VHDL architectures by connecting them to ports
of the respective entities.

Copyright 1995-1999 SCRA 29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Model Components (cont.)

● Fundamental unit for component behavior
description is the process

❍ Processes may be explicitly or implicitly defined and
are packaged in architectures

● Primary communication mechanism is the signal
❍ Process executions result in new values being assigned

to signals which are then accessible to other processes
❍ Similarly, a signal may be accessed by a process in

another architecture by connecting the signal to ports
in the the entities associated with the two architectures

❍ Example signal assignment statement :

Output <= My_id + 10;Output <= My_id + 10;

Page 30Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In this slide the term entity refers to the VHDL construct in which a
component's interface (which is visible to other components) is
described. The first line in an entity declaration provides the name of
the entity.

Next, an optional GENERIC statement includes value assignments to
parameters that may be used in the architecture descriptions of the
component.

Following that, the PORT statement indicates the actual interface of the
entity. The port statement lists the signals in the component's interface,
the direction of data flow for each signal listed, and type of each signal.
In the above example, signals x, y, and enable are of direction IN (i.e.
inputs to this component) and type bit, and carry and result are outputs
also of type bit. Notice that if signals are of the same mode and type,
they may be listed on the same line.

Particular attention should be paid to the syntax in that no semicolon is
required before the closing parenthesis in PORT or GENERIC
declarations. The entity declaration statement is closed with the END
keyword, and the name of the entity is optionally repeated.

Copyright 1995-1999 SCRA 30

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Entity Declarations

● The primary purpose of the entity is to declare
the signals in the component’s interface

❍ The interface signals are listed in the PORT clause
❑ In this respect, the entity is akin to the schematic

symbol for the component
❍ Additional entity clauses and statements will be

introduced later in this and subsequent modules

x

y

enable

carry
result

Half
Adder

ENTITY half_adder IS

GENERIC(prop_delay : TIME := 10 ns);

PORT(x, y, enable : IN BIT;
 carry, result : OUT BIT);

END half_adder;

Page 31Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The PORT declaration describes the interface of the component. There
are three essential elements to the port declaration: the name, mode,
and type of the signals in the interface. An optional fourth element (not
shown above) in a port declaration is the signal’s initial value which will
be assigned to the signal as a default if there are no active drivers on
the signal at the start of a simulation.

Note that signals declared in an entity's port declaration may sometimes
be referred to as ports.

In the example port declaration above, input is an input and can only
be read by the device. The ports ready and output are outputs so that
the signals are "driven" by this component. Note that according to the
VHDL Standard, a component may not read its own OUT ports.

Finally, the port must indicate the type or subtype for port signals. Any
VHDL-defined standard or user-defined type or subtype may be used in
a port declaration. Note that a range specification may be declared if
an unconstrained type is used in the type declaration.

Copyright 1995-1999 SCRA 31

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Entity Declarations
Port Clause

● PORT clause declares the interface signals of the
object to the outside world

● Three parts of the PORT clause
❍ Name
❍ Mode
❍ Data type

● Example PORT clause:

❍ Note port signals (i.e. ‘ports’) of the same mode and
type or subtype may be declared on the same line

PORT (signal_name : mode data_type);PORT (signal_name : mode data_type);

PORT (input : IN BIT_VECTOR(3 DOWNTO 0);
 ready, output : OUT BIT);

PORT (input : IN BIT_VECTOR(3 DOWNTO 0);
 ready, output : OUT BIT);

Page 32Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The mode indicates the direction of the flow of data across that port.
This flow of data is defined with respect to the component.

The five port modes available:

1. IN -- indicates that the (only) signal driver is outside this
component

2. OUT -- indicates that the (only) signal driver is within this
component. Note that a component may not read its own
OUT ports.

3. BUFFER -- indicates that there may be signal drivers inside and
outside this component. However, only one of these
drivers can be driving the signal at any one time.

4. INOUT -- indicates that there may be signal drivers inside and
outside this component. Any number of these drivers
can be driving the signal simultaneously, but a Bus
Resolution Function is then required to determine what
values the signal will assume.

5. LINKAGE -- indicates that the location of the signal drivers is not
known. This mode type only indicates that a connection
exists.

Copyright 1995-1999 SCRA 32

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Entity Declarations
Port Clause (cont.)

● The port mode of the interface describes the
direction in which data travels with respect to the
component

● The five available port modes are:
❍ In - data comes in this port and can only be read
❍ Out - data travels out this port
❍ Buffer - data may travel in either direction, but only one

signal driver may be on at any one time
❍ Inout - data may travel in either direction with any

number of active drivers allowed; requires a Bus
Resolution Function

❍ Linkage - direction of data flow is unknown

Page 33Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

GENERIC statements create parameters to be passed on to the
architectures of this entity. These parameters may be used to
characterize the component by setting propagation delay, component
ids, etc.

Generics are discussed further in the Structural VHDL module.

Copyright 1995-1999 SCRA 33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Entity Declarations
Generic Clause

● Generics may be used for readability, maintenance
and configuration

● Generic clause syntax :

❍ If optional default_value is missing in generic clause
declaration, it must be present when component is to be
used (i.e. instantiated)

● Generic clause example :

❍ The generic My_ID, with a default value of 37, can be
referenced by any architecture of the entity with this
generic clause

❍ The default can be overridden at component instantiation

GENERIC (generic_name : type [:= default_value]);GENERIC (generic_name : type [:= default_value]);

GENERIC (My_ID : INTEGER := 37);GENERIC (My_ID : INTEGER := 37);

Page 34Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The architecture body describes the operation of the component. There
can be many different architectures described for each entity.
However, for each instantiation of the entity, one of the possibly several
architectures must be selected.

In the above example, the architecture body starts with the keyword
ARCHITECTURE followed by the name of the architecture (e.g.
half_adder_d above) and the name of the entity with which the
architecture is associated. The keyword BEGIN marks the beginning of
the architecture statement part which may include concurrent signal
assignment statements and processes. Any signals that are used
internally in the architecture description but are not found in the entity's
ports are declared in the architecture’s declarative part before the
BEGIN statement of the architecture body. The keyword END marks
the end of the architecture body.

Copyright 1995-1999 SCRA 34

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architecture Bodies

● Describe the operation of the component
● Consist of two parts :

❍ Declarative part -- includes necessary declarations
❑ e.g. type declarations, signal declarations, component

declarations, subprogram declarations
❍ Statement part -- includes statements that describe

organization and/or functional operation of component
❑ e.g. concurrent signal assignment statements, process

statements, component instantiation statements

ARCHITECTURE half_adder_d OF half_adder IS

SIGNAL xor_res : BIT; -- architecture declarative part
BEGIN -- begins architecture statement part

carry <= enable AND (x AND y);

result <= enable AND xor_res;

xor_res <= x XOR y;

END half_adder_d;

Page 35Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL also supports descriptions based on a component's underlying
internal structure. Structural VHDL allows for sub-components to be
instantiated and interconnected. It may be noted that a structural
description is similar to a netlist. Of course, the description of the sub-
components can themselves be structural and/or behavioral in nature.

RASSP E&F Module 11, Structural VHDL, concentrates on VHDL
constructs that support structural descriptions.

Copyright 1995-1999 SCRA 35

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Structural Descriptions

● Pre-defined VHDL components are instantiated
and connected together

● Structural descriptions may connect simple
gates or complex, abstract components

● VHDL provides mechanisms for supporting
hierarchical description

● VHDL provides mechanisms for describing
highly repetitive structures easily

Input Output

Page 36Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A behavioral description may be relatively abstract in that specific
details about a component's internal structure need not be included in
the description.

The fundamental unit of behavioral description in VHDL is the process;
all processes are executed concurrently with each other. In fact, the
data flow modeling style is a special case of the general VHDL process
mechanism in that each concurrent signal assignment statement is
actually a single statement VHDL process that executes concurrently
with all other processes.

Within a process, VHDL provides a rich set of constructs to allow the
description of complex behavior. This includes loops, conditional
statements, variables to control maintaining state information within a
process (e.g. loop counters), etc.

Much more information is provided in RASSP E&F Module 12,
Behavioral VHDL, which concentrates on VHDL constructs that support
behavioral descriptions.

Copyright 1995-1999 SCRA 36

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Behavioral Descriptions

● VHDL provides two styles of describing
component behavior

❍ Data Flow: concurrent signal assignment statements
❍ Behavioral: processes used to describe complex

behavior by means of high-level language constructs
❑ e.g. variables, loops, if-then-else statements

● A behavioral model may bear little resemblance
to system implementation

❍ Structure not necessarily implied

Input OutputBehavioral
Description

Page 37Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The VHDL timing model controls the stimulus and response sequence
of signals in a VHDL model. At the start of a simulation, signals with
default values are assigned those values. In the first execution of the
simulation cycle, all processes are executed until they reach their first
wait statement. These process executions will include signal
assignment statements that assign new signal values after prescribed
delays.

After all the processes are suspended at their respective wait
statements, the simulator will advance simulation time just enough so
that the first pending signal assignments can be made (e.g. 1 ns, 3 ns,
1 delta cycle).

After the relevant signals assume their new values, all processes
examine their wait conditions to determine if they can proceed.
Processes that can proceed will then execute concurrently again until
they all reach their respective subsequent wait conditions.

This cycle continues until the simulation termination conditions are met
or until all processes are suspended indefinitely because no new signal
assignments are scheduled to unsuspend any waiting processes.

Copyright 1995-1999 SCRA 37

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Timing Model

● VHDL uses the following simulation cycle to
model the stimulus and response nature of
digital hardware

Start SimulationStart Simulation

Update SignalsUpdate Signals Execute ProcessesExecute Processes

End SimulationEnd Simulation

Delay

Page 38Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

There are several types of delay in VHDL, and understanding of how
delay works in a process is key to writing and understanding VHDL.

It bears repeating that any signal assignment in VHDL is actually a
scheduling for a future value to be placed on that signal. When a signal
assignment statement is executed, the signal maintains its original
value until the time for the scheduled update to the new value. Any
signal assignment statement will incur a delay of one of the three types
listed in this slide.

Copyright 1995-1999 SCRA 38

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Delay Types

Input
delay

Output

● All VHDL signal assignment statements prescribe
an amount of time that must transpire before the
signal assumes its new value

● This prescribed delay can be in one of three
forms:

❍ Transport -- prescribes propagation delay only
❍ Inertial -- prescribes propagation delay and minimum

input pulse width
❍ Delta -- the default if no delay time is explicitly specified

Page 39Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The keyword TRANSPORT must be used to specify a transport delay.

Transport delay is the simplest in that when it is specified, any change
in an input signal value may result in a new value being assigned to the
output signal after the specified propagation delay.

Note that no restrictions are specified on input pulse widths. In this
example, Output will be an inverted copy of Input delayed by the 10ns
propagation delay regardless of the pulse widths seen on Input .

Copyright 1995-1999 SCRA 39

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Transport Delay

● Transport delay must be explicitly specified
❍ I.e. keyword “TRANSPORT” must be used

● Signal will assume its new value after specified
delay

-- TRANSPORT delay example
Output <= TRANSPORT NOT Input AFTER 10 ns;

-- TRANSPORT delay example
Output <= TRANSPORT NOT Input AFTER 10 ns;

Input Output

0 5 10 15 20 25 30 35

Input

Output

Page 40Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The keyword INERTIAL may be used in the signal assignment
statement to specify an inertial delay, or it may be left out because
inertial delay is used by default in VHDL signal assignment statements
which contain “after” clauses.

If the optional REJECT construct is not used, the specified delay is then
used as both the ‘inertia’ (i.e. minimum input pulse width requirement)
and the propagation delay for the signal. Note that in the example
above, pulses on Input narrower than 10ns are not observed on Output.

Copyright 1995-1999 SCRA 40

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Inertial Delay

● Provides for specification propagation delay and
input pulse width, i.e. ‘inertia’ of output:

● Inertial delay is default and REJECT is optional :

Output <= NOT Input AFTER 10 ns;
-- Propagation delay and minimum pulse width are 10ns

Output <= NOT Input AFTER 10 ns;
-- Propagation delay and minimum pulse width are 10ns

Input

Output

0 5 10 15 20 25 30 35

Input Output

target <= [REJECT time_expression] INERTIAL waveform;target <= [REJECT time_expression] INERTIAL waveform;

Page 41Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The REJECT construct is a new feature to VHDL introduced in the
VHDL 1076-1993 standard. The REJECT construct can only be used
with the keyword INERTIAL to include a time parameter that specifies
the input pulse width constraint.

Prior to this, a description for such a gate would have needed the use of
an intermediate signal with the appropriate inertial delay followed by an
assignment of this intermediate signal’s value to the actual output via a
transport delay.

Copyright 1995-1999 SCRA 41

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Inertial Delay (cont.)

● Example of gate with ‘inertia’ smaller than
propagation delay

❍ e.g. Inverter with propagation delay of 10ns which
suppresses pulses shorter than 5ns

● Note: the REJECT feature is new to VHDL 1076-1993

Output <= REJECT 5ns INERTIAL NOT Input AFTER 10ns;Output <= REJECT 5ns INERTIAL NOT Input AFTER 10ns;

Input

Output

 0 5 10 15 20 25 30 35

Page 42Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL allows the designer to describe systems at various levels of
abstraction. As such, timing and delay information may not always be
included in a VHDL description.

A delta (or delta cycle) is essentially an infinitesimal, but quantized, unit
of time. The delta delay mechanism is used to provide a minimum delay
in a signal assignment statement so that the simulation cycle described
earlier can operate correctly when signal assignment statements do not
include explicitly specified delays. That is:

1) all active processes can execute in the same simulation cycle

2) each active process will suspend at wait statement

3) when all processes are suspended simulation is advanced the
minimum time necessary so that some signals can take on their new
values

4) processes then determine if the new signal values satisfy the
conditions to proceed from the wait statement at which they are
suspended

Copyright 1995-1999 SCRA 42

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Default signal assignment propagation delay if
no delay is explicitly prescribed

❍ VHDL signal assignments do not take place immediately
❍ Delta is an infinitesimal VHDL time unit so that all signal

assignments can result in signals assuming their values
at a future time

❍ E.g.

● Supports a model of concurrent VHDL process
execution

❍ Order in which processes are executed by simulator
does not affect simulation output

Delta Delay

Output <= NOT Input;
-- Output assumes new value in one delta cycle

Output <= NOT Input;
-- Output assumes new value in one delta cycle

Page 43Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

For this discussion, assume that the above circuit does not specify any
delays, and that there is no delta delay mechanism. In such a case, the
order in which model processes (or components) are executed will
affect the model outputs. Consider the example above in which there is
a 1 to 0 transition at the input of the AND while the other input to the
NAND gate is a constant 1. What is the behavior of C?

Note that in the case on the left where the NAND gate is evaluated
before the AND gate, C can remain at its quiescent value of 0.

However, in the case on the right we see that if the AND gate is
evaluated before the NAND gate, a glitch is seen at C (i.e. a static-0
hazard is observed). It is generated because the NAND gate has not
yet been updated to its new value which will subsequently cause C to
become 0. Therefore, C initially goes to 1 and will only go to 0 after the
NAND gate drives its output to 0.

Therefore, if the order of execution is arbitrary, the behavior of the
system may be unpredictable.

[Perry94], pp. 22-24.

Copyright 1995-1999 SCRA 43

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Delta Delay
An Example without Delta Delay

● What is the behavior of C?

1

IN: 1->0
A

B

C

NAND gate evaluated first:
IN: 1->0
A: 0->1
B: 1->0
C: 0->0

NAND gate evaluated first:
IN: 1->0
A: 0->1
B: 1->0
C: 0->0

AND gate evaluated first:
IN: 1->0
A: 0->1

C: 0->1
B: 1->0
C: 1->0

AND gate evaluated first:
IN: 1->0
A: 0->1

C: 0->1
B: 1->0
C: 1->0

Page 44Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In this example, each signal assignment requires one delta cycle delay
before the signal assumes its new value. Also note that more than one
process can be executed in the same simulation cycle (e.g. both the
NAND process and the AND process are executed during delta 2).

Following the sequence of events defined by the VHDL simulation
cycle, the 1-0 transition on IN allows the INVERTER process to be
executed which results in a 0-1 transition being scheduled on A one
delta cycle in the future. The INVERTER process then suspends.
Since all process are suspended, simulation time advances by one
delta cycle so that A can assume its new value.

The new value of A allows the NAND and AND processes to be
executed. Because the value of A will not change again during
simulation time delta 2, it doesn’t matter whether NAND or AND is
evaluated first. In either case, the NAND process leads to a 1 being
scheduled for C and a 0 being scheduled for B, both one delta cycle in
the future. After the assignments are scheduled, NAND and AND
suspend again. Again, simulation time advances by one delta cycle so
that B and C can assume their new values.

The new value of B causes the AND process to be evaluated again.
This time, a 0 value is scheduled to be assigned to C one delta cycle in
the future, and the AND process can then suspend. Finally, simulation
time advances by one delta cycle so that C can assume its new, and
final value.

Based on [Perry94], pp 22-24

Copyright 1995-1999 SCRA 44

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Delta Delay
An Example with Delta Delay

● What is the behavior of C?

IN: 1->0

1

A

B

C

Using delta delay schedulingUsing delta delay scheduling
Time Delta Event
0 ns 1 IN: 1->0
 eval INVERTER
 2 A: 0->1
 eval NAND, AND
 3 B: 1->0
 C: 0->1
 eval AND
 4 C: 1->0
1 ns

Page 45Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 45

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● VHDL Design Example

● VHDL Model Components

● Basic VHDL Constructs
❍ Data types
❍ Objects
❍ Sequential and concurrent statements
❍ Packages and libraries
❍ Attributes
❍ Predefined operators

● Examples

● Summary

Page 46Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The three defined data types in VHDL are access, scalar, and
composite. Note that VHDL 1076-1987 defined a fourth data type, file,
but files were reclassified as objects in VHDL 1076-1993. In any case,
files will not be discussed in this module but will be covered in RASSP
E&F Module 13, 'Advanced Concepts in VHDL’, included in this
collection of educational modules.

Simply put, access types are akin to pointers in other programming
languages, scalar types are atomic units of information, and composite
types are arrays and/or records. These are explained in more detail in
the next few slides. In addition, subtypes will also be introduced.

Copyright 1995-1999 SCRA 46

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Data Types

Types

Access

Scalar

Composite

Array Record

Integer Real Enumerated Physical

● All declarations of VHDL ports, signals, and variables
must specify their corresponding type or subtype

[Perry94], pp 74

Page 47Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Scalar objects can hold only one data value at a time. A simple
example is the integer data type. Variables and signals of type integer
can only be assigned integers within a simulator-specific range,
although the VHDL standard imposes a minimum range.

In the above example, the first two variable assignments are valid since
they assign integers to variables of type integer. The last variable
assignment is illegal because it attempts to assign a real number value
to a variable of type integer.

Copyright 1995-1999 SCRA 47

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Data Types
Scalar Types

● Integer
❍ Minimum range for any implementation as defined by

standard: - 2,147,483,647 to 2,147,483,647
❍ Example assignments to a variable of type integer :

ARCHITECTURE test_int OF test IS
BEGIN

PROCESS (X)
VARIABLE a: INTEGER;

BEGIN
a := 1; -- OK
a := -1; -- OK
a := 1.0; -- illegal

END PROCESS;
END test_int;

ARCHITECTURE test_int OF test IS
BEGIN

PROCESS (X)
VARIABLE a: INTEGER;

BEGIN
a := 1; -- OK
a := -1; -- OK
a := 1.0; -- illegal

END PROCESS;
END test_int;

Page 48Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A second simple example is the real data type. This type consists of
the real numbers within a simulator-specific (but with a VHDL standard
imposed minimum) range. The variable assignment lines marked OK
are valid assignments. The first illegal statement above attempts to
assign an integer to a real type variable, and the second illegal
statement is not allowed since the unit “ns” denotes a physical data
type.

Copyright 1995-1999 SCRA 48

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

ARCHITECTURE test_real OF test IS
BEGIN

PROCESS (X)
VARIABLE a: REAL;

BEGIN
a := 1.3; -- OK
a := -7.5; -- OK
a := 1; -- illegal
a := 1.7E13; -- OK
a := 5.3 ns; -- illegal

END PROCESS;
END test_real;

ARCHITECTURE test_real OF test IS
BEGIN

PROCESS (X)
VARIABLE a: REAL;

BEGIN
a := 1.3; -- OK
a := -7.5; -- OK
a := 1; -- illegal
a := 1.7E13; -- OK
a := 5.3 ns; -- illegal

END PROCESS;
END test_real;

VHDL Data Types
Scalar Types (Cont.)

● Real
❍ Minimum range for any implementation as defined by

standard: -1.0E38 to 1.0E38
❍ Example assignments to a variable of type real :

Page 49Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The enumerated data type allows a user to specify the list of legal
values that a variable or signal of the defined type may be assigned.
As an example, this data type is useful for defining the various states of
a FSM with descriptive names.

The designer first declares the members of the enumerated type. In the
example above, the designer declares a new type binary with two legal
values, ON and OFF.

Note that VHDL is not case sensitive. Typing reserved words in
capitals and variables in lower case may enhance readability, however.

Copyright 1995-1999 SCRA 49

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

TYPE binary IS (ON, OFF);
... some statements ...
ARCHITECTURE test_enum OF test IS
BEGIN

PROCESS (X)
VARIABLE a: binary;

BEGIN
a := ON; -- OK
... more statements ...
a := OFF; -- OK
... more statements ...

END PROCESS;
END test_enum;

TYPE binary IS (ON, OFF);
... some statements ...
ARCHITECTURE test_enum OF test IS
BEGIN

PROCESS (X)
VARIABLE a: binary;

BEGIN
a := ON; -- OK
... more statements ...
a := OFF; -- OK
... more statements ...

END PROCESS;
END test_enum;

VHDL Data Types
Scalar Types (Cont.)

● Enumerated
❍ User specifies list of possible values
❍ Example declaration and usage of enumerated data type :

Page 50Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The physical data type is used for values which have associated units.
The designer first declares the name and range of the data type and
then specifies the units of the type. Notice there is no semicolon
separating the end of the TYPE statement and the UNITS statement.
The line after the UNITS line states the base unit of of the type. The
units after the base unit statement may be in terms of the base unit or
another already defined unit.

Note that VHDL is not case sensitive so Kohm and kohm refer to the
same unit.

The only predefined physical type in VHDL is time.

Copyright 1995-1999 SCRA 50

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Physical
❍ Require associated units
❍ Range must be specified
❍ Example of physical type declaration :

❍ Time is the only physical type predefined in VHDL
standard

TYPE resistance IS RANGE 0 TO 10000000

UNITS
ohm; -- ohm
Kohm = 1000 ohm; -- i.e. 1 KΩ
Mohm = 1000 kohm; -- i.e. 1 MΩ
END UNITS;

TYPE resistance IS RANGE 0 TO 10000000

UNITS
ohm; -- ohm
Kohm = 1000 ohm; -- i.e. 1 KΩ
Mohm = 1000 kohm; -- i.e. 1 MΩ
END UNITS;

VHDL Data Types
Scalar Types (Cont.)

Page 51Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL composite types consists of arrays and records. Each object of
this data type can hold more than one value.

Arrays consist of many similar elements of any data type, including
arrays. The array is declared in a TYPE statement. There are
numerous items in an array declaration. The first item is the name of
the array. Second, the range of the array is declared. The keywords
TO and DOWNTO designate ascending or descending indices,
respectively, within the specified range. The third item in the array
declaration is the specification of the data type for each element of the
array.

In the example above, an array consisting of 32 bits is specified. Note
that individual elements of the array are accessed by using the index
number of the element as shown above. The index number
corresponds to where in the specified range the index appears. For
example, X(12) above refers to the thirteenth element from the left
(since the leftmost index is 0) in the array.

Copyright 1995-1999 SCRA 51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

TYPE data_bus IS ARRAY(0 TO 31) OF BIT;TYPE data_bus IS ARRAY(0 TO 31) OF BIT;

VARIABLE X : data_bus;
VARIABLE Y : BIT;

Y := X(12); -- Y gets value of element at index 12

VARIABLE X : data_bus;
VARIABLE Y : BIT;

Y := X(12); -- Y gets value of element at index 12

0 31
0 1

 ...element indices...

...array values...

VHDL Data Types
Composite Types

● Array
❍ Used to group elements of the same type into a single

VHDL object
❍ Range may be unconstrained in declaration

❑ Range would then be constrained when array is used
❍ Example declaration for one-dimensional array (vector) :

Page 52Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example illustrates the use of the DOWNTO designator in the
range specification of the array. DOWNTO specifies a descending
order in array indices so that in the example above, X(4) refers to the
fifth element from the right in the array (with 0 being the index for the
element furthest to the right in this case).

Copyright 1995-1999 SCRA 52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Example one-dimensional array using DOWNTO :

● DOWNTO keyword must be used if leftmost index
is greater than rightmost index

❍ e.g. ‘Big-Endian’ bit ordering

TYPE reg_type IS ARRAY(15 DOWNTO 0) OF BIT;TYPE reg_type IS ARRAY(15 DOWNTO 0) OF BIT;

VARIABLE X : reg_type;
VARIABLE Y : BIT;

Y := X(4); -- Y gets value of element at index 4

VARIABLE X : reg_type;
VARIABLE Y : BIT;

Y := X(4); -- Y gets value of element at index 4

15 0
0 1

 ...element indices...

...array values...

VHDL Data Types
Composite Types (Cont.)

Page 53Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The second VHDL composite type is the record. An object of type
record may contain elements of different types. Again, a record
element may be of any data type, including another record.

A TYPE declaration is used to define a record. Note that the types of a
record's elements must be defined before the record is defined. Also
notice that there is no semi-colon after the word RECORD. The
RECORD and END RECORD keywords bracket the field names. After
the RECORD keyword, the record's field names are assigned and their
data types are specified.

In the above example, a record type, switch_info, is declared. This
example makes use of the binary enumerated type declared previously.
Note that values are assigned to record elements by use of the field
names.

Copyright 1995-1999 SCRA 53

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

TYPE binary IS (ON, OFF);
TYPE switch_info IS

RECORD
status : BINARY;
IDnumber : INTEGER;

END RECORD;

VARIABLE switch : switch_info;
switch.status := ON; -- status of the switch
switch.IDnumber := 30; -- e.g. number of the switch

TYPE binary IS (ON, OFF);
TYPE switch_info IS

RECORD
status : BINARY;
IDnumber : INTEGER;

END RECORD;

VARIABLE switch : switch_info;
switch.status := ON; -- status of the switch
switch.IDnumber := 30; -- e.g. number of the switch

VHDL Data Types
Composite Types (Cont.)

● Records
❍ Used to group elements of possibly different types into

a single VHDL object
❍ Elements are indexed via field names
❍ Examples of record declaration and usage :

Page 54Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The VHDL access type will not be discussed in detail in this module; it
will be covered more thoroughly in the 'Advanced Concepts in VHDL'
module appearing in this collection of modules.

In brief, the access type is similar to a pointer in other programming
languages in that it dynamically allocates and deallocates storage
space to the object. This capability is useful for implementing abstract
data structures (such as queues and first-in-first-out buffers) where the
size of the structure may not be known at compile time.

Copyright 1995-1999 SCRA 54

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Data Types
Access Type

● Access

❍ Analogous to pointers in other languages

❍ Allows for dynamic allocation of storage

❍ Useful for implementing queues, fifos, etc.

Page 55Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL subtypes are used to constrain defined types. Constraints take
the form of range constraints or index constraints. However, a subtype
may include the entire range of the base type. Assignments made to
objects that are out of the subtype range generate an error at run time.
The syntax and an example of a subtype declaration are shown above.

Copyright 1995-1999 SCRA 55

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Subtype
❍ Allows for user defined constraints on a data type

❑ e.g. a subtype based on an unconstrained VHDL type
❍ May include entire range of base type
❍ Assignments that are out of the subtype range are illegal

❑ Range violation detected at run time rather than compile
time because only base type is checked at compile time

❍ Subtype declaration syntax :

❍ Subtype example :

SUBTYPE name IS base_type RANGE <user range>;SUBTYPE name IS base_type RANGE <user range>;

VHDL Data Types
Subtypes

SUBTYPE first_ten IS INTEGER RANGE 0 TO 9;SUBTYPE first_ten IS INTEGER RANGE 0 TO 9;

Page 56Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 56

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Data Types
Summary

● All declarations of VHDL ports, signals, and
variables must include their associated type or
subtype

● Three forms of VHDL data types are :
❍ Access -- pointers for dynamic storage allocation
❍ Scalar -- includes Integer, Real, Enumerated, and Physical
❍ Composite -- includes Array, and Record

● A set of built-in data types are defined in VHDL
standard

❍ User can also define own data types and subtypes

Page 57Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL 1076-1993 defines four types of objects, files, constants,
variables, and signals. Simple scoping rules determine where object
declarations can be used. This allows the reuse of identifiers in
separate entities within the same model without risk of inadvertent
errors.

For example, a signal named data could be declared within the
architecture body of one component and used to interconnect its
underlying subcomponents. The identifier data may also be used again
in a different architecture body contained within the same model.

Copyright 1995-1999 SCRA 57

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Objects

● There are four types of objects in VHDL
❍ Constants
❍ Variables
❍ Signals
❍ Files

● The scope of an object is as follows :
❍ Objects declared in a package are available to all VHDL

descriptions that use that package
❍ Objects declared in an entity are available to all

architectures associated with that entity
❍ Objects declared in an architecture are available to all

statements in that architecture
❍ Objects declared in a process are available only within

that process

Page 58Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL constants are objects whose values do not change. The value of
a constant, however, does not need to be assigned at the time the
constant is declared; it can be assigned later in a package body if
necessary, for example.

The syntax of the constant declaration statement is shown above. The
constant declaration includes the name of the constant, its type, and,
optionally, its value.

Copyright 1995-1999 SCRA 58

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Objects
Constants

● Name assigned to a specific value of a type
● Allow for easy update and readability
● Declaration of constant may omit value so that

the value assignment may be deferred

❍ Facilitates reconfiguration

● Declaration syntax :

● Declaration examples :

CONSTANT constant_name : type_name [:= value];CONSTANT constant_name : type_name [:= value];

CONSTANT PI : REAL := 3.14;
CONSTANT SPEED : INTEGER;

CONSTANT PI : REAL := 3.14;
CONSTANT SPEED : INTEGER;

Page 59Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This discussion about VHDL variables does not include global (aka
shared) variables which were introduced in the 1076-1993 standard.
The discussion of shared variables is deferred until Module 13,
"Advanced Concepts in VHDL."

An important feature of the behavior of VHDL variables is that an
assignment to a VHDL variable results in the variable assuming its new
value immediately (i.e. no simulation time or delta cycles must transpire
as is the case for VHDL signals). This feature allows the sequential
execution of statements within VHDL processes where variables are
used as placeholders for temporary data, loop counters, etc.

Examples of variable declarations and assignments are shown above.
Note that when a variable is declared, it may optionally be given an
initial value as well.

Copyright 1995-1999 SCRA 59

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Objects
Variables

● Provide convenient mechanism for local storage
❍ E.g. loop counters, intermediate values

● Scope is process in which they are declared
❍ VHDL ‘93 provides for global variables, to be discussed

in the Advanced Concepts in VHDL module

● All variable assignments take place immediately
❍ No delta or user specified delay is incurred

● Declaration syntax:

● Declaration examples :

VARIABLE opcode : BIT_VECTOR(3 DOWNTO 0) := "0000";
VARIABLE freq : INTEGER;

VARIABLE opcode : BIT_VECTOR(3 DOWNTO 0) := "0000";
VARIABLE freq : INTEGER;

VARIABLE variable_name : type_name [:= value];VARIABLE variable_name : type_name [:= value];

Page 60Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Signals are used to pass information directly between VHDL processes
and entities. As has already been said, signal assignments require a
delay before the signal assumes its new value. In fact, a particular
signal may have a series of future values with their respective
timestamps pending in the signal's waveform. The need to maintain a
waveform results in a VHDL signal requiring more simulator resources
than a VHDL variable.

Copyright 1995-1999 SCRA 60

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Objects
Signals

● Used for communication between VHDL components
● Real, physical signals in system often mapped to

VHDL signals
● ALL VHDL signal assignments require either delta

cycle or user-specified delay before new value is
assumed

● Declaration syntax :

● Declaration and assignment examples :

SIGNAL signal_name : type_name [:= value];SIGNAL signal_name : type_name [:= value];

SIGNAL brdy : BIT;
brdy <= '0' AFTER 5ns, '1' AFTER 10ns;

SIGNAL brdy : BIT;
brdy <= '0' AFTER 5ns, '1' AFTER 10ns;

Page 61Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Note that signal assignments require that a delay be incurred before the
signals assume their new values.

In the example on the left, the signal assignment for x leads to a ‘0’
being scheduled on x one delta cycle in the future. Note that x still
holds its original value of ‘1’, however, when the signal assignment for y
is evaluated. Thus, the signal assignment statement for y evaluates to
‘1’, and y will assume this new value one delta cycle in the future. This
contrived example actually leads to x and y swapping values in delta
time while in_sig has a value of ‘0’.

In the example on the right, the variable assignment for x leads to x
assuming a ‘0’ immediately. Thus, when the signal assignment for y is
evaluated, x already has its new value and the statement evaluates to a
‘0’, resulting in y retaining its original value. This example does not
perform the swapping in delta time that would be performed by the
example on the left.

Copyright 1995-1999 SCRA 61

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Signals and Variables

● This example highlights the difference between
signals and variables

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

ARCHITECTURE test1 OF mux IS
SIGNAL x : BIT := '1';
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, x, y)
BEGIN
x <= in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test1;

ARCHITECTURE test2 OF mux IS
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

ARCHITECTURE test2 OF mux IS
SIGNAL y : BIT := '0';

BEGIN
PROCESS (in_sig, y)
VARIABLE x : BIT := '1';

BEGIN
x := in_sig XOR y;
y <= in_sig XOR x;

END PROCESS;
END test2;

● Assuming a 1 to 0 transition on in_sig, what are
the resulting values for y in the both cases?

Page 62Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

To review, note that some delay must transpire after a VHDL signal
assignment statement before the signal assumes its new value.
Examples will be used in this and the next slide to illustrate the
difference between signals and variables. The example shown above
utilizes signals. Note that in this example, a, b, c, out_1, and out_2 are
signals that are declared elsewhere, e.g. in the component’s entity.

The table indicates the values for the various signals at the key times in
the example. At time 1, a new value of 1 is observed on a. This
causes the process sensitivity list to fire and results in a 0 being
assigned to out_1. The signal assignment statement for out_2 will also
be executed but will not result in a new assignment to out_2 because
neither out_1 nor c will be changed at this time. At time 1+d (i.e. 1 plus
1 delta cycle), out_1 assumes its new value causing the process
sensitivity list to fire again. In this process execution, the statement for
out_1 will be executed again but no new assignment will be made
because its right hand side parameters have not changed. The out_2
assignment statement, however, results in a 1 being assigned to out_2.
At time 1+2d, out_2 assumes its new value of 1. This example, then,
requires 2 delta cycles and two process executions to arrive at its
quiescent state following a change to a (or b, for that matter).

Copyright 1995-1999 SCRA 62

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Objects
Signals vs Variables

● A key difference between variables and signals is
the assignment delay

ARCHITECTURE sig_ex OF test IS
PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

ARCHITECTURE sig_ex OF test IS
PROCESS (a, b, c, out_1)
BEGIN
out_1 <= a NAND b;
out_2 <= out_1 XOR c;

END PROCESS;
END sig_ex;

Time a b c out_1 out_2

 0 0 1 1 1 0
 1 1 1 1 1 0
1+d 1 1 1 0 0
1+2d 1 1 1 0 1

[MG90]

Page 63Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In this example, variables are used to achieve the same functionality as
the example in the previous slide. In this example, however, when
there is a change in a at time 1, out_3 will assume its new value at time
1 because it is a variable, and VHDL variable assignment statements
result in the new values being assumed immediately. The new value
for out_4, therefore, will be calculated with the new out_3 value and
results in an assignment to a value of ‘1’ being scheduled for one delta
cycle in the future.

Also note, however, that in this example, the order in which the
statements appear within the process is important because the two
statements are executed sequentially, and the process will only be
executed once as a result of the single change in a.

Copyright 1995-1999 SCRA 63

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Time a b c out_3 out_4

 0 0 1 1 1 0
 1 1 1 1 0 0
1+d 1 1 1 0 1

VHDL Objects
 Signals vs Variables (Cont.)

ARCHITECTURE var_ex OF test IS
BEGIN

PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;

ARCHITECTURE var_ex OF test IS
BEGIN

PROCESS (a, b, c)
VARIABLE out_3 : BIT;
BEGIN
out_3 := a NAND b;
out_4 <= out_3 XOR c;

END PROCESS;
END var_ex;

Page 64Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The VHDL file object is introduced above. Files may be opened in read
or write mode, and once a file is opened, its contents may only be
accessed sequentially. A detailed description of the use of file objects
is beyond this module and will be discussed further in the 'Advanced
Concepts in VHDL’ module.

Copyright 1995-1999 SCRA 64

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Objects
Files

● Files provide a way for a VHDL design to
communicate with the host environment

● File declarations make a file available for use to a
design

● Files can be opened for reading and writing
❍ In VHDL87, files are opened and closed when their

associated objects come into and out of scope
❍ In VHDL93 explicit FILE_OPEN() and FILE_CLOSE()

procedures were added

● The package STANDARD defines basic file I/O
routines for VHDL types

● The package TEXTIO defines more powerful
routines handling I/O of text files

Page 65Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In essence, VHDL is a concurrent language in that all processes
execute concurrently. All VHDL execution can be seen as taking place
inside processes; concurrent signal assignment statements have
already been described as being equivalent to one-line processes.
Within a process, however, VHDL adheres to a sequential mode of
execution where statements within a process are executed in "top-to-
bottom” fashion until the process suspends at a wait statement.

This simultaneous support of concurrent and sequential modes allows
great flexibility in modeling systems at multiple levels of design and
description abstraction.

Copyright 1995-1999 SCRA 65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simulation Cycle Revisited
Sequential vs Concurrent Statements

● VHDL is inherently a concurrent language
❍ All VHDL processes execute concurrently
❍ Concurrent signal assignment statements are actually

one-line processes

● VHDL statements execute sequentially within a
process

● Concurrent processes with sequential execution
within a process offers maximum flexibility

❍ Supports various levels of abstraction

❍ Supports modeling of concurrent and sequential events
as observed in real systems

Page 66Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 66

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Concurrent Statements

● Basic granularity of concurrency is the process

● Mechanism for achieving concurrency :
❍ Processes communicate with each other via signals
❍ Signal assignments require delay before new value is assumed
❍ Simulation time advances when all active processes complete
❍ Effect is concurrent processing

❑ I.e. order in which processes are actually executed by
simulator does not affect behavior

● Concurrent VHDL statements include :
❍ Block, process, assert, signal assignment, procedure call,

component instantiation

Page 67Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Statements in a VHDL process are executed sequentially. A process
may also include a sensitivity list which is declared immediately after
the PROCESS keyword. The process executes when there is a
transition on any of the specified signals. Alternatively, a process would
include at least one wait statement to control when and where a
process may suspend so that signals with pending signal assignments
may assume their new values. Actually, a sensitivity list is equivalent to
a wait statement at the bottom of a process which suspends execution
until there is a transition on one of the signals on the sensitivity list.

The wait statement will be covered in detail in the Behavioral VHDL
module.

In the example above, the sensitivity list includes signals x and y. The
process can also be named; the process in the example above is
named select_proc.

Copyright 1995-1999 SCRA 67

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Sequential Statements

● Statements inside a process execute sequentially

ARCHITECTURE sequential OF test_mux IS
BEGIN

select_proc : PROCESS (x,y)
BEGIN
IF (select_sig = '0') THEN

z <= x;
ELSIF (select_sig = '1') THEN

z <= y;
ELSE

z <= "XXXX";
END IF;
END PROCESS select_proc;

END sequential;

ARCHITECTURE sequential OF test_mux IS
BEGIN

select_proc : PROCESS (x,y)
BEGIN
IF (select_sig = '0') THEN

z <= x;
ELSIF (select_sig = '1') THEN

z <= y;
ELSE

z <= "XXXX";
END IF;
END PROCESS select_proc;

END sequential;

Page 68Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL provides the package mechanism so that user-defined types,
subprograms, constants, aliases, etc. can be defined once and reused
in the description of multiple VHDL components.

VHDL libraries are collections of packages, entities, and architectures.
The use of libraries allows the organization of the design task into any
logical partition the user chooses (e.g. component libraries, package
libraries to house reusable functions and type declarations).

Copyright 1995-1999 SCRA 68

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Packages and Libraries

● User defined constructs declared inside
architectures and entities are not visible to other
VHDL components

❍ Scope of subprograms, user defined data types,
constants, and signals is limited to the VHDL
components in which they are declared

❍ Packages and libraries provide the ability to reuse
constructs in multiple entities and architectures

❍ Items declared in packages can be used (i.e. included)
in other VHDL components

Page 69Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A package contains a collection of user-defined declarations and
descriptions that a designer makes available to other VHDL entities.
Items within a package are made available to other VHDL entities
(including other packages) with a use clause. Some examples of
possible package contents are shown above.

The next two slides will describe the two parts of a VHDL package, the
package declaration and the package body.

Copyright 1995-1999 SCRA 69

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Packages consist of two parts
❍ Package declaration -- contains declarations of objects

defined in the package
❍ Package body -- contains necessary definitions for

certain objects in package declaration
❑ e.g. subprogram descriptions

● Examples of VHDL items included in packages :
❍ Basic declarations

❑ Types, subtypes
❑ Constants
❑ Subprograms
❑ Use clause

❍ Signal declarations
❍ Attribute declarations
❍ Component declarations

Packages

Page 70Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is an example of a package declaration. The package declaration
lists the contents of the package. The declaration begins with the
keyword PACKAGE and the name of the package followed by the
keyword IS. VHDL declaration statements are then included, such as
type declarations, constant declarations, and subprogram declarations.
For many VHDL constructs, such as types, declarations are sufficient to
fully define them. For a subprogram, however, the declaration only
specifies the parameters required by the function or procedure; the
operation of the subprogram appears later in the package body. The
package declaration ends with END and the package name.

Copyright 1995-1999 SCRA 70

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Packages
Declaration

● An example of a package declaration :

● Note some items only require declaration while
others need further detail provided in subsequent
package body

❍ for type and subtype definitions, declaration is sufficient
❍ subprograms require declarations and descriptions

PACKAGE my_stuff IS
TYPE binary IS (ON, OFF);
CONSTANT PI : REAL := 3.14;
CONSTANT My_ID : INTEGER;
PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;

 SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;

PACKAGE my_stuff IS
TYPE binary IS (ON, OFF);
CONSTANT PI : REAL := 3.14;
CONSTANT My_ID : INTEGER;
PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;

 SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;

Page 71Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The package body contains the functional descriptions for the
subprograms and other items declared in the corresponding package
declaration.

Once a package is defined, its contents are made visible to VHDL
entities and architectures via a USE clause which is analogous to the
include statement of some other programming languages.

Copyright 1995-1999 SCRA 71

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Packages
Package Body

● The package body includes the necessary
functional descriptions needed for objects
declared in the package declaration

❍ e.g. subprogram descriptions, assignments to constants

PACKAGE BODY my_stuff IS
CONSTANT My_ID : INTEGER := 2;

PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- this function can return a carry
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;
END my_stuff;

PACKAGE BODY my_stuff IS
CONSTANT My_ID : INTEGER := 2;

PROCEDURE add_bits3(SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- this function can return a carry
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;
END my_stuff;

Page 72Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Packages are made visible to a VHDL description through the use of
the USE clause. This statement comes at the beginning of the entity or
architecture file and makes the contents of a package available within
that file.

The USE clause can select all or part of a particular package. In the
first example above, only the binary data type and add_bits3 procedure
are made visible. In the second example, the full contents of the
package are made visible by use of the keyword ALL in the use clause.

Copyright 1995-1999 SCRA 72

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Packages
Use Clause

● Packages must be made visible before their
contents can be used

❍ The USE clause makes packages visible to entities,
architectures, and other packages

-- use only the binary and add_bits3 declarations
USE my_stuff.binary, my_stuff.add_bits3;

... ENTITY declaration...

... ARCHITECTURE declaration ...

-- use all of the declarations in package my_stuff
USE my_stuff.ALL;

... ENTITY declaration...

... ARCHITECTURE declaration ...

Page 73Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Increasingly complex VLSI technology requires configuration and
revision control management. Additionally, efficient design calls for
reuse of components when applicable and revision of library
components when necessary.

VHDL uses a library system to maintain designs for modification and
shared use. VHDL refers to a library by an assigned logical name; the
host operating system must translate this logical name into a real
directory name and locate it. The current design unit is compiled into
the Work library by default; Work is implicitly available to the user with
no need to declare it. Similarly, the predefined library STD does not
need to be declared before its packages can be accessed via use
clauses. The STD library contains the VHDL predefined language
environment, including the package STANDARD which contains a set
of basic data types and functions and the package TEXTIO which
contains some text handling procedures.

Copyright 1995-1999 SCRA 73

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Libraries

● Analogous to directories of files
❍ VHDL libraries contain analyzed (i.e. compiled) VHDL

entities, architectures, and packages

● Facilitate administration of configuration and
revision control

❍ E.g. libraries of previous designs

● Libraries accessed via an assigned logical name
❍ Current design unit is compiled into the Work library
❍ Both Work and STD libraries are always available
❍ Many other libraries usually supplied by VHDL

simulator vendor
❑ E.g. proprietary libraries and IEEE standard libraries

Page 74Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Attributes may be used to communicate information about many
different items in VHDL. Similarly, attributes can return various types of
information. For example, an attribute can be used to determine the
depth of an array, its range, its leftmost index, etc. Additionally, the
user may define new attributes to cover specific situations. This
capability allows user-defined constructs and data types to use
attributes. An example of the use of attributes is in assigning
information to a VHDL construct, such as board location, revision
number, etc.

A few examples of predefined VHDL attributes are shown above. Note
that, by convention, the apostrophe marking the use of an attribute is
pronounced tick (e.g. 'EVENT is pronounced "tick EVENT").

Copyright 1995-1999 SCRA 74

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Attributes

● Attributes provide information about certain
items in VHDL

❍ E.g. types, subtypes, procedures, functions, signals,
variables, constants, entities, architectures,
configurations, packages, components

❍ General form of attribute use :

● VHDL has several predefined, e.g :
❍ X'EVENT -- TRUE when there is an event on signal X
❍ X'LAST_VALUE -- returns the previous value of signal X
❍ Y'HIGH -- returns the highest value in the range of Y
❍ X'STABLE(t) -- TRUE when no event has occurred on

signal X in the past ‘t’ time

name'attribute_identifier -- read as "tick"name'attribute_identifier -- read as "tick"

Page 75Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The example presented on this and the next three slides is a simple
rising clock edge triggered 8-bit register with an active-high enable.
The register has a data setup time of x_setup and a propagation delay
of prop_delay.

The input and output signals of this register use the QSIM_STATE logic
values. These values include logic 0, 1, X and Z. The a and b signals
use the QSIM_STATE_VECTOR type which is an array of
QSIM_STATE type vectors.

Copyright 1995-1999 SCRA 75

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Attributes
Register Example

● The following example shows how attributes can
be used to make an 8-bit register

● Specifications :
❍ Triggers on rising clock edge
❍ Latches only on enable high
❍ Has a data setup time of x_setup
❍ Has propagation delay of prop_delay

ENTITY 8_bit_reg IS
GENERIC (x_setup, prop_delay : TIME);
PORT(enable, clk : IN qsim_state;
 a : IN qsim_state_vector(7 DOWNTO 0);

 b : OUT qsim_state_vector(7 DOWNTO 0));
END 8_bit_reg;

● qsim_state type is being used - includes logic
values 0, 1, X, and Z

Page 76Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This implementation of the 8-bit register uses the 'STABLE attribute to
determine if the input satisfies the setup time requirement of the
register. If the setup requirement is not met, the body of the IF
statement will not execute, and the value on a will not be assigned to b.

Note that although the process checks that clk and enable are ‘1’ to
store the data, it does not consider the possibility that clk may have
transitioned to ‘1’ from either ‘X’ or ‘Z’.

Copyright 1995-1999 SCRA 76

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Attributes
Register Example (Cont.)

ARCHITECTURE first_attempt OF 8_bit_reg IS
BEGIN

PROCESS (clk)
BEGIN
IF (enable = '1') AND a'STABLE(x_setup) AND

 (clk = '1') THEN
b <= a AFTER prop_delay;

END IF;
END PROCESS;

END first_attempt;

● The following architecture is a first attempt at the
register

● The use of 'STABLE is to used to detect setup
violations in the data input

● What happens if a does not satisfy its setup time
requirement of x_setup?

Page 77Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This implementation adds a check for '0' to '1' transitions on clk by using
the 'LAST_VALUE attribute on the signal clk.

Copyright 1995-1999 SCRA 77

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Attributes
 Register Example (Cont.)

ARCHITECTURE behavior OF 8_bit_reg IS
BEGIN

PROCESS (clk)
BEGIN
IF (enable = '1') AND a'STABLE(x_setup) AND

 (clk = '1') AND (clk'LAST_VALUE = '0') THEN
b <= a AFTER prop_delay;

END IF;
END PROCESS;

END behavior;

● The following architecture is a second and more
robust attempt

● The use of 'LAST_VALUE ensures the clock is
rising from a value of ‘0’

● An ELSE clause could be added to define the
behavior when the requirements are not satisfied

Page 78Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The list of predefined operators in VHDL is shown above. The logical
and relational operators are similar to those in other languages. The
addition operators are also familiar except for the concatenation
operator which will be discussed in the next slide. The multiplication
operators are also typical (e.g. the mod operator returns the modulus of
the division and the rem operator returns the remainder). Finally, the
miscellaneous operators provides some useful frequently used
functions.

Copyright 1995-1999 SCRA 78

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Operators

● Operators can be chained to form complex
expressions, e.g. :

❍ Can use parentheses for readability and to control the
association of operators and operands

● Defined precedence levels in decreasing order :
❍ Miscellaneous operators -- **, abs, not
❍ Multiplication operators -- *, /, mod, rem
❍ Sign operator -- +, -
❍ Addition operators -- +, -, &
❍ Shift operators -- sll, srl, sla, sra, rol, ror
❍ Relational operators -- =, /=, <, <=, >, >=
❍ Logical operators -- AND, OR, NAND, NOR, XOR, XNOR

res <= a AND NOT(B) OR NOT(a) AND b;res <= a AND NOT(B) OR NOT(a) AND b;

Page 79Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The concatenation operator joins two vectors together. Both vectors
must be of the same type. The example given above performs a logical
shift left for a four bit array.

For the exponentiation operator ** from the package STD, the
exponent must be an integer; no real exponents are allowed. Negative
exponents are allowed only with real numbers. Other packages can be
found that include overloaded operators (discussed in Module 12) for
exponentiation with real and negative arguments.

Copyright 1995-1999 SCRA 79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Operators
Examples

● The concatenation operator &

VARIABLE shifted, shiftin : BIT_VECTOR(0 TO 3);
...
shifted := shiftin(1 TO 3) & '0';

VARIABLE shifted, shiftin : BIT_VECTOR(0 TO 3);
...
shifted := shiftin(1 TO 3) & '0';

1

1 2 3

● The exponentiation operator **

SHIFTIN

SHIFTED

x := 5**5 -- 5^5, OK
y := 0.5**3 -- 0.5^3, OK
x := 4**0.5 -- 4^0.5, Illegal
y := 0.5**(-2) -- 0.5^(-2), OK

x := 5**5 -- 5^5, OK
y := 0.5**3 -- 0.5^3, OK
x := 4**0.5 -- 4^0.5, Illegal
y := 0.5**(-2) -- 0.5^(-2), OK

0

0 0 1

0 0 1 0

Page 80Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 80

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● VHDL Design Example

● VHDL Model Components

● Basic VHDL Constructs

● Examples

● Summary

Page 81Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Examples

● Build a library of logic gates
❍ AND, OR, NAND, NOR, INV, etc.

● Include sequential elements
❍ DFF, Register, etc.

● Include tri-state devices
● Use 4-valued logic

❍ ‘X’, ‘0’, ‘1’, ‘Z’
❍ Encapsulate global declarations in a package

Page 82Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the package declaration for the user defined four valued type
package. It includes the four valued enumerated type itself, a vector or
array of that type, and a subtype of type time to be used for delay
values. Functions and/or procedures could be declared in the package
(with their actual implementation descriptions included in the package
body), but that will be deferred until Module 12, Behavioral VHDL.

Copyright 1995-1999 SCRA 82

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Global Package

PACKAGE resources IS

 TYPE level IS ('X', '0', '1', 'Z'); -- enumerated type

 TYPE level_vector IS ARRAY (NATURAL RANGE <>) OF level;
 -- type for vectors (buses)

 SUBTYPE delay IS TIME; -- subtype for gate delays

 -- Function and procedure declarations go here

END resources;

Page 83Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is a simple 2 input AND gate. Note that the entity includes generics
for rise time and fall time, and the two input and one output ports.

The architecture contains the “behavior” of the AND gate. A single
process statement is used which executes anytime either the a or b
inputs change (because they are in the process sensitivity list - see
module 12). A simple if statement is used to determine what the correct
output should be, and the proper delay is inserted by the AFTER
clause.

Note that the USE construct is needed in both cases if Entity and
Architecture code segments are contained within separate files.

Copyright 1995-1999 SCRA 83

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Two Input AND Gate Example

USE work.resources.all;

ENTITY and2 IS

 GENERIC(trise : delay := 10 ns;
 tfall : delay := 8 ns);

 PORT(a, b : IN level;
 c : OUT level);

END and2;

USE work.resources.all;

ARCHITECTURE behav OF and2 IS

 BEGIN

 one : PROCESS (a,b)

 BEGIN
 IF (a = '1' AND b = '1') THEN
 c <= '1' AFTER trise;
 ELSIF (a = '0' OR b = '0') THEN
 c <= '0' AFTER tfall;
 ELSE
 c<= 'X' AFTER (trise+tfall)/2;
 END IF;

 END PROCESS one;

END behav;

Page 84Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the simulation results output for the two input AND gate. The
Mentor Graphics’ QuickVHDL simulator was used.

Copyright 1995-1999 SCRA 84

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
AND Gate Simulation Results

Page 85Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is a tri-state buffer example. It is similar to the AND gate, but in this
case, it uses the ‘Z’ value as well as the ‘X’ value. Also, a thiz delay (to
indicate a driver “turn off” time) is used in addition to the rise and fall
delay times.

Note that the USE construct is needed in both cases if Entity and
Architecture code segments are contained within separate files.

Copyright 1995-1999 SCRA 85

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Tri-State Buffer Example

USE work.resources.all;

ENTITY tri_state IS

 GENERIC(trise : delay := 6 ns;
 tfall : delay := 5 ns;
 thiz : delay := 8 ns);

 PORT(a : IN level;
 e : IN level;
 b : OUT level);

END tri_state;

USE work.resources.all;

ARCHITECTURE behav OF tri_state IS
 BEGIN
 one : PROCESS (a,e)
 BEGIN
 IF (e = '1' AND a = '1') THEN
 -- enabled and valid data
 b <= '1' AFTER trise;
 ELSIF (e = '1' AND a = '0') THEN
 b <= '0' AFTER tfall;
 ELSIF (e = '0') THEN -- disabled
 b <= 'Z' AFTER thiz;
 ELSE -- invalid data or enable
 b <= 'X' AFTER (trise+tfall)/2;
 END IF;

 END PROCESS one;
END behav;

Page 86Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 86

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Tri-State Buffer Simulation
Results

Page 87Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is a DFF example that illustrates the use of signal attributes. Notice
the ‘LAST_VALUE attribute is used in the clock statement to recognize
a ‘0’ to ‘1’ rising edge transition (the last value has to be a ‘0’ to avoid
triggering on ‘X’ or ‘Z’ to ‘1’ transitions).

Also, the ‘STABLE attribute is used at each rising clock edge to
determine if the d input has satisfied the setup time requirement.

Note that the USE construct is needed in both cases if Entity and
Architecture code segments are contained within separate files.

Copyright 1995-1999 SCRA 87

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP D Flip Flop Example

USE work.resources.all;

ENTITY dff IS

 GENERIC(tprop : delay := 8 ns;
 tsu : delay := 2 ns);

 PORT(d : IN level;
 clk : IN level;
 enable : IN level;
 q : OUT level;
 qn : OUT level);

END dff;

USE work.resources.all;
ARCHITECTURE behav OF dff IS
 BEGIN
 one : PROCESS (clk)
 BEGIN
 -- check for rising clock edge
 IF ((clk = '1' AND clk'LAST_VALUE = '0')
 AND enable = '1') THEN -- ff enabled
 -- first, check setup time requirement
 IF (d'STABLE(tsu)) THEN
 -- check valid input data
 IF (d = '0') THEN
 q <= '0' AFTER tprop;
 qn <= '1' AFTER tprop;
 ELSIF (d = '1') THEN
 q <= '1' AFTER tprop;
 qn <= '0' AFTER tprop;
 ELSE -- else invalid data
 q <= 'X';
 qn <= 'X';
 END IF;
 ELSE -- else violated setup time requirement
 q <= 'X';
 qn <= 'X';
 END IF;
 END IF;
 END PROCESS one;
END behav;

Page 88Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the simulation results. Notice that there is a case where an ‘X’ is
output when the input fails to satisfy the setup time requirement.

Copyright 1995-1999 SCRA 88

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
D Flip Flop Simulation Results

Page 89Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 89

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● VHDL Design Example

● VHDL Model Components

● Basic VHDL Constructs

● Examples

● Summary

Page 90Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

● VHDL is a worldwide standard for the description
and modeling of digital hardware

● VHDL gives the designer many different ways to
describe hardware

● Familiar programming tools are available for
complex and simple problems

● Sequential and concurrent modes of execution
meet a large variety of design needs

● Packages and libraries support design
management and component reuse

Page 91Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram is a graphical representation of many of the VHDL
constructs talked about in this module. In summary, generics and ports
are used in the entity definition which serves as the module's interface
to other modules. Each entity can have any number of different
descriptions of module behavior included in VHDL architectures
(although only one architecture can be instantiated per module use).
Architectures use concurrent statements and possibly processes to
allow great flexibility in how behavior is described.

Copyright 1995-1999 SCRA 91

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Putting It All Together

Generics PortsEntity

Architecture

(Dataflow)

Architecture

(Behavioral)

Architecture

(Structural)

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package

[MG93]

Page 92Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 92

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[Bhasker95] Bhasker, J. A VHDL Primer, Prentice Hall, 1995.

[Calhoun95] Calhoun, J.S., Reese, B.,. “Class Notes for EE-4993/6993: Special Topics in Electrical Engineering
(VHDL)”, Mississippi State University, http://www.erc.msstate.edu/, 1995.

[Coelho89] Coelho, D. R., The VHDL Handbook, Kluwer Academic Publishers, 1989.

[Gajski83] Gajski, Daniel D. and Kuhn, Robert H., "Guest Editors Introduction - New VLSI Tools", IEEE Computer,
pp 11-14, IEEE, 1983; © IEEE 1983

[Hein98] Hein, et al, “VHDL Modeling Terminology and Taxonomy,” Version3.0, July 29, 1998.

[IEEE] All referenced IEEE material is used with permission.

[Lipsett89] Lipsett, R., C. Schaefer, C. Ussery, VHDL: Hardware Description and Design, Kluwer Academic
Publishers, , 1989.

[LRM93] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993.

[Navabi93] Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw-Hill, 1993.

[Menchini94] Menchini, P., “Class Notes for Top Down Design with VHDL”, 1994.

[MG90] An Introduction to Modeling in VHDL, Mentor Graphics Corporation, 1990.

[MG93] Introduction to VHDL, Mentor Graphics Corporation, 1993.

[Perry94] Perry, D. L., VHDL, McGraw-Hill, 1994.

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal Processors,
Kluwer Academic Publishers, Norwell, MA, 1997

[Smith88] Smith, David, “What is Logic Synthesis”, VLSI Design and Test, October, 1988.

Page 93Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

[USE/DA94] USE/DA Standards Survey, 1994.

[VI93] VHDL International Survey, 1993.

[Walker85] Walker, Robert A. and Thomas, Donald E., "A Model of Design Representation and Syntheses", 22nd
Design Automation Conference, pp. 453-459, IEEE, 1985

[Waxman89A] Waxman, R., Saunders, L.F., and Carter, H.C., “Abolishing the Tower of Babel,” Spectrum, Vol. 26,
Number 5, May 1989, pp. 40-44.

[Waxman89B] R. Waxman and L. Saunders, The Evolution of VHDL, Invited Paper, INFORMATION PROCESSING
'89, G.X. Ritter (ed.), Elsevier Science Publishers B.V. (North Holland), copyright IFIP, 1989, PP. 735-742.

[Williams94] Williams, R. D., "Class Notes for EE 435: Computer Organization and Design", University of Virginia,

http://www.ee.virginia.edu/research/CSIS/, 1994.

References, cont.

