
Module 10 - Basic VHDL Lab Tutorial

Copyright 1995-1999 SCRA 1
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 10 - Basic VHDL
Tutorial and Exercises

For the VeriBest Simulator

For the Mentor Graphics Simulator

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Module 10 - Basic VHDL Lab Tutorial 2

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

1. Getting Started

1.1. For each tutorial module, you will be using sample VHDL files. These files are

provided along with these modules. You will also create some VHDL files of

your own.

1.2. The first VHDL files that you will need are package.vhdl and and2.vhdl.

2. Examine and compile the code for this lab

2.1. Open the file package.vhdl using a text editor or a VHDL editing environment.

This file defines the enumerated data types that will be used throughout this

tutorial.

PACKAGE resources IS
 -- user defined enumerated type
 TYPE level IS ('X', '0', '1', 'Z');
 -- type for vectors (buses)
 TYPE level_vector IS ARRAY (NATURAL RANGE <>) OF level;
 -- subtype used for delays
 SUBTYPE delay IS time;

END resources;

2.2. Compile the VHDL code. Consult your compiler's documentation for more

information on choosing compile settings. package.vhdl should compile

without any errors. Note that compiled VHDL is placed into a directory (or

folder) of files called a library. Typical default names for VHDL libraries are

"work" and "worklib". Once VHDL is successfully compiled into a library, it

can be referenced (used) by other VHDL files. This capability will be explored

further in the Module 11 lab.

2.3. Open the file and2.vhdl using a text editor or a VHDL editing environment.

This file defines an entity and architecture of a two-input AND gate. The input

and output ports of the device are defined in the entity declaration. The

behavior of the gate is described in the architecture declaration.

Module 10 - Basic VHDL Lab Tutorial 3

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

-- Standard 2 input AND gate example --
-- RASSP E&F Module # 10 Basic VHDL --
-- Robert Klenke UVa 19 April 1996 --

USE work.resources.all;

ENTITY and2 is

 GENERIC(trise : delay := 10 ns;
 tfall : delay := 8 ns);

 PORT(a : IN level;
 b : IN level;
 c : OUT level);

END and2;

ARCHITECTURE behav OF and2 IS

 BEGIN

 one : PROCESS (a,b)

 BEGIN
 IF (a = '1' AND b = '1') THEN
 c <= '1' AFTER trise;
 ELSIF (a = '0' OR b = '0') THEN
 c <= '0' AFTER tfall;
 ELSE
 c<= 'X' AFTER (trise+tfall)/2;
 END IF;

 END PROCESS one;

END behav;

2.4. Compile the VHDL code. and2.vhdl should compile without any errors.

2.5. A mechanism for testing the two-input AND gate is needed. A test bench is

used for this purpose. A test bench is a VHDL model which (1) contains an

instance of the component under test, and (2) exercises the input signals of the

component under test. Open the file and2_test.vhdl, which contains a test

bench for the two-input AND model.

Module 10 - Basic VHDL Lab Tutorial 4

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

-- Standard 2 input AND gate example testbench --
-- RASSP E&F Module # 10 Basic VHDL --
-- Thomas Egolf Georgia Tech 21 May 1998 --

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.resources.all;
USE work.and2;

ENTITY testbnch IS
END testbnch;

ARCHITECTURE stimulus OF testbnch IS

COMPONENT and2 IS
 GENERIC(trise : delay;
 tfall : delay);
 PORT(a : IN level;
 b : IN level;
 c : OUT level);
END COMPONENT;

SIGNAL a_sig, b_sig, c_sig : level;

BEGIN
 DUT: and2
 GENERIC MAP (10 ns, 8 ns)
 PORT MAP (a => a_sig, b => b_sig, c => c_sig);

 STIMULUS1: PROCESS
 BEGIN

 -- Sequential stimulus goes here...
 --
 a_sig <= '0' AFTER 5 ns;
 WAIT FOR 20 ns;
 a_sig <= '1', '0' AFTER 20 ns;
 b_sig <= '1';

 --
 -- Enter more stimulus here...
 --

 WAIT; -- Suspend simulation
 END PROCESS STIMULUS1;

END stimulus;

2.6. Compile the VHDL code. and2_test.vhdl should compile without any errors.

3. Simulate the compiled code

Module 10 - Basic VHDL Lab Tutorial 5

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3.1. Start the VHDL simulator. Consult your simulator's documentation for more

details. Note that some additional settings may be required. For example, you

may be required to select the entity testbnch inside the file and2_test.vhdl as

the "design root" in order for the simulation to work properly. The simulator

should start without any errors.

3.2. Open a waveform window, and add the signals "A", "B", and "C" to the

window. (Note: some simulation packages may require that the signals be

selected before the waveform window is opened.) The purpose of the

waveform window is to show the signal values over some period of time, with

the signal values shown along the vertical axis and time represented along the

horizontal axis. Here is an example of a waveform window:

Module 10 - Basic VHDL Lab Tutorial 6

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3.3. The simulation time begins at zero nanoseconds; no circuit activity has yet

taken place. Run the simulator for sufficient time to fully exercise the circuit

(at least 50 nanoseconds in this example). Signal waveforms will be shown:

3.4. If the simulation results do not entirely fit within the waveform window, adjust

the scale (i.e., zoom) so that the entire simulation is shown. Signals can take on

the values '0', '1', or 'X' as shown in the waveform window. '0' represents

logical low, '1' represents logical high, and 'X' represents an unknown value.

3.5. Notice that the test bench drives the input signals "A" and "B". Output signal

"C" responds according to the behavioral description of the AND gate.

Module 10 - Basic VHDL Lab Tutorial 7

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3.6. To measure the time between two events, it is useful to have adjustable time

cursors. Add time cursors to the waveform window. Consult the simulator's

documentation for more information on adding cursors. These cursors are

typically moved by dragging them with the mouse. This can be a useful feature

for checking the timing characteristics of a circuit, as shown below:

3.7. Quit the simulator. Be sure to quit the simulator after each lab exercise.

3.8. Modify and2_test.vhdl such that signal "B" returns to '0' at 50 ns and signal

"A" returns to '1' at 60 ns. Recompile and2_test.vhdl and simulate the new

testbench.

Module 10 - Basic VHDL Lab Tutorial 8

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

4. Examine, compile and simulate the D Flip Flop model

4.1. Open the file dff.vhdl using a text editor or a VHDL editing environment. This

file contains a behavioral description of a D Flip Flop.

4.2. Compile the VHDL code. dff.vhdl should compile without any errors.

4.3. A test bench for the flip flop is provided in the file dff_test.vhdl. Open and

compile this test bench file.

4.4. Simulate the D Flip Flop model using the test bench, as before. The resulting

waveforms should be similar to the ones shown here:

Module 10 - Basic VHDL Lab Tutorial 9

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 10 Exercise

Assignment:

In addition to the and2 gate and dff module, you will need the following gates

for the designs you will build and simulate in the lab for Module 11:

Entity
Name

Architecture
Name

Generics
Input
Ports

Output
Ports

Description

Or2 behav trise
tfall

A
b

c two input or gate

Inv behav trise
tfall

A b single input inverter

Xor2 behav trise
tfall

A
b

c two input exclusive
or gate

Mux2 behav tprop A
b

sel

c Two input
multiplexor

Mux4 behav tprop A
b
c
d

sel(2)

e Four input
multiplexor

Develop a VHDL entity and architecture description for each of these modules

and compile them into the default work library. Simulate each design as

necessary to ensure proper operation. Hint - copy the VHDL source code from

a similar model and modify it to suit your needs; this is often easier than

writing the VHDL code from scratch.

