
Page 1Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

1

Structural VHDL allows the designer to represent a system in terms of
components and their interconnections. This module discusses the
constructs available in VHDL to facilitate structural descriptions of
designs.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Structural VHDL
RASSP Education & Facilitation

Module 11

Version 3.00

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute
(ATI), and may only be used for non-commercial educational purposes. Any other use of this information
without the express written permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may be duplicated for non-
commercial educational use only provided this copyright notice and the copyright acknowledgements herein
are included. No warranty of any kind is provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-
94-C-1457. Such data may be liberally reproduced and disseminated by the Government, in whole or in part,
without restriction except as follows: Certain parts of this work to other copyright holders and are used with
their permission; This information contained herein may be duplicated only for non-commercial educational
use. Any vehicle, in which part or all of this data is incorporated into, shall carry this notice .

Page 2Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

2

This diagram emphasizes the role of VHDL in the RASSP program.
VHDL can be used for system definition, functional design, hardware-
software partitioning, hardware design and hardware-software
integration and test. In RASSP, the concept of virtual prototyping uses
VHDL as the binding language of choice for all design paradigms.

The most common usage of VHDL prior to RASSP was in the area of
hardware design. The RASSP program has extended VHDL's use to
include executable requirements, performance modeling/system level
design as well as system integration and test.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Roadmap

 VHDL VHDL

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

Page 3Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

3

The goals of this module are to introduce the concepts and constructs
supporting structural modeling using VHDL. These include the
mechanisms for incorporating other VHDL design objects into an
architecture description. In addition, some powerful VHDL utilities that
facilitate the design of systems with regular structures and constructs to
support configuration control will be presented. The goal of this module
is to bring the student to the point where she/he will be able to write
code using the concepts of structural design in VHDL.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

● Introduce structural VHDL constructs
❍ Use of components

❍ Component binding indications
❍ Use of configuration declarations
❍ GENERATE statements

Page 4Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

4

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Incorporating VHDL Design Objects

● Generate Statement

● Examples

● Summary

Page 5Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

5

This figure captures the main features of a complete VHDL model. A single component model
is composed of one entity and one or many architectures. The entity represents the interface
specification (I/O) of the component. It defines the components external view, sometimes
referred to as its "pins".

The architecture(s) describe the function or composition of an entity. There are three general
types of architectures. One type of architecture describes the structure of the design (right
hand side) in terms of its sub-components and their interconnections. A key item of a structural
VHDL architecture is the ”binding statement" which associates the entity of a sub-component to
one of the possible several alternative architectures for that component.

A second type of architecture, containing only concurrent statements, is commonly referred to
as a dataflow description (left hand side). Concurrent statements execute when data is
available on their inputs. These statements can occur in any order within the architecture.

The third type of architecture is the behavioral description in which the functional and possibly
timing characteristics are described using VHDL concurrent statements and processes. The
process is a concurrent statement of an architecture. All statements contained within a process
execute in a sequential order until it gets suspended by a wait statement.

Packages are used to provide a collection of common declarations, constants, and/or
subprograms to entities and architectures.

Generics provide a method to communicate static information to an architecture from the
external environment. They are passed through the entity construct.

Ports provide the mechanism for a device to communication with its environment. A port
declaration defines the names, types, directions, and possible default values for the signals in a
component's interface.

Implicit in this figure is the testbench which is the top level of a self-contained simulatable
model. The testbench is a special VHDL object for which the entity has no signals in its port
declaration. Its architecture often contains construct from all three of the types described above.
Structural VHDL concepts are used to connect the model's various components together,
Dataflow and behavior concepts are often used to provide the simulation's start stop conditions,
or other desired modeling directives.

[MG93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Putting It All Together

Generics PortsEntity

Architecture Architecture Architecture

 (structural)

Concurrent
Statements

Process

Sequential Statements

Concurrent
Statements

Package

Page 6Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

6

Structural VHDL allows a designer to describe a model in terms of sub-
components and their interconnections. In this figure, simple logic
elements are used to design a full adder. A structural description views
the hardware as a netlist or schematic of the device; the components
and interconnections are visible, but the internal functions are hidden.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Introduction

● Models can be constructed by interconnecting
subcomponents

❍ A structural model lists the required subcomponents
and prescribes their interconnections

❍ Akin to a design schematic :

x
y

enable
carry

result

Page 7Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

7

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Incorporating VHDL Design Objects

● Generate Statement

● Examples

● Summary

Page 8Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

8

There are a number of constructs available in VHDL to incorporate
design objects into architecture descriptions. The simplest, but least
versatile, is the direct instantiation of a VHDL entity. With this method,
the details of the entity’s interface must be known and cannot be
customized at instantiation.

The other two mechanisms use locally declared components to define
idealized element interfaces. A component is then plugged into the
architecture description by connecting signals visible in the architecture
to the interface of the component in an instantiation statement. The two
mechanisms here differ in how a component is bound to an existing
VHDL design object. One mechanism binds the component to an
existing VHDL entity/architecture object within the architecture
description in which the component was instantiated. The second
mechanism defers the binding until higher levels in the design hierarchy
via the use of configurations which are introduced in this section.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mechanisms for Incorporating
VHDL Design Objects

● VHDL mechanisms to incorporate design objects
❍ Using direct instantiation (not available prior to VHDL-93)
❍ Using component declarations and instantiations

❑ Create idealized local components (i.e. declarations)
and connect them to local signals (i.e. instantiations)

❑ Component instantiations are then bound to VHDL
design objects either :

➨ Locally -- within the architecture declaring the component
➨ At higher levels of design hierarchy, via configurations

● Consider structural descriptions for the following
entity : USE work.resources.all;

ENTITY reg4 IS -- 4-bit register with no enable
 GENERIC(tprop : delay := 8 ns;
 tsu : delay := 2 ns);
 PORT(d0,d1,d2,d3 : IN level;
 clk : IN level;
 q0,q1,q2,q3 : OUT level);
END reg4;

Page 9Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

9

As a running example, we will build a 4-bit register using the D flip-flop
model presented in Module 10, the Basic VHDL Module.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 4-Bit Register as Running
Example

USE work.resources.all;

ENTITY dff IS

 GENERIC(tprop : delay := 8 ns;
 tsu : delay := 2 ns);

 PORT(d : IN level;
 clk : IN level;
 enable : IN level;
 q : OUT level;
 qn : OUT level);

END dff;

ARCHITECTURE behav OF dff IS
 BEGIN
 one : PROCESS (clk)
 BEGIN
 -- first, check for rising clock edge
 -- and check that ff is enabled
 IF ((clk = '1' AND clk'LAST_VALUE = '0')
 AND enable = '1') THEN
 -- now check setup requirement is met
 IF (d'STABLE(tsu)) THEN
 -- now check for valid input data
 IF (d = '0') THEN
 q <= '0' AFTER tprop;
 qn <= '1' AFTER tprop;
 ELSIF (d = '1') THEN
 q <= '1' AFTER tprop;
 qn <= '0' AFTER tprop;
 ELSE -- else invalid data
 q <= 'X';
 qn <= 'X';
 END IF;
 ELSE -- else setup not met
 q <= 'X';
 qn <= 'X';
 END IF;
 END IF;
 END PROCESS one;
END behav;

● First, need to find the
building block(s)

❍ Reusing an object from
examples in Module 10

Page 10Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

10

The three steps shown above illustrate the general requirements for
incorporating design objects. It is important to note that the direct
instantiation method illustrated in slide 18 skips the declaration of a
local component and combines the instantiation and binding into a
single statement.

Also note that binding may be postponed to higher levels in the design
hierarchy to provide flexibility in the selection of design objects to be
incorporated.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP General Steps to Incorporate
VHDL Design Objects

● A VHDL design object to be incorporated into an
architecture must generally be :

❍ declared -- where a local interface is defined

❍ instantiated -- where local signals are connected to the
local interface

❑ Regular structures can be created easily using
GENERATE statements in component instantiations

❍ bound -- where an entity/architecture object which
implements it is selected for the instantiated object

Page 11Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

11

This example shows the three steps listed earlier:

1) A component declaration defines the interface to an idealized local
component. Note that the component declaration may be placed in a
package declaration and made visible to the architecture via a USE
clause.

2) A binding indication assigns a VHDL entity/architecture object to
component instances. In this case, all reg1 components will use the
behav architecture description for the dff entity in the work library.

*Note: The idealized component reg1 uses a subset of the port
signals of the work library element DFF. The port signal enable is
tied to the locally declared constant enabled, which is set to the
value of '1'.

3) Instantiation statements create copies of the component to be
plugged into the architecture description by connecting local signals
to signals in the component interface.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Using Component Declarations
and Local Bindings

● Component declarations define interfaces for
idealized local objects

❍ Component declarations may be placed in architecture
declarations or in package declarations

● Component instantiations connect local signals
to component interface signals

USE work.resources.all;

ARCHITECTURE struct_2 OF reg4 IS
 COMPONENT reg1 IS
 PORT (d, clk : IN level;
 q : OUT level);
 END COMPONENT reg1;
 CONSTANT enabled : level := '1';
 FOR ALL : reg1 USE work.dff(behav)
 PORT MAP(d=>d,clk=>clk,enable=>enabled,q=>q,qn=>OPEN);
 BEGIN
 r0 : reg1 PORT MAP (d=>d0,clk=>clk,q=>q0);
 r1 : reg1 PORT MAP (d=>d1,clk=>clk,q=>q1);
 r2 : reg1 PORT MAP (d=>d2,clk=>clk,q=>q2);
 r3 : reg1 PORT MAP (d=>d3,clk=>clk,q=>q3);
END struct_2;

Page 12Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

12

Note that in this example, three separate VHDL files are used. The first
file above shows the architecture description in which the reg1
component is declared and instantiated.

The second file shows a configuration declaration in which the reg1
components in the struct_3 architecture of entity reg4 are bound to
dff(behav).

The third example shows a small excerpt from an architecture
description in which a locally visible component named reg4_comp is
bound to a VHDL design object via the configuration declaration
reg4_conf_1 found in the work library (i.e. the configuration declaration
shown in the middle section of this slide).

Note that the use of configurations to defer the binding of components
adds flexibility to structural architecture descriptions by allowing
alternative architecture to be plugged in to the design easily.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Using Component Declarations
and Configurations

USE work.resources.all;

ARCHITECTURE struct_3 OF reg4 IS
 COMPONENT reg1 IS
 PORT (d, clk : IN level;
 q : OUT level);
 END COMPONENT reg1;
 BEGIN
 r0 : reg1 PORT MAP (d=>d0,clk=>clk,q=>q0);
 r1 : reg1 PORT MAP (d=>d1,clk=>clk,q=>q1);
 r2 : reg1 PORT MAP (d=>d2,clk=>clk,q=>q2);
 r3 : reg1 PORT MAP (d=>d3,clk=>clk,q=>q3);
END struct_3;

USE work.resources.all;

CONFIGURATION reg4_conf_1 OF reg4 IS
 CONSTANT enabled : level := '1';
 FOR struct_3
 FOR all : reg1 USE work.dff(behav)
 PORT MAP(d=>d,clk=>clk,enable=>enabled,q=>q,qn=>OPEN);
 END FOR;
 END FOR;
END reg4_conf_1;

-- Architecture in which a COMPONENT for reg4 is declared
 ...
FOR ALL : reg4_comp USE CONFIGURATION work.reg4_conf_1;
 ...

Page 13Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

13

As indicated in the previous slide, configuration declarations provide a
mechanism for replacing design objects in structural descriptions easily.

Similarly, they allow for structural descriptions to be developed before
the entity/architecture building blocks have been finalized. This is
particularly useful in a large system which may have been partitioned
among several designers.

In addition, idealized components can be made to accommodate actual
entity/architecture design object interface requirements in the
configuration declaration. This may, for example, be used to assign
generics and/or unused signals fixed values (e.g. enable signals to a
constant ON value).

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Power of Configuration
Declarations

● Reasons to use configuration declarations :
❍ Large design may span multiple levels of hierarchy
❍ When the architecture is developed, only the

component interface may be available
❍ Mechanism to put the pieces of the design together

● Configurations can be used to customize the use
of VHDL design objects interfaces as needed :

❍ Entity name can be different than the component name

❍ Entity of incorporated design object may have more
ports than the component declaration

❍ Ports on the entity declaration of the incorporated
design object may have different names than the
component declaration

Page 14Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

14

The above example shows an instance of the reg1 component which
has been given the name r0. The PORT MAP section of the
instantiation indicates how the signals in the interface of the component
are assigned to local signals.

Note that in this example, we associated each signal to a port on the
component by naming the PORT signals explicitly. VHDL also allows
for positional association, and the two styles may be used together as
long as the association is not then made ambiguous.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

 r0 : reg1 PORT MAP (d=>d0,clk=>clk,q=>q0);

Instantiation Statement

● The instantiation statement connects a declared
component to signals in the architecture

● The instantiation has 3 key parts
❍ Name -- to identify unique instance of component
❍ Component type -- to select one of the declared components
❍ Port map -- to connect to signals in architecture

❑ Along with optional Generic Map presented on next slide

Name Component
Type

Port Map

Page 15Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

15

Generics are mapped in a fashion similar to ports. If no default values
are assigned in the design object’s ENTITY declaration, a GENERIC
MAP must be provided in the component’s declaration, instantiation, or
binding.

As in PORT MAP signal associations, associations may be made by
position or by name.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Generic Map

● Generics allow the component to be customized
upon instantiation

❍ Entity declaration of design object being incorporated
provides default values

● The GENERIC MAP is similar to the PORT MAP in
that it maps specific values to the generics of the
component

USE Work.my_stuff.ALL
ARCHITECTURE test OF test_entity

SIGNAL S1, S2, S3 : BIT;
BEGIN

Gate1 : my_stuff.and_gate -- component found in package
GENERIC MAP (tplh=>2 ns, tphl=>3 ns)
PORT MAP (S1, S2, S3);

END test;

Page 16Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

16

Unfortunately, component binding specifications are referred to as
“configuration specifications” in the VHDL Language Reference Manual,
but the term is avoided here to prevent confusion with configuration
descriptions.

The component specification can be of several forms, and this slide
shows examples for various types. The component specification
identifies those components to be configured by name or by the
keyword ALL. The keyword OTHERS selects all components not yet
configured.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Component Binding
Specifications

● A component binding specification provides
binding information for instantiated components

❍ Single component

❍ Multiple components

❍ All components

-- All components of this type are affected
❍ Other components

-- i.e. for components that are not otherwise specified

FOR A1 : and_gate USE binding_indication;FOR A1 : and_gate USE binding_indication;

FOR A1, A2 : and_gate USE binding_indication;FOR A1, A2 : and_gate USE binding_indication;

FOR ALL : and_gate USE binding_indication;FOR ALL : and_gate USE binding_indication;

FOR OTHERS : and_gate USE binding_indication;FOR OTHERS : and_gate USE binding_indication;

Page 17Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

17

The binding indication identifies the design entity (i.e. entity/architecture
object or configuration declaration) to bind with the component and
maps the two interfaces together. That is, binding indication associates
component instances with a particular design entity. The binding
indication may include a PORT MAP and GENERIC MAP to adapt the
interfaces of the entity and the component.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Binding Indication

● The binding indication identifies the design
object to be used for the component

● Two mechanisms available :
❍ VHDL entity/architecture design object

❍ VHDL configuration

● Binding indication may also include a PORT MAP
and/or GENERIC MAP to customize the
component(s)

FOR reg4_inst : reg4_comp USE CONFIGURATION work.reg4_conf_1;

FOR ALL : reg1 USE work.dff(behav);

Page 18Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

18

The direct instantiation method was introduced in VHDL-93. It allows a
VHDL design object to be plugged in directly to an architecture’s
description by connecting local signals to its interface. This mechanism
does not require the use of an idealized component to be declared,
instantiated, and bound. Rather, a VHDL entity/architecture object may
be inserted into an architecture description in one step.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Using Direct Instantiation

USE work.resources.all;

ARCHITECTURE struct_1 OF reg4 IS
 CONSTANT enabled : level := '1';
 BEGIN
 r0 : ENTITY work.dff(behav)
 PORT MAP (d0,clk,enabled,q0,OPEN);
 r1 : ENTITY work.dff(behav)
 PORT MAP (d1,clk,enabled,q1,OPEN);
 r2 : ENTITY work.dff(behav)
 PORT MAP (d2,clk,enabled,q2,OPEN);
 r3 : ENTITY work.dff(behav)
 PORT MAP (d3,clk,enabled,q3,OPEN);
END struct_1;

● Provides one-step mechanism for plugging in
previously defined VHDL design objects

● Only available one level up in hierarchy from
level of incorporated building block(s)

Page 19Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

19

Locals are defined as the ports of the component, and actuals are the
signals visible within an architecture. VHDL has two restrictions on
the association of locals with actuals.

1) The local and actual must be of the same data type.

2) The local and actual must be of compatible modes. An actual of
mode IN (i.e. a PORT of mode IN since locally declared signals do
not have a mode) can only be associated with a local of mode IN,
and an actual of mode OUT (i.e. a PORT of mode OUT) can only be
associated with a local of mode OUT. A local INOUT port is
generally associated with an INOUT or OUT actual. Locally
declared signals can be connected to locals of any mode, but care
must be exercised to avoid illegal connections (e.g. a single actual
connected to two mode OUT locals).

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Rules for Actuals and Locals

● An actual is either a signal declared within the
architecture or a port in the entity declaration

❍ A port on a component is known as a local and must be
matched with a compatible actual

● VHDL has two main restrictions on the
association of locals with actuals

❍ Local and actual must be of same data type
❍ Local and actual must be of compatible modes

❑ Locally declared signals do not have an associated
mode and can connect to a local port of any mode

in1

in2 out2

Locally_Declared_Sig_a

Input_Port_a Output_Port_a

out1 Locally_Declared_Sig_b

Page 20Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

20

In summary, structural VHDL is concerned with the interconnection and
arrangement of components describing the contents of a design. The
behavior of the underlying design objects, therefore, is not explicitly
indicated. A structural description can be thought of as a physical
netlist describing a hierarchical representation of a VHDL model.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Summary of Concepts of
Structural VHDL

● Various levels of abstraction supported in
description of VHDL structural models

❍ Direct instantiation requires detailed knowledge of
building blocks when they are incorporated

❍ Use of components allows definition and use of
idealized local building blocks

❑ Can define local interface for component to be
connected to local signals

❑ Declared components bound to VHDL design
objects (i.e. entity/architecture descriptions)

➨ Binding done either locally or deferred to higher
levels in design hierarchy via use of configurations

● Actuals and locals must be of compatible types
and modes

Page 21Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

21

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Incorporating VHDL Design Objects

● Generate Statement

● Examples

● Summary

Page 22Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

22

Structural descriptions of large, but highly regular, structures can be
tedious. A VHDL GENERATE statement can be used to include as
many concurrent VHDL statements (e.g. component instantiation
statements) as needed to describe a regular structure easily. In fact, a
GENERATE statement may even include other GENERATE statements
for more complex devices.. Some common examples include the
instantiation and connection of multiple identical components such as
half adders to make up a full adder, or exclusive or gates to create a
parity tree.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Generate Statement

● VHDL provides the GENERATE statement to
create well-patterned structures easily

❍ Some structures in digital hardware are repetitive in
nature (e.g. RAMs, adders)

● Any VHDL concurrent statement may be included
in a GENERATE statement, including another
GENERATE statement

❍ Specifically, component instantiations may be made
within GENERATE bodies

Page 23Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

23

VHDL provides two different schemes of the GENERATE statement,
the FOR-scheme and the IF-scheme. This slide shows the syntax for
the FOR-scheme.

The FOR-scheme is reminiscent of a FOR loop used for sequence
control in many programming languages. The FOR-scheme generates
the included concurrent statements the assigned number of times. In
the FOR-scheme, all of the generated concurrent statements must be
the same. The loop variable is created in the GENERATE statement
and is undefined outside that statement (i.e. it is not a variable or signal
visible elsewhere in the architecture).

The syntax for the FOR-scheme GENERATE statement is shown in the
slide. The loop variable in this case is N. The range can be any valid
discrete range. After the GENERATE keyword, the concurrent
statements to be generated are stated, and the GENERATE statement
is closed with END GENERATE.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Generate Statement
FOR-Scheme

● All objects created are similar

● The GENERATE parameter must be discrete and
is undefined outside the GENERATE statement

● Loop cannot be terminated early

name : FOR parameter_specification GENERATE
[Declaration_statements

BEGIN]
{concurrent_statements}

END GENERATE [name];

name : FOR parameter_specification GENERATE
[Declaration_statements

BEGIN]
{concurrent_statements}

END GENERATE [name];

Page 24Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

24

This slide shows an example of the FOR-scheme. The code generates
an array of AND gates. In this case, the GENERATE statement has
been named G1 and instantiates an array of 8 and_gate components.
The PORT MAP statement maps the interfaces of each of the 8 gates
to specific elements of the S1, S2, and S3 vectors by using the FOR
loop variable as an index.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
FOR-Scheme Example

-- this uses the and_gate component from before
ARCHITECTURE test_generate OF test_entity IS

SIGNAL S1, S2, S3: BIT_VECTOR(7 DOWNTO 0);
BEGIN

G1 : FOR N IN 7 DOWNTO 0 GENERATE
and_array : and_gate
GENERIC MAP (2 ns, 3 ns)
PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G1;
END test_generate;

-- this uses the and_gate component from before
ARCHITECTURE test_generate OF test_entity IS

SIGNAL S1, S2, S3: BIT_VECTOR(7 DOWNTO 0);
BEGIN

G1 : FOR N IN 7 DOWNTO 0 GENERATE
and_array : and_gate
GENERIC MAP (2 ns, 3 ns)
PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G1;
END test_generate;

S2(7:0)
S1(7:0)

S3(7:0)

Page 25Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

25

The second form of the GENERATE statement is the IF-scheme. This
scheme allows for conditional generation of concurrent statements.
One obvious difference between this scheme and the FOR-scheme is
that all the concurrent statements generated do not have to be the
same. While this IF statement may seem reminiscent to the IF-THEN-
ELSE constructs in programming languages, note that the GENERATE
IF-scheme does not provide ELSE or ELSIF clauses.

The syntax of the IF-scheme GENERATE statement is shown in this
slide. The boolean expression of the IF statement can be any valid
boolean expression.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Generate Statement
IF-Scheme

● Allows for conditional creation of components

● Cannot use ELSE or ELSIF clauses with the
IF-scheme

name : IF boolean_expression GENERATE
[Declaration_statements

BEGIN]
{concurrent_statements}

END GENERATE [name];

name : IF boolean_expression GENERATE
[Declaration_statements

BEGIN]
{concurrent_statements}

END GENERATE [name];

Page 26Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

26

The example here uses the IF-scheme GENERATE statement to make
a modification to the and_gate array such that the seventh gate of the
array will be an or_gate.

Another example use of the IF-scheme GENERATE is in the conditional
execution of timing checks. Timing checks can be incorporated inside a
GENERATE IF-scheme. For example, the following statement can be
used:

 Check_time : IF TimingChecksOn GENERATE

This allows the boolean variable TimingChecksOn to enable timing
checks by generating the appropriate concurrent VHDL statements in
the description. This parameter can be set in a package or passed as a
generic and can improve simulation speed by shutting off this
computational section.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
IF-Scheme Example

ARCHITECTURE test_generate OF test_entity
SIGNAL S1, S2, S3: BIT_VECTOR(7 DOWNTO 0);

BEGIN
G1 : FOR N IN 7 DOWNTO 0 GENERATE

G2 : IF (N = 7) GENERATE
or1 : or_gate
 GENERIC MAP (3 ns, 3 ns)
 PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G2;

G3 : IF (N < 7) GENERATE
and_array : and_gate
 GENERIC MAP (2 ns, 3 ns)
 PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G3;

END GENERATE G1;
END test_generate;

ARCHITECTURE test_generate OF test_entity
SIGNAL S1, S2, S3: BIT_VECTOR(7 DOWNTO 0);

BEGIN
G1 : FOR N IN 7 DOWNTO 0 GENERATE

G2 : IF (N = 7) GENERATE
or1 : or_gate
 GENERIC MAP (3 ns, 3 ns)
 PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G2;

G3 : IF (N < 7) GENERATE
and_array : and_gate
 GENERIC MAP (2 ns, 3 ns)
 PORT MAP (S1(N), S2(N), S3(N));

END GENERATE G3;

END GENERATE G1;
END test_generate;

Page 27Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

27

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Component Instantiation

● Generate Statement

● Examples

● Summary

Page 28Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

28

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Examples

● Build higher level modules from the library of
basic gates

❍ AND-OR-Invert

❍ 8 Bit Register using DFFs

❍ 8 Bit Shift Register using Multiplexors and DFFs

● Use these modules to construct a datapath for
unsigned 8 bit multiplication

Page 29Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

29

This is the schematic and the VHDL entity description of a simple and-
or-invert gate.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural And-Or-Invert Gate
Example

(Entity)

LIBRARY gate_lib;
USE gate_lib.resources.all;

ENTITY aoi2_str IS

 GENERIC(trise : delay := 12 ns;
 tfall : delay := 9 ns);

 PORT(a : IN level;
 b : IN level;
 c : IN level;
 d : OUT level);

END aoi2_str;

A

B

C D

Page 30Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

30

This is the structural architecture of the and-or-invert gate. It shows the
three major elements of a structural description. The component
declarations which list which components will be used in the structure
are in yellow. The binding indications which tell what library the
component comes from and which library component is to be used for
each declared component are in blue. Finally, the green highlights the
component instantiations where the individual components are “placed”
in the structure and connected to the proper generics and ports or
signals.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural And-Or-Invert Gate
Example

(Architecture)

ARCHITECTURE structural OF aoi2_str IS

-- COMPONENT DECLARATIONS
 COMPONENT and2
 GENERIC(trise : delay;
 tfall : delay);
 PORT(a : IN level;
 b : IN level;
 c : OUT level);
 END COMPONENT;

 COMPONENT or2
 GENERIC(trise : delay;
 tfall : delay);
 PORT(a : IN level;
 b : IN level;
 c : OUT level);
 END COMPONENT;

 COMPONENT inv
 GENERIC(trise : delay;
 tfall : delay);
 PORT(a : IN level;
 b : OUT level);
 END COMPONENT;

 -- BINDING INDICATIONS
 FOR ALL : and2 USE ENTITY gate_lib.and2(behav);
 FOR ALL : or2 USE ENTITY gate_lib.or2(behav);
 FOR ALL : inv USE ENTITY gate_lib.inv(behav);

 SIGNAL and_out : level; -- signal for output
 -- of AND gate
 SIGNAL or_out : level; -- signal for output
 -- of OR gate
 BEGIN
 -- COMPONENT INSTANTIATIONS
 AND_1 : and2 GENERIC MAP(trise => trise,
 tfall => tfall)
 PORT MAP(a => a, b => b,
 c => and_out);

 OR_1 : or2 GENERIC MAP(trise => trise,
 tfall => tfall)
 PORT MAP(a => and_out, b => c,
 c => or_out);

 INV_1 : inv GENERIC MAP(trise => trise,
 tfall => tfall)
 PORT MAP(a => or_out, b => d);

END structural;

Page 31Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

31

This is the QuickVHDL simulation results for the simple AOI gate. Note
that the values on the internal signals are traced.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural AOI Gate Simulation
Results

Page 32Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

32

This is a structural description of an 8 bit register using DFFs from the
library. A simple generate statement is used to instantiate the DFFs and
connect them to the individual “bits” at the register’s input and output.
The colors highlight the same parts of the structural description as
before.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural 8 Bit Register
Example

Simple Generate Statement
LIBRARY gate_lib;
USE gate_lib.resources.all;

ENTITY reg8_str IS

 GENERIC(tprop : delay := 8 ns;
 tsu : delay := 2 ns);

 PORT(d : IN level_vector(7 DOWNTO 0);
 clk : IN level;
 enable : IN level;
 q : OUT level_vector(7 DOWNTO 0);
 qn : OUT level_vector(7 DOWNTO 0));

END reg8_str;

D

Q
CLK

D

Q
CLK

D

Q
CLK

D

Q
CLK

D(0) D(1) D(2) D(7)

Q
(0)

Q
(1)

Q
(2)

Q
(7)

CLK
ENABLE

EEEE Qn Qn Qn Qn

Q
n

(0)

Q
n

(1)

Q
n

(2)

Q
n

(7)

ARCHITECTURE structural OF reg8_str IS

 -- COMPONENT DECLARATION
 COMPONENT dff
 GENERIC(tprop : delay;
 tsu : delay);
 PORT(d : IN level;
 clk : IN level;
 enable : IN level;
 q : OUT level;
 qn : OUT level);
 END COMPONENT;

 -- BINDING INDICATIONS
 FOR ALL : dff USE ENTITY gate_lib.dff(behav);

 BEGIN

 -- COMPONENT INSTANTIATION (GENERATE)
 R1:FOR i IN 1 TO 8 GENERATE
 I1:dff GENERIC MAP(tprop => tprop,
 tsu => tsu)
 PORT MAP(d => d(i-1), clk => clk,
 enable => enable,
 q => q(i-1), qn => qn(i-1));
 END GENERATE R1;

END structural;

Page 33Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

33

Simulation results; it works!

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural 8 Bit Register
Simulation Results

Page 34Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

34

This is the schematic and entity description for an 8 bit shift register.

Note that in the schematic, signals will be needed between the
multiplexor output and the dff’s input and the dff output and the shift
register output (Q). The signal on the DFF outputs is needed because it
feeds back to the input of the muxes, and that can’t be done by
connecting both directly to an output port (signals of mode OUT are not
readable inside the architecture). Thus, some concurrent signal
assignment statements will be necessary to connect the signal at the dff
outputs to the Q outputs.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural 8 Bit Shift Register
Example

(Entity)

LIBRARY gate_lib;
USE gate_lib.resources.all;

ENTITY shift_reg8_str IS

 GENERIC(tprop : delay := 15 ns;
 tsu : delay := 2 ns);

D

Q
CLK

D

Q
CLK

D

Q
CLK

D

Q
CLK

D(0) D(1) D(2) D(7)

Q(0) Q(1) Q(2) Q(7)

SCAN_OUT

SCAN_IN

SHIFT

CLK

 PORT(d : IN level_vector(7 DOWNTO 0);
 clk : IN level;
 enable : IN level;
 scan_in : IN level;
 shift : IN level;
 scan_out : OUT level;
 q : OUT level_vector(7 DOWNTO 0));

END shift_reg8_str;

ENABLE

EEEE

Page 35Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

35

This is the architecture which uses a complex generate statement.
There is an IF statement within the generate statement to handle the
fact that the mux that is connected to the 0th bit is connected to scan_in
instead of the output of the DFF in the previous bit position. Here again,
the colors highlight the three parts of the structural description.

Note that the concurrent signal assignment statements to connect the
dff_out signal to the Q outputs are inside the generate statements.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural 8 Bit Shift Register
Example

(Architecture - Generate with If Scheme)
ARCHITECTURE structural OF shift_reg8_str IS

 -- COMPONENT DECLARATION
 COMPONENT mux2
 GENERIC(tprop : delay);
 PORT(a : IN level;
 b : IN level;
 sel : IN level;
 c : OUT level);
 END COMPONENT;

 COMPONENT dff
 GENERIC(tprop : delay;
 tsu : delay);
 PORT(d : IN level;
 clk : IN level;
 enable : IN level;
 q : OUT level;
 qn : OUT level);
 END COMPONENT;

 -- BINDING INDICATIONS
 FOR ALL : mux2 USE ENTITY
 gate_lib.mux2(behav);
 FOR ALL : dff USE ENTITY
 gate_lib.dff(behav);

 SIGNAL mux_out : level_vector(7 DOWNTO 0);
 SIGNAL dff_out : level_vector(7 DOWNTO 0);

BEGIN

 -- COMPONENT INSTANTIATION (GENERATE W/ IF)
 G1:FOR i IN 0 TO 7 GENERATE

 G2 : IF (i = 0) GENERATE
 MUX1 : mux2 GENERIC MAP(tprop => tprop/2)
 PORT MAP(a => scan_in,
 b => d(i),
 sel => shift,
 c => mux_out(i));
 DFF1 : dff GENERIC MAP(tprop => tprop/2,
 tsu => tsu)
 PORT MAP(d => mux_out(i),
 clk => clk,
 enable => enable,
 q => dff_out(i));
 q(i) <= dff_out(i);

 END GENERATE G2;
 G3 : IF (i > 0) GENERATE
 MUX1 : mux2 GENERIC MAP(tprop => tprop/2)
 PORT MAP(a => dff_out(i-1),
 b => d(i),
 sel => shift,
 c => mux_out(i));
 DFF1 : dff GENERIC MAP(tprop => tprop/2,
 tsu => tsu)
 PORT MAP(d => mux_out(i),
 clk => clk,
 enable => enable,
 q => dff_out(i));
 q(i) <= dff_out(i);

 END GENERATE G3;
 END GENERATE G1;

 scan_out <= dff_out(7);

END structural;

Page 36Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

36

Here is the simulation results showing a parallel load followed by
scanning the loaded data.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Structural 8 Bit Shift Register
Simulation Results

Page 37Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

37

The final example is of an RTL level datapath for an unsigned 8 bit
multiplier. It illustrates the use of complex components in a structural
description and the use of multiple levels of hierarchy in that the
components are themselves structural descriptions of lower level
components. This is the entity description for the datapath. The register
controls (enable, mode) will go to the control unit when it is added.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Data
Path (Entity)

LIBRARY work;
LIBRARY gate_lib;
USE gate_lib.resources.all;
ENTITY mult_datapath IS
 PORT(multiplicand : IN level_vector(7 DOWNTO 0);
 multiplier : IN level_vector(7 DOWNTO 0);
 a_enable : IN level; -- clock enable for A register
 a_reset : IN level; -- Reset control for A register
 a_mode : IN level; -- Shift or load mode for A
 c_enable : IN level; -- clock enable for c register
 m_enable : IN level; -- clock enable for M register
 q_enable : IN level; -- clock enable for Q register
 q_mode : IN level; -- Shift or load mode for Q
 clk : IN level;
 product : OUT level_vector(15 DOWNTO 0));
END mult_datapath;

Multiplicand

Mn-1 M0

An-1 A0

Multiplier

Qn-1 Q0C

n-Bit Adder

Control
 Unit

Product

Page 38Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

38

This shows the component declarations and binding indications for the
datapath.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Data
Path (Architecture)

ARCHITECTURE structural OF mult_datapath IS

 COMPONENT dff
 GENERIC(tprop : delay;
 tsu : delay);
 PORT(d : IN level;
 clk : IN level;
 enable : IN level;
 q : OUT level;
 qn : OUT level);
 END COMPONENT;

 COMPONENT reg8_str
 GENERIC(tprop : delay;
 tsu : delay);
 PORT(d : IN level_vector(0 TO 7);
 clk : IN level;
 enable : IN level;
 q : OUT level_vector(0 TO 7);
 qn : OUT level_vector(0 TO 7));
 END COMPONENT;

 COMPONENT shift_reg8_str
 GENERIC(tprop : delay;
 tsu : delay);
 PORT(d : IN level_vector(0 TO 7);
 clk : IN level;
 enable : IN level;
 scan_in : IN level;
 shift : IN level;
 scan_out : OUT level;
 q : OUT level_vector(0 TO 7));
 END COMPONENT;

 COMPONENT alu_str
 GENERIC(tprop : delay);
 PORT(a : IN level_vector(7 DOWNTO 0);
 b : IN level_vector(7 DOWNTO 0);
 mode : IN level;
 cin : IN level;
 sum : OUT level_vector(7 DOWNTO 0);
 cout : OUT level);
 END COMPONENT;

 FOR ALL : dff USE ENTITY gate_lib.dff(behav);
 FOR ALL : reg8_str USE ENTITY
 work.reg8_str(structural);
 FOR ALL : shift_reg8_str USE ENTITY
 work.shift_reg8_str(structural);
 FOR ALL : alu_str USE ENTITY
 work.alu_str(structural);

Page 39Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

39

This is the component instantiations for the datapath. The mapping of
individual bits of the D and Q input and output of the shift registers is
necessary to reverse the inputs and outputs. Recall that the shift
register was a “shift up” type where the scan_in input goes to D(0) and
D(0) to D(6) go to D(1) to D(7) when in shift mode. What is needed for
the multiplier is a “shift down” type register where scan_in goes to D(7),
etc.

It should have been possible (we believe) to use the syntax

d => multiplier(0 to 7)

in the shift_reg8_str PORT MAP to accomplish the same thing, but the
QuickVHDL compiler gave a “warning” and the simulator crashed, so
we don’t know if it really should work.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Data
Path (Architecture)

SIGNAL gnd : level := '0';
SIGNAL c_out, a_scan_out, carry_out : level;
SIGNAL a_out, alu_out, m_out
 : level_vector(7 DOWNTO 0);

BEGIN

 -- A, C, M, and Q registers
 A1 : shift_reg8_str GENERIC MAP(6 ns, 1 ns)
 PORT MAP(d(0)=>alu_out(0),d(1)=>alu_out(1),
 d(2)=>alu_out(2),d(3)=>alu_out(3),
 d(4)

=>alu_out(4),d(5)=>alu_out(5),
 d(6)=>alu_out(6),d(7)=>alu_out(7),
 clk => clk, enable => a_enable,
 scan_in => c_out, shift => a_mode,
 scan_out => a_scan_out,
 q(0)=>a_out(0),q(1)=>a_out(1),
 q(2)=>a_out(2),q(3)=>a_out(3),
 q(4)=>a_out(4),q(5)=>a_out(5),
 q(6)=>a_out(6),q(7)=>a_out(7));

 C1 : dff GENERIC MAP(5 ns, 1 ns)
 PORT MAP(d => carry_out, clk => clk,
 enable => c_enable, q => c_out);

 M1 : reg8_str GENERIC MAP(4 ns, 1 ns)
 PORT MAP(d => multiplicand, clk => clk,
 enable => m_enable, q => m_out);

Q1 : shift_reg8_str GENERIC MAP(6 ns,1 ns)
 PORT MAP(d(0) => multiplier(0),
 d(1) => multiplier(1),
 d(2) => multiplier(2),
 d(3) => multiplier(3),
 d(4) => multiplier(4),
 d(5) => multiplier(5),
 d(6) => multiplier(6),
 d(7) => multiplier(7),
 clk => clk,
 enable => q_enable,
 scan_in => a_scan_out,
 shift => q_mode,
 q(0) => product(0),
 q(1) => product(1),
 q(2) => product(2),
 q(3) => product(3),
 q(4) => product(4),
 q(5) => product(5),
 q(6) => product(6),
 q(7) => product(7));
 -- ALU
 ALU1 : alu_str GENERIC MAP(8 ns)
 PORT MAP(a => m_out, b => a_out,
 mode => a_reset,
 cin => gnd,
 sum => alu_out,
 cout => carry_out);

 -- connect A register output to product
 product(15 DOWNTO 8)<=a_out(7 DOWNTO 0);
END structural;

Page 40Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

40

This shows the simulation results. The control points were manipulated
by using forces in the simulation. Note the correct result
“0010100110001110” on the product output.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Data
Path Simulation Results

Page 41Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

41

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Component Instantiation

● Generate Statement

● Examples

● Summary

Page 42Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

42

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

● Structural VHDL describes the arrangement and
interconnection of components

● Components can be at any level of abstraction --
low level gates or high level blocks of logic

● Generics are inherited by every architecture or
component of that entity

● GENERATE statements create large, regular
blocks of logic easily

● Configurations give the designer control over the
entity and architecture used for a component

Page 43Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

43

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[Bhasker95] Bhasker, J. A VHDL Primer, Prentice Hall, 1995.

[Calhoun95] Calhoun, J.S., Reese, B.,. “Class Notes for EE-4993/6993: Special Topics in Electrical
Engineering (VHDL)”, Mississippi State University, http://www.erc.msstate.edu/, 1995.

[Coelho89] Coelho, D. R., The VHDL Handbook, Kluwer Academic Publishers, 1989.

[IEEE] All referenced IEEE material is used with permission.

[Lipsett89] Lipsett, R., C. Schaefer, C. Ussery, VHDL: Hardware Description and Design, Kluwer
Academic Publishers, , 1989.

[LRM93] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993.

[Menchini94] Menchini, P., “Class Notes for Top Down Design with VHDL”, 1994.

[MG90] An Introduction to Modeling in VHDL, Mentor Graphics Corporation, 1990.

[MG93] Introduction to VHDL, Mentor Graphics Corporation, 1993.

[Navabi93] Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw-Hill, 1993.

[Perry94] Perry, D. L., VHDL, McGraw-Hill, 1994.

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal
Processors, Kluwer Academic Publishers, Norwell, MA, 1997

[Williams94] Williams, R. D., "Class Notes for EE 435: Computer Organization and Design", University
of Virginia, http://www.ee.virginia.edu/research/CSIS/, 1994.

