Module 11 : Structural VHDL
Tutorial and Exercises

For the VeriBest Simulator

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

See the RASSP Disclaimer_file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Module 11- Structural VHDL Tutorial

1. Getting Started
1.1. The Module 11 lab will provide practice with structural VHDL models. The
basic gates created and compiled for the Module 10 lab will be reused through
the use of library mappings. Simple components will be used to form larger,
more useful structures.
1.2. Thefirst VHDL file that you will need isaoi2_str.vhdl.
2. Examine and compile the and/or/inverter model

2.1. Open thefile aoi2_str.vhdl using atext editor or aVHDL editing environment.

-- And/ OR I nvert Structural Exanple --
-- RASSP E&F Mddule # 11 Structural VHDL --
-- Robert Kl enke Uva 19 April 1996 --

LI BRARY gate |ib;
USE gate lib.resources. all;

ENTITY aoi 2_str is

GENERI C(trise : delay := 12 ns;
tfall : delay := 9 ns);

PORT(a : IN level;
b : INIlevel;
c : INIlevel;
d: OUT level);

END aoi 2_str;
ARCHI TECTURE structural OF aoi2_str IS

COMPONENT and2
GENERI C(trise : del ay;

tfall : delay);
PORT(a : IN level;
b: INIlevel;

c : QUT level);
END COVPONENT;

COVPONENT or 2
GENERI C(trise : del ay;
tfall : delay);

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

PORT(a :

IN | evel ;

b : INIevel;
c : QUT level);

END COVPONENT;

COVPONENT i nv

GENERI C(trise :
tfall
IN | evel ;

PORT(a :

del ay;
del ay) ;

b : OUT level);

END COMVPONENT;

FOR ALL : and2 USE ENTITY gate |ib.and2(behav);
FOR ALL : or2 USE ENTITY gate |ib.or2(behav);
FOR ALL : inv USE ENTITY gate |ib.inv(behav);
SI GNAL and_out | evel ; --signal for output of and gate
SI GNAL or _out | evel ; --signal for output of or gate
BEG N
AND 1 : and2 GENERIC MAP(trise => trise, tfall => tfall)
PORT MAP(a => a, b => b, ¢ => and_out);
R 1 or2 CENERIC MAP(trise => trise, tfall => tfall)
PORT MAP(a => and_out, b => ¢, ¢ => or_out);
INV_1 inv GENERIC MAP(trise => trise, tfall =>tfall)
PORT MAP(a => or_out, b => d);

END structural;

2.2. Before the aoi2_str.vhdl model will compile correctly, some configuration of
the libraries is needed. Notice the library clause "LIBRARY gate lib;" at the
beginning of the aoi2_str.vhdl file. Thistellsthe compiler that alibrary called
"gate lib" isavailable for use.

2.3. Notice that the and2, or2, and inv gates are bound to the components in the
"gate_lib" library. In order for the compiler to use these gates (which were
compiled during the Module 10 lab), we must create a library mapping.

2.4. Library mapping commands are specific to the VHDL tools being used.
Consult your compiler's documentation for more information on library
mappings. Be sure that the logical library name "gate lib" refers to the

working library created in Module 10. Typica names for working libraries are

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

"work" and "worklib".

2.5. Once the library mapping is correctly created, compile the aoi2_str.vhdl
model. The model should compile without any errors.

2.6. A test bench for the model is provided in the file aoi2_str_test.vhdl. Open and
compile this test bench file.

3. Simulate the compiled code

3.1. Start the VHDL simulator. Remember to select an entity or architecture as the
design root, if required by your simulator.

3.2. Before adding any signals to the waveform window, note the hierarchy of
signal names in the model. The test bench, which is the highest level of
hierarchy, has signals are "A_SIG", "B_SIG", "C_SIG", and "D_SIG". The
aoi2_str structural entity has the input signals"A", "B", and "C"; output signal
"D"; and interna signals "TAND_OUT" and "OR_OUT". Lower levels of
hierarchy are also present.

3.3. Open a waveform window, then add the signals from the aoi2_str component.
Aslisted above, theseare "A", "B", "C", "D", "AND_OUT", and "OR_OUT".

3.4. Run the simulator for sufficient time to fully exercise the circuit (at least 150
nanoseconds in this example). The signal waveforms should look something

like this:
—rwWaveForm Viewer(1] =]
Goto: ll:l ing _.ﬂ _i-]
Scale:!ﬁ !ng j _i]
& | 8| s =] E] m| = s | [| e s ‘
{ il el [{ il el [{ il el [{ il el [{ il el [II:I(‘\II:I
- & X
e "
2 g g
Mo g
M 3 oot 1
.1 op_ooT Sy

| | |Poz: 150 ns [St. 2

4. Examine and compile the 8-bit shift register model

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

4.1. Open the file shift_reg8_str.vhdl using a text editor or a VHDL editing
environment.

4.2. Compile the shift_reg8_str.vhdl model.

4.3. A test bench for the model is provided in the file shift_reg8_str_test.vhdl.
Open and compile this test bench file.

5. Simulate the compiled code

5.1. Start the VHDL simulator.

5.2. Open a waveform window, then add all of the signals associated with the
shift_reg8_str structura model. Run the simulation. The resulting window
should look something like this:

SrwWaveForm Yiewer(1) [_ O]

Goto: IEI !ns vi _ﬂ
Scale:ial !ns vi _i‘_l

z | o|w|x =] E B

&-I71 D[7 DOWNTO 0]
:I71 EMABLE

-7 Q[7 DOWNTO 0]
-1 MUK _OUT[7 DOWHTO 0]
-I71 DFF_OUT[7 DOWNTO 0]

=
=
S S T Y = R SO S =1

I |Pos: 2304 ns | Start: O ng | Stop: 300 ne [z

6. Examine and compile the unsigned 8-bit multiplier model

6.1. Open the VHDL sourcefiles:
reg8_str.vhdl
ha_str.vhdl
fa_str.vhdl
alu_str.vhdl
mult_datapath_str.vhdl
6.2. Compile the VHDL files.
6.3. A test bench for the multiplier model is provided in the file

mult_datapath_str_test.vhdl. This test bench will perform an example

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

multiplication sequence. Open and compile this test bench file.
7. Simulate the compiled code

7.1. Start the VHDL simulator.

7.2. Open a waveform window, then add all of the signals associated with the
mult_datapath_str structural model. Run the simulation for an appropriate
amount of time (at least 500 nanoseconds for this example). The resulting
window should look something like this:

- waveF orm Yiewer(1) =] B3
Giobo; !D ’ns 'i ij
Scale:ihﬂ Ins 71 ﬂ
a2 el e sl i
-7 MULTIPLICAND([7 DOWNTO 0]
-1 MULTIPLIER[7 DOWNTO 0]
-l & EMABLE
-1 & BESET
-1 & MIDE
-ITl C EMAELE
-1 M EMABLE
-1 Q_EMABLE
-7l 0 MIDE
Mo 0 I
-1 FRODUCT [15 DOVNTO 0] Y W [g g [e e B B T e [
Iz i Y
8 | C_D'LTT [
71 & SC3N QuT
-7l CAREY 0UT ‘o ot
BTl A OUT[7? DOWNTO 0] i [[[[Jre T Jren Jren ot Jete [[
-1 ALU_OUT[7 DOWTO 0] RN [(N [T TO0T I0T TOO0 [e [0 Do JLeoe- JT e TITT T e JOITL
i_i_i--nH_UUT['? DOTRTO 0] oo O T T R O TP R T

| | | |Poz 520 nz |Start: 0 ns |Stop: 520 ns 7

Notice that during initialization, the ALU outputs all "0"swhich are loaded into
the A register to clear it. The C register is cleared, the multiplier is loaded into
the Q register, and the multiplicand is loaded into the M register. the
simulation then proceeds by performing ADD and SHIFT operations based on
the status of the Qg bit.

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

Module 11 Exercise

Assignment:

Using a ssmple GENERATE statement, create an 8 bit 2 to 1 multiplexor from
a structure of mux2 components. Compile and simulate the design to ensure
correct operation. Do the same for an 8 bit 4 to 1 multiplexor using mux4
components.

Using a GENERATE statement with an IF clause, create an 8 hit arithmetic
shift register from dff and mux2 components. Recall that in an arithmetic shift:

Q(7) <=D(7),
Q(6 downto 0) <= D(7 downto 1), and
Scan_out <= D(0).

Compile and simulate the design to ensure correct operation.

Using the components constructed above as well as the reg8_str,
shift_reg8_str, alu_str, mux2, and dff, create an RTL datapath for a Booth's
algorithm multiplier. A Booth's multiplier functions very similarly to the
unsigned multiplier with the exceptions that it uses an arithmetic shift of the A
and Q registers, the Q(0) bit is shifted out into a Q(-1) register, and the control
of the shift/add operation is based on the Q(0) and Q(-1) bits. Finally instead
of just adding M to A and shifting, the Booth's multiplier either adds or
subtracts (adds the two's complement of) M with A. The flow chart in the
following pages fully outlines Booth's algorithm for two's complement
multiplication.

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

An example of 2-complement multiplication using Booth's Algorithm is shown

below:
M =11111011 Mn = 00000101
A Q Q1
00000000 00000011 0 Initialization
00000101 00000011 0 A- A+Mn First Cycle
00000010 10000001 1 Arithmetic Shift
00000001 01000000 1 Arithmetic Shift Second Cycle
11111100 01000000 1 A- A+M Third Cycle
11111110 00100000 0 Arithmetic Shift
11111111 00010000 0 Arithmetic Shift Fourth Cycle
11111111 10001000 0 Arithmetic Shift Fifth Cycle
11111111 11000100 0 Arithmetic Shift Sixth Cycle
11111111 11100010 0 Arithmetic Shift Seventh Cycle
11111111 11110001 0 Arithmetic Shift Eighth Cycle

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

< START)
v

INITIALIZE
A-0Q;- 0
M = Multiplicand
Mn- -M

Q- Multiplier
Count- 0

=10 Test =01
Q0 O+

A- A+Mn A- A+M

il

Arithmetic Shift Right:
A, Q’ Q-l

Count = Count + 1

No @ Yes
END

Flowchart for Booth's Algorithm 2's-Complement Multiplication

Hint - A datapath very similar to the one used for the unsigned multiplier can
be used. Instead of asingle register entering the ALU for the Multiplicand, two
registers can be used, one for the multiplicand (M) and another for the two's
complement of M (Mn) entering the ALU through a 4 to 1 multiplexor. The
two's complement of M can be generated by adding the inverse of M (available
as the Qn outputs of the M register) to "00000001" using the ALU.

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11- Structural VHDL Tutorial

If you need help, an example datapath that can perform Booth's Algorithm
multiplication is shown below.

Multiplicand
Mn.1 Mo Mny.q Mo
q an q
"00000001"
"00000000"
00 01 10 11
0 |1
"o
ALU
Multiplier
0 |1
\ 4
Ang Ay | > Qn1 Qo
Q1

Example Datapath for Booth's Algorithm 2's-Complement Multiplication

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

