Module 11 - Structural VHDL Lab Tutorial

Module 11 - Structural VHDL
Tutorial and Exercises

For the Mentor Graphics Simulator

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

See the RASSP_Disclaimer_file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Copyright ©1995-1999 SCRA 1
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

Module 11 Tutorial

1 Getting started

11

12

13

14

Create adirectory for the Module 11 lab material, e.g:

mkdir m11_ex
cd mll _ex

Copy the source files for the VHDL that you will compile and simulate from the appropriate
source directory, e.g:

cp $VHDL_SRC/m11_ex/aoi2_str.vhdl
cp $VHDL_SRC/m11_ex/shift_reg8_str.vhdl

Note the . a the end of the above commandsisimportant; it tells Unix that you want to copy the
file into the same name in the current directory

The Mentor Graphics QuickVHDL simulator needs awork directory for the compiled VHDL
files. Createthisdirectory with the appropriate command for the version you are running, e.g:

ghlib work

The structural modules you will work with in this|ab utilize the basic gates you created and
compiled for the Module 10 lab. Y ou can access those compiled descriptions by mapping alogica
library to their actual location in the file system. The exact command to do thisis specific to the
VHDL tools being used. For many versions of the Mentor Graphics QuickVHDL simulator, it is
done using the following command:

ghmap gate_lib ../m10_ex/work

Thistellsthe QuickVHDL toolsthat all modulesthat are located in the gate lib logical library can
be found in the Unix directory ../m10_ex/work (the “..” is Unix syntax that means “go up one

2 Examine and compile the code for the And-Or-Invert example

21

Copyright ©1995-1999 SCRA

Open thefile aoi2_str.vhdl file using atext editor or aVHDL editing environment. Y ou will see
the following VHDL description:

-- And/OR Invert Structural Example --
- RASSP E&F Module # 11 Structural VHDL --
-- Raobert Klenke UVa 19 April 1996 --

LIBRARY gate lib;

See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

USE gate lib.resources.all;

ENTITY aoi2_stris
GENERIC(trise: delay := 12 ns;
tfall : delay := 9 ns);
PORT(a: IN level;
b:IN level;
c:INleve;
d: OUT level);
END a0i2_str;

ARCHITECTURE structural OF aoi2_str IS

COMPONENT and2
GENERIC(trise : delay;
tfall : delay);
PORT(a: IN level;
b:IN level;
c: OUT level);
END COMPONENT;

COMPONENT or2
GENERIC(trise : delay;
tfall : delay);
PORT(a: IN level;
b:IN level;
c: OUT level);
END COMPONENT;

COMPONENT inv
GENERIC(trise : delay;
tfall : delay);
PORT(a: IN level;
b: OUT level);
END COMPONENT;

FORALL : and2 USE ENTITY gate_lib.and2(behav);
FOR ALL : or2 USE ENTITY gate lib.or2(behav);

SIGNAL and out : level; -- signal for output of and gate
SIGNAL or_out : level; -- signal for output of or gate
BEGIN

AND_1: and2 GENERIC MAP(trise => trise, tfall => tfall)
PORT MAP(a=>a, b=>b, c=>and out);

OR 1 :0or2 GENERIC MAP(trise => trise, tfall => tfall)
PORT MAP(a=> and_out, b =>c, c => or_out);

INV_1:inv GENERIC MAP(trise => trise, tfall => tfall)
PORT MAP(a=> or_out, b =>d);
END structural;

Notice that the and?2, or2, and inv gates are bound to the componentsin the library gate_lib that
you mapped to the Module 10 examples earlier.
Copyright 01995-1999 SCRA 3

See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

2.2 Compilethe VHDL code, e.g:

gvhcom aoi2_str.vhdl

aoi2_str.vhdl should compile without any errors. The compiler should display a message similar
to the following with no errors:

/I Compiling for QuickHDL

/I QuickHDL gvhcom v8.5 4.5a Mar 28 1996 Sun0S 4.1.3

1

// Copyright (c) Mentor Graphics Corporation, 1982-1995, All Rights Reserved.
UNPUBLISHED, LICENSED SOFTWARE.

// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH ISTHE

/Il PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.

1

/I Copyright (c) Model Technology Incorporated 1990-1995, All Rights Reserved.

1

-- Loading package standard

-- Loading package resources

-- Compiling entity aoi2_str

-- Compiling architecture structural of aoi2_str

-- Loading entity and2

-- Loading entity or2

-- Loading entity inv

Notice that during compilation that the entities for the and2, or2, and inv components were loaded
by the compiler to check that they properly matched the generic and port maps used in the
component declarations and instantiations. Only the entities were checked by the compiler, the
architectures are not needed until the design is actually simulated and are not checked during
compilation.

3 Simulate the compiled code

3.1 Start up the Mentor Graphics VHDL simulator. The specific command may very depending on
the version you are using, e.g.:

ghsim aoi2_str

Thiswill bring up awindow similar to the one shown below. Notice that the architectures for the
and2, or2, and inv gates are loaded at thistime. If there were any problems with the architectures
it will show up here:

Copyright ©1995-1999 SCRA 4
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

— QuickHDL YHDLVerlog [=]

File =) View =1 Prop. | Step | Step Cwer | Run = |

Loading fidea.B1/pkgs/ghd]1_1ibs/std. standard

Loading ../ml0_ex/work.resources

Loading ./work.aoiZ_stristructurall

Loading ../ml0_ex/work.and2Cbehay]

Loading ../ /m10_ex/work.or2Chehaw)

Loading ../ m10_exfwork.iny(behav)

Loading fidea.B1/pkassquickhd].sss/. Tib/ghsimwrap. dl
QHSIM 1>,

Mowe: 0 ns Delta: O

3.2 Next, select signalsa, b, and ¢ for viewing. Consult the documentation for your specific simulator
version for instructions on selecting signals for viewing. Use the force mechanism to set values
for the input signals and run the simulation for 150 ns, e.g:

QHSIM 1> force -freeze /a 0,1 110
QHSIM 2> force -freeze /b 0,1 110
QHSIM 3> force -freeze /c 0, 1 40, 0 80
QHSIM 4> run 150

After adding cursors, the resulting window should look similar to this:

File =) Edit =) Zoom ¥] Prop] Cursor 7)
(| d =0
| T I R I
J4 v 11a |} 11,
0 ns to 130 ns
Copyright 01995-1999 SCRA 5

See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

4 Examine and compile the code for the 8 bit shift register example
4.1 Openthefileshift_reg8_str.vhdl file using atext editor or aVHDL editing environment.
4.2 Compilethe VHDL code. shift_reg8_str.vhdl should compile without any errors, e.g:
gvhcom shift_reg8_str.vhdl
5 Simulate the compiled code

5.1 Start up the Mentor Graphics VHDL simulator. The specific command may very depending on
the version you are using, e.g.:

ghsim shift_reg8_str

5.2 Next, select signals al the signalsin the component for viewing. Consult the documentation for
your specific simulator version for instructions on selecting signals for viewing. Use the force
mechanism to set values for the input signals and run the simulation for 300 ns, e.g:

QHSIM 5> force -freeze /clk O -repeat 40
QHSIM 6> force -freeze /clk 1 20 -repeat 40
QHSIM 7> force -freeze /enable 1

QHSIM 8> force -freeze /d 01010101
QHSIM 9> force -freeze /shift 1, 0 40
QHSIM 10> force -freeze /scan_in 1, 0 150
QHSIM 11> run 300

The resulting window should be similar to this:

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

File r) Edit r) Za0Im r) Frop r) CLrsor r)

AR N B R L L —|

o110 U
I [
=t e

(R T R —

ilIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIII
1

A
0 ns to 300 ns

6 Copy and compile the code needed for the unsigned 8 bit

multiplier example
6.1 Copy the VHDL filesfrom the source directory, e.g:
cp $VHDL_SRC/m11_ex/reg8_str.vhdl .
cp $VHDL_SRC/m11_ex/ha_str.vhdl .
cp $VHDL_SRC/m11_ex/fa_str.vhdl .
cp $VHDL_SRC/m11_ex/alu_str.vhdl .
cp $VHDL_SRC/m11_ex/mult_datapath_str.vhdl .
6.2 Compilethe VHDL files, e.g:
gvhcom reg8_str.vhdl

gvhcom ha_str.vhdl

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

gvhcom fa_str.vhdl
gvhcom alu_str.vhdl

gvhcom mult_datapath_str.vhdl

6.3 Thereisalso acommand file (called ado file) that has been created that will generate the forces
necessary to drive the datapath through an example multiplication sequence. Copy it over now
from the source directory, e.g:

cp $VHDL_SRC/m11_ex/mult_datapath.do .

7 Simulate the unsigned 8 bit multiplier datapath example

7.1 Start up the Mentor Graphics VHDL simulator. The specific command may very depending on
the version you are using, e.g.:

ghsim mult_datapath

7.2 You can use the dofile mechanism in the Mentor Graphics VHDL simulator to facilitate the setup
of asimulation, e.g:

— Execute Command File =]
ftmp_mntfesis1dus21/vrhk2j/rasspfe_f/vi_workshop_bl1/mi11_

File: mult_datapath. dg

Directories: Files:
— —
=] Makefile q
y alu_strvhdl
e Execute
wi ork - aoi2_str.do - —)
aci2_strvhdl

arith_shift_regs_str
booth_mult_datapa M)
booth_mult_datapa
fa_str.vhdl
ha_strvhdl
| mult_datapath.do

Executing the mult_datapath.do file should result in awindow similar to this:

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

File =) Edit =) Zoom =) Prop =) Cursor 7

Aproduct = 0010900110001110[M

ENLY INENNNY 1
0 ns to 550 ns

Notice that during initialization, the ALU outputs all “0”s which is loaded into the A register to
clear it, The C register is cleared, the multiplier is loaded into the Q register and the multiplicand is
loaded into the M register. The simulation then proceeds by performing ADD and SHIFT

operations based on the status of the QO bit.

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

Module 11 Exercise
Assignment:

Using asimple GENERATE statement, create an 8 bit 2 to 1 multiplexor from a structure of mux2
components. Compile and simulate the design to ensure correct operation. Do the same for an 8 bit
4 to 1 multiplexor using mux4 components.

Using a GENERATE statement with an IF clause, create an 8 bit arithmetic shift register from dff
and mux2 components. Recall that in an arithmetic shift:

Q(7) <=D(7),

Q(6 downto Q) <= D(7 downto 1), and

Scan_out <= D(0).

Compile and simulate the design to ensure correct operation.

Using the components constructed above as well as the reg8_str, shift_reg8_str, alu_str, mux2,
and dff, create an RTL datapath for a Booth’s algorithm multiplier.

A Booth’s multiplier functions very similarly to the unsigned multiplier with the exceptions that it
uses an arithmetic shift of the A and Q registers, the Q(0) bit is shifted out into a Q(-1) register,
and the control of the shift/add operation is based on the Q(0) and Q(-1) bits. Finally instead of
just adding M to A and shifting, The Booth’s multiplier either adds or subtracts (adds the twos
complement of M) with A. The flow chart on the next page fully outlines Booth's algorithm for
two's complement multiplication.

Copyright ©1995-1999 SCRA 10
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

An example of 2-complement multiplication using Booth’s Algorithm is shown below:

M=11111011 Mn = 00000101

A Q Q;
00000000 00000011 0 Initialization
00000101 00000011 0 A o A+Mn
00000010 10000001 1 Arithmetic Shift First Cycle
00000001 01000000 1 Arithmetic Shift } Second Cycle
11111100 01000000 1 A . A+M
11111110 00100000 0 Arithmetic Shift Third Cycle
11111111 00010000 0 Arithmetic Shift } Fourth Cycle
11111111 10001000 0 Arithmetic Shift } Fifth Cycle
11111111 11000100 0 Arithmetic Shift } Sixth Cycle
11111111 11100010 0 Arithmetic Shift } Seventh Cycle
11111111 11110001 0 Arithmetic Shift } Eighth Cycle

11

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

START

INITIALIZE

A-0,Q;-0
M - Multiplicand
Mn- -M

Q - Multiplier
Count- O

=10

A- A+Mn A- A+M

y|vi

Arithmetic Shift Right:
Av Qv Q—l
Count - Count +1

Flowchart for Booth’s Algorithm 2’s-Complement Multiplication

Hint - A datapath very similar to the one used for the unsigned multiplier can be used. Instead of
asingle register entering the ALU for the Multiplicand, two registers can be used, one for the
multiplicand (M) and another for the two’s complement of M (Mn) entering the ALU through a
4 to 1 multiplexor. Thetwo’'s complement of M can be generated by adding the inverse of M
(available as the Qn outputs of the M register) to “00000001" using the ALU.

If you need help, an example datapath that can perform Booth’s Algorithm multiplication is shown
on the following page.

Copyright ©1995-1999 SCRA 12

See first page for copyright notice,
Distribution restrictions and disclaimer

Module 11 - Structural VHDL Lab Tutorial

Multiplicand

|
'

Mn_1 Mo Mnn_ Mno
“00000001" Y qn q
'ﬁ j_ ﬂ “00000000”
I 0 1 00 0110 11
ALU “{”
Multiplier
0] 1
L
Ana Ay F1Qn1 Qo Q.1

Example Datapath for Booth’s Algorithm 2’s-Complement Multiplication

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

13

