
Module 11 : Structural VHDL

Tutorial and Exercises

For the VeriBest Simulator

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

2

1. Getting Started

1.1. The Module 11 lab will provide practice with structural VHDL models. The

basic gates created and compiled for the Module 10 lab will be reused through

the use of library mappings. Simple components will be used to form larger,

more useful structures.

1.2. The first VHDL file that you will need is aoi2_str.vhdl.

2. Examine and compile the and/or/inverter model

2.1. Open the file aoi2_str.vhdl using a text editor or a VHDL editing environment.

-- And/OR Invert Structural Example --

-- RASSP E&F Module # 11 Structural VHDL --

-- Robert Klenke UVa 19 April 1996 --

LIBRARY gate_lib;

USE gate_lib.resources.all;

ENTITY aoi2_str is

 GENERIC(trise : delay := 12 ns;

 tfall : delay := 9 ns);

 PORT(a : IN level;

 b : IN level;

 c : IN level;

 d : OUT level);

END aoi2_str;

ARCHITECTURE structural OF aoi2_str IS

 COMPONENT and2

 GENERIC(trise : delay;

 tfall : delay);

 PORT(a : IN level;

 b : IN level;

 c : OUT level);

 END COMPONENT;

 COMPONENT or2

 GENERIC(trise : delay;

 tfall : delay);

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3

 PORT(a : IN level;

 b : IN level;

 c : OUT level);

 END COMPONENT;

 COMPONENT inv

 GENERIC(trise : delay;

 tfall : delay);

 PORT(a : IN level;

 b : OUT level);

 END COMPONENT;

 FOR ALL : and2 USE ENTITY gate_lib.and2(behav);

 FOR ALL : or2 USE ENTITY gate_lib.or2(behav);

 FOR ALL : inv USE ENTITY gate_lib.inv(behav);

 SIGNAL and_out : level; --signal for output of and gate

 SIGNAL or_out : level; --signal for output of or gate

 BEGIN

 AND_1 : and2 GENERIC MAP(trise => trise, tfall => tfall)

 PORT MAP(a => a, b => b, c => and_out);

 OR_1 : or2 GENERIC MAP(trise => trise, tfall => tfall)

 PORT MAP(a => and_out, b => c, c => or_out);

 INV_1 : inv GENERIC MAP(trise => trise, tfall => tfall)

 PORT MAP(a => or_out, b => d);

END structural;

2.2. Before the aoi2_str.vhdl model will compile correctly, some configuration of

the libraries is needed. Notice the library clause "LIBRARY gate_lib;" at the

beginning of the aoi2_str.vhdl file. This tells the compiler that a library called

"gate_lib" is available for use.

2.3. Notice that the and2, or2, and inv gates are bound to the components in the

"gate_lib" library. In order for the compiler to use these gates (which were

compiled during the Module 10 lab), we must create a library mapping.

2.4. Library mapping commands are specific to the VHDL tools being used.

Consult your compiler's documentation for more information on library

mappings. Be sure that the logical library name "gate_lib" refers to the

working library created in Module 10. Typical names for working libraries are

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

4

"work" and "worklib".

2.5. Once the library mapping is correctly created, compile the aoi2_str.vhdl

model. The model should compile without any errors.

2.6. A test bench for the model is provided in the file aoi2_str_test.vhdl. Open and

compile this test bench file.

3. Simulate the compiled code

3.1. Start the VHDL simulator. Remember to select an entity or architecture as the

design root, if required by your simulator.

3.2. Before adding any signals to the waveform window, note the hierarchy of

signal names in the model. The test bench, which is the highest level of

hierarchy, has signals are "A_SIG", "B_SIG", "C_SIG", and "D_SIG". The

aoi2_str structural entity has the input signals "A", "B", and "C"; output signal

"D"; and internal signals "AND_OUT" and "OR_OUT". Lower levels of

hierarchy are also present.

3.3. Open a waveform window, then add the signals from the aoi2_str component.

As listed above, these are "A", "B", "C", "D", "AND_OUT", and "OR_OUT".

3.4. Run the simulator for sufficient time to fully exercise the circuit (at least 150

nanoseconds in this example). The signal waveforms should look something

like this:

4. Examine and compile the 8-bit shift register model

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

5

4.1. Open the file shift_reg8_str.vhdl using a text editor or a VHDL editing

environment.

4.2. Compile the shift_reg8_str.vhdl model.

4.3. A test bench for the model is provided in the file shift_reg8_str_test.vhdl.

Open and compile this test bench file.

5. Simulate the compiled code

5.1. Start the VHDL simulator.

5.2. Open a waveform window, then add all of the signals associated with the

shift_reg8_str structural model. Run the simulation. The resulting window

should look something like this:

6. Examine and compile the unsigned 8-bit multiplier model

6.1. Open the VHDL source files:

reg8_str.vhdl

ha_str.vhdl

fa_str.vhdl

alu_str.vhdl

mult_datapath_str.vhdl

6.2. Compile the VHDL files.

6.3. A test bench for the multiplier model is provided in the file

mult_datapath_str_test.vhdl. This test bench will perform an example

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

6

multiplication sequence. Open and compile this test bench file.

7. Simulate the compiled code

7.1. Start the VHDL simulator.

7.2. Open a waveform window, then add all of the signals associated with the

mult_datapath_str structural model. Run the simulation for an appropriate

amount of time (at least 500 nanoseconds for this example). The resulting

window should look something like this:

Notice that during initialization, the ALU outputs all "0"s which are loaded into

the A register to clear it. The C register is cleared, the multiplier is loaded into

the Q register, and the multiplicand is loaded into the M register. the

simulation then proceeds by performing ADD and SHIFT operations based on

the status of the Q0 bit.

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

7

Module 11 Exercise

Assignment:

Using a simple GENERATE statement, create an 8 bit 2 to 1 multiplexor from

a structure of mux2 components. Compile and simulate the design to ensure

correct operation. Do the same for an 8 bit 4 to 1 multiplexor using mux4

components.

Using a GENERATE statement with an IF clause, create an 8 bit arithmetic

shift register from dff and mux2 components. Recall that in an arithmetic shift:

Q(7) <= D(7),

Q(6 downto 0) <= D(7 downto 1), and

Scan_out <= D(0).

Compile and simulate the design to ensure correct operation.

Using the components constructed above as well as the reg8_str,

shift_reg8_str, alu_str, mux2, and dff, create an RTL datapath for a Booth's

algorithm multiplier. A Booth's multiplier functions very similarly to the

unsigned multiplier with the exceptions that it uses an arithmetic shift of the A

and Q registers, the Q(0) bit is shifted out into a Q(-1) register, and the control

of the shift/add operation is based on the Q(0) and Q(-1) bits. Finally instead

of just adding M to A and shifting, the Booth's multiplier either adds or

subtracts (adds the two's complement of) M with A. The flow chart in the

following pages fully outlines Booth's algorithm for two's complement

multiplication.

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

8

An example of 2-complement multiplication using Booth's Algorithm is shown

below:

M = 11111011 Mn = 00000101

A Q Q-1

00000000 00000011 0 Initialization
00000101 00000011 0 A ← A + Mn
00000010 10000001 1 Arithmetic Shift

First Cycle

00000001 01000000 1 Arithmetic Shift Second Cycle
11111100 01000000 1 A ← A + M
11111110 00100000 0 Arithmetic Shift

Third Cycle

11111111 00010000 0 Arithmetic Shift Fourth Cycle
11111111 10001000 0 Arithmetic Shift Fifth Cycle
11111111 11000100 0 Arithmetic Shift Sixth Cycle
11111111 11100010 0 Arithmetic Shift Seventh Cycle
11111111 11110001 0 Arithmetic Shift Eighth Cycle

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

9

START

INITIALIZE
A ← 0, Q-1 ← 0
M ← Multiplicand
Mn ← - M
Q ← Multiplier
Count ← 0

Test
Q0 Q-1

A ← A + Mn A ← A + M

=10 =01

Arithmetic Shift Right:
A, Q, Q-1

Count ← Count + 1

Count = n ?
END

YesNo

Flowchart for Booth's Algorithm 2's-Complement Multiplication

Hint - A datapath very similar to the one used for the unsigned multiplier can

be used. Instead of a single register entering the ALU for the Multiplicand, two

registers can be used, one for the multiplicand (M) and another for the two's

complement of M (Mn) entering the ALU through a 4 to 1 multiplexor. The

two's complement of M can be generated by adding the inverse of M (available

as the Qn outputs of the M register) to "00000001" using the ALU.

Module 11- Structural VHDL Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

10

If you need help, an example datapath that can perform Booth's Algorithm

multiplication is shown below.

Example Datapath for Booth's Algorithm 2's-Complement Multiplication

Multiplicand

Mn-1 M0 Mnn-1 M0

"00000000"

qq qn

00 01 10 11
0 1

"00000001"

ALU

An-1 A0 Qn-1 Q0

Multiplier

0 1

"0"

Q-1

