
Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

1

Module 11 - Structural VHDL
Tutorial and Exercises

For the Mentor Graphics Simulator

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

2

Module 11 Tutorial

1 Getting started

1.1 Create a directory for the Module 11 lab material, e.g:

mkdir m11_ex
cd m11_ex

1.2 Copy the source files for the VHDL that you will compile and simulate from the appropriate
source directory, e.g:

cp $VHDL_SRC/m11_ex/aoi2_str.vhdl
cp $VHDL_SRC/m11_ex/shift_reg8_str.vhdl

Note the . at the end of the above commands is important; it tells Unix that you want to copy the
file into the same name in the current directory

1.3 The Mentor Graphics QuickVHDL simulator needs a work directory for the compiled VHDL
files. Create this directory with the appropriate command for the version you are running, e.g:

qhlib work

1.4 The structural modules you will work with in this lab utilize the basic gates you created and
compiled for the Module 10 lab. You can access those compiled descriptions by mapping a logical
library to their actual location in the file system. The exact command to do this is specific to the
VHDL tools being used. For many versions of the Mentor Graphics QuickVHDL simulator, it is
done using the following command:

qhmap gate_lib ../m10_ex/work

This tells the QuickVHDL tools that all modules that are located in the qate_lib logical library can
be found in the Unix directory ../m10_ex/work (the “..” is Unix syntax that means “go up one

2 Examine and compile the code for the And-Or-Invert example

2.1 Open the file aoi2_str.vhdl file using a text editor or a VHDL editing environment. You will see
the following VHDL description:

-- And/OR Invert Structural Example --
-- RASSP E&F Module # 11 Structural VHDL --
-- Robert Klenke UVa 19 April 1996 --

LIBRARY gate_lib;

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3

USE gate_lib.resources.all;

ENTITY aoi2_str is
 GENERIC(trise : delay := 12 ns;
 tfall : delay := 9 ns);
 PORT(a : IN level;
 b : IN level;
 c : IN level;
 d : OUT level);
END aoi2_str;

ARCHITECTURE structural OF aoi2_str IS

 COMPONENT and2
 GENERIC(trise : delay;
 tfall : delay);
 PORT(a : IN level;
 b : IN level;
 c : OUT level);
 END COMPONENT;

 COMPONENT or2
 GENERIC(trise : delay;
 tfall : delay);
 PORT(a : IN level;
 b : IN level;
 c : OUT level);
 END COMPONENT;

 COMPONENT inv
 GENERIC(trise : delay;
 tfall : delay);
 PORT(a : IN level;
 b : OUT level);
 END COMPONENT;

 FOR ALL : and2 USE ENTITY gate_lib.and2(behav);
 FOR ALL : or2 USE ENTITY gate_lib.or2(behav);

 SIGNAL and_out : level; -- signal for output of and gate
 SIGNAL or_out : level; -- signal for output of or gate

 BEGIN

 AND_1 : and2 GENERIC MAP(trise => trise, tfall => tfall)
 PORT MAP(a => a, b => b, c => and_out);

 OR_1 : or2 GENERIC MAP(trise => trise, tfall => tfall)
 PORT MAP(a => and_out, b => c, c => or_out);

 INV_1 : inv GENERIC MAP(trise => trise, tfall => tfall)
 PORT MAP(a => or_out, b => d);
END structural;

Notice that the and2, or2, and inv gates are bound to the components in the library gate_lib that
you mapped to the Module 10 examples earlier.

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

4

2.2 Compile the VHDL code, e.g:

qvhcom aoi2_str.vhdl

aoi2_str.vhdl should compile without any errors. The compiler should display a message similar
to the following with no errors:

// Compiling for QuickHDL
// QuickHDL qvhcom v8.5_4.5a Mar 28 1996 SunOS 4.1.3
//
// Copyright (c) Mentor Graphics Corporation, 1982-1995, All Rights Reserved.
// UNPUBLISHED, LICENSED SOFTWARE.
// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.
//
// Copyright (c) Model Technology Incorporated 1990-1995, All Rights Reserved.
//
-- Loading package standard
-- Loading package resources
-- Compiling entity aoi2_str
-- Compiling architecture structural of aoi2_str
-- Loading entity and2
-- Loading entity or2
-- Loading entity inv

Notice that during compilation that the entities for the and2, or2, and inv components were loaded
by the compiler to check that they properly matched the generic and port maps used in the
component declarations and instantiations. Only the entities were checked by the compiler, the
architectures are not needed until the design is actually simulated and are not checked during
compilation.

3 Simulate the compiled code

3.1 Start up the Mentor Graphics VHDL simulator. The specific command may very depending on
the version you are using, e.g.:

qhsim aoi2_str

This will bring up a window similar to the one shown below. Notice that the architectures for the
and2, or2, and inv gates are loaded at this time. If there were any problems with the architectures
it will show up here:

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

5

3.2 Next, select signals a, b, and c for viewing. Consult the documentation for your specific simulator
version for instructions on selecting signals for viewing. Use the force mechanism to set values
for the input signals and run the simulation for 150 ns, e.g:

QHSIM 1> force -freeze /a 0, 1 110
QHSIM 2> force -freeze /b 0, 1 110
QHSIM 3> force -freeze /c 0, 1 40, 0 80
QHSIM 4> run 150

After adding cursors, the resulting window should look similar to this:

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

6

4 Examine and compile the code for the 8 bit shift register example

4.1 Open the file shift_reg8_str.vhdl file using a text editor or a VHDL editing environment.

4.2 Compile the VHDL code. shift_reg8_str.vhdl should compile without any errors, e.g:

qvhcom shift_reg8_str.vhdl

5 Simulate the compiled code

5.1 Start up the Mentor Graphics VHDL simulator. The specific command may very depending on
the version you are using, e.g.:

qhsim shift_reg8_str

5.2 Next, select signals all the signals in the component for viewing. Consult the documentation for
your specific simulator version for instructions on selecting signals for viewing. Use the force
mechanism to set values for the input signals and run the simulation for 300 ns, e.g:

QHSIM 5> force -freeze /clk 0 -repeat 40

QHSIM 6> force -freeze /clk 1 20 -repeat 40

QHSIM 7> force -freeze /enable 1

QHSIM 8> force -freeze /d 01010101

QHSIM 9> force -freeze /shift 1, 0 40

QHSIM 10> force -freeze /scan_in 1, 0 150

QHSIM 11> run 300

The resulting window should be similar to this:

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

7

6 Copy and compile the code needed for the unsigned 8 bit
multiplier example

6.1 Copy the VHDL files from the source directory, e.g:

cp $VHDL_SRC/m11_ex/reg8_str.vhdl .

cp $VHDL_SRC/m11_ex/ha_str.vhdl .

cp $VHDL_SRC/m11_ex/fa_str.vhdl .

cp $VHDL_SRC/m11_ex/alu_str.vhdl .

cp $VHDL_SRC/m11_ex/mult_datapath_str.vhdl .

6.2 Compile the VHDL files, e.g:

qvhcom reg8_str.vhdl

qvhcom ha_str.vhdl

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

8

qvhcom fa_str.vhdl

qvhcom alu_str.vhdl

qvhcom mult_datapath_str.vhdl

6.3 There is also a command file (called a do file) that has been created that will generate the forces
necessary to drive the datapath through an example multiplication sequence. Copy it over now
from the source directory, e.g:

cp $VHDL_SRC/m11_ex/mult_datapath.do .

7 Simulate the unsigned 8 bit multiplier datapath example

7.1 Start up the Mentor Graphics VHDL simulator. The specific command may very depending on
the version you are using, e.g.:

qhsim mult_datapath

7.2 You can use the dofile mechanism in the Mentor Graphics VHDL simulator to facilitate the setup
of a simulation, e.g:

Executing the mult_datapath.do file should result in a window similar to this:

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

9

Notice that during initialization, the ALU outputs all “0”s which is loaded into the A register to

clear it, The C register is cleared, the multiplier is loaded into the Q register and the multiplicand is

loaded into the M register. The simulation then proceeds by performing ADD and SHIFT

operations based on the status of the Q0 bit.

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

10

Module 11 Exercise

Assignment:

Using a simple GENERATE statement, create an 8 bit 2 to 1 multiplexor from a structure of mux2

components. Compile and simulate the design to ensure correct operation. Do the same for an 8 bit

4 to 1 multiplexor using mux4 components.

Using a GENERATE statement with an IF clause, create an 8 bit arithmetic shift register from dff

and mux2 components. Recall that in an arithmetic shift:

Q(7) <= D(7),

Q(6 downto 0) <= D(7 downto 1), and

Scan_out <= D(0).

Compile and simulate the design to ensure correct operation.

Using the components constructed above as well as the reg8_str, shift_reg8_str, alu_str, mux2,

and dff, create an RTL datapath for a Booth’s algorithm multiplier.

A Booth’s multiplier functions very similarly to the unsigned multiplier with the exceptions that it

uses an arithmetic shift of the A and Q registers, the Q(0) bit is shifted out into a Q(-1) register,

and the control of the shift/add operation is based on the Q(0) and Q(-1) bits. Finally instead of

just adding M to A and shifting, The Booth’s multiplier either adds or subtracts (adds the twos

complement of M) with A. The flow chart on the next page fully outlines Booth’s algorithm for

two's complement multiplication.

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

11

An example of 2-complement multiplication using Booth’s Algorithm is shown below:

M = 11111011 Mn = 00000101

A Q Q-1

00000000 00000011 0 Initialization

00000101 00000011 0 A ← A+Mn
00000010 10000001 1 Arithmetic Shift

00000001 01000000 1 Arithmetic Shift

11111100 01000000 1 A ← A+M
11111110 00100000 0 Arithmetic Shift

11111111 00010000 0 Arithmetic Shift

11111111 10001000 0 Arithmetic Shift

11111111 11000100 0 Arithmetic Shift

11111111 11100010 0 Arithmetic Shift

11111111 11110001 0 Arithmetic Shift

} First Cycle

} Second Cycle

} Third Cycle

} Fourth Cycle

} Fifth Cycle

} Sixth Cycle

} Seventh Cycle

} Eighth Cycle

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

12

Hint - A datapath very similar to the one used for the unsigned multiplier can be used. Instead of
a single register entering the ALU for the Multiplicand, two registers can be used, one for the
multiplicand (M) and another for the two’s complement of M (Mn) entering the ALU through a
4 to 1 multiplexor. The two’s complement of M can be generated by adding the inverse of M
(available as the Qn outputs of the M register) to “00000001” using the ALU.

If you need help, an example datapath that can perform Booth’s Algorithm multiplication is shown
on the following page.

START

INITIALIZE

A ← 0, Q-1 ← 0
M ← Multiplicand
Mn ← - M
Q ← Multiplier
Count ← 0

Test
Q0 Q-1

A ← A + MA ← A + Mn

Arithmetic Shift Right:

Count ← Count + 1
A, Q, Q-1

Count = n ? END

=10 =01

=00
=11

No Yes

Flowchart for Booth’s Algorithm 2’s-Complement Multiplication

Module 11 - Structural VHDL Lab Tutorial

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

13

ALU

Mn-1 M0 Mnn-1 Mn0

Qn-1 Q0An-1 A0

“00000000”

q qn q
“00000001”

Q-1

“0”

Multiplicand

Multiplier

0 1

0 1

00 01 10 11

Example Datapath for Booth’s Algorithm 2’s-Complement Multiplication

